1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReturned, "Number of arguments marked returned");
46 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
47 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
48 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
49 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
50 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
51 
52 namespace {
53 typedef SmallSetVector<Function *, 8> SCCNodeSet;
54 }
55 
56 namespace {
57 /// The three kinds of memory access relevant to 'readonly' and
58 /// 'readnone' attributes.
59 enum MemoryAccessKind {
60   MAK_ReadNone = 0,
61   MAK_ReadOnly = 1,
62   MAK_MayWrite = 2
63 };
64 }
65 
66 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
67                                                   const SCCNodeSet &SCCNodes) {
68   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
69   if (MRB == FMRB_DoesNotAccessMemory)
70     // Already perfect!
71     return MAK_ReadNone;
72 
73   // Non-exact function definitions may not be selected at link time, and an
74   // alternative version that writes to memory may be selected.  See the comment
75   // on GlobalValue::isDefinitionExact for more details.
76   if (!F.hasExactDefinition()) {
77     if (AliasAnalysis::onlyReadsMemory(MRB))
78       return MAK_ReadOnly;
79 
80     // Conservatively assume it writes to memory.
81     return MAK_MayWrite;
82   }
83 
84   // Scan the function body for instructions that may read or write memory.
85   bool ReadsMemory = false;
86   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
87     Instruction *I = &*II;
88 
89     // Some instructions can be ignored even if they read or write memory.
90     // Detect these now, skipping to the next instruction if one is found.
91     CallSite CS(cast<Value>(I));
92     if (CS) {
93       // Ignore calls to functions in the same SCC, as long as the call sites
94       // don't have operand bundles.  Calls with operand bundles are allowed to
95       // have memory effects not described by the memory effects of the call
96       // target.
97       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
98           SCCNodes.count(CS.getCalledFunction()))
99         continue;
100       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
101 
102       // If the call doesn't access memory, we're done.
103       if (!(MRB & MRI_ModRef))
104         continue;
105 
106       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
107         // The call could access any memory. If that includes writes, give up.
108         if (MRB & MRI_Mod)
109           return MAK_MayWrite;
110         // If it reads, note it.
111         if (MRB & MRI_Ref)
112           ReadsMemory = true;
113         continue;
114       }
115 
116       // Check whether all pointer arguments point to local memory, and
117       // ignore calls that only access local memory.
118       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
119            CI != CE; ++CI) {
120         Value *Arg = *CI;
121         if (!Arg->getType()->isPtrOrPtrVectorTy())
122           continue;
123 
124         AAMDNodes AAInfo;
125         I->getAAMetadata(AAInfo);
126         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
127 
128         // Skip accesses to local or constant memory as they don't impact the
129         // externally visible mod/ref behavior.
130         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
131           continue;
132 
133         if (MRB & MRI_Mod)
134           // Writes non-local memory.  Give up.
135           return MAK_MayWrite;
136         if (MRB & MRI_Ref)
137           // Ok, it reads non-local memory.
138           ReadsMemory = true;
139       }
140       continue;
141     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
142       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
143       if (!LI->isVolatile()) {
144         MemoryLocation Loc = MemoryLocation::get(LI);
145         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
146           continue;
147       }
148     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
149       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
150       if (!SI->isVolatile()) {
151         MemoryLocation Loc = MemoryLocation::get(SI);
152         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
153           continue;
154       }
155     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
156       // Ignore vaargs on local memory.
157       MemoryLocation Loc = MemoryLocation::get(VI);
158       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
159         continue;
160     }
161 
162     // Any remaining instructions need to be taken seriously!  Check if they
163     // read or write memory.
164     if (I->mayWriteToMemory())
165       // Writes memory.  Just give up.
166       return MAK_MayWrite;
167 
168     // If this instruction may read memory, remember that.
169     ReadsMemory |= I->mayReadFromMemory();
170   }
171 
172   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
173 }
174 
175 /// Deduce readonly/readnone attributes for the SCC.
176 template <typename AARGetterT>
177 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
178   // Check if any of the functions in the SCC read or write memory.  If they
179   // write memory then they can't be marked readnone or readonly.
180   bool ReadsMemory = false;
181   for (Function *F : SCCNodes) {
182     // Call the callable parameter to look up AA results for this function.
183     AAResults &AAR = AARGetter(*F);
184 
185     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
186     case MAK_MayWrite:
187       return false;
188     case MAK_ReadOnly:
189       ReadsMemory = true;
190       break;
191     case MAK_ReadNone:
192       // Nothing to do!
193       break;
194     }
195   }
196 
197   // Success!  Functions in this SCC do not access memory, or only read memory.
198   // Give them the appropriate attribute.
199   bool MadeChange = false;
200   for (Function *F : SCCNodes) {
201     if (F->doesNotAccessMemory())
202       // Already perfect!
203       continue;
204 
205     if (F->onlyReadsMemory() && ReadsMemory)
206       // No change.
207       continue;
208 
209     MadeChange = true;
210 
211     // Clear out any existing attributes.
212     AttrBuilder B;
213     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
214     F->removeAttributes(
215         AttributeSet::FunctionIndex,
216         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
217 
218     // Add in the new attribute.
219     F->addAttribute(AttributeSet::FunctionIndex,
220                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
221 
222     if (ReadsMemory)
223       ++NumReadOnly;
224     else
225       ++NumReadNone;
226   }
227 
228   return MadeChange;
229 }
230 
231 namespace {
232 /// For a given pointer Argument, this retains a list of Arguments of functions
233 /// in the same SCC that the pointer data flows into. We use this to build an
234 /// SCC of the arguments.
235 struct ArgumentGraphNode {
236   Argument *Definition;
237   SmallVector<ArgumentGraphNode *, 4> Uses;
238 };
239 
240 class ArgumentGraph {
241   // We store pointers to ArgumentGraphNode objects, so it's important that
242   // that they not move around upon insert.
243   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
244 
245   ArgumentMapTy ArgumentMap;
246 
247   // There is no root node for the argument graph, in fact:
248   //   void f(int *x, int *y) { if (...) f(x, y); }
249   // is an example where the graph is disconnected. The SCCIterator requires a
250   // single entry point, so we maintain a fake ("synthetic") root node that
251   // uses every node. Because the graph is directed and nothing points into
252   // the root, it will not participate in any SCCs (except for its own).
253   ArgumentGraphNode SyntheticRoot;
254 
255 public:
256   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
257 
258   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
259 
260   iterator begin() { return SyntheticRoot.Uses.begin(); }
261   iterator end() { return SyntheticRoot.Uses.end(); }
262   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
263 
264   ArgumentGraphNode *operator[](Argument *A) {
265     ArgumentGraphNode &Node = ArgumentMap[A];
266     Node.Definition = A;
267     SyntheticRoot.Uses.push_back(&Node);
268     return &Node;
269   }
270 };
271 
272 /// This tracker checks whether callees are in the SCC, and if so it does not
273 /// consider that a capture, instead adding it to the "Uses" list and
274 /// continuing with the analysis.
275 struct ArgumentUsesTracker : public CaptureTracker {
276   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
277       : Captured(false), SCCNodes(SCCNodes) {}
278 
279   void tooManyUses() override { Captured = true; }
280 
281   bool captured(const Use *U) override {
282     CallSite CS(U->getUser());
283     if (!CS.getInstruction()) {
284       Captured = true;
285       return true;
286     }
287 
288     Function *F = CS.getCalledFunction();
289     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
290       Captured = true;
291       return true;
292     }
293 
294     // Note: the callee and the two successor blocks *follow* the argument
295     // operands.  This means there is no need to adjust UseIndex to account for
296     // these.
297 
298     unsigned UseIndex =
299         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
300 
301     assert(UseIndex < CS.data_operands_size() &&
302            "Indirect function calls should have been filtered above!");
303 
304     if (UseIndex >= CS.getNumArgOperands()) {
305       // Data operand, but not a argument operand -- must be a bundle operand
306       assert(CS.hasOperandBundles() && "Must be!");
307 
308       // CaptureTracking told us that we're being captured by an operand bundle
309       // use.  In this case it does not matter if the callee is within our SCC
310       // or not -- we've been captured in some unknown way, and we have to be
311       // conservative.
312       Captured = true;
313       return true;
314     }
315 
316     if (UseIndex >= F->arg_size()) {
317       assert(F->isVarArg() && "More params than args in non-varargs call");
318       Captured = true;
319       return true;
320     }
321 
322     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
323     return false;
324   }
325 
326   bool Captured; // True only if certainly captured (used outside our SCC).
327   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
328 
329   const SCCNodeSet &SCCNodes;
330 };
331 }
332 
333 namespace llvm {
334 template <> struct GraphTraits<ArgumentGraphNode *> {
335   typedef ArgumentGraphNode *NodeRef;
336   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
337 
338   static NodeRef getEntryNode(NodeRef A) { return A; }
339   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
340   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
341 };
342 template <>
343 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
344   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
345   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
346     return AG->begin();
347   }
348   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
349 };
350 }
351 
352 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
353 static Attribute::AttrKind
354 determinePointerReadAttrs(Argument *A,
355                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
356 
357   SmallVector<Use *, 32> Worklist;
358   SmallSet<Use *, 32> Visited;
359 
360   // inalloca arguments are always clobbered by the call.
361   if (A->hasInAllocaAttr())
362     return Attribute::None;
363 
364   bool IsRead = false;
365   // We don't need to track IsWritten. If A is written to, return immediately.
366 
367   for (Use &U : A->uses()) {
368     Visited.insert(&U);
369     Worklist.push_back(&U);
370   }
371 
372   while (!Worklist.empty()) {
373     Use *U = Worklist.pop_back_val();
374     Instruction *I = cast<Instruction>(U->getUser());
375 
376     switch (I->getOpcode()) {
377     case Instruction::BitCast:
378     case Instruction::GetElementPtr:
379     case Instruction::PHI:
380     case Instruction::Select:
381     case Instruction::AddrSpaceCast:
382       // The original value is not read/written via this if the new value isn't.
383       for (Use &UU : I->uses())
384         if (Visited.insert(&UU).second)
385           Worklist.push_back(&UU);
386       break;
387 
388     case Instruction::Call:
389     case Instruction::Invoke: {
390       bool Captures = true;
391 
392       if (I->getType()->isVoidTy())
393         Captures = false;
394 
395       auto AddUsersToWorklistIfCapturing = [&] {
396         if (Captures)
397           for (Use &UU : I->uses())
398             if (Visited.insert(&UU).second)
399               Worklist.push_back(&UU);
400       };
401 
402       CallSite CS(I);
403       if (CS.doesNotAccessMemory()) {
404         AddUsersToWorklistIfCapturing();
405         continue;
406       }
407 
408       Function *F = CS.getCalledFunction();
409       if (!F) {
410         if (CS.onlyReadsMemory()) {
411           IsRead = true;
412           AddUsersToWorklistIfCapturing();
413           continue;
414         }
415         return Attribute::None;
416       }
417 
418       // Note: the callee and the two successor blocks *follow* the argument
419       // operands.  This means there is no need to adjust UseIndex to account
420       // for these.
421 
422       unsigned UseIndex = std::distance(CS.arg_begin(), U);
423 
424       // U cannot be the callee operand use: since we're exploring the
425       // transitive uses of an Argument, having such a use be a callee would
426       // imply the CallSite is an indirect call or invoke; and we'd take the
427       // early exit above.
428       assert(UseIndex < CS.data_operands_size() &&
429              "Data operand use expected!");
430 
431       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
432 
433       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
434         assert(F->isVarArg() && "More params than args in non-varargs call");
435         return Attribute::None;
436       }
437 
438       Captures &= !CS.doesNotCapture(UseIndex);
439 
440       // Since the optimizer (by design) cannot see the data flow corresponding
441       // to a operand bundle use, these cannot participate in the optimistic SCC
442       // analysis.  Instead, we model the operand bundle uses as arguments in
443       // call to a function external to the SCC.
444       if (IsOperandBundleUse ||
445           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
446 
447         // The accessors used on CallSite here do the right thing for calls and
448         // invokes with operand bundles.
449 
450         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
451           return Attribute::None;
452         if (!CS.doesNotAccessMemory(UseIndex))
453           IsRead = true;
454       }
455 
456       AddUsersToWorklistIfCapturing();
457       break;
458     }
459 
460     case Instruction::Load:
461       // A volatile load has side effects beyond what readonly can be relied
462       // upon.
463       if (cast<LoadInst>(I)->isVolatile())
464         return Attribute::None;
465 
466       IsRead = true;
467       break;
468 
469     case Instruction::ICmp:
470     case Instruction::Ret:
471       break;
472 
473     default:
474       return Attribute::None;
475     }
476   }
477 
478   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
479 }
480 
481 /// Deduce returned attributes for the SCC.
482 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
483   bool Changed = false;
484 
485   AttrBuilder B;
486   B.addAttribute(Attribute::Returned);
487 
488   // Check each function in turn, determining if an argument is always returned.
489   for (Function *F : SCCNodes) {
490     // We can infer and propagate function attributes only when we know that the
491     // definition we'll get at link time is *exactly* the definition we see now.
492     // For more details, see GlobalValue::mayBeDerefined.
493     if (!F->hasExactDefinition())
494       continue;
495 
496     if (F->getReturnType()->isVoidTy())
497       continue;
498 
499     auto FindRetArg = [&]() -> Value * {
500       Value *RetArg = nullptr;
501       for (BasicBlock &BB : *F)
502         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
503           // Note that stripPointerCasts should look through functions with
504           // returned arguments.
505           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
506           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
507             return nullptr;
508 
509           if (!RetArg)
510             RetArg = RetVal;
511           else if (RetArg != RetVal)
512             return nullptr;
513         }
514 
515       return RetArg;
516     };
517 
518     if (Value *RetArg = FindRetArg()) {
519       auto *A = cast<Argument>(RetArg);
520       A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
521       ++NumReturned;
522       Changed = true;
523     }
524   }
525 
526   return Changed;
527 }
528 
529 /// Deduce nocapture attributes for the SCC.
530 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
531   bool Changed = false;
532 
533   ArgumentGraph AG;
534 
535   AttrBuilder B;
536   B.addAttribute(Attribute::NoCapture);
537 
538   // Check each function in turn, determining which pointer arguments are not
539   // captured.
540   for (Function *F : SCCNodes) {
541     // We can infer and propagate function attributes only when we know that the
542     // definition we'll get at link time is *exactly* the definition we see now.
543     // For more details, see GlobalValue::mayBeDerefined.
544     if (!F->hasExactDefinition())
545       continue;
546 
547     // Functions that are readonly (or readnone) and nounwind and don't return
548     // a value can't capture arguments. Don't analyze them.
549     if (F->onlyReadsMemory() && F->doesNotThrow() &&
550         F->getReturnType()->isVoidTy()) {
551       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
552            ++A) {
553         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
554           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
555           ++NumNoCapture;
556           Changed = true;
557         }
558       }
559       continue;
560     }
561 
562     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
563          ++A) {
564       if (!A->getType()->isPointerTy())
565         continue;
566       bool HasNonLocalUses = false;
567       if (!A->hasNoCaptureAttr()) {
568         ArgumentUsesTracker Tracker(SCCNodes);
569         PointerMayBeCaptured(&*A, &Tracker);
570         if (!Tracker.Captured) {
571           if (Tracker.Uses.empty()) {
572             // If it's trivially not captured, mark it nocapture now.
573             A->addAttr(
574                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
575             ++NumNoCapture;
576             Changed = true;
577           } else {
578             // If it's not trivially captured and not trivially not captured,
579             // then it must be calling into another function in our SCC. Save
580             // its particulars for Argument-SCC analysis later.
581             ArgumentGraphNode *Node = AG[&*A];
582             for (Argument *Use : Tracker.Uses) {
583               Node->Uses.push_back(AG[Use]);
584               if (Use != &*A)
585                 HasNonLocalUses = true;
586             }
587           }
588         }
589         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
590       }
591       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
592         // Can we determine that it's readonly/readnone without doing an SCC?
593         // Note that we don't allow any calls at all here, or else our result
594         // will be dependent on the iteration order through the functions in the
595         // SCC.
596         SmallPtrSet<Argument *, 8> Self;
597         Self.insert(&*A);
598         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
599         if (R != Attribute::None) {
600           AttrBuilder B;
601           B.addAttribute(R);
602           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
603           Changed = true;
604           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
605         }
606       }
607     }
608   }
609 
610   // The graph we've collected is partial because we stopped scanning for
611   // argument uses once we solved the argument trivially. These partial nodes
612   // show up as ArgumentGraphNode objects with an empty Uses list, and for
613   // these nodes the final decision about whether they capture has already been
614   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
615   // captures.
616 
617   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
618     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
619     if (ArgumentSCC.size() == 1) {
620       if (!ArgumentSCC[0]->Definition)
621         continue; // synthetic root node
622 
623       // eg. "void f(int* x) { if (...) f(x); }"
624       if (ArgumentSCC[0]->Uses.size() == 1 &&
625           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
626         Argument *A = ArgumentSCC[0]->Definition;
627         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
628         ++NumNoCapture;
629         Changed = true;
630       }
631       continue;
632     }
633 
634     bool SCCCaptured = false;
635     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
636          I != E && !SCCCaptured; ++I) {
637       ArgumentGraphNode *Node = *I;
638       if (Node->Uses.empty()) {
639         if (!Node->Definition->hasNoCaptureAttr())
640           SCCCaptured = true;
641       }
642     }
643     if (SCCCaptured)
644       continue;
645 
646     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
647     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
648     // quickly looking up whether a given Argument is in this ArgumentSCC.
649     for (ArgumentGraphNode *I : ArgumentSCC) {
650       ArgumentSCCNodes.insert(I->Definition);
651     }
652 
653     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
654          I != E && !SCCCaptured; ++I) {
655       ArgumentGraphNode *N = *I;
656       for (ArgumentGraphNode *Use : N->Uses) {
657         Argument *A = Use->Definition;
658         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
659           continue;
660         SCCCaptured = true;
661         break;
662       }
663     }
664     if (SCCCaptured)
665       continue;
666 
667     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
668       Argument *A = ArgumentSCC[i]->Definition;
669       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
670       ++NumNoCapture;
671       Changed = true;
672     }
673 
674     // We also want to compute readonly/readnone. With a small number of false
675     // negatives, we can assume that any pointer which is captured isn't going
676     // to be provably readonly or readnone, since by definition we can't
677     // analyze all uses of a captured pointer.
678     //
679     // The false negatives happen when the pointer is captured by a function
680     // that promises readonly/readnone behaviour on the pointer, then the
681     // pointer's lifetime ends before anything that writes to arbitrary memory.
682     // Also, a readonly/readnone pointer may be returned, but returning a
683     // pointer is capturing it.
684 
685     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
686     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
687       Argument *A = ArgumentSCC[i]->Definition;
688       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
689       if (K == Attribute::ReadNone)
690         continue;
691       if (K == Attribute::ReadOnly) {
692         ReadAttr = Attribute::ReadOnly;
693         continue;
694       }
695       ReadAttr = K;
696       break;
697     }
698 
699     if (ReadAttr != Attribute::None) {
700       AttrBuilder B, R;
701       B.addAttribute(ReadAttr);
702       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
703       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
704         Argument *A = ArgumentSCC[i]->Definition;
705         // Clear out existing readonly/readnone attributes
706         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
707         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
708         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
709         Changed = true;
710       }
711     }
712   }
713 
714   return Changed;
715 }
716 
717 /// Tests whether a function is "malloc-like".
718 ///
719 /// A function is "malloc-like" if it returns either null or a pointer that
720 /// doesn't alias any other pointer visible to the caller.
721 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
722   SmallSetVector<Value *, 8> FlowsToReturn;
723   for (BasicBlock &BB : *F)
724     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
725       FlowsToReturn.insert(Ret->getReturnValue());
726 
727   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
728     Value *RetVal = FlowsToReturn[i];
729 
730     if (Constant *C = dyn_cast<Constant>(RetVal)) {
731       if (!C->isNullValue() && !isa<UndefValue>(C))
732         return false;
733 
734       continue;
735     }
736 
737     if (isa<Argument>(RetVal))
738       return false;
739 
740     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
741       switch (RVI->getOpcode()) {
742       // Extend the analysis by looking upwards.
743       case Instruction::BitCast:
744       case Instruction::GetElementPtr:
745       case Instruction::AddrSpaceCast:
746         FlowsToReturn.insert(RVI->getOperand(0));
747         continue;
748       case Instruction::Select: {
749         SelectInst *SI = cast<SelectInst>(RVI);
750         FlowsToReturn.insert(SI->getTrueValue());
751         FlowsToReturn.insert(SI->getFalseValue());
752         continue;
753       }
754       case Instruction::PHI: {
755         PHINode *PN = cast<PHINode>(RVI);
756         for (Value *IncValue : PN->incoming_values())
757           FlowsToReturn.insert(IncValue);
758         continue;
759       }
760 
761       // Check whether the pointer came from an allocation.
762       case Instruction::Alloca:
763         break;
764       case Instruction::Call:
765       case Instruction::Invoke: {
766         CallSite CS(RVI);
767         if (CS.paramHasAttr(0, Attribute::NoAlias))
768           break;
769         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
770           break;
771         LLVM_FALLTHROUGH;
772       }
773       default:
774         return false; // Did not come from an allocation.
775       }
776 
777     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
778       return false;
779   }
780 
781   return true;
782 }
783 
784 /// Deduce noalias attributes for the SCC.
785 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
786   // Check each function in turn, determining which functions return noalias
787   // pointers.
788   for (Function *F : SCCNodes) {
789     // Already noalias.
790     if (F->doesNotAlias(0))
791       continue;
792 
793     // We can infer and propagate function attributes only when we know that the
794     // definition we'll get at link time is *exactly* the definition we see now.
795     // For more details, see GlobalValue::mayBeDerefined.
796     if (!F->hasExactDefinition())
797       return false;
798 
799     // We annotate noalias return values, which are only applicable to
800     // pointer types.
801     if (!F->getReturnType()->isPointerTy())
802       continue;
803 
804     if (!isFunctionMallocLike(F, SCCNodes))
805       return false;
806   }
807 
808   bool MadeChange = false;
809   for (Function *F : SCCNodes) {
810     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
811       continue;
812 
813     F->setDoesNotAlias(0);
814     ++NumNoAlias;
815     MadeChange = true;
816   }
817 
818   return MadeChange;
819 }
820 
821 /// Tests whether this function is known to not return null.
822 ///
823 /// Requires that the function returns a pointer.
824 ///
825 /// Returns true if it believes the function will not return a null, and sets
826 /// \p Speculative based on whether the returned conclusion is a speculative
827 /// conclusion due to SCC calls.
828 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
829                             bool &Speculative) {
830   assert(F->getReturnType()->isPointerTy() &&
831          "nonnull only meaningful on pointer types");
832   Speculative = false;
833 
834   SmallSetVector<Value *, 8> FlowsToReturn;
835   for (BasicBlock &BB : *F)
836     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
837       FlowsToReturn.insert(Ret->getReturnValue());
838 
839   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
840     Value *RetVal = FlowsToReturn[i];
841 
842     // If this value is locally known to be non-null, we're good
843     if (isKnownNonNull(RetVal))
844       continue;
845 
846     // Otherwise, we need to look upwards since we can't make any local
847     // conclusions.
848     Instruction *RVI = dyn_cast<Instruction>(RetVal);
849     if (!RVI)
850       return false;
851     switch (RVI->getOpcode()) {
852     // Extend the analysis by looking upwards.
853     case Instruction::BitCast:
854     case Instruction::GetElementPtr:
855     case Instruction::AddrSpaceCast:
856       FlowsToReturn.insert(RVI->getOperand(0));
857       continue;
858     case Instruction::Select: {
859       SelectInst *SI = cast<SelectInst>(RVI);
860       FlowsToReturn.insert(SI->getTrueValue());
861       FlowsToReturn.insert(SI->getFalseValue());
862       continue;
863     }
864     case Instruction::PHI: {
865       PHINode *PN = cast<PHINode>(RVI);
866       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
867         FlowsToReturn.insert(PN->getIncomingValue(i));
868       continue;
869     }
870     case Instruction::Call:
871     case Instruction::Invoke: {
872       CallSite CS(RVI);
873       Function *Callee = CS.getCalledFunction();
874       // A call to a node within the SCC is assumed to return null until
875       // proven otherwise
876       if (Callee && SCCNodes.count(Callee)) {
877         Speculative = true;
878         continue;
879       }
880       return false;
881     }
882     default:
883       return false; // Unknown source, may be null
884     };
885     llvm_unreachable("should have either continued or returned");
886   }
887 
888   return true;
889 }
890 
891 /// Deduce nonnull attributes for the SCC.
892 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
893   // Speculative that all functions in the SCC return only nonnull
894   // pointers.  We may refute this as we analyze functions.
895   bool SCCReturnsNonNull = true;
896 
897   bool MadeChange = false;
898 
899   // Check each function in turn, determining which functions return nonnull
900   // pointers.
901   for (Function *F : SCCNodes) {
902     // Already nonnull.
903     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
904                                         Attribute::NonNull))
905       continue;
906 
907     // We can infer and propagate function attributes only when we know that the
908     // definition we'll get at link time is *exactly* the definition we see now.
909     // For more details, see GlobalValue::mayBeDerefined.
910     if (!F->hasExactDefinition())
911       return false;
912 
913     // We annotate nonnull return values, which are only applicable to
914     // pointer types.
915     if (!F->getReturnType()->isPointerTy())
916       continue;
917 
918     bool Speculative = false;
919     if (isReturnNonNull(F, SCCNodes, Speculative)) {
920       if (!Speculative) {
921         // Mark the function eagerly since we may discover a function
922         // which prevents us from speculating about the entire SCC
923         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
924         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
925         ++NumNonNullReturn;
926         MadeChange = true;
927       }
928       continue;
929     }
930     // At least one function returns something which could be null, can't
931     // speculate any more.
932     SCCReturnsNonNull = false;
933   }
934 
935   if (SCCReturnsNonNull) {
936     for (Function *F : SCCNodes) {
937       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
938                                           Attribute::NonNull) ||
939           !F->getReturnType()->isPointerTy())
940         continue;
941 
942       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
943       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
944       ++NumNonNullReturn;
945       MadeChange = true;
946     }
947   }
948 
949   return MadeChange;
950 }
951 
952 /// Remove the convergent attribute from all functions in the SCC if every
953 /// callsite within the SCC is not convergent (except for calls to functions
954 /// within the SCC).  Returns true if changes were made.
955 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
956   // For every function in SCC, ensure that either
957   //  * it is not convergent, or
958   //  * we can remove its convergent attribute.
959   bool HasConvergentFn = false;
960   for (Function *F : SCCNodes) {
961     if (!F->isConvergent()) continue;
962     HasConvergentFn = true;
963 
964     // Can't remove convergent from function declarations.
965     if (F->isDeclaration()) return false;
966 
967     // Can't remove convergent if any of our functions has a convergent call to a
968     // function not in the SCC.
969     for (Instruction &I : instructions(*F)) {
970       CallSite CS(&I);
971       // Bail if CS is a convergent call to a function not in the SCC.
972       if (CS && CS.isConvergent() &&
973           SCCNodes.count(CS.getCalledFunction()) == 0)
974         return false;
975     }
976   }
977 
978   // If the SCC doesn't have any convergent functions, we have nothing to do.
979   if (!HasConvergentFn) return false;
980 
981   // If we got here, all of the calls the SCC makes to functions not in the SCC
982   // are non-convergent.  Therefore all of the SCC's functions can also be made
983   // non-convergent.  We'll remove the attr from the callsites in
984   // InstCombineCalls.
985   for (Function *F : SCCNodes) {
986     if (!F->isConvergent()) continue;
987 
988     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
989                  << "\n");
990     F->setNotConvergent();
991   }
992   return true;
993 }
994 
995 static bool setDoesNotRecurse(Function &F) {
996   if (F.doesNotRecurse())
997     return false;
998   F.setDoesNotRecurse();
999   ++NumNoRecurse;
1000   return true;
1001 }
1002 
1003 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1004   // Try and identify functions that do not recurse.
1005 
1006   // If the SCC contains multiple nodes we know for sure there is recursion.
1007   if (SCCNodes.size() != 1)
1008     return false;
1009 
1010   Function *F = *SCCNodes.begin();
1011   if (!F || F->isDeclaration() || F->doesNotRecurse())
1012     return false;
1013 
1014   // If all of the calls in F are identifiable and are to norecurse functions, F
1015   // is norecurse. This check also detects self-recursion as F is not currently
1016   // marked norecurse, so any called from F to F will not be marked norecurse.
1017   for (Instruction &I : instructions(*F))
1018     if (auto CS = CallSite(&I)) {
1019       Function *Callee = CS.getCalledFunction();
1020       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1021         // Function calls a potentially recursive function.
1022         return false;
1023     }
1024 
1025   // Every call was to a non-recursive function other than this function, and
1026   // we have no indirect recursion as the SCC size is one. This function cannot
1027   // recurse.
1028   return setDoesNotRecurse(*F);
1029 }
1030 
1031 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1032                                                   CGSCCAnalysisManager &AM,
1033                                                   LazyCallGraph &CG,
1034                                                   CGSCCUpdateResult &) {
1035   FunctionAnalysisManager &FAM =
1036       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1037 
1038   // We pass a lambda into functions to wire them up to the analysis manager
1039   // for getting function analyses.
1040   auto AARGetter = [&](Function &F) -> AAResults & {
1041     return FAM.getResult<AAManager>(F);
1042   };
1043 
1044   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1045   // any external or opt-none nodes that will prevent us from optimizing any
1046   // part of the SCC.
1047   SCCNodeSet SCCNodes;
1048   bool HasUnknownCall = false;
1049   for (LazyCallGraph::Node &N : C) {
1050     Function &F = N.getFunction();
1051     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1052       // Treat any function we're trying not to optimize as if it were an
1053       // indirect call and omit it from the node set used below.
1054       HasUnknownCall = true;
1055       continue;
1056     }
1057     // Track whether any functions in this SCC have an unknown call edge.
1058     // Note: if this is ever a performance hit, we can common it with
1059     // subsequent routines which also do scans over the instructions of the
1060     // function.
1061     if (!HasUnknownCall)
1062       for (Instruction &I : instructions(F))
1063         if (auto CS = CallSite(&I))
1064           if (!CS.getCalledFunction()) {
1065             HasUnknownCall = true;
1066             break;
1067           }
1068 
1069     SCCNodes.insert(&F);
1070   }
1071 
1072   bool Changed = false;
1073   Changed |= addArgumentReturnedAttrs(SCCNodes);
1074   Changed |= addReadAttrs(SCCNodes, AARGetter);
1075   Changed |= addArgumentAttrs(SCCNodes);
1076 
1077   // If we have no external nodes participating in the SCC, we can deduce some
1078   // more precise attributes as well.
1079   if (!HasUnknownCall) {
1080     Changed |= addNoAliasAttrs(SCCNodes);
1081     Changed |= addNonNullAttrs(SCCNodes);
1082     Changed |= removeConvergentAttrs(SCCNodes);
1083     Changed |= addNoRecurseAttrs(SCCNodes);
1084   }
1085 
1086   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1087 }
1088 
1089 namespace {
1090 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1091   static char ID; // Pass identification, replacement for typeid
1092   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1093     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1094   }
1095 
1096   bool runOnSCC(CallGraphSCC &SCC) override;
1097 
1098   void getAnalysisUsage(AnalysisUsage &AU) const override {
1099     AU.setPreservesCFG();
1100     AU.addRequired<AssumptionCacheTracker>();
1101     getAAResultsAnalysisUsage(AU);
1102     CallGraphSCCPass::getAnalysisUsage(AU);
1103   }
1104 };
1105 }
1106 
1107 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1108 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1109                       "Deduce function attributes", false, false)
1110 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1111 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1112 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1113                     "Deduce function attributes", false, false)
1114 
1115 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1116 
1117 template <typename AARGetterT>
1118 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1119   bool Changed = false;
1120 
1121   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1122   // whether a given CallGraphNode is in this SCC. Also track whether there are
1123   // any external or opt-none nodes that will prevent us from optimizing any
1124   // part of the SCC.
1125   SCCNodeSet SCCNodes;
1126   bool ExternalNode = false;
1127   for (CallGraphNode *I : SCC) {
1128     Function *F = I->getFunction();
1129     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1130       // External node or function we're trying not to optimize - we both avoid
1131       // transform them and avoid leveraging information they provide.
1132       ExternalNode = true;
1133       continue;
1134     }
1135 
1136     SCCNodes.insert(F);
1137   }
1138 
1139   Changed |= addArgumentReturnedAttrs(SCCNodes);
1140   Changed |= addReadAttrs(SCCNodes, AARGetter);
1141   Changed |= addArgumentAttrs(SCCNodes);
1142 
1143   // If we have no external nodes participating in the SCC, we can deduce some
1144   // more precise attributes as well.
1145   if (!ExternalNode) {
1146     Changed |= addNoAliasAttrs(SCCNodes);
1147     Changed |= addNonNullAttrs(SCCNodes);
1148     Changed |= removeConvergentAttrs(SCCNodes);
1149     Changed |= addNoRecurseAttrs(SCCNodes);
1150   }
1151 
1152   return Changed;
1153 }
1154 
1155 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1156   if (skipSCC(SCC))
1157     return false;
1158 
1159   // We compute dedicated AA results for each function in the SCC as needed. We
1160   // use a lambda referencing external objects so that they live long enough to
1161   // be queried, but we re-use them each time.
1162   Optional<BasicAAResult> BAR;
1163   Optional<AAResults> AAR;
1164   auto AARGetter = [&](Function &F) -> AAResults & {
1165     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1166     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1167     return *AAR;
1168   };
1169 
1170   return runImpl(SCC, AARGetter);
1171 }
1172 
1173 namespace {
1174 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1175   static char ID; // Pass identification, replacement for typeid
1176   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1177     initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1178   }
1179 
1180   bool runOnModule(Module &M) override;
1181 
1182   void getAnalysisUsage(AnalysisUsage &AU) const override {
1183     AU.setPreservesCFG();
1184     AU.addRequired<CallGraphWrapperPass>();
1185     AU.addPreserved<CallGraphWrapperPass>();
1186   }
1187 };
1188 }
1189 
1190 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1191 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1192                       "Deduce function attributes in RPO", false, false)
1193 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1194 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1195                     "Deduce function attributes in RPO", false, false)
1196 
1197 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1198   return new ReversePostOrderFunctionAttrsLegacyPass();
1199 }
1200 
1201 static bool addNoRecurseAttrsTopDown(Function &F) {
1202   // We check the preconditions for the function prior to calling this to avoid
1203   // the cost of building up a reversible post-order list. We assert them here
1204   // to make sure none of the invariants this relies on were violated.
1205   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1206   assert(!F.doesNotRecurse() &&
1207          "This function has already been deduced as norecurs!");
1208   assert(F.hasInternalLinkage() &&
1209          "Can only do top-down deduction for internal linkage functions!");
1210 
1211   // If F is internal and all of its uses are calls from a non-recursive
1212   // functions, then none of its calls could in fact recurse without going
1213   // through a function marked norecurse, and so we can mark this function too
1214   // as norecurse. Note that the uses must actually be calls -- otherwise
1215   // a pointer to this function could be returned from a norecurse function but
1216   // this function could be recursively (indirectly) called. Note that this
1217   // also detects if F is directly recursive as F is not yet marked as
1218   // a norecurse function.
1219   for (auto *U : F.users()) {
1220     auto *I = dyn_cast<Instruction>(U);
1221     if (!I)
1222       return false;
1223     CallSite CS(I);
1224     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1225       return false;
1226   }
1227   return setDoesNotRecurse(F);
1228 }
1229 
1230 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1231   // We only have a post-order SCC traversal (because SCCs are inherently
1232   // discovered in post-order), so we accumulate them in a vector and then walk
1233   // it in reverse. This is simpler than using the RPO iterator infrastructure
1234   // because we need to combine SCC detection and the PO walk of the call
1235   // graph. We can also cheat egregiously because we're primarily interested in
1236   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1237   // with multiple functions in them will clearly be recursive.
1238   SmallVector<Function *, 16> Worklist;
1239   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1240     if (I->size() != 1)
1241       continue;
1242 
1243     Function *F = I->front()->getFunction();
1244     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1245         F->hasInternalLinkage())
1246       Worklist.push_back(F);
1247   }
1248 
1249   bool Changed = false;
1250   for (auto *F : reverse(Worklist))
1251     Changed |= addNoRecurseAttrsTopDown(*F);
1252 
1253   return Changed;
1254 }
1255 
1256 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1257   if (skipModule(M))
1258     return false;
1259 
1260   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1261 
1262   return deduceFunctionAttributeInRPO(M, CG);
1263 }
1264 
1265 PreservedAnalyses
1266 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1267   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1268 
1269   bool Changed = deduceFunctionAttributeInRPO(M, CG);
1270 
1271   // CallGraphAnalysis holds AssertingVH and must be invalidated eagerly so
1272   // that other passes don't delete stuff from under it.
1273   // FIXME: We need to invalidate this to avoid PR28400. Is there a better
1274   // solution?
1275   AM.invalidate<CallGraphAnalysis>(M);
1276 
1277   if (!Changed)
1278     return PreservedAnalyses::all();
1279   PreservedAnalyses PA;
1280   PA.preserve<CallGraphAnalysis>();
1281   return PA;
1282 }
1283