1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not yet handle integer ranges.
15 // - Only 1 argument per function is specialised,
16 // - The cost-model could be further looked into,
17 // - We are not yet caching analysis results.
18 //
19 // Ideas:
20 // - With a function specialization attribute for arguments, we could have
21 //   a direct way to steer function specialization, avoiding the cost-model,
22 //   and thus control compile-times / code-size.
23 //
24 // Todos:
25 // - Specializing recursive functions relies on running the transformation a
26 //   number of times, which is controlled by option
27 //   `func-specialization-max-iters`. Thus, increasing this value and the
28 //   number of iterations, will linearly increase the number of times recursive
29 //   functions get specialized, see also the discussion in
30 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
31 //   compile-time friendlier way to control/limit the number of specialisations
32 //   for recursive functions.
33 // - Don't transform the function if there is no function specialization
34 //   happens.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/AssumptionCache.h"
40 #include "llvm/Analysis/CodeMetrics.h"
41 #include "llvm/Analysis/DomTreeUpdater.h"
42 #include "llvm/Analysis/InlineCost.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Scalar/SCCP.h"
47 #include "llvm/Transforms/Utils/Cloning.h"
48 #include "llvm/Transforms/Utils/SizeOpts.h"
49 #include <cmath>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "function-specialization"
54 
55 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
56 
57 static cl::opt<bool> ForceFunctionSpecialization(
58     "force-function-specialization", cl::init(false), cl::Hidden,
59     cl::desc("Force function specialization for every call site with a "
60              "constant argument"));
61 
62 static cl::opt<unsigned> FuncSpecializationMaxIters(
63     "func-specialization-max-iters", cl::Hidden,
64     cl::desc("The maximum number of iterations function specialization is run"),
65     cl::init(1));
66 
67 static cl::opt<unsigned> MaxConstantsThreshold(
68     "func-specialization-max-constants", cl::Hidden,
69     cl::desc("The maximum number of clones allowed for a single function "
70              "specialization"),
71     cl::init(3));
72 
73 static cl::opt<unsigned> SmallFunctionThreshold(
74     "func-specialization-size-threshold", cl::Hidden,
75     cl::desc("Don't specialize functions that have less than this theshold "
76              "number of instructions"),
77     cl::init(100));
78 
79 static cl::opt<unsigned>
80     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
81                           cl::desc("Average loop iteration count cost"),
82                           cl::init(10));
83 
84 static cl::opt<bool> SpecializeOnAddresses(
85     "func-specialization-on-address", cl::init(false), cl::Hidden,
86     cl::desc("Enable function specialization on the address of global values"));
87 
88 // TODO: This needs checking to see the impact on compile-times, which is why
89 // this is off by default for now.
90 static cl::opt<bool> EnableSpecializationForLiteralConstant(
91     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
92     cl::desc("Enable specialization of functions that take a literal constant "
93              "as an argument."));
94 
95 // Helper to check if \p LV is either a constant or a constant
96 // range with a single element. This should cover exactly the same cases as the
97 // old ValueLatticeElement::isConstant() and is intended to be used in the
98 // transition to ValueLatticeElement.
99 static bool isConstant(const ValueLatticeElement &LV) {
100   return LV.isConstant() ||
101          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
102 }
103 
104 // Helper to check if \p LV is either overdefined or a constant int.
105 static bool isOverdefined(const ValueLatticeElement &LV) {
106   return !LV.isUnknownOrUndef() && !isConstant(LV);
107 }
108 
109 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
110   Value *StoreValue = nullptr;
111   for (auto *User : Alloca->users()) {
112     // We can't use llvm::isAllocaPromotable() as that would fail because of
113     // the usage in the CallInst, which is what we check here.
114     if (User == Call)
115       continue;
116     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
117       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
118         return nullptr;
119       continue;
120     }
121 
122     if (auto *Store = dyn_cast<StoreInst>(User)) {
123       // This is a duplicate store, bail out.
124       if (StoreValue || Store->isVolatile())
125         return nullptr;
126       StoreValue = Store->getValueOperand();
127       continue;
128     }
129     // Bail if there is any other unknown usage.
130     return nullptr;
131   }
132   return dyn_cast_or_null<Constant>(StoreValue);
133 }
134 
135 // A constant stack value is an AllocaInst that has a single constant
136 // value stored to it. Return this constant if such an alloca stack value
137 // is a function argument.
138 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
139                                        SCCPSolver &Solver) {
140   if (!Val)
141     return nullptr;
142   Val = Val->stripPointerCasts();
143   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
144     return ConstVal;
145   auto *Alloca = dyn_cast<AllocaInst>(Val);
146   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
147     return nullptr;
148   return getPromotableAlloca(Alloca, Call);
149 }
150 
151 // To support specializing recursive functions, it is important to propagate
152 // constant arguments because after a first iteration of specialisation, a
153 // reduced example may look like this:
154 //
155 //     define internal void @RecursiveFn(i32* arg1) {
156 //       %temp = alloca i32, align 4
157 //       store i32 2 i32* %temp, align 4
158 //       call void @RecursiveFn.1(i32* nonnull %temp)
159 //       ret void
160 //     }
161 //
162 // Before a next iteration, we need to propagate the constant like so
163 // which allows further specialization in next iterations.
164 //
165 //     @funcspec.arg = internal constant i32 2
166 //
167 //     define internal void @someFunc(i32* arg1) {
168 //       call void @otherFunc(i32* nonnull @funcspec.arg)
169 //       ret void
170 //     }
171 //
172 static void constantArgPropagation(SmallVectorImpl<Function *> &WorkList,
173                                    Module &M, SCCPSolver &Solver) {
174   // Iterate over the argument tracked functions see if there
175   // are any new constant values for the call instruction via
176   // stack variables.
177   for (auto *F : WorkList) {
178     // TODO: Generalize for any read only arguments.
179     if (F->arg_size() != 1)
180       continue;
181 
182     auto &Arg = *F->arg_begin();
183     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
184       continue;
185 
186     for (auto *User : F->users()) {
187       auto *Call = dyn_cast<CallInst>(User);
188       if (!Call)
189         break;
190       auto *ArgOp = Call->getArgOperand(0);
191       auto *ArgOpType = ArgOp->getType();
192       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
193       if (!ConstVal)
194         break;
195 
196       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
197                                      GlobalValue::InternalLinkage, ConstVal,
198                                      "funcspec.arg");
199 
200       if (ArgOpType != ConstVal->getType())
201         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
202 
203       Call->setArgOperand(0, GV);
204 
205       // Add the changed CallInst to Solver Worklist
206       Solver.visitCall(*Call);
207     }
208   }
209 }
210 
211 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
212 // interfere with the constantArgPropagation optimization.
213 static void removeSSACopy(Function &F) {
214   for (BasicBlock &BB : F) {
215     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
216       auto *II = dyn_cast<IntrinsicInst>(&Inst);
217       if (!II)
218         continue;
219       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
220         continue;
221       Inst.replaceAllUsesWith(II->getOperand(0));
222       Inst.eraseFromParent();
223     }
224   }
225 }
226 
227 static void removeSSACopy(Module &M) {
228   for (Function &F : M)
229     removeSSACopy(F);
230 }
231 
232 class FunctionSpecializer {
233 
234   /// The IPSCCP Solver.
235   SCCPSolver &Solver;
236 
237   /// Analyses used to help determine if a function should be specialized.
238   std::function<AssumptionCache &(Function &)> GetAC;
239   std::function<TargetTransformInfo &(Function &)> GetTTI;
240   std::function<TargetLibraryInfo &(Function &)> GetTLI;
241 
242   SmallPtrSet<Function *, 2> SpecializedFuncs;
243 
244 public:
245   FunctionSpecializer(SCCPSolver &Solver,
246                       std::function<AssumptionCache &(Function &)> GetAC,
247                       std::function<TargetTransformInfo &(Function &)> GetTTI,
248                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
249       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
250 
251   /// Attempt to specialize functions in the module to enable constant
252   /// propagation across function boundaries.
253   ///
254   /// \returns true if at least one function is specialized.
255   bool
256   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
257                       SmallVectorImpl<Function *> &CurrentSpecializations) {
258 
259     // Attempt to specialize the argument-tracked functions.
260     bool Changed = false;
261     for (auto *F : FuncDecls) {
262       if (specializeFunction(F, CurrentSpecializations)) {
263         Changed = true;
264         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
265       } else {
266         LLVM_DEBUG(
267             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
268       }
269     }
270 
271     for (auto *SpecializedFunc : CurrentSpecializations) {
272       SpecializedFuncs.insert(SpecializedFunc);
273 
274       // Initialize the state of the newly created functions, marking them
275       // argument-tracked and executable.
276       if (SpecializedFunc->hasExactDefinition() &&
277           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
278         Solver.addTrackedFunction(SpecializedFunc);
279       Solver.addArgumentTrackedFunction(SpecializedFunc);
280       FuncDecls.push_back(SpecializedFunc);
281       Solver.markBlockExecutable(&SpecializedFunc->front());
282 
283       // Replace the function arguments for the specialized functions.
284       for (Argument &Arg : SpecializedFunc->args())
285         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
286           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
287                             << Arg.getName() << "\n");
288     }
289 
290     NumFuncSpecialized += NbFunctionsSpecialized;
291     return Changed;
292   }
293 
294   bool tryToReplaceWithConstant(Value *V) {
295     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
296         V->user_empty())
297       return false;
298 
299     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
300     if (isOverdefined(IV))
301       return false;
302     auto *Const =
303         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
304     V->replaceAllUsesWith(Const);
305 
306     for (auto *U : Const->users())
307       if (auto *I = dyn_cast<Instruction>(U))
308         if (Solver.isBlockExecutable(I->getParent()))
309           Solver.visit(I);
310 
311     // Remove the instruction from Block and Solver.
312     if (auto *I = dyn_cast<Instruction>(V)) {
313       if (I->isSafeToRemove()) {
314         I->eraseFromParent();
315         Solver.removeLatticeValueFor(I);
316       }
317     }
318     return true;
319   }
320 
321 private:
322   // The number of functions specialised, used for collecting statistics and
323   // also in the cost model.
324   unsigned NbFunctionsSpecialized = 0;
325 
326   /// Clone the function \p F and remove the ssa_copy intrinsics added by
327   /// the SCCPSolver in the cloned version.
328   Function *cloneCandidateFunction(Function *F) {
329     ValueToValueMapTy EmptyMap;
330     Function *Clone = CloneFunction(F, EmptyMap);
331     removeSSACopy(*Clone);
332     return Clone;
333   }
334 
335   /// This function decides whether to specialize function \p F based on the
336   /// known constant values its arguments can take on. Specialization is
337   /// performed on the first interesting argument. Specializations based on
338   /// additional arguments will be evaluated on following iterations of the
339   /// main IPSCCP solve loop. \returns true if the function is specialized and
340   /// false otherwise.
341   bool specializeFunction(Function *F,
342                           SmallVectorImpl<Function *> &Specializations) {
343 
344     // Do not specialize the cloned function again.
345     if (SpecializedFuncs.contains(F))
346       return false;
347 
348     // If we're optimizing the function for size, we shouldn't specialize it.
349     if (F->hasOptSize() ||
350         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
351       return false;
352 
353     // Exit if the function is not executable. There's no point in specializing
354     // a dead function.
355     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
356       return false;
357 
358     // It wastes time to specialize a function which would get inlined finally.
359     if (F->hasFnAttribute(Attribute::AlwaysInline))
360       return false;
361 
362     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
363                       << "\n");
364 
365     // Determine if it would be profitable to create a specialization of the
366     // function where the argument takes on the given constant value. If so,
367     // add the constant to Constants.
368     auto FnSpecCost = getSpecializationCost(F);
369     if (!FnSpecCost.isValid()) {
370       LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
371       return false;
372     }
373 
374     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
375                FnSpecCost.print(dbgs()); dbgs() << "\n");
376 
377     // Determine if we should specialize the function based on the values the
378     // argument can take on. If specialization is not profitable, we continue
379     // on to the next argument.
380     for (Argument &A : F->args()) {
381       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
382                         << "\n");
383       // True if this will be a partial specialization. We will need to keep
384       // the original function around in addition to the added specializations.
385       bool IsPartial = true;
386 
387       // Determine if this argument is interesting. If we know the argument can
388       // take on any constant values, they are collected in Constants. If the
389       // argument can only ever equal a constant value in Constants, the
390       // function will be completely specialized, and the IsPartial flag will
391       // be set to false by isArgumentInteresting (that function only adds
392       // values to the Constants list that are deemed profitable).
393       SmallVector<Constant *, 4> Constants;
394       if (!isArgumentInteresting(&A, Constants, FnSpecCost, IsPartial)) {
395         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
396         continue;
397       }
398 
399       assert(!Constants.empty() && "No constants on which to specialize");
400       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
401                         << "FnSpecialization: Specializing '" << F->getName()
402                         << "' on argument: " << A << "\n"
403                         << "FnSpecialization: Constants are:\n\n";
404                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
405                  << *Constants[I] << "\n";
406                  dbgs() << "FnSpecialization: End of constants\n\n");
407 
408       // Create a version of the function in which the argument is marked
409       // constant with the given value.
410       for (auto *C : Constants) {
411         // Clone the function. We leave the ValueToValueMap empty to allow
412         // IPSCCP to propagate the constant arguments.
413         Function *Clone = cloneCandidateFunction(F);
414         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
415 
416         // Rewrite calls to the function so that they call the clone instead.
417         rewriteCallSites(F, Clone, *ClonedArg, C);
418 
419         // Initialize the lattice state of the arguments of the function clone,
420         // marking the argument on which we specialized the function constant
421         // with the given value.
422         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
423 
424         // Mark all the specialized functions
425         Specializations.push_back(Clone);
426         NbFunctionsSpecialized++;
427       }
428 
429       // If the function has been completely specialized, the original function
430       // is no longer needed. Mark it unreachable.
431       if (!IsPartial)
432         Solver.markFunctionUnreachable(F);
433 
434       // FIXME: Only one argument per function.
435       return true;
436     }
437 
438     return false;
439   }
440 
441   /// Compute the cost of specializing function \p F.
442   InstructionCost getSpecializationCost(Function *F) {
443     // Compute the code metrics for the function.
444     SmallPtrSet<const Value *, 32> EphValues;
445     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
446     CodeMetrics Metrics;
447     for (BasicBlock &BB : *F)
448       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
449 
450     // If the code metrics reveal that we shouldn't duplicate the function, we
451     // shouldn't specialize it. Set the specialization cost to Invalid.
452     // Or if the lines of codes implies that this function is easy to get
453     // inlined so that we shouldn't specialize it.
454     if (Metrics.notDuplicatable ||
455         (!ForceFunctionSpecialization &&
456          Metrics.NumInsts < SmallFunctionThreshold)) {
457       InstructionCost C{};
458       C.setInvalid();
459       return C;
460     }
461 
462     // Otherwise, set the specialization cost to be the cost of all the
463     // instructions in the function and penalty for specializing more functions.
464     unsigned Penalty = NbFunctionsSpecialized + 1;
465     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
466   }
467 
468   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
469                                LoopInfo &LI) {
470     auto *I = dyn_cast_or_null<Instruction>(U);
471     // If not an instruction we do not know how to evaluate.
472     // Keep minimum possible cost for now so that it doesnt affect
473     // specialization.
474     if (!I)
475       return std::numeric_limits<unsigned>::min();
476 
477     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
478 
479     // Traverse recursively if there are more uses.
480     // TODO: Any other instructions to be added here?
481     if (I->mayReadFromMemory() || I->isCast())
482       for (auto *User : I->users())
483         Cost += getUserBonus(User, TTI, LI);
484 
485     // Increase the cost if it is inside the loop.
486     auto LoopDepth = LI.getLoopDepth(I->getParent());
487     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
488     return Cost;
489   }
490 
491   /// Compute a bonus for replacing argument \p A with constant \p C.
492   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
493     Function *F = A->getParent();
494     DominatorTree DT(*F);
495     LoopInfo LI(DT);
496     auto &TTI = (GetTTI)(*F);
497     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
498                       << "\n");
499 
500     InstructionCost TotalCost = 0;
501     for (auto *U : A->users()) {
502       TotalCost += getUserBonus(U, TTI, LI);
503       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
504                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
505     }
506 
507     // The below heuristic is only concerned with exposing inlining
508     // opportunities via indirect call promotion. If the argument is not a
509     // function pointer, give up.
510     if (!isa<PointerType>(A->getType()) ||
511         !isa<FunctionType>(A->getType()->getPointerElementType()))
512       return TotalCost;
513 
514     // Since the argument is a function pointer, its incoming constant values
515     // should be functions or constant expressions. The code below attempts to
516     // look through cast expressions to find the function that will be called.
517     Value *CalledValue = C;
518     while (isa<ConstantExpr>(CalledValue) &&
519            cast<ConstantExpr>(CalledValue)->isCast())
520       CalledValue = cast<User>(CalledValue)->getOperand(0);
521     Function *CalledFunction = dyn_cast<Function>(CalledValue);
522     if (!CalledFunction)
523       return TotalCost;
524 
525     // Get TTI for the called function (used for the inline cost).
526     auto &CalleeTTI = (GetTTI)(*CalledFunction);
527 
528     // Look at all the call sites whose called value is the argument.
529     // Specializing the function on the argument would allow these indirect
530     // calls to be promoted to direct calls. If the indirect call promotion
531     // would likely enable the called function to be inlined, specializing is a
532     // good idea.
533     int Bonus = 0;
534     for (User *U : A->users()) {
535       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
536         continue;
537       auto *CS = cast<CallBase>(U);
538       if (CS->getCalledOperand() != A)
539         continue;
540 
541       // Get the cost of inlining the called function at this call site. Note
542       // that this is only an estimate. The called function may eventually
543       // change in a way that leads to it not being inlined here, even though
544       // inlining looks profitable now. For example, one of its called
545       // functions may be inlined into it, making the called function too large
546       // to be inlined into this call site.
547       //
548       // We apply a boost for performing indirect call promotion by increasing
549       // the default threshold by the threshold for indirect calls.
550       auto Params = getInlineParams();
551       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
552       InlineCost IC =
553           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
554 
555       // We clamp the bonus for this call to be between zero and the default
556       // threshold.
557       if (IC.isAlways())
558         Bonus += Params.DefaultThreshold;
559       else if (IC.isVariable() && IC.getCostDelta() > 0)
560         Bonus += IC.getCostDelta();
561     }
562 
563     return TotalCost + Bonus;
564   }
565 
566   /// Determine if we should specialize a function based on the incoming values
567   /// of the given argument.
568   ///
569   /// This function implements the goal-directed heuristic. It determines if
570   /// specializing the function based on the incoming values of argument \p A
571   /// would result in any significant optimization opportunities. If
572   /// optimization opportunities exist, the constant values of \p A on which to
573   /// specialize the function are collected in \p Constants. If the values in
574   /// \p Constants represent the complete set of values that \p A can take on,
575   /// the function will be completely specialized, and the \p IsPartial flag is
576   /// set to false.
577   ///
578   /// \returns true if the function should be specialized on the given
579   /// argument.
580   bool isArgumentInteresting(Argument *A,
581                              SmallVectorImpl<Constant *> &Constants,
582                              const InstructionCost &FnSpecCost,
583                              bool &IsPartial) {
584     // For now, don't attempt to specialize functions based on the values of
585     // composite types.
586     if (!A->getType()->isSingleValueType() || A->user_empty())
587       return false;
588 
589     // If the argument isn't overdefined, there's nothing to do. It should
590     // already be constant.
591     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
592       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
593                         << "constant?\n");
594       return false;
595     }
596 
597     // Collect the constant values that the argument can take on. If the
598     // argument can't take on any constant values, we aren't going to
599     // specialize the function. While it's possible to specialize the function
600     // based on non-constant arguments, there's likely not much benefit to
601     // constant propagation in doing so.
602     //
603     // TODO 1: currently it won't specialize if there are over the threshold of
604     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
605     // might be beneficial to take the occurrences into account in the cost
606     // model, so we would need to find the unique constants.
607     //
608     // TODO 2: this currently does not support constants, i.e. integer ranges.
609     //
610     SmallVector<Constant *, 4> PossibleConstants;
611     bool AllConstant = getPossibleConstants(A, PossibleConstants);
612     if (PossibleConstants.empty()) {
613       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
614       return false;
615     }
616     if (PossibleConstants.size() > MaxConstantsThreshold) {
617       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
618                         << "the maximum number of constants threshold.\n");
619       return false;
620     }
621 
622     for (auto *C : PossibleConstants) {
623       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
624       if (ForceFunctionSpecialization) {
625         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
626         Constants.push_back(C);
627         continue;
628       }
629       if (getSpecializationBonus(A, C) > FnSpecCost) {
630         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
631         Constants.push_back(C);
632       } else {
633         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
634       }
635     }
636 
637     // None of the constant values the argument can take on were deemed good
638     // candidates on which to specialize the function.
639     if (Constants.empty())
640       return false;
641 
642     // This will be a partial specialization if some of the constants were
643     // rejected due to their profitability.
644     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
645 
646     return true;
647   }
648 
649   /// Collect in \p Constants all the constant values that argument \p A can
650   /// take on.
651   ///
652   /// \returns true if all of the values the argument can take on are constant
653   /// (e.g., the argument's parent function cannot be called with an
654   /// overdefined value).
655   bool getPossibleConstants(Argument *A,
656                             SmallVectorImpl<Constant *> &Constants) {
657     Function *F = A->getParent();
658     bool AllConstant = true;
659 
660     // Iterate over all the call sites of the argument's parent function.
661     for (User *U : F->users()) {
662       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
663         continue;
664       auto &CS = *cast<CallBase>(U);
665       // If the call site has attribute minsize set, that callsite won't be
666       // specialized.
667       if (CS.hasFnAttr(Attribute::MinSize)) {
668         AllConstant = false;
669         continue;
670       }
671 
672       // If the parent of the call site will never be executed, we don't need
673       // to worry about the passed value.
674       if (!Solver.isBlockExecutable(CS.getParent()))
675         continue;
676 
677       auto *V = CS.getArgOperand(A->getArgNo());
678       if (isa<PoisonValue>(V))
679         return false;
680 
681       // For now, constant expressions are fine but only if they are function
682       // calls.
683       if (auto *CE =  dyn_cast<ConstantExpr>(V))
684         if (!isa<Function>(CE->getOperand(0)))
685           return false;
686 
687       // TrackValueOfGlobalVariable only tracks scalar global variables.
688       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
689         // Check if we want to specialize on the address of non-constant
690         // global values.
691         if (!GV->isConstant())
692           if (!SpecializeOnAddresses)
693             return false;
694 
695         if (!GV->getValueType()->isSingleValueType())
696           return false;
697       }
698 
699       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
700                                EnableSpecializationForLiteralConstant))
701         Constants.push_back(cast<Constant>(V));
702       else
703         AllConstant = false;
704     }
705 
706     // If the argument can only take on constant values, AllConstant will be
707     // true.
708     return AllConstant;
709   }
710 
711   /// Rewrite calls to function \p F to call function \p Clone instead.
712   ///
713   /// This function modifies calls to function \p F whose argument at index \p
714   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
715   /// \p Clone instead.
716   ///
717   /// Callsites that have been marked with the MinSize function attribute won't
718   /// be specialized and rewritten.
719   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
720                         Constant *C) {
721     unsigned ArgNo = Arg.getArgNo();
722     SmallVector<CallBase *, 4> CallSitesToRewrite;
723     for (auto *U : F->users()) {
724       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
725         continue;
726       auto &CS = *cast<CallBase>(U);
727       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
728         continue;
729       CallSitesToRewrite.push_back(&CS);
730     }
731     for (auto *CS : CallSitesToRewrite) {
732       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
733           CS->getArgOperand(ArgNo) == C) {
734         CS->setCalledFunction(Clone);
735         Solver.markOverdefined(CS);
736       }
737     }
738   }
739 };
740 
741 bool llvm::runFunctionSpecialization(
742     Module &M, const DataLayout &DL,
743     std::function<TargetLibraryInfo &(Function &)> GetTLI,
744     std::function<TargetTransformInfo &(Function &)> GetTTI,
745     std::function<AssumptionCache &(Function &)> GetAC,
746     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
747   SCCPSolver Solver(DL, GetTLI, M.getContext());
748   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
749   bool Changed = false;
750 
751   // Loop over all functions, marking arguments to those with their addresses
752   // taken or that are external as overdefined.
753   for (Function &F : M) {
754     if (F.isDeclaration())
755       continue;
756     if (F.hasFnAttribute(Attribute::NoDuplicate))
757       continue;
758 
759     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
760                       << "\n");
761     Solver.addAnalysis(F, GetAnalysis(F));
762 
763     // Determine if we can track the function's arguments. If so, add the
764     // function to the solver's set of argument-tracked functions.
765     if (canTrackArgumentsInterprocedurally(&F)) {
766       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
767       Solver.addArgumentTrackedFunction(&F);
768       continue;
769     } else {
770       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
771                         << "FnSpecialization: Doesn't have local linkage, or "
772                         << "has its address taken\n");
773     }
774 
775     // Assume the function is called.
776     Solver.markBlockExecutable(&F.front());
777 
778     // Assume nothing about the incoming arguments.
779     for (Argument &AI : F.args())
780       Solver.markOverdefined(&AI);
781   }
782 
783   // Determine if we can track any of the module's global variables. If so, add
784   // the global variables we can track to the solver's set of tracked global
785   // variables.
786   for (GlobalVariable &G : M.globals()) {
787     G.removeDeadConstantUsers();
788     if (canTrackGlobalVariableInterprocedurally(&G))
789       Solver.trackValueOfGlobalVariable(&G);
790   }
791 
792   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
793   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
794                                         TrackedFuncs.end());
795 
796   // No tracked functions, so nothing to do: don't run the solver and remove
797   // the ssa_copy intrinsics that may have been introduced.
798   if (TrackedFuncs.empty()) {
799     removeSSACopy(M);
800     return false;
801   }
802 
803   // Solve for constants.
804   auto RunSCCPSolver = [&](auto &WorkList) {
805     bool ResolvedUndefs = true;
806 
807     while (ResolvedUndefs) {
808       // Not running the solver unnecessary is checked in regression test
809       // nothing-to-do.ll, so if this debug message is changed, this regression
810       // test needs updating too.
811       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
812 
813       Solver.solve();
814       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
815       ResolvedUndefs = false;
816       for (Function *F : WorkList)
817         if (Solver.resolvedUndefsIn(*F))
818           ResolvedUndefs = true;
819     }
820 
821     for (auto *F : WorkList) {
822       for (BasicBlock &BB : *F) {
823         if (!Solver.isBlockExecutable(&BB))
824           continue;
825         // FIXME: The solver may make changes to the function here, so set
826         // Changed, even if later function specialization does not trigger.
827         for (auto &I : make_early_inc_range(BB))
828           Changed |= FS.tryToReplaceWithConstant(&I);
829       }
830     }
831   };
832 
833 #ifndef NDEBUG
834   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
835   for (auto *F : FuncDecls)
836     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
837 #endif
838 
839   // Initially resolve the constants in all the argument tracked functions.
840   RunSCCPSolver(FuncDecls);
841 
842   SmallVector<Function *, 2> CurrentSpecializations;
843   unsigned I = 0;
844   while (FuncSpecializationMaxIters != I++ &&
845          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
846 
847     // Run the solver for the specialized functions.
848     RunSCCPSolver(CurrentSpecializations);
849 
850     // Replace some unresolved constant arguments.
851     constantArgPropagation(FuncDecls, M, Solver);
852 
853     CurrentSpecializations.clear();
854     Changed = true;
855   }
856 
857   // Clean up the IR by removing ssa_copy intrinsics.
858   removeSSACopy(M);
859   return Changed;
860 }
861