1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not yet handle integer ranges.
15 // - Only 1 argument per function is specialised,
16 // - The cost-model could be further looked into,
17 // - We are not yet caching analysis results.
18 //
19 // Ideas:
20 // - With a function specialization attribute for arguments, we could have
21 //   a direct way to steer function specialization, avoiding the cost-model,
22 //   and thus control compile-times / code-size.
23 //
24 // Todos:
25 // - Limit the times a recursive function get specialized when
26 // `func-specialization-max-iters`
27 //   increases linearly. See discussion in https://reviews.llvm.org/D106426 for
28 //   details.
29 // - Don't transform the function if there is no function specialization
30 // happens.
31 //
32 //===----------------------------------------------------------------------===//
33 
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DomTreeUpdater.h"
38 #include "llvm/Analysis/InlineCost.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/Transforms/Scalar/SCCP.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/SizeOpts.h"
45 #include <cmath>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "function-specialization"
50 
51 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
52 
53 static cl::opt<bool> ForceFunctionSpecialization(
54     "force-function-specialization", cl::init(false), cl::Hidden,
55     cl::desc("Force function specialization for every call site with a "
56              "constant argument"));
57 
58 static cl::opt<unsigned> FuncSpecializationMaxIters(
59     "func-specialization-max-iters", cl::Hidden,
60     cl::desc("The maximum number of iterations function specialization is run"),
61     cl::init(1));
62 
63 static cl::opt<unsigned> MaxConstantsThreshold(
64     "func-specialization-max-constants", cl::Hidden,
65     cl::desc("The maximum number of clones allowed for a single function "
66              "specialization"),
67     cl::init(3));
68 
69 static cl::opt<unsigned>
70     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
71                           cl::desc("Average loop iteration count cost"),
72                           cl::init(10));
73 
74 static cl::opt<bool> EnableSpecializationForLiteralConstant(
75     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
76     cl::desc("Make function specialization available for literal constant."));
77 
78 // Helper to check if \p LV is either a constant or a constant
79 // range with a single element. This should cover exactly the same cases as the
80 // old ValueLatticeElement::isConstant() and is intended to be used in the
81 // transition to ValueLatticeElement.
82 static bool isConstant(const ValueLatticeElement &LV) {
83   return LV.isConstant() ||
84          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
85 }
86 
87 // Helper to check if \p LV is either overdefined or a constant int.
88 static bool isOverdefined(const ValueLatticeElement &LV) {
89   return !LV.isUnknownOrUndef() && !isConstant(LV);
90 }
91 
92 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
93   Value *StoreValue = nullptr;
94   for (auto *User : Alloca->users()) {
95     // We can't use llvm::isAllocaPromotable() as that would fail because of
96     // the usage in the CallInst, which is what we check here.
97     if (User == Call)
98       continue;
99     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
100       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
101         return nullptr;
102       continue;
103     }
104 
105     if (auto *Store = dyn_cast<StoreInst>(User)) {
106       // This is a duplicate store, bail out.
107       if (StoreValue || Store->isVolatile())
108         return nullptr;
109       StoreValue = Store->getValueOperand();
110       continue;
111     }
112     // Bail if there is any other unknown usage.
113     return nullptr;
114   }
115   return dyn_cast_or_null<Constant>(StoreValue);
116 }
117 
118 // A constant stack value is an AllocaInst that has a single constant
119 // value stored to it. Return this constant if such an alloca stack value
120 // is a function argument.
121 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
122                                        SCCPSolver &Solver) {
123   if (!Val)
124     return nullptr;
125   Val = Val->stripPointerCasts();
126   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
127     return ConstVal;
128   auto *Alloca = dyn_cast<AllocaInst>(Val);
129   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
130     return nullptr;
131   return getPromotableAlloca(Alloca, Call);
132 }
133 
134 // To support specializing recursive functions, it is important to propagate
135 // constant arguments because after a first iteration of specialisation, a
136 // reduced example may look like this:
137 //
138 //     define internal void @RecursiveFn(i32* arg1) {
139 //       %temp = alloca i32, align 4
140 //       store i32 2 i32* %temp, align 4
141 //       call void @RecursiveFn.1(i32* nonnull %temp)
142 //       ret void
143 //     }
144 //
145 // Before a next iteration, we need to propagate the constant like so
146 // which allows further specialization in next iterations.
147 //
148 //     @funcspec.arg = internal constant i32 2
149 //
150 //     define internal void @someFunc(i32* arg1) {
151 //       call void @otherFunc(i32* nonnull @funcspec.arg)
152 //       ret void
153 //     }
154 //
155 static void constantArgPropagation(SmallVectorImpl<Function *> &WorkList,
156                                    Module &M, SCCPSolver &Solver) {
157   // Iterate over the argument tracked functions see if there
158   // are any new constant values for the call instruction via
159   // stack variables.
160   for (auto *F : WorkList) {
161     // TODO: Generalize for any read only arguments.
162     if (F->arg_size() != 1)
163       continue;
164 
165     auto &Arg = *F->arg_begin();
166     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
167       continue;
168 
169     for (auto *User : F->users()) {
170       auto *Call = dyn_cast<CallInst>(User);
171       if (!Call)
172         break;
173       auto *ArgOp = Call->getArgOperand(0);
174       auto *ArgOpType = ArgOp->getType();
175       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
176       if (!ConstVal)
177         break;
178 
179       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
180                                      GlobalValue::InternalLinkage, ConstVal,
181                                      "funcspec.arg");
182 
183       if (ArgOpType != ConstVal->getType())
184         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
185 
186       Call->setArgOperand(0, GV);
187 
188       // Add the changed CallInst to Solver Worklist
189       Solver.visitCall(*Call);
190     }
191   }
192 }
193 
194 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
195 // interfere with the constantArgPropagation optimization.
196 static void removeSSACopy(Function &F) {
197   for (BasicBlock &BB : F) {
198     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
199       Instruction *Inst = &*BI++;
200       auto *II = dyn_cast<IntrinsicInst>(Inst);
201       if (!II)
202         continue;
203       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
204         continue;
205       Inst->replaceAllUsesWith(II->getOperand(0));
206       Inst->eraseFromParent();
207     }
208   }
209 }
210 
211 static void removeSSACopy(Module &M) {
212   for (Function &F : M)
213     removeSSACopy(F);
214 }
215 
216 class FunctionSpecializer {
217 
218   /// The IPSCCP Solver.
219   SCCPSolver &Solver;
220 
221   /// Analyses used to help determine if a function should be specialized.
222   std::function<AssumptionCache &(Function &)> GetAC;
223   std::function<TargetTransformInfo &(Function &)> GetTTI;
224   std::function<TargetLibraryInfo &(Function &)> GetTLI;
225 
226   SmallPtrSet<Function *, 2> SpecializedFuncs;
227 
228 public:
229   FunctionSpecializer(SCCPSolver &Solver,
230                       std::function<AssumptionCache &(Function &)> GetAC,
231                       std::function<TargetTransformInfo &(Function &)> GetTTI,
232                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
233       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
234 
235   /// Attempt to specialize functions in the module to enable constant
236   /// propagation across function boundaries.
237   ///
238   /// \returns true if at least one function is specialized.
239   bool
240   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
241                       SmallVectorImpl<Function *> &CurrentSpecializations) {
242 
243     // Attempt to specialize the argument-tracked functions.
244     bool Changed = false;
245     for (auto *F : FuncDecls) {
246       if (specializeFunction(F, CurrentSpecializations)) {
247         Changed = true;
248         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
249       } else {
250         LLVM_DEBUG(
251             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
252       }
253     }
254 
255     for (auto *SpecializedFunc : CurrentSpecializations) {
256       SpecializedFuncs.insert(SpecializedFunc);
257 
258       // Initialize the state of the newly created functions, marking them
259       // argument-tracked and executable.
260       if (SpecializedFunc->hasExactDefinition() &&
261           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
262         Solver.addTrackedFunction(SpecializedFunc);
263       Solver.addArgumentTrackedFunction(SpecializedFunc);
264       FuncDecls.push_back(SpecializedFunc);
265       Solver.markBlockExecutable(&SpecializedFunc->front());
266 
267       // Replace the function arguments for the specialized functions.
268       for (Argument &Arg : SpecializedFunc->args())
269         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
270           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
271                             << Arg.getName() << "\n");
272     }
273 
274     NumFuncSpecialized += NbFunctionsSpecialized;
275     return Changed;
276   }
277 
278   bool tryToReplaceWithConstant(Value *V) {
279     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
280         V->user_empty())
281       return false;
282 
283     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
284     if (isOverdefined(IV))
285       return false;
286     auto *Const =
287         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
288     V->replaceAllUsesWith(Const);
289 
290     for (auto *U : Const->users())
291       if (auto *I = dyn_cast<Instruction>(U))
292         if (Solver.isBlockExecutable(I->getParent()))
293           Solver.visit(I);
294 
295     // Remove the instruction from Block and Solver.
296     if (auto *I = dyn_cast<Instruction>(V)) {
297       if (I->isSafeToRemove()) {
298         I->eraseFromParent();
299         Solver.removeLatticeValueFor(I);
300       }
301     }
302     return true;
303   }
304 
305 private:
306   // The number of functions specialised, used for collecting statistics and
307   // also in the cost model.
308   unsigned NbFunctionsSpecialized = 0;
309 
310   /// Clone the function \p F and remove the ssa_copy intrinsics added by
311   /// the SCCPSolver in the cloned version.
312   Function *cloneCandidateFunction(Function *F) {
313     ValueToValueMapTy EmptyMap;
314     Function *Clone = CloneFunction(F, EmptyMap);
315     removeSSACopy(*Clone);
316     return Clone;
317   }
318 
319   /// This function decides whether to specialize function \p F based on the
320   /// known constant values its arguments can take on. Specialization is
321   /// performed on the first interesting argument. Specializations based on
322   /// additional arguments will be evaluated on following iterations of the
323   /// main IPSCCP solve loop. \returns true if the function is specialized and
324   /// false otherwise.
325   bool specializeFunction(Function *F,
326                           SmallVectorImpl<Function *> &Specializations) {
327 
328     // Do not specialize the cloned function again.
329     if (SpecializedFuncs.contains(F)) {
330       return false;
331     }
332 
333     // If we're optimizing the function for size, we shouldn't specialize it.
334     if (F->hasOptSize() ||
335         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
336       return false;
337 
338     // Exit if the function is not executable. There's no point in specializing
339     // a dead function.
340     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
341       return false;
342 
343     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
344                       << "\n");
345 
346     // Determine if it would be profitable to create a specialization of the
347     // function where the argument takes on the given constant value. If so,
348     // add the constant to Constants.
349     auto FnSpecCost = getSpecializationCost(F);
350     if (!FnSpecCost.isValid()) {
351       LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
352       return false;
353     }
354 
355     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
356                FnSpecCost.print(dbgs()); dbgs() << "\n");
357 
358     // Determine if we should specialize the function based on the values the
359     // argument can take on. If specialization is not profitable, we continue
360     // on to the next argument.
361     for (Argument &A : F->args()) {
362       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
363                         << "\n");
364       // True if this will be a partial specialization. We will need to keep
365       // the original function around in addition to the added specializations.
366       bool IsPartial = true;
367 
368       // Determine if this argument is interesting. If we know the argument can
369       // take on any constant values, they are collected in Constants. If the
370       // argument can only ever equal a constant value in Constants, the
371       // function will be completely specialized, and the IsPartial flag will
372       // be set to false by isArgumentInteresting (that function only adds
373       // values to the Constants list that are deemed profitable).
374       SmallVector<Constant *, 4> Constants;
375       if (!isArgumentInteresting(&A, Constants, FnSpecCost, IsPartial)) {
376         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
377         continue;
378       }
379 
380       assert(!Constants.empty() && "No constants on which to specialize");
381       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
382                         << "FnSpecialization: Specializing '" << F->getName()
383                         << "' on argument: " << A << "\n"
384                         << "FnSpecialization: Constants are:\n\n";
385                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
386                  << *Constants[I] << "\n";
387                  dbgs() << "FnSpecialization: End of constants\n\n");
388 
389       // Create a version of the function in which the argument is marked
390       // constant with the given value.
391       for (auto *C : Constants) {
392         // Clone the function. We leave the ValueToValueMap empty to allow
393         // IPSCCP to propagate the constant arguments.
394         Function *Clone = cloneCandidateFunction(F);
395         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
396 
397         // Rewrite calls to the function so that they call the clone instead.
398         rewriteCallSites(F, Clone, *ClonedArg, C);
399 
400         // Initialize the lattice state of the arguments of the function clone,
401         // marking the argument on which we specialized the function constant
402         // with the given value.
403         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
404 
405         // Mark all the specialized functions
406         Specializations.push_back(Clone);
407         NbFunctionsSpecialized++;
408       }
409 
410       // If the function has been completely specialized, the original function
411       // is no longer needed. Mark it unreachable.
412       if (!IsPartial)
413         Solver.markFunctionUnreachable(F);
414 
415       // FIXME: Only one argument per function.
416       return true;
417     }
418 
419     return false;
420   }
421 
422   /// Compute the cost of specializing function \p F.
423   InstructionCost getSpecializationCost(Function *F) {
424     // Compute the code metrics for the function.
425     SmallPtrSet<const Value *, 32> EphValues;
426     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
427     CodeMetrics Metrics;
428     for (BasicBlock &BB : *F)
429       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
430 
431     // If the code metrics reveal that we shouldn't duplicate the function, we
432     // shouldn't specialize it. Set the specialization cost to Invalid.
433     if (Metrics.notDuplicatable) {
434       InstructionCost C{};
435       C.setInvalid();
436       return C;
437     }
438 
439     // Otherwise, set the specialization cost to be the cost of all the
440     // instructions in the function and penalty for specializing more functions.
441     unsigned Penalty = NbFunctionsSpecialized + 1;
442     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
443   }
444 
445   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
446                                LoopInfo &LI) {
447     auto *I = dyn_cast_or_null<Instruction>(U);
448     // If not an instruction we do not know how to evaluate.
449     // Keep minimum possible cost for now so that it doesnt affect
450     // specialization.
451     if (!I)
452       return std::numeric_limits<unsigned>::min();
453 
454     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
455 
456     // Traverse recursively if there are more uses.
457     // TODO: Any other instructions to be added here?
458     if (I->mayReadFromMemory() || I->isCast())
459       for (auto *User : I->users())
460         Cost += getUserBonus(User, TTI, LI);
461 
462     // Increase the cost if it is inside the loop.
463     auto LoopDepth = LI.getLoopDepth(I->getParent());
464     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
465     return Cost;
466   }
467 
468   /// Compute a bonus for replacing argument \p A with constant \p C.
469   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
470     Function *F = A->getParent();
471     DominatorTree DT(*F);
472     LoopInfo LI(DT);
473     auto &TTI = (GetTTI)(*F);
474     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
475                       << "\n");
476 
477     InstructionCost TotalCost = 0;
478     for (auto *U : A->users()) {
479       TotalCost += getUserBonus(U, TTI, LI);
480       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
481                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
482     }
483 
484     // The below heuristic is only concerned with exposing inlining
485     // opportunities via indirect call promotion. If the argument is not a
486     // function pointer, give up.
487     if (!isa<PointerType>(A->getType()) ||
488         !isa<FunctionType>(A->getType()->getPointerElementType()))
489       return TotalCost;
490 
491     // Since the argument is a function pointer, its incoming constant values
492     // should be functions or constant expressions. The code below attempts to
493     // look through cast expressions to find the function that will be called.
494     Value *CalledValue = C;
495     while (isa<ConstantExpr>(CalledValue) &&
496            cast<ConstantExpr>(CalledValue)->isCast())
497       CalledValue = cast<User>(CalledValue)->getOperand(0);
498     Function *CalledFunction = dyn_cast<Function>(CalledValue);
499     if (!CalledFunction)
500       return TotalCost;
501 
502     // Get TTI for the called function (used for the inline cost).
503     auto &CalleeTTI = (GetTTI)(*CalledFunction);
504 
505     // Look at all the call sites whose called value is the argument.
506     // Specializing the function on the argument would allow these indirect
507     // calls to be promoted to direct calls. If the indirect call promotion
508     // would likely enable the called function to be inlined, specializing is a
509     // good idea.
510     int Bonus = 0;
511     for (User *U : A->users()) {
512       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
513         continue;
514       auto *CS = cast<CallBase>(U);
515       if (CS->getCalledOperand() != A)
516         continue;
517 
518       // Get the cost of inlining the called function at this call site. Note
519       // that this is only an estimate. The called function may eventually
520       // change in a way that leads to it not being inlined here, even though
521       // inlining looks profitable now. For example, one of its called
522       // functions may be inlined into it, making the called function too large
523       // to be inlined into this call site.
524       //
525       // We apply a boost for performing indirect call promotion by increasing
526       // the default threshold by the threshold for indirect calls.
527       auto Params = getInlineParams();
528       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
529       InlineCost IC =
530           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
531 
532       // We clamp the bonus for this call to be between zero and the default
533       // threshold.
534       if (IC.isAlways())
535         Bonus += Params.DefaultThreshold;
536       else if (IC.isVariable() && IC.getCostDelta() > 0)
537         Bonus += IC.getCostDelta();
538     }
539 
540     return TotalCost + Bonus;
541   }
542 
543   /// Determine if we should specialize a function based on the incoming values
544   /// of the given argument.
545   ///
546   /// This function implements the goal-directed heuristic. It determines if
547   /// specializing the function based on the incoming values of argument \p A
548   /// would result in any significant optimization opportunities. If
549   /// optimization opportunities exist, the constant values of \p A on which to
550   /// specialize the function are collected in \p Constants. If the values in
551   /// \p Constants represent the complete set of values that \p A can take on,
552   /// the function will be completely specialized, and the \p IsPartial flag is
553   /// set to false.
554   ///
555   /// \returns true if the function should be specialized on the given
556   /// argument.
557   bool isArgumentInteresting(Argument *A,
558                              SmallVectorImpl<Constant *> &Constants,
559                              const InstructionCost &FnSpecCost,
560                              bool &IsPartial) {
561     // For now, don't attempt to specialize functions based on the values of
562     // composite types.
563     if (!A->getType()->isSingleValueType() || A->user_empty())
564       return false;
565 
566     // If the argument isn't overdefined, there's nothing to do. It should
567     // already be constant.
568     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
569       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
570                         << "constant?\n");
571       return false;
572     }
573 
574     // Collect the constant values that the argument can take on. If the
575     // argument can't take on any constant values, we aren't going to
576     // specialize the function. While it's possible to specialize the function
577     // based on non-constant arguments, there's likely not much benefit to
578     // constant propagation in doing so.
579     //
580     // TODO 1: currently it won't specialize if there are over the threshold of
581     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
582     // might be beneficial to take the occurrences into account in the cost
583     // model, so we would need to find the unique constants.
584     //
585     // TODO 2: this currently does not support constants, i.e. integer ranges.
586     //
587     SmallVector<Constant *, 4> PossibleConstants;
588     bool AllConstant = getPossibleConstants(A, PossibleConstants);
589     if (PossibleConstants.empty()) {
590       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
591       return false;
592     }
593     if (PossibleConstants.size() > MaxConstantsThreshold) {
594       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
595                         << "the maximum number of constants threshold.\n");
596       return false;
597     }
598 
599     for (auto *C : PossibleConstants) {
600       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
601       if (ForceFunctionSpecialization) {
602         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
603         Constants.push_back(C);
604         continue;
605       }
606       if (getSpecializationBonus(A, C) > FnSpecCost) {
607         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
608         Constants.push_back(C);
609       } else {
610         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
611       }
612     }
613 
614     // None of the constant values the argument can take on were deemed good
615     // candidates on which to specialize the function.
616     if (Constants.empty())
617       return false;
618 
619     // This will be a partial specialization if some of the constants were
620     // rejected due to their profitability.
621     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
622 
623     return true;
624   }
625 
626   /// Collect in \p Constants all the constant values that argument \p A can
627   /// take on.
628   ///
629   /// \returns true if all of the values the argument can take on are constant
630   /// (e.g., the argument's parent function cannot be called with an
631   /// overdefined value).
632   bool getPossibleConstants(Argument *A,
633                             SmallVectorImpl<Constant *> &Constants) {
634     Function *F = A->getParent();
635     bool AllConstant = true;
636 
637     // Iterate over all the call sites of the argument's parent function.
638     for (User *U : F->users()) {
639       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
640         continue;
641       auto &CS = *cast<CallBase>(U);
642 
643       // If the parent of the call site will never be executed, we don't need
644       // to worry about the passed value.
645       if (!Solver.isBlockExecutable(CS.getParent()))
646         continue;
647 
648       auto *V = CS.getArgOperand(A->getArgNo());
649       // TrackValueOfGlobalVariable only tracks scalar global variables.
650       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
651         if (!GV->getValueType()->isSingleValueType()) {
652           return false;
653         }
654       }
655 
656       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
657                                EnableSpecializationForLiteralConstant))
658         Constants.push_back(cast<Constant>(V));
659       else
660         AllConstant = false;
661     }
662 
663     // If the argument can only take on constant values, AllConstant will be
664     // true.
665     return AllConstant;
666   }
667 
668   /// Rewrite calls to function \p F to call function \p Clone instead.
669   ///
670   /// This function modifies calls to function \p F whose argument at index \p
671   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
672   /// \p Clone instead.
673   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
674                         Constant *C) {
675     unsigned ArgNo = Arg.getArgNo();
676     SmallVector<CallBase *, 4> CallSitesToRewrite;
677     for (auto *U : F->users()) {
678       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
679         continue;
680       auto &CS = *cast<CallBase>(U);
681       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
682         continue;
683       CallSitesToRewrite.push_back(&CS);
684     }
685     for (auto *CS : CallSitesToRewrite) {
686       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
687           CS->getArgOperand(ArgNo) == C) {
688         CS->setCalledFunction(Clone);
689         Solver.markOverdefined(CS);
690       }
691     }
692   }
693 };
694 
695 bool llvm::runFunctionSpecialization(
696     Module &M, const DataLayout &DL,
697     std::function<TargetLibraryInfo &(Function &)> GetTLI,
698     std::function<TargetTransformInfo &(Function &)> GetTTI,
699     std::function<AssumptionCache &(Function &)> GetAC,
700     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
701   SCCPSolver Solver(DL, GetTLI, M.getContext());
702   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
703   bool Changed = false;
704 
705   // Loop over all functions, marking arguments to those with their addresses
706   // taken or that are external as overdefined.
707   for (Function &F : M) {
708     if (F.isDeclaration())
709       continue;
710     if (F.hasFnAttribute(Attribute::NoDuplicate))
711       continue;
712 
713     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
714                       << "\n");
715     Solver.addAnalysis(F, GetAnalysis(F));
716 
717     // Determine if we can track the function's arguments. If so, add the
718     // function to the solver's set of argument-tracked functions.
719     if (canTrackArgumentsInterprocedurally(&F)) {
720       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
721       Solver.addArgumentTrackedFunction(&F);
722       continue;
723     } else {
724       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
725                         << "FnSpecialization: Doesn't have local linkage, or "
726                         << "has its address taken\n");
727     }
728 
729     // Assume the function is called.
730     Solver.markBlockExecutable(&F.front());
731 
732     // Assume nothing about the incoming arguments.
733     for (Argument &AI : F.args())
734       Solver.markOverdefined(&AI);
735   }
736 
737   // Determine if we can track any of the module's global variables. If so, add
738   // the global variables we can track to the solver's set of tracked global
739   // variables.
740   for (GlobalVariable &G : M.globals()) {
741     G.removeDeadConstantUsers();
742     if (canTrackGlobalVariableInterprocedurally(&G))
743       Solver.trackValueOfGlobalVariable(&G);
744   }
745 
746   // Solve for constants.
747   auto RunSCCPSolver = [&](auto &WorkList) {
748     bool ResolvedUndefs = true;
749 
750     while (ResolvedUndefs) {
751       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
752       Solver.solve();
753       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
754       ResolvedUndefs = false;
755       for (Function *F : WorkList)
756         if (Solver.resolvedUndefsIn(*F))
757           ResolvedUndefs = true;
758     }
759 
760     for (auto *F : WorkList) {
761       for (BasicBlock &BB : *F) {
762         if (!Solver.isBlockExecutable(&BB))
763           continue;
764         for (auto &I : make_early_inc_range(BB))
765           // FIXME: The solver may make changes to the function here, so set Changed, even if later
766           // function specialization does not trigger.
767           Changed |= FS.tryToReplaceWithConstant(&I);
768       }
769     }
770   };
771 
772   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
773   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
774                                         TrackedFuncs.end());
775 #ifndef NDEBUG
776   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
777   for (auto *F : FuncDecls)
778     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
779 #endif
780 
781   // Initially resolve the constants in all the argument tracked functions.
782   RunSCCPSolver(FuncDecls);
783 
784   SmallVector<Function *, 2> CurrentSpecializations;
785   unsigned I = 0;
786   while (FuncSpecializationMaxIters != I++ &&
787          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
788 
789     // Run the solver for the specialized functions.
790     RunSCCPSolver(CurrentSpecializations);
791 
792     // Replace some unresolved constant arguments
793     constantArgPropagation(FuncDecls, M, Solver);
794 
795     CurrentSpecializations.clear();
796     Changed = true;
797   }
798 
799   // Clean up the IR by removing ssa_copy intrinsics.
800   removeSSACopy(M);
801   return Changed;
802 }
803