1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - Only 1 argument per function is specialised, 23 // - The cost-model could be further looked into (it mainly focuses on inlining 24 // benefits), 25 // - We are not yet caching analysis results, but profiling and checking where 26 // extra compile time is spent didn't suggest this to be a problem. 27 // 28 // Ideas: 29 // - With a function specialization attribute for arguments, we could have 30 // a direct way to steer function specialization, avoiding the cost-model, 31 // and thus control compile-times / code-size. 32 // 33 // Todos: 34 // - Specializing recursive functions relies on running the transformation a 35 // number of times, which is controlled by option 36 // `func-specialization-max-iters`. Thus, increasing this value and the 37 // number of iterations, will linearly increase the number of times recursive 38 // functions get specialized, see also the discussion in 39 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 40 // compile-time friendlier way to control/limit the number of specialisations 41 // for recursive functions. 42 // - Don't transform the function if function specialization does not trigger; 43 // the SCCPSolver may make IR changes. 44 // 45 // References: 46 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 47 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/Analysis/AssumptionCache.h" 53 #include "llvm/Analysis/CodeMetrics.h" 54 #include "llvm/Analysis/DomTreeUpdater.h" 55 #include "llvm/Analysis/InlineCost.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/TargetTransformInfo.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include <cmath> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "function-specialization" 67 68 STATISTIC(NumFuncSpecialized, "Number of functions specialized"); 69 70 static cl::opt<bool> ForceFunctionSpecialization( 71 "force-function-specialization", cl::init(false), cl::Hidden, 72 cl::desc("Force function specialization for every call site with a " 73 "constant argument")); 74 75 static cl::opt<unsigned> FuncSpecializationMaxIters( 76 "func-specialization-max-iters", cl::Hidden, 77 cl::desc("The maximum number of iterations function specialization is run"), 78 cl::init(1)); 79 80 static cl::opt<unsigned> MaxClonesThreshold( 81 "func-specialization-max-clones", cl::Hidden, 82 cl::desc("The maximum number of clones allowed for a single function " 83 "specialization"), 84 cl::init(3)); 85 86 static cl::opt<unsigned> SmallFunctionThreshold( 87 "func-specialization-size-threshold", cl::Hidden, 88 cl::desc("Don't specialize functions that have less than this theshold " 89 "number of instructions"), 90 cl::init(100)); 91 92 static cl::opt<unsigned> 93 AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden, 94 cl::desc("Average loop iteration count cost"), 95 cl::init(10)); 96 97 static cl::opt<bool> SpecializeOnAddresses( 98 "func-specialization-on-address", cl::init(false), cl::Hidden, 99 cl::desc("Enable function specialization on the address of global values")); 100 101 // TODO: This needs checking to see the impact on compile-times, which is why 102 // this is off by default for now. 103 static cl::opt<bool> EnableSpecializationForLiteralConstant( 104 "function-specialization-for-literal-constant", cl::init(false), cl::Hidden, 105 cl::desc("Enable specialization of functions that take a literal constant " 106 "as an argument.")); 107 108 namespace { 109 // Bookkeeping struct to pass data from the analysis and profitability phase 110 // to the actual transform helper functions. 111 struct ArgInfo { 112 Function *Fn; // The function to perform specialisation on. 113 Argument *Formal; // The Formal argument being analysed. 114 Constant *Actual; // A corresponding actual constant argument. 115 InstructionCost Gain; // Profitability: Gain = Bonus - Cost. 116 117 // Flag if this will be a partial specialization, in which case we will need 118 // to keep the original function around in addition to the added 119 // specializations. 120 bool Partial = false; 121 122 ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G) 123 : Fn(F), Formal(A), Actual(C), Gain(G){}; 124 }; 125 } // Anonymous namespace 126 127 using FuncList = SmallVectorImpl<Function *>; 128 using ConstList = SmallVectorImpl<Constant *>; 129 130 // Helper to check if \p LV is either a constant or a constant 131 // range with a single element. This should cover exactly the same cases as the 132 // old ValueLatticeElement::isConstant() and is intended to be used in the 133 // transition to ValueLatticeElement. 134 static bool isConstant(const ValueLatticeElement &LV) { 135 return LV.isConstant() || 136 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 137 } 138 139 // Helper to check if \p LV is either overdefined or a constant int. 140 static bool isOverdefined(const ValueLatticeElement &LV) { 141 return !LV.isUnknownOrUndef() && !isConstant(LV); 142 } 143 144 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) { 145 Value *StoreValue = nullptr; 146 for (auto *User : Alloca->users()) { 147 // We can't use llvm::isAllocaPromotable() as that would fail because of 148 // the usage in the CallInst, which is what we check here. 149 if (User == Call) 150 continue; 151 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 152 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 153 return nullptr; 154 continue; 155 } 156 157 if (auto *Store = dyn_cast<StoreInst>(User)) { 158 // This is a duplicate store, bail out. 159 if (StoreValue || Store->isVolatile()) 160 return nullptr; 161 StoreValue = Store->getValueOperand(); 162 continue; 163 } 164 // Bail if there is any other unknown usage. 165 return nullptr; 166 } 167 return dyn_cast_or_null<Constant>(StoreValue); 168 } 169 170 // A constant stack value is an AllocaInst that has a single constant 171 // value stored to it. Return this constant if such an alloca stack value 172 // is a function argument. 173 static Constant *getConstantStackValue(CallInst *Call, Value *Val, 174 SCCPSolver &Solver) { 175 if (!Val) 176 return nullptr; 177 Val = Val->stripPointerCasts(); 178 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 179 return ConstVal; 180 auto *Alloca = dyn_cast<AllocaInst>(Val); 181 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 182 return nullptr; 183 return getPromotableAlloca(Alloca, Call); 184 } 185 186 // To support specializing recursive functions, it is important to propagate 187 // constant arguments because after a first iteration of specialisation, a 188 // reduced example may look like this: 189 // 190 // define internal void @RecursiveFn(i32* arg1) { 191 // %temp = alloca i32, align 4 192 // store i32 2 i32* %temp, align 4 193 // call void @RecursiveFn.1(i32* nonnull %temp) 194 // ret void 195 // } 196 // 197 // Before a next iteration, we need to propagate the constant like so 198 // which allows further specialization in next iterations. 199 // 200 // @funcspec.arg = internal constant i32 2 201 // 202 // define internal void @someFunc(i32* arg1) { 203 // call void @otherFunc(i32* nonnull @funcspec.arg) 204 // ret void 205 // } 206 // 207 static void constantArgPropagation(FuncList &WorkList, 208 Module &M, SCCPSolver &Solver) { 209 // Iterate over the argument tracked functions see if there 210 // are any new constant values for the call instruction via 211 // stack variables. 212 for (auto *F : WorkList) { 213 // TODO: Generalize for any read only arguments. 214 if (F->arg_size() != 1) 215 continue; 216 217 auto &Arg = *F->arg_begin(); 218 if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy()) 219 continue; 220 221 for (auto *User : F->users()) { 222 auto *Call = dyn_cast<CallInst>(User); 223 if (!Call) 224 break; 225 auto *ArgOp = Call->getArgOperand(0); 226 auto *ArgOpType = ArgOp->getType(); 227 auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver); 228 if (!ConstVal) 229 break; 230 231 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 232 GlobalValue::InternalLinkage, ConstVal, 233 "funcspec.arg"); 234 235 if (ArgOpType != ConstVal->getType()) 236 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType()); 237 238 Call->setArgOperand(0, GV); 239 240 // Add the changed CallInst to Solver Worklist 241 Solver.visitCall(*Call); 242 } 243 } 244 } 245 246 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 247 // interfere with the constantArgPropagation optimization. 248 static void removeSSACopy(Function &F) { 249 for (BasicBlock &BB : F) { 250 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 251 auto *II = dyn_cast<IntrinsicInst>(&Inst); 252 if (!II) 253 continue; 254 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 255 continue; 256 Inst.replaceAllUsesWith(II->getOperand(0)); 257 Inst.eraseFromParent(); 258 } 259 } 260 } 261 262 static void removeSSACopy(Module &M) { 263 for (Function &F : M) 264 removeSSACopy(F); 265 } 266 267 namespace { 268 class FunctionSpecializer { 269 270 /// The IPSCCP Solver. 271 SCCPSolver &Solver; 272 273 /// Analyses used to help determine if a function should be specialized. 274 std::function<AssumptionCache &(Function &)> GetAC; 275 std::function<TargetTransformInfo &(Function &)> GetTTI; 276 std::function<TargetLibraryInfo &(Function &)> GetTLI; 277 278 SmallPtrSet<Function *, 2> SpecializedFuncs; 279 SmallVector<Instruction *> ReplacedWithConstant; 280 281 public: 282 FunctionSpecializer(SCCPSolver &Solver, 283 std::function<AssumptionCache &(Function &)> GetAC, 284 std::function<TargetTransformInfo &(Function &)> GetTTI, 285 std::function<TargetLibraryInfo &(Function &)> GetTLI) 286 : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {} 287 288 /// Attempt to specialize functions in the module to enable constant 289 /// propagation across function boundaries. 290 /// 291 /// \returns true if at least one function is specialized. 292 bool specializeFunctions(FuncList &Candidates, FuncList &WorkList) { 293 bool Changed = false; 294 for (auto *F : Candidates) { 295 if (!isCandidateFunction(F)) 296 continue; 297 298 auto Cost = getSpecializationCost(F); 299 if (!Cost.isValid()) { 300 LLVM_DEBUG( 301 dbgs() << "FnSpecialization: Invalid specialisation cost.\n"); 302 continue; 303 } 304 305 auto ConstArgs = calculateGains(F, Cost); 306 if (ConstArgs.empty()) { 307 LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n"); 308 continue; 309 } 310 311 for (auto &CA : ConstArgs) { 312 specializeFunction(CA, WorkList); 313 Changed = true; 314 } 315 } 316 317 updateSpecializedFuncs(Candidates, WorkList); 318 NumFuncSpecialized += NbFunctionsSpecialized; 319 return Changed; 320 } 321 322 void removeDeadInstructions() { 323 for (auto *I : ReplacedWithConstant) { 324 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction " 325 << *I << "\n"); 326 I->eraseFromParent(); 327 } 328 ReplacedWithConstant.clear(); 329 } 330 331 bool tryToReplaceWithConstant(Value *V) { 332 if (!V->getType()->isSingleValueType() || isa<CallBase>(V) || 333 V->user_empty()) 334 return false; 335 336 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 337 if (isOverdefined(IV)) 338 return false; 339 auto *Const = 340 isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); 341 342 LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V 343 << "\nFnSpecialization: with " << *Const << "\n"); 344 345 // Record uses of V to avoid visiting irrelevant uses of const later. 346 SmallVector<Instruction *> UseInsts; 347 for (auto *U : V->users()) 348 if (auto *I = dyn_cast<Instruction>(U)) 349 if (Solver.isBlockExecutable(I->getParent())) 350 UseInsts.push_back(I); 351 352 V->replaceAllUsesWith(Const); 353 354 for (auto *I : UseInsts) 355 Solver.visit(I); 356 357 // Remove the instruction from Block and Solver. 358 if (auto *I = dyn_cast<Instruction>(V)) { 359 if (I->isSafeToRemove()) { 360 ReplacedWithConstant.push_back(I); 361 Solver.removeLatticeValueFor(I); 362 } 363 } 364 return true; 365 } 366 367 private: 368 // The number of functions specialised, used for collecting statistics and 369 // also in the cost model. 370 unsigned NbFunctionsSpecialized = 0; 371 372 /// Clone the function \p F and remove the ssa_copy intrinsics added by 373 /// the SCCPSolver in the cloned version. 374 Function *cloneCandidateFunction(Function *F) { 375 ValueToValueMapTy EmptyMap; 376 Function *Clone = CloneFunction(F, EmptyMap); 377 removeSSACopy(*Clone); 378 return Clone; 379 } 380 381 /// This function decides whether it's worthwhile to specialize function \p F 382 /// based on the known constant values its arguments can take on, i.e. it 383 /// calculates a gain and returns a list of actual arguments that are deemed 384 /// profitable to specialize. Specialization is performed on the first 385 /// interesting argument. Specializations based on additional arguments will 386 /// be evaluated on following iterations of the main IPSCCP solve loop. 387 SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) { 388 SmallVector<ArgInfo> Worklist; 389 // Determine if we should specialize the function based on the values the 390 // argument can take on. If specialization is not profitable, we continue 391 // on to the next argument. 392 for (Argument &FormalArg : F->args()) { 393 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " 394 << FormalArg.getName() << "\n"); 395 // Determine if this argument is interesting. If we know the argument can 396 // take on any constant values, they are collected in Constants. If the 397 // argument can only ever equal a constant value in Constants, the 398 // function will be completely specialized, and the IsPartial flag will 399 // be set to false by isArgumentInteresting (that function only adds 400 // values to the Constants list that are deemed profitable). 401 bool IsPartial = true; 402 SmallVector<Constant *> ActualArgs; 403 if (!isArgumentInteresting(&FormalArg, ActualArgs, IsPartial)) { 404 LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n"); 405 continue; 406 } 407 408 for (auto *ActualArg : ActualArgs) { 409 InstructionCost Gain = 410 ForceFunctionSpecialization 411 ? 1 412 : getSpecializationBonus(&FormalArg, ActualArg) - Cost; 413 414 if (Gain <= 0) 415 continue; 416 Worklist.push_back({F, &FormalArg, ActualArg, Gain}); 417 } 418 419 if (Worklist.empty()) 420 continue; 421 422 // Sort the candidates in descending order. 423 llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) { 424 return L.Gain > R.Gain; 425 }); 426 427 // Truncate the worklist to 'MaxClonesThreshold' candidates if 428 // necessary. 429 if (Worklist.size() > MaxClonesThreshold) { 430 LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed " 431 << "the maximum number of clones threshold.\n" 432 << "Truncating worklist to " << MaxClonesThreshold 433 << " candidates.\n"); 434 Worklist.erase(Worklist.begin() + MaxClonesThreshold, 435 Worklist.end()); 436 } 437 438 if (IsPartial || Worklist.size() < ActualArgs.size()) 439 for (auto &ActualArg : Worklist) 440 ActualArg.Partial = true; 441 442 LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n"; 443 for (auto &C 444 : Worklist) { 445 dbgs() << "- Function = " << C.Fn->getName() << ", "; 446 dbgs() << "FormalArg = " << C.Formal->getName() << ", "; 447 dbgs() << "ActualArg = " << C.Actual->getName() << ", "; 448 dbgs() << "Gain = " << C.Gain << "\n"; 449 }); 450 451 // FIXME: Only one argument per function. 452 break; 453 } 454 return Worklist; 455 } 456 457 bool isCandidateFunction(Function *F) { 458 // Do not specialize the cloned function again. 459 if (SpecializedFuncs.contains(F)) 460 return false; 461 462 // If we're optimizing the function for size, we shouldn't specialize it. 463 if (F->hasOptSize() || 464 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 465 return false; 466 467 // Exit if the function is not executable. There's no point in specializing 468 // a dead function. 469 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 470 return false; 471 472 // It wastes time to specialize a function which would get inlined finally. 473 if (F->hasFnAttribute(Attribute::AlwaysInline)) 474 return false; 475 476 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 477 << "\n"); 478 return true; 479 } 480 481 void specializeFunction(ArgInfo &AI, FuncList &WorkList) { 482 Function *Clone = cloneCandidateFunction(AI.Fn); 483 Argument *ClonedArg = Clone->getArg(AI.Formal->getArgNo()); 484 485 // Rewrite calls to the function so that they call the clone instead. 486 rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Actual); 487 488 // Initialize the lattice state of the arguments of the function clone, 489 // marking the argument on which we specialized the function constant 490 // with the given value. 491 Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Actual); 492 493 // Mark all the specialized functions 494 WorkList.push_back(Clone); 495 NbFunctionsSpecialized++; 496 497 // If the function has been completely specialized, the original function 498 // is no longer needed. Mark it unreachable. 499 if (!AI.Partial) 500 Solver.markFunctionUnreachable(AI.Fn); 501 } 502 503 /// Compute and return the cost of specializing function \p F. 504 InstructionCost getSpecializationCost(Function *F) { 505 // Compute the code metrics for the function. 506 SmallPtrSet<const Value *, 32> EphValues; 507 CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues); 508 CodeMetrics Metrics; 509 for (BasicBlock &BB : *F) 510 Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues); 511 512 // If the code metrics reveal that we shouldn't duplicate the function, we 513 // shouldn't specialize it. Set the specialization cost to Invalid. 514 // Or if the lines of codes implies that this function is easy to get 515 // inlined so that we shouldn't specialize it. 516 if (Metrics.notDuplicatable || 517 (!ForceFunctionSpecialization && 518 Metrics.NumInsts < SmallFunctionThreshold)) { 519 InstructionCost C{}; 520 C.setInvalid(); 521 return C; 522 } 523 524 // Otherwise, set the specialization cost to be the cost of all the 525 // instructions in the function and penalty for specializing more functions. 526 unsigned Penalty = NbFunctionsSpecialized + 1; 527 return Metrics.NumInsts * InlineConstants::InstrCost * Penalty; 528 } 529 530 InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI, 531 LoopInfo &LI) { 532 auto *I = dyn_cast_or_null<Instruction>(U); 533 // If not an instruction we do not know how to evaluate. 534 // Keep minimum possible cost for now so that it doesnt affect 535 // specialization. 536 if (!I) 537 return std::numeric_limits<unsigned>::min(); 538 539 auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency); 540 541 // Traverse recursively if there are more uses. 542 // TODO: Any other instructions to be added here? 543 if (I->mayReadFromMemory() || I->isCast()) 544 for (auto *User : I->users()) 545 Cost += getUserBonus(User, TTI, LI); 546 547 // Increase the cost if it is inside the loop. 548 auto LoopDepth = LI.getLoopDepth(I->getParent()); 549 Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth); 550 return Cost; 551 } 552 553 /// Compute a bonus for replacing argument \p A with constant \p C. 554 InstructionCost getSpecializationBonus(Argument *A, Constant *C) { 555 Function *F = A->getParent(); 556 DominatorTree DT(*F); 557 LoopInfo LI(DT); 558 auto &TTI = (GetTTI)(*F); 559 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A 560 << "\n"); 561 562 InstructionCost TotalCost = 0; 563 for (auto *U : A->users()) { 564 TotalCost += getUserBonus(U, TTI, LI); 565 LLVM_DEBUG(dbgs() << "FnSpecialization: User cost "; 566 TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n"); 567 } 568 569 // The below heuristic is only concerned with exposing inlining 570 // opportunities via indirect call promotion. If the argument is not a 571 // function pointer, give up. 572 if (!isa<PointerType>(A->getType()) || 573 !isa<FunctionType>(A->getType()->getPointerElementType())) 574 return TotalCost; 575 576 // Since the argument is a function pointer, its incoming constant values 577 // should be functions or constant expressions. The code below attempts to 578 // look through cast expressions to find the function that will be called. 579 Value *CalledValue = C; 580 while (isa<ConstantExpr>(CalledValue) && 581 cast<ConstantExpr>(CalledValue)->isCast()) 582 CalledValue = cast<User>(CalledValue)->getOperand(0); 583 Function *CalledFunction = dyn_cast<Function>(CalledValue); 584 if (!CalledFunction) 585 return TotalCost; 586 587 // Get TTI for the called function (used for the inline cost). 588 auto &CalleeTTI = (GetTTI)(*CalledFunction); 589 590 // Look at all the call sites whose called value is the argument. 591 // Specializing the function on the argument would allow these indirect 592 // calls to be promoted to direct calls. If the indirect call promotion 593 // would likely enable the called function to be inlined, specializing is a 594 // good idea. 595 int Bonus = 0; 596 for (User *U : A->users()) { 597 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 598 continue; 599 auto *CS = cast<CallBase>(U); 600 if (CS->getCalledOperand() != A) 601 continue; 602 603 // Get the cost of inlining the called function at this call site. Note 604 // that this is only an estimate. The called function may eventually 605 // change in a way that leads to it not being inlined here, even though 606 // inlining looks profitable now. For example, one of its called 607 // functions may be inlined into it, making the called function too large 608 // to be inlined into this call site. 609 // 610 // We apply a boost for performing indirect call promotion by increasing 611 // the default threshold by the threshold for indirect calls. 612 auto Params = getInlineParams(); 613 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 614 InlineCost IC = 615 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 616 617 // We clamp the bonus for this call to be between zero and the default 618 // threshold. 619 if (IC.isAlways()) 620 Bonus += Params.DefaultThreshold; 621 else if (IC.isVariable() && IC.getCostDelta() > 0) 622 Bonus += IC.getCostDelta(); 623 } 624 625 return TotalCost + Bonus; 626 } 627 628 /// Determine if we should specialize a function based on the incoming values 629 /// of the given argument. 630 /// 631 /// This function implements the goal-directed heuristic. It determines if 632 /// specializing the function based on the incoming values of argument \p A 633 /// would result in any significant optimization opportunities. If 634 /// optimization opportunities exist, the constant values of \p A on which to 635 /// specialize the function are collected in \p Constants. If the values in 636 /// \p Constants represent the complete set of values that \p A can take on, 637 /// the function will be completely specialized, and the \p IsPartial flag is 638 /// set to false. 639 /// 640 /// \returns true if the function should be specialized on the given 641 /// argument. 642 bool isArgumentInteresting(Argument *A, ConstList &Constants, 643 bool &IsPartial) { 644 // For now, don't attempt to specialize functions based on the values of 645 // composite types. 646 if (!A->getType()->isSingleValueType() || A->user_empty()) 647 return false; 648 649 // If the argument isn't overdefined, there's nothing to do. It should 650 // already be constant. 651 if (!Solver.getLatticeValueFor(A).isOverdefined()) { 652 LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already " 653 << "constant?\n"); 654 return false; 655 } 656 657 // Collect the constant values that the argument can take on. If the 658 // argument can't take on any constant values, we aren't going to 659 // specialize the function. While it's possible to specialize the function 660 // based on non-constant arguments, there's likely not much benefit to 661 // constant propagation in doing so. 662 // 663 // TODO 1: currently it won't specialize if there are over the threshold of 664 // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it 665 // might be beneficial to take the occurrences into account in the cost 666 // model, so we would need to find the unique constants. 667 // 668 // TODO 2: this currently does not support constants, i.e. integer ranges. 669 // 670 IsPartial = !getPossibleConstants(A, Constants); 671 LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n"); 672 return true; 673 } 674 675 /// Collect in \p Constants all the constant values that argument \p A can 676 /// take on. 677 /// 678 /// \returns true if all of the values the argument can take on are constant 679 /// (e.g., the argument's parent function cannot be called with an 680 /// overdefined value). 681 bool getPossibleConstants(Argument *A, ConstList &Constants) { 682 Function *F = A->getParent(); 683 bool AllConstant = true; 684 685 // Iterate over all the call sites of the argument's parent function. 686 for (User *U : F->users()) { 687 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 688 continue; 689 auto &CS = *cast<CallBase>(U); 690 // If the call site has attribute minsize set, that callsite won't be 691 // specialized. 692 if (CS.hasFnAttr(Attribute::MinSize)) { 693 AllConstant = false; 694 continue; 695 } 696 697 // If the parent of the call site will never be executed, we don't need 698 // to worry about the passed value. 699 if (!Solver.isBlockExecutable(CS.getParent())) 700 continue; 701 702 auto *V = CS.getArgOperand(A->getArgNo()); 703 if (isa<PoisonValue>(V)) 704 return false; 705 706 // For now, constant expressions are fine but only if they are function 707 // calls. 708 if (auto *CE = dyn_cast<ConstantExpr>(V)) 709 if (!isa<Function>(CE->getOperand(0))) 710 return false; 711 712 // TrackValueOfGlobalVariable only tracks scalar global variables. 713 if (auto *GV = dyn_cast<GlobalVariable>(V)) { 714 // Check if we want to specialize on the address of non-constant 715 // global values. 716 if (!GV->isConstant()) 717 if (!SpecializeOnAddresses) 718 return false; 719 720 if (!GV->getValueType()->isSingleValueType()) 721 return false; 722 } 723 724 if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() || 725 EnableSpecializationForLiteralConstant)) 726 Constants.push_back(cast<Constant>(V)); 727 else 728 AllConstant = false; 729 } 730 731 // If the argument can only take on constant values, AllConstant will be 732 // true. 733 return AllConstant; 734 } 735 736 /// Rewrite calls to function \p F to call function \p Clone instead. 737 /// 738 /// This function modifies calls to function \p F whose argument at index \p 739 /// ArgNo is equal to constant \p C. The calls are rewritten to call function 740 /// \p Clone instead. 741 /// 742 /// Callsites that have been marked with the MinSize function attribute won't 743 /// be specialized and rewritten. 744 void rewriteCallSites(Function *F, Function *Clone, Argument &Arg, 745 Constant *C) { 746 unsigned ArgNo = Arg.getArgNo(); 747 SmallVector<CallBase *, 4> CallSitesToRewrite; 748 for (auto *U : F->users()) { 749 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 750 continue; 751 auto &CS = *cast<CallBase>(U); 752 if (!CS.getCalledFunction() || CS.getCalledFunction() != F) 753 continue; 754 CallSitesToRewrite.push_back(&CS); 755 } 756 for (auto *CS : CallSitesToRewrite) { 757 if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) || 758 CS->getArgOperand(ArgNo) == C) { 759 CS->setCalledFunction(Clone); 760 Solver.markOverdefined(CS); 761 } 762 } 763 } 764 765 void updateSpecializedFuncs(FuncList &Candidates, FuncList &WorkList) { 766 for (auto *F : WorkList) { 767 SpecializedFuncs.insert(F); 768 769 // Initialize the state of the newly created functions, marking them 770 // argument-tracked and executable. 771 if (F->hasExactDefinition() && !F->hasFnAttribute(Attribute::Naked)) 772 Solver.addTrackedFunction(F); 773 774 Solver.addArgumentTrackedFunction(F); 775 Candidates.push_back(F); 776 Solver.markBlockExecutable(&F->front()); 777 778 // Replace the function arguments for the specialized functions. 779 for (Argument &Arg : F->args()) 780 if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg)) 781 LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: " 782 << Arg.getName() << "\n"); 783 } 784 } 785 }; 786 } // namespace 787 788 bool llvm::runFunctionSpecialization( 789 Module &M, const DataLayout &DL, 790 std::function<TargetLibraryInfo &(Function &)> GetTLI, 791 std::function<TargetTransformInfo &(Function &)> GetTTI, 792 std::function<AssumptionCache &(Function &)> GetAC, 793 function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) { 794 SCCPSolver Solver(DL, GetTLI, M.getContext()); 795 FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI); 796 bool Changed = false; 797 798 // Loop over all functions, marking arguments to those with their addresses 799 // taken or that are external as overdefined. 800 for (Function &F : M) { 801 if (F.isDeclaration()) 802 continue; 803 if (F.hasFnAttribute(Attribute::NoDuplicate)) 804 continue; 805 806 LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName() 807 << "\n"); 808 Solver.addAnalysis(F, GetAnalysis(F)); 809 810 // Determine if we can track the function's arguments. If so, add the 811 // function to the solver's set of argument-tracked functions. 812 if (canTrackArgumentsInterprocedurally(&F)) { 813 LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n"); 814 Solver.addArgumentTrackedFunction(&F); 815 continue; 816 } else { 817 LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n" 818 << "FnSpecialization: Doesn't have local linkage, or " 819 << "has its address taken\n"); 820 } 821 822 // Assume the function is called. 823 Solver.markBlockExecutable(&F.front()); 824 825 // Assume nothing about the incoming arguments. 826 for (Argument &AI : F.args()) 827 Solver.markOverdefined(&AI); 828 } 829 830 // Determine if we can track any of the module's global variables. If so, add 831 // the global variables we can track to the solver's set of tracked global 832 // variables. 833 for (GlobalVariable &G : M.globals()) { 834 G.removeDeadConstantUsers(); 835 if (canTrackGlobalVariableInterprocedurally(&G)) 836 Solver.trackValueOfGlobalVariable(&G); 837 } 838 839 auto &TrackedFuncs = Solver.getArgumentTrackedFunctions(); 840 SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(), 841 TrackedFuncs.end()); 842 843 // No tracked functions, so nothing to do: don't run the solver and remove 844 // the ssa_copy intrinsics that may have been introduced. 845 if (TrackedFuncs.empty()) { 846 removeSSACopy(M); 847 return false; 848 } 849 850 // Solve for constants. 851 auto RunSCCPSolver = [&](auto &WorkList) { 852 bool ResolvedUndefs = true; 853 854 while (ResolvedUndefs) { 855 // Not running the solver unnecessary is checked in regression test 856 // nothing-to-do.ll, so if this debug message is changed, this regression 857 // test needs updating too. 858 LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n"); 859 860 Solver.solve(); 861 LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n"); 862 ResolvedUndefs = false; 863 for (Function *F : WorkList) 864 if (Solver.resolvedUndefsIn(*F)) 865 ResolvedUndefs = true; 866 } 867 868 for (auto *F : WorkList) { 869 for (BasicBlock &BB : *F) { 870 if (!Solver.isBlockExecutable(&BB)) 871 continue; 872 // FIXME: The solver may make changes to the function here, so set 873 // Changed, even if later function specialization does not trigger. 874 for (auto &I : make_early_inc_range(BB)) 875 Changed |= FS.tryToReplaceWithConstant(&I); 876 } 877 } 878 }; 879 880 #ifndef NDEBUG 881 LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n"); 882 for (auto *F : FuncDecls) 883 LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n"); 884 #endif 885 886 // Initially resolve the constants in all the argument tracked functions. 887 RunSCCPSolver(FuncDecls); 888 889 SmallVector<Function *, 2> WorkList; 890 unsigned I = 0; 891 while (FuncSpecializationMaxIters != I++ && 892 FS.specializeFunctions(FuncDecls, WorkList)) { 893 894 // Run the solver for the specialized functions. 895 RunSCCPSolver(WorkList); 896 897 // Replace some unresolved constant arguments. 898 constantArgPropagation(FuncDecls, M, Solver); 899 900 WorkList.clear(); 901 Changed = true; 902 } 903 904 // Clean up the IR by removing dead instructions and ssa_copy intrinsics. 905 FS.removeDeadInstructions(); 906 removeSSACopy(M); 907 return Changed; 908 } 909