1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not yet handle integer ranges.
15 // - Only 1 argument per function is specialised,
16 // - The cost-model could be further looked into,
17 // - We are not yet caching analysis results.
18 //
19 // Ideas:
20 // - With a function specialization attribute for arguments, we could have
21 //   a direct way to steer function specialization, avoiding the cost-model,
22 //   and thus control compile-times / code-size.
23 //
24 // Todos:
25 // - Specializing recursive functions relies on running the transformation a
26 //   number of times, which is controlled by option
27 //   `func-specialization-max-iters`. Thus, increasing this value and the
28 //   number of iterations, will linearly increase the number of times recursive
29 //   functions get specialized, see also the discussion in
30 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
31 //   compile-time friendlier way to control/limit the number of specialisations
32 //   for recursive functions.
33 // - Don't transform the function if there is no function specialization
34 //   happens.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/AssumptionCache.h"
40 #include "llvm/Analysis/CodeMetrics.h"
41 #include "llvm/Analysis/DomTreeUpdater.h"
42 #include "llvm/Analysis/InlineCost.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Scalar/SCCP.h"
47 #include "llvm/Transforms/Utils/Cloning.h"
48 #include "llvm/Transforms/Utils/SizeOpts.h"
49 #include <cmath>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "function-specialization"
54 
55 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
56 
57 static cl::opt<bool> ForceFunctionSpecialization(
58     "force-function-specialization", cl::init(false), cl::Hidden,
59     cl::desc("Force function specialization for every call site with a "
60              "constant argument"));
61 
62 static cl::opt<unsigned> FuncSpecializationMaxIters(
63     "func-specialization-max-iters", cl::Hidden,
64     cl::desc("The maximum number of iterations function specialization is run"),
65     cl::init(1));
66 
67 static cl::opt<unsigned> MaxConstantsThreshold(
68     "func-specialization-max-constants", cl::Hidden,
69     cl::desc("The maximum number of clones allowed for a single function "
70              "specialization"),
71     cl::init(3));
72 
73 static cl::opt<unsigned> SmallFunctionThreshold(
74     "func-specialization-size-threshold", cl::Hidden,
75     cl::desc("Don't specialize functions that have less than this theshold "
76              "number of instructions"),
77     cl::init(100));
78 
79 static cl::opt<unsigned>
80     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
81                           cl::desc("Average loop iteration count cost"),
82                           cl::init(10));
83 
84 // TODO: This needs checking to see the impact on compile-times, which is why
85 // this is off by default for now.
86 static cl::opt<bool> EnableSpecializationForLiteralConstant(
87     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
88     cl::desc("Enable specialization of functions that take a literal constant "
89              "as an argument."));
90 
91 // Helper to check if \p LV is either a constant or a constant
92 // range with a single element. This should cover exactly the same cases as the
93 // old ValueLatticeElement::isConstant() and is intended to be used in the
94 // transition to ValueLatticeElement.
95 static bool isConstant(const ValueLatticeElement &LV) {
96   return LV.isConstant() ||
97          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
98 }
99 
100 // Helper to check if \p LV is either overdefined or a constant int.
101 static bool isOverdefined(const ValueLatticeElement &LV) {
102   return !LV.isUnknownOrUndef() && !isConstant(LV);
103 }
104 
105 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
106   Value *StoreValue = nullptr;
107   for (auto *User : Alloca->users()) {
108     // We can't use llvm::isAllocaPromotable() as that would fail because of
109     // the usage in the CallInst, which is what we check here.
110     if (User == Call)
111       continue;
112     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
113       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
114         return nullptr;
115       continue;
116     }
117 
118     if (auto *Store = dyn_cast<StoreInst>(User)) {
119       // This is a duplicate store, bail out.
120       if (StoreValue || Store->isVolatile())
121         return nullptr;
122       StoreValue = Store->getValueOperand();
123       continue;
124     }
125     // Bail if there is any other unknown usage.
126     return nullptr;
127   }
128   return dyn_cast_or_null<Constant>(StoreValue);
129 }
130 
131 // A constant stack value is an AllocaInst that has a single constant
132 // value stored to it. Return this constant if such an alloca stack value
133 // is a function argument.
134 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
135                                        SCCPSolver &Solver) {
136   if (!Val)
137     return nullptr;
138   Val = Val->stripPointerCasts();
139   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
140     return ConstVal;
141   auto *Alloca = dyn_cast<AllocaInst>(Val);
142   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
143     return nullptr;
144   return getPromotableAlloca(Alloca, Call);
145 }
146 
147 // To support specializing recursive functions, it is important to propagate
148 // constant arguments because after a first iteration of specialisation, a
149 // reduced example may look like this:
150 //
151 //     define internal void @RecursiveFn(i32* arg1) {
152 //       %temp = alloca i32, align 4
153 //       store i32 2 i32* %temp, align 4
154 //       call void @RecursiveFn.1(i32* nonnull %temp)
155 //       ret void
156 //     }
157 //
158 // Before a next iteration, we need to propagate the constant like so
159 // which allows further specialization in next iterations.
160 //
161 //     @funcspec.arg = internal constant i32 2
162 //
163 //     define internal void @someFunc(i32* arg1) {
164 //       call void @otherFunc(i32* nonnull @funcspec.arg)
165 //       ret void
166 //     }
167 //
168 static void constantArgPropagation(SmallVectorImpl<Function *> &WorkList,
169                                    Module &M, SCCPSolver &Solver) {
170   // Iterate over the argument tracked functions see if there
171   // are any new constant values for the call instruction via
172   // stack variables.
173   for (auto *F : WorkList) {
174     // TODO: Generalize for any read only arguments.
175     if (F->arg_size() != 1)
176       continue;
177 
178     auto &Arg = *F->arg_begin();
179     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
180       continue;
181 
182     for (auto *User : F->users()) {
183       auto *Call = dyn_cast<CallInst>(User);
184       if (!Call)
185         break;
186       auto *ArgOp = Call->getArgOperand(0);
187       auto *ArgOpType = ArgOp->getType();
188       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
189       if (!ConstVal)
190         break;
191 
192       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
193                                      GlobalValue::InternalLinkage, ConstVal,
194                                      "funcspec.arg");
195 
196       if (ArgOpType != ConstVal->getType())
197         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
198 
199       Call->setArgOperand(0, GV);
200 
201       // Add the changed CallInst to Solver Worklist
202       Solver.visitCall(*Call);
203     }
204   }
205 }
206 
207 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
208 // interfere with the constantArgPropagation optimization.
209 static void removeSSACopy(Function &F) {
210   for (BasicBlock &BB : F) {
211     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
212       Instruction *Inst = &*BI++;
213       auto *II = dyn_cast<IntrinsicInst>(Inst);
214       if (!II)
215         continue;
216       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
217         continue;
218       Inst->replaceAllUsesWith(II->getOperand(0));
219       Inst->eraseFromParent();
220     }
221   }
222 }
223 
224 static void removeSSACopy(Module &M) {
225   for (Function &F : M)
226     removeSSACopy(F);
227 }
228 
229 class FunctionSpecializer {
230 
231   /// The IPSCCP Solver.
232   SCCPSolver &Solver;
233 
234   /// Analyses used to help determine if a function should be specialized.
235   std::function<AssumptionCache &(Function &)> GetAC;
236   std::function<TargetTransformInfo &(Function &)> GetTTI;
237   std::function<TargetLibraryInfo &(Function &)> GetTLI;
238 
239   SmallPtrSet<Function *, 2> SpecializedFuncs;
240 
241 public:
242   FunctionSpecializer(SCCPSolver &Solver,
243                       std::function<AssumptionCache &(Function &)> GetAC,
244                       std::function<TargetTransformInfo &(Function &)> GetTTI,
245                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
246       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
247 
248   /// Attempt to specialize functions in the module to enable constant
249   /// propagation across function boundaries.
250   ///
251   /// \returns true if at least one function is specialized.
252   bool
253   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
254                       SmallVectorImpl<Function *> &CurrentSpecializations) {
255 
256     // Attempt to specialize the argument-tracked functions.
257     bool Changed = false;
258     for (auto *F : FuncDecls) {
259       if (specializeFunction(F, CurrentSpecializations)) {
260         Changed = true;
261         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
262       } else {
263         LLVM_DEBUG(
264             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
265       }
266     }
267 
268     for (auto *SpecializedFunc : CurrentSpecializations) {
269       SpecializedFuncs.insert(SpecializedFunc);
270 
271       // Initialize the state of the newly created functions, marking them
272       // argument-tracked and executable.
273       if (SpecializedFunc->hasExactDefinition() &&
274           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
275         Solver.addTrackedFunction(SpecializedFunc);
276       Solver.addArgumentTrackedFunction(SpecializedFunc);
277       FuncDecls.push_back(SpecializedFunc);
278       Solver.markBlockExecutable(&SpecializedFunc->front());
279 
280       // Replace the function arguments for the specialized functions.
281       for (Argument &Arg : SpecializedFunc->args())
282         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
283           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
284                             << Arg.getName() << "\n");
285     }
286 
287     NumFuncSpecialized += NbFunctionsSpecialized;
288     return Changed;
289   }
290 
291   bool tryToReplaceWithConstant(Value *V) {
292     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
293         V->user_empty())
294       return false;
295 
296     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
297     if (isOverdefined(IV))
298       return false;
299     auto *Const =
300         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
301     V->replaceAllUsesWith(Const);
302 
303     for (auto *U : Const->users())
304       if (auto *I = dyn_cast<Instruction>(U))
305         if (Solver.isBlockExecutable(I->getParent()))
306           Solver.visit(I);
307 
308     // Remove the instruction from Block and Solver.
309     if (auto *I = dyn_cast<Instruction>(V)) {
310       if (I->isSafeToRemove()) {
311         I->eraseFromParent();
312         Solver.removeLatticeValueFor(I);
313       }
314     }
315     return true;
316   }
317 
318 private:
319   // The number of functions specialised, used for collecting statistics and
320   // also in the cost model.
321   unsigned NbFunctionsSpecialized = 0;
322 
323   /// Clone the function \p F and remove the ssa_copy intrinsics added by
324   /// the SCCPSolver in the cloned version.
325   Function *cloneCandidateFunction(Function *F) {
326     ValueToValueMapTy EmptyMap;
327     Function *Clone = CloneFunction(F, EmptyMap);
328     removeSSACopy(*Clone);
329     return Clone;
330   }
331 
332   /// This function decides whether to specialize function \p F based on the
333   /// known constant values its arguments can take on. Specialization is
334   /// performed on the first interesting argument. Specializations based on
335   /// additional arguments will be evaluated on following iterations of the
336   /// main IPSCCP solve loop. \returns true if the function is specialized and
337   /// false otherwise.
338   bool specializeFunction(Function *F,
339                           SmallVectorImpl<Function *> &Specializations) {
340 
341     // Do not specialize the cloned function again.
342     if (SpecializedFuncs.contains(F))
343       return false;
344 
345     // If we're optimizing the function for size, we shouldn't specialize it.
346     if (F->hasOptSize() ||
347         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
348       return false;
349 
350     // Exit if the function is not executable. There's no point in specializing
351     // a dead function.
352     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
353       return false;
354 
355     // It wastes time to specialize a function which would get inlined finally.
356     if (F->hasFnAttribute(Attribute::AlwaysInline))
357       return false;
358 
359     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
360                       << "\n");
361 
362     // Determine if it would be profitable to create a specialization of the
363     // function where the argument takes on the given constant value. If so,
364     // add the constant to Constants.
365     auto FnSpecCost = getSpecializationCost(F);
366     if (!FnSpecCost.isValid()) {
367       LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
368       return false;
369     }
370 
371     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
372                FnSpecCost.print(dbgs()); dbgs() << "\n");
373 
374     // Determine if we should specialize the function based on the values the
375     // argument can take on. If specialization is not profitable, we continue
376     // on to the next argument.
377     for (Argument &A : F->args()) {
378       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
379                         << "\n");
380       // True if this will be a partial specialization. We will need to keep
381       // the original function around in addition to the added specializations.
382       bool IsPartial = true;
383 
384       // Determine if this argument is interesting. If we know the argument can
385       // take on any constant values, they are collected in Constants. If the
386       // argument can only ever equal a constant value in Constants, the
387       // function will be completely specialized, and the IsPartial flag will
388       // be set to false by isArgumentInteresting (that function only adds
389       // values to the Constants list that are deemed profitable).
390       SmallVector<Constant *, 4> Constants;
391       if (!isArgumentInteresting(&A, Constants, FnSpecCost, IsPartial)) {
392         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
393         continue;
394       }
395 
396       assert(!Constants.empty() && "No constants on which to specialize");
397       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
398                         << "FnSpecialization: Specializing '" << F->getName()
399                         << "' on argument: " << A << "\n"
400                         << "FnSpecialization: Constants are:\n\n";
401                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
402                  << *Constants[I] << "\n";
403                  dbgs() << "FnSpecialization: End of constants\n\n");
404 
405       // Create a version of the function in which the argument is marked
406       // constant with the given value.
407       for (auto *C : Constants) {
408         // Clone the function. We leave the ValueToValueMap empty to allow
409         // IPSCCP to propagate the constant arguments.
410         Function *Clone = cloneCandidateFunction(F);
411         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
412 
413         // Rewrite calls to the function so that they call the clone instead.
414         rewriteCallSites(F, Clone, *ClonedArg, C);
415 
416         // Initialize the lattice state of the arguments of the function clone,
417         // marking the argument on which we specialized the function constant
418         // with the given value.
419         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
420 
421         // Mark all the specialized functions
422         Specializations.push_back(Clone);
423         NbFunctionsSpecialized++;
424       }
425 
426       // If the function has been completely specialized, the original function
427       // is no longer needed. Mark it unreachable.
428       if (!IsPartial)
429         Solver.markFunctionUnreachable(F);
430 
431       // FIXME: Only one argument per function.
432       return true;
433     }
434 
435     return false;
436   }
437 
438   /// Compute the cost of specializing function \p F.
439   InstructionCost getSpecializationCost(Function *F) {
440     // Compute the code metrics for the function.
441     SmallPtrSet<const Value *, 32> EphValues;
442     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
443     CodeMetrics Metrics;
444     for (BasicBlock &BB : *F)
445       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
446 
447     // If the code metrics reveal that we shouldn't duplicate the function, we
448     // shouldn't specialize it. Set the specialization cost to Invalid.
449     // Or if the lines of codes implies that this function is easy to get
450     // inlined so that we shouldn't specialize it.
451     if (Metrics.notDuplicatable ||
452         (!ForceFunctionSpecialization &&
453          Metrics.NumInsts < SmallFunctionThreshold)) {
454       InstructionCost C{};
455       C.setInvalid();
456       return C;
457     }
458 
459     // Otherwise, set the specialization cost to be the cost of all the
460     // instructions in the function and penalty for specializing more functions.
461     unsigned Penalty = NbFunctionsSpecialized + 1;
462     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
463   }
464 
465   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
466                                LoopInfo &LI) {
467     auto *I = dyn_cast_or_null<Instruction>(U);
468     // If not an instruction we do not know how to evaluate.
469     // Keep minimum possible cost for now so that it doesnt affect
470     // specialization.
471     if (!I)
472       return std::numeric_limits<unsigned>::min();
473 
474     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
475 
476     // Traverse recursively if there are more uses.
477     // TODO: Any other instructions to be added here?
478     if (I->mayReadFromMemory() || I->isCast())
479       for (auto *User : I->users())
480         Cost += getUserBonus(User, TTI, LI);
481 
482     // Increase the cost if it is inside the loop.
483     auto LoopDepth = LI.getLoopDepth(I->getParent());
484     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
485     return Cost;
486   }
487 
488   /// Compute a bonus for replacing argument \p A with constant \p C.
489   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
490     Function *F = A->getParent();
491     DominatorTree DT(*F);
492     LoopInfo LI(DT);
493     auto &TTI = (GetTTI)(*F);
494     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
495                       << "\n");
496 
497     InstructionCost TotalCost = 0;
498     for (auto *U : A->users()) {
499       TotalCost += getUserBonus(U, TTI, LI);
500       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
501                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
502     }
503 
504     // The below heuristic is only concerned with exposing inlining
505     // opportunities via indirect call promotion. If the argument is not a
506     // function pointer, give up.
507     if (!isa<PointerType>(A->getType()) ||
508         !isa<FunctionType>(A->getType()->getPointerElementType()))
509       return TotalCost;
510 
511     // Since the argument is a function pointer, its incoming constant values
512     // should be functions or constant expressions. The code below attempts to
513     // look through cast expressions to find the function that will be called.
514     Value *CalledValue = C;
515     while (isa<ConstantExpr>(CalledValue) &&
516            cast<ConstantExpr>(CalledValue)->isCast())
517       CalledValue = cast<User>(CalledValue)->getOperand(0);
518     Function *CalledFunction = dyn_cast<Function>(CalledValue);
519     if (!CalledFunction)
520       return TotalCost;
521 
522     // Get TTI for the called function (used for the inline cost).
523     auto &CalleeTTI = (GetTTI)(*CalledFunction);
524 
525     // Look at all the call sites whose called value is the argument.
526     // Specializing the function on the argument would allow these indirect
527     // calls to be promoted to direct calls. If the indirect call promotion
528     // would likely enable the called function to be inlined, specializing is a
529     // good idea.
530     int Bonus = 0;
531     for (User *U : A->users()) {
532       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
533         continue;
534       auto *CS = cast<CallBase>(U);
535       if (CS->getCalledOperand() != A)
536         continue;
537 
538       // Get the cost of inlining the called function at this call site. Note
539       // that this is only an estimate. The called function may eventually
540       // change in a way that leads to it not being inlined here, even though
541       // inlining looks profitable now. For example, one of its called
542       // functions may be inlined into it, making the called function too large
543       // to be inlined into this call site.
544       //
545       // We apply a boost for performing indirect call promotion by increasing
546       // the default threshold by the threshold for indirect calls.
547       auto Params = getInlineParams();
548       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
549       InlineCost IC =
550           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
551 
552       // We clamp the bonus for this call to be between zero and the default
553       // threshold.
554       if (IC.isAlways())
555         Bonus += Params.DefaultThreshold;
556       else if (IC.isVariable() && IC.getCostDelta() > 0)
557         Bonus += IC.getCostDelta();
558     }
559 
560     return TotalCost + Bonus;
561   }
562 
563   /// Determine if we should specialize a function based on the incoming values
564   /// of the given argument.
565   ///
566   /// This function implements the goal-directed heuristic. It determines if
567   /// specializing the function based on the incoming values of argument \p A
568   /// would result in any significant optimization opportunities. If
569   /// optimization opportunities exist, the constant values of \p A on which to
570   /// specialize the function are collected in \p Constants. If the values in
571   /// \p Constants represent the complete set of values that \p A can take on,
572   /// the function will be completely specialized, and the \p IsPartial flag is
573   /// set to false.
574   ///
575   /// \returns true if the function should be specialized on the given
576   /// argument.
577   bool isArgumentInteresting(Argument *A,
578                              SmallVectorImpl<Constant *> &Constants,
579                              const InstructionCost &FnSpecCost,
580                              bool &IsPartial) {
581     // For now, don't attempt to specialize functions based on the values of
582     // composite types.
583     if (!A->getType()->isSingleValueType() || A->user_empty())
584       return false;
585 
586     // If the argument isn't overdefined, there's nothing to do. It should
587     // already be constant.
588     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
589       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
590                         << "constant?\n");
591       return false;
592     }
593 
594     // Collect the constant values that the argument can take on. If the
595     // argument can't take on any constant values, we aren't going to
596     // specialize the function. While it's possible to specialize the function
597     // based on non-constant arguments, there's likely not much benefit to
598     // constant propagation in doing so.
599     //
600     // TODO 1: currently it won't specialize if there are over the threshold of
601     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
602     // might be beneficial to take the occurrences into account in the cost
603     // model, so we would need to find the unique constants.
604     //
605     // TODO 2: this currently does not support constants, i.e. integer ranges.
606     //
607     SmallVector<Constant *, 4> PossibleConstants;
608     bool AllConstant = getPossibleConstants(A, PossibleConstants);
609     if (PossibleConstants.empty()) {
610       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
611       return false;
612     }
613     if (PossibleConstants.size() > MaxConstantsThreshold) {
614       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
615                         << "the maximum number of constants threshold.\n");
616       return false;
617     }
618 
619     for (auto *C : PossibleConstants) {
620       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
621       if (ForceFunctionSpecialization) {
622         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
623         Constants.push_back(C);
624         continue;
625       }
626       if (getSpecializationBonus(A, C) > FnSpecCost) {
627         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
628         Constants.push_back(C);
629       } else {
630         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
631       }
632     }
633 
634     // None of the constant values the argument can take on were deemed good
635     // candidates on which to specialize the function.
636     if (Constants.empty())
637       return false;
638 
639     // This will be a partial specialization if some of the constants were
640     // rejected due to their profitability.
641     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
642 
643     return true;
644   }
645 
646   /// Collect in \p Constants all the constant values that argument \p A can
647   /// take on.
648   ///
649   /// \returns true if all of the values the argument can take on are constant
650   /// (e.g., the argument's parent function cannot be called with an
651   /// overdefined value).
652   bool getPossibleConstants(Argument *A,
653                             SmallVectorImpl<Constant *> &Constants) {
654     Function *F = A->getParent();
655     bool AllConstant = true;
656 
657     // Iterate over all the call sites of the argument's parent function.
658     for (User *U : F->users()) {
659       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
660         continue;
661       auto &CS = *cast<CallBase>(U);
662       // If the call site has attribute minsize set, that callsite won't be
663       // specialized.
664       if (CS.hasFnAttr(Attribute::MinSize)) {
665         AllConstant = false;
666         continue;
667       }
668 
669       // If the parent of the call site will never be executed, we don't need
670       // to worry about the passed value.
671       if (!Solver.isBlockExecutable(CS.getParent()))
672         continue;
673 
674       auto *V = CS.getArgOperand(A->getArgNo());
675       // TrackValueOfGlobalVariable only tracks scalar global variables.
676       if (auto *GV = dyn_cast<GlobalVariable>(V))
677         if (!GV->getValueType()->isSingleValueType())
678           return false;
679 
680       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
681                                EnableSpecializationForLiteralConstant))
682         Constants.push_back(cast<Constant>(V));
683       else
684         AllConstant = false;
685     }
686 
687     // If the argument can only take on constant values, AllConstant will be
688     // true.
689     return AllConstant;
690   }
691 
692   /// Rewrite calls to function \p F to call function \p Clone instead.
693   ///
694   /// This function modifies calls to function \p F whose argument at index \p
695   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
696   /// \p Clone instead.
697   ///
698   /// Callsites that have been marked with the MinSize function attribute won't
699   /// be specialized and rewritten.
700   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
701                         Constant *C) {
702     unsigned ArgNo = Arg.getArgNo();
703     SmallVector<CallBase *, 4> CallSitesToRewrite;
704     for (auto *U : F->users()) {
705       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
706         continue;
707       auto &CS = *cast<CallBase>(U);
708       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
709         continue;
710       CallSitesToRewrite.push_back(&CS);
711     }
712     for (auto *CS : CallSitesToRewrite) {
713       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
714           CS->getArgOperand(ArgNo) == C) {
715         CS->setCalledFunction(Clone);
716         Solver.markOverdefined(CS);
717       }
718     }
719   }
720 };
721 
722 bool llvm::runFunctionSpecialization(
723     Module &M, const DataLayout &DL,
724     std::function<TargetLibraryInfo &(Function &)> GetTLI,
725     std::function<TargetTransformInfo &(Function &)> GetTTI,
726     std::function<AssumptionCache &(Function &)> GetAC,
727     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
728   SCCPSolver Solver(DL, GetTLI, M.getContext());
729   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
730   bool Changed = false;
731 
732   // Loop over all functions, marking arguments to those with their addresses
733   // taken or that are external as overdefined.
734   for (Function &F : M) {
735     if (F.isDeclaration())
736       continue;
737     if (F.hasFnAttribute(Attribute::NoDuplicate))
738       continue;
739 
740     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
741                       << "\n");
742     Solver.addAnalysis(F, GetAnalysis(F));
743 
744     // Determine if we can track the function's arguments. If so, add the
745     // function to the solver's set of argument-tracked functions.
746     if (canTrackArgumentsInterprocedurally(&F)) {
747       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
748       Solver.addArgumentTrackedFunction(&F);
749       continue;
750     } else {
751       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
752                         << "FnSpecialization: Doesn't have local linkage, or "
753                         << "has its address taken\n");
754     }
755 
756     // Assume the function is called.
757     Solver.markBlockExecutable(&F.front());
758 
759     // Assume nothing about the incoming arguments.
760     for (Argument &AI : F.args())
761       Solver.markOverdefined(&AI);
762   }
763 
764   // Determine if we can track any of the module's global variables. If so, add
765   // the global variables we can track to the solver's set of tracked global
766   // variables.
767   for (GlobalVariable &G : M.globals()) {
768     G.removeDeadConstantUsers();
769     if (canTrackGlobalVariableInterprocedurally(&G))
770       Solver.trackValueOfGlobalVariable(&G);
771   }
772 
773   // Solve for constants.
774   auto RunSCCPSolver = [&](auto &WorkList) {
775     bool ResolvedUndefs = true;
776 
777     while (ResolvedUndefs) {
778       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
779       Solver.solve();
780       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
781       ResolvedUndefs = false;
782       for (Function *F : WorkList)
783         if (Solver.resolvedUndefsIn(*F))
784           ResolvedUndefs = true;
785     }
786 
787     for (auto *F : WorkList) {
788       for (BasicBlock &BB : *F) {
789         if (!Solver.isBlockExecutable(&BB))
790           continue;
791         // FIXME: The solver may make changes to the function here, so set
792         // Changed, even if later function specialization does not trigger.
793         for (auto &I : make_early_inc_range(BB))
794           Changed |= FS.tryToReplaceWithConstant(&I);
795       }
796     }
797   };
798 
799   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
800   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
801                                         TrackedFuncs.end());
802 #ifndef NDEBUG
803   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
804   for (auto *F : FuncDecls)
805     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
806 #endif
807 
808   // Initially resolve the constants in all the argument tracked functions.
809   RunSCCPSolver(FuncDecls);
810 
811   SmallVector<Function *, 2> CurrentSpecializations;
812   unsigned I = 0;
813   while (FuncSpecializationMaxIters != I++ &&
814          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
815 
816     // Run the solver for the specialized functions.
817     RunSCCPSolver(CurrentSpecializations);
818 
819     // Replace some unresolved constant arguments.
820     constantArgPropagation(FuncDecls, M, Solver);
821 
822     CurrentSpecializations.clear();
823     Changed = true;
824   }
825 
826   // Clean up the IR by removing ssa_copy intrinsics.
827   removeSSACopy(M);
828   return Changed;
829 }
830