1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 assert(!CB->isCallee(U) && "callee operand reported captured?"); 585 const unsigned UseIndex = CB->getDataOperandNo(U); 586 if (UseIndex >= CB->arg_size()) { 587 // Data operand, but not a argument operand -- must be a bundle operand 588 assert(CB->hasOperandBundles() && "Must be!"); 589 590 // CaptureTracking told us that we're being captured by an operand bundle 591 // use. In this case it does not matter if the callee is within our SCC 592 // or not -- we've been captured in some unknown way, and we have to be 593 // conservative. 594 Captured = true; 595 return true; 596 } 597 598 if (UseIndex >= F->arg_size()) { 599 assert(F->isVarArg() && "More params than args in non-varargs call"); 600 Captured = true; 601 return true; 602 } 603 604 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 605 return false; 606 } 607 608 // True only if certainly captured (used outside our SCC). 609 bool Captured = false; 610 611 // Uses within our SCC. 612 SmallVector<Argument *, 4> Uses; 613 614 const SCCNodeSet &SCCNodes; 615 }; 616 617 } // end anonymous namespace 618 619 namespace llvm { 620 621 template <> struct GraphTraits<ArgumentGraphNode *> { 622 using NodeRef = ArgumentGraphNode *; 623 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 624 625 static NodeRef getEntryNode(NodeRef A) { return A; } 626 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 627 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 628 }; 629 630 template <> 631 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 632 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 633 634 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 635 return AG->begin(); 636 } 637 638 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 639 }; 640 641 } // end namespace llvm 642 643 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 644 static Attribute::AttrKind 645 determinePointerAccessAttrs(Argument *A, 646 const SmallPtrSet<Argument *, 8> &SCCNodes) { 647 SmallVector<Use *, 32> Worklist; 648 SmallPtrSet<Use *, 32> Visited; 649 650 // inalloca arguments are always clobbered by the call. 651 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 652 return Attribute::None; 653 654 bool IsRead = false; 655 bool IsWrite = false; 656 657 for (Use &U : A->uses()) { 658 Visited.insert(&U); 659 Worklist.push_back(&U); 660 } 661 662 while (!Worklist.empty()) { 663 if (IsWrite && IsRead) 664 // No point in searching further.. 665 return Attribute::None; 666 667 Use *U = Worklist.pop_back_val(); 668 Instruction *I = cast<Instruction>(U->getUser()); 669 670 switch (I->getOpcode()) { 671 case Instruction::BitCast: 672 case Instruction::GetElementPtr: 673 case Instruction::PHI: 674 case Instruction::Select: 675 case Instruction::AddrSpaceCast: 676 // The original value is not read/written via this if the new value isn't. 677 for (Use &UU : I->uses()) 678 if (Visited.insert(&UU).second) 679 Worklist.push_back(&UU); 680 break; 681 682 case Instruction::Call: 683 case Instruction::Invoke: { 684 bool Captures = true; 685 686 if (I->getType()->isVoidTy()) 687 Captures = false; 688 689 auto AddUsersToWorklistIfCapturing = [&] { 690 if (Captures) 691 for (Use &UU : I->uses()) 692 if (Visited.insert(&UU).second) 693 Worklist.push_back(&UU); 694 }; 695 696 CallBase &CB = cast<CallBase>(*I); 697 if (CB.isCallee(U)) { 698 IsRead = true; 699 Captures = false; // See comment in CaptureTracking for context 700 continue; 701 } 702 if (CB.doesNotAccessMemory()) { 703 AddUsersToWorklistIfCapturing(); 704 continue; 705 } 706 707 Function *F = CB.getCalledFunction(); 708 if (!F) { 709 if (CB.onlyReadsMemory()) { 710 IsRead = true; 711 AddUsersToWorklistIfCapturing(); 712 continue; 713 } 714 return Attribute::None; 715 } 716 717 // Given we've explictily handled the callee operand above, what's left 718 // must be a data operand (e.g. argument or operand bundle) 719 const unsigned UseIndex = CB.getDataOperandNo(U); 720 const bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 721 722 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 723 assert(F->isVarArg() && "More params than args in non-varargs call"); 724 return Attribute::None; 725 } 726 727 Captures &= !CB.doesNotCapture(UseIndex); 728 729 if (CB.isArgOperand(U) && SCCNodes.count(F->getArg(UseIndex))) { 730 // This is an argument which is part of the speculative SCC. Note that 731 // only operands corresponding to formal arguments of the callee can 732 // participate in the speculation. 733 AddUsersToWorklistIfCapturing(); 734 break; 735 } 736 737 // The accessors used on call site here do the right thing for calls and 738 // invokes with operand bundles. 739 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 740 return Attribute::None; 741 if (!CB.doesNotAccessMemory(UseIndex)) 742 IsRead = true; 743 AddUsersToWorklistIfCapturing(); 744 break; 745 } 746 747 case Instruction::Load: 748 // A volatile load has side effects beyond what readonly can be relied 749 // upon. 750 if (cast<LoadInst>(I)->isVolatile()) 751 return Attribute::None; 752 753 IsRead = true; 754 break; 755 756 case Instruction::Store: 757 if (cast<StoreInst>(I)->getValueOperand() == *U) 758 // untrackable capture 759 return Attribute::None; 760 761 // A volatile store has side effects beyond what writeonly can be relied 762 // upon. 763 if (cast<StoreInst>(I)->isVolatile()) 764 return Attribute::None; 765 766 IsWrite = true; 767 break; 768 769 case Instruction::ICmp: 770 case Instruction::Ret: 771 break; 772 773 default: 774 return Attribute::None; 775 } 776 } 777 778 if (IsWrite && IsRead) 779 return Attribute::None; 780 else if (IsRead) 781 return Attribute::ReadOnly; 782 else if (IsWrite) 783 return Attribute::WriteOnly; 784 else 785 return Attribute::ReadNone; 786 } 787 788 /// Deduce returned attributes for the SCC. 789 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 790 SmallSet<Function *, 8> &Changed) { 791 // Check each function in turn, determining if an argument is always returned. 792 for (Function *F : SCCNodes) { 793 // We can infer and propagate function attributes only when we know that the 794 // definition we'll get at link time is *exactly* the definition we see now. 795 // For more details, see GlobalValue::mayBeDerefined. 796 if (!F->hasExactDefinition()) 797 continue; 798 799 if (F->getReturnType()->isVoidTy()) 800 continue; 801 802 // There is nothing to do if an argument is already marked as 'returned'. 803 if (llvm::any_of(F->args(), 804 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 805 continue; 806 807 auto FindRetArg = [&]() -> Value * { 808 Value *RetArg = nullptr; 809 for (BasicBlock &BB : *F) 810 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 811 // Note that stripPointerCasts should look through functions with 812 // returned arguments. 813 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 814 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 815 return nullptr; 816 817 if (!RetArg) 818 RetArg = RetVal; 819 else if (RetArg != RetVal) 820 return nullptr; 821 } 822 823 return RetArg; 824 }; 825 826 if (Value *RetArg = FindRetArg()) { 827 auto *A = cast<Argument>(RetArg); 828 A->addAttr(Attribute::Returned); 829 ++NumReturned; 830 Changed.insert(F); 831 } 832 } 833 } 834 835 /// If a callsite has arguments that are also arguments to the parent function, 836 /// try to propagate attributes from the callsite's arguments to the parent's 837 /// arguments. This may be important because inlining can cause information loss 838 /// when attribute knowledge disappears with the inlined call. 839 static bool addArgumentAttrsFromCallsites(Function &F) { 840 if (!EnableNonnullArgPropagation) 841 return false; 842 843 bool Changed = false; 844 845 // For an argument attribute to transfer from a callsite to the parent, the 846 // call must be guaranteed to execute every time the parent is called. 847 // Conservatively, just check for calls in the entry block that are guaranteed 848 // to execute. 849 // TODO: This could be enhanced by testing if the callsite post-dominates the 850 // entry block or by doing simple forward walks or backward walks to the 851 // callsite. 852 BasicBlock &Entry = F.getEntryBlock(); 853 for (Instruction &I : Entry) { 854 if (auto *CB = dyn_cast<CallBase>(&I)) { 855 if (auto *CalledFunc = CB->getCalledFunction()) { 856 for (auto &CSArg : CalledFunc->args()) { 857 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 858 continue; 859 860 // If the non-null callsite argument operand is an argument to 'F' 861 // (the caller) and the call is guaranteed to execute, then the value 862 // must be non-null throughout 'F'. 863 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 864 if (FArg && !FArg->hasNonNullAttr()) { 865 FArg->addAttr(Attribute::NonNull); 866 Changed = true; 867 } 868 } 869 } 870 } 871 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 872 break; 873 } 874 875 return Changed; 876 } 877 878 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 879 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 880 R == Attribute::WriteOnly) 881 && "Must be an access attribute."); 882 assert(A && "Argument must not be null."); 883 884 // If the argument already has the attribute, nothing needs to be done. 885 if (A->hasAttribute(R)) 886 return false; 887 888 // Otherwise, remove potentially conflicting attribute, add the new one, 889 // and update statistics. 890 A->removeAttr(Attribute::WriteOnly); 891 A->removeAttr(Attribute::ReadOnly); 892 A->removeAttr(Attribute::ReadNone); 893 A->addAttr(R); 894 if (R == Attribute::ReadOnly) 895 ++NumReadOnlyArg; 896 else if (R == Attribute::WriteOnly) 897 ++NumWriteOnlyArg; 898 else 899 ++NumReadNoneArg; 900 return true; 901 } 902 903 /// Deduce nocapture attributes for the SCC. 904 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 905 SmallSet<Function *, 8> &Changed) { 906 ArgumentGraph AG; 907 908 // Check each function in turn, determining which pointer arguments are not 909 // captured. 910 for (Function *F : SCCNodes) { 911 // We can infer and propagate function attributes only when we know that the 912 // definition we'll get at link time is *exactly* the definition we see now. 913 // For more details, see GlobalValue::mayBeDerefined. 914 if (!F->hasExactDefinition()) 915 continue; 916 917 if (addArgumentAttrsFromCallsites(*F)) 918 Changed.insert(F); 919 920 // Functions that are readonly (or readnone) and nounwind and don't return 921 // a value can't capture arguments. Don't analyze them. 922 if (F->onlyReadsMemory() && F->doesNotThrow() && 923 F->getReturnType()->isVoidTy()) { 924 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 925 ++A) { 926 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 927 A->addAttr(Attribute::NoCapture); 928 ++NumNoCapture; 929 Changed.insert(F); 930 } 931 } 932 continue; 933 } 934 935 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 936 ++A) { 937 if (!A->getType()->isPointerTy()) 938 continue; 939 bool HasNonLocalUses = false; 940 if (!A->hasNoCaptureAttr()) { 941 ArgumentUsesTracker Tracker(SCCNodes); 942 PointerMayBeCaptured(&*A, &Tracker); 943 if (!Tracker.Captured) { 944 if (Tracker.Uses.empty()) { 945 // If it's trivially not captured, mark it nocapture now. 946 A->addAttr(Attribute::NoCapture); 947 ++NumNoCapture; 948 Changed.insert(F); 949 } else { 950 // If it's not trivially captured and not trivially not captured, 951 // then it must be calling into another function in our SCC. Save 952 // its particulars for Argument-SCC analysis later. 953 ArgumentGraphNode *Node = AG[&*A]; 954 for (Argument *Use : Tracker.Uses) { 955 Node->Uses.push_back(AG[Use]); 956 if (Use != &*A) 957 HasNonLocalUses = true; 958 } 959 } 960 } 961 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 962 } 963 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 964 // Can we determine that it's readonly/readnone/writeonly without doing 965 // an SCC? Note that we don't allow any calls at all here, or else our 966 // result will be dependent on the iteration order through the 967 // functions in the SCC. 968 SmallPtrSet<Argument *, 8> Self; 969 Self.insert(&*A); 970 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 971 if (R != Attribute::None) 972 if (addAccessAttr(A, R)) 973 Changed.insert(F); 974 } 975 } 976 } 977 978 // The graph we've collected is partial because we stopped scanning for 979 // argument uses once we solved the argument trivially. These partial nodes 980 // show up as ArgumentGraphNode objects with an empty Uses list, and for 981 // these nodes the final decision about whether they capture has already been 982 // made. If the definition doesn't have a 'nocapture' attribute by now, it 983 // captures. 984 985 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 986 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 987 if (ArgumentSCC.size() == 1) { 988 if (!ArgumentSCC[0]->Definition) 989 continue; // synthetic root node 990 991 // eg. "void f(int* x) { if (...) f(x); }" 992 if (ArgumentSCC[0]->Uses.size() == 1 && 993 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 994 Argument *A = ArgumentSCC[0]->Definition; 995 A->addAttr(Attribute::NoCapture); 996 ++NumNoCapture; 997 Changed.insert(A->getParent()); 998 } 999 continue; 1000 } 1001 1002 bool SCCCaptured = false; 1003 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1004 I != E && !SCCCaptured; ++I) { 1005 ArgumentGraphNode *Node = *I; 1006 if (Node->Uses.empty()) { 1007 if (!Node->Definition->hasNoCaptureAttr()) 1008 SCCCaptured = true; 1009 } 1010 } 1011 if (SCCCaptured) 1012 continue; 1013 1014 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1015 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1016 // quickly looking up whether a given Argument is in this ArgumentSCC. 1017 for (ArgumentGraphNode *I : ArgumentSCC) { 1018 ArgumentSCCNodes.insert(I->Definition); 1019 } 1020 1021 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1022 I != E && !SCCCaptured; ++I) { 1023 ArgumentGraphNode *N = *I; 1024 for (ArgumentGraphNode *Use : N->Uses) { 1025 Argument *A = Use->Definition; 1026 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1027 continue; 1028 SCCCaptured = true; 1029 break; 1030 } 1031 } 1032 if (SCCCaptured) 1033 continue; 1034 1035 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1036 Argument *A = ArgumentSCC[i]->Definition; 1037 A->addAttr(Attribute::NoCapture); 1038 ++NumNoCapture; 1039 Changed.insert(A->getParent()); 1040 } 1041 1042 // We also want to compute readonly/readnone/writeonly. With a small number 1043 // of false negatives, we can assume that any pointer which is captured 1044 // isn't going to be provably readonly or readnone, since by definition 1045 // we can't analyze all uses of a captured pointer. 1046 // 1047 // The false negatives happen when the pointer is captured by a function 1048 // that promises readonly/readnone behaviour on the pointer, then the 1049 // pointer's lifetime ends before anything that writes to arbitrary memory. 1050 // Also, a readonly/readnone pointer may be returned, but returning a 1051 // pointer is capturing it. 1052 1053 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1054 if (A == B) 1055 return A; 1056 if (A == Attribute::ReadNone) 1057 return B; 1058 if (B == Attribute::ReadNone) 1059 return A; 1060 return Attribute::None; 1061 }; 1062 1063 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1064 for (unsigned i = 0, e = ArgumentSCC.size(); 1065 i != e && AccessAttr != Attribute::None; ++i) { 1066 Argument *A = ArgumentSCC[i]->Definition; 1067 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1068 AccessAttr = meetAccessAttr(AccessAttr, K); 1069 } 1070 1071 if (AccessAttr != Attribute::None) { 1072 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1073 Argument *A = ArgumentSCC[i]->Definition; 1074 if (addAccessAttr(A, AccessAttr)) 1075 Changed.insert(A->getParent()); 1076 } 1077 } 1078 } 1079 } 1080 1081 /// Tests whether a function is "malloc-like". 1082 /// 1083 /// A function is "malloc-like" if it returns either null or a pointer that 1084 /// doesn't alias any other pointer visible to the caller. 1085 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1086 SmallSetVector<Value *, 8> FlowsToReturn; 1087 for (BasicBlock &BB : *F) 1088 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1089 FlowsToReturn.insert(Ret->getReturnValue()); 1090 1091 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1092 Value *RetVal = FlowsToReturn[i]; 1093 1094 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1095 if (!C->isNullValue() && !isa<UndefValue>(C)) 1096 return false; 1097 1098 continue; 1099 } 1100 1101 if (isa<Argument>(RetVal)) 1102 return false; 1103 1104 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1105 switch (RVI->getOpcode()) { 1106 // Extend the analysis by looking upwards. 1107 case Instruction::BitCast: 1108 case Instruction::GetElementPtr: 1109 case Instruction::AddrSpaceCast: 1110 FlowsToReturn.insert(RVI->getOperand(0)); 1111 continue; 1112 case Instruction::Select: { 1113 SelectInst *SI = cast<SelectInst>(RVI); 1114 FlowsToReturn.insert(SI->getTrueValue()); 1115 FlowsToReturn.insert(SI->getFalseValue()); 1116 continue; 1117 } 1118 case Instruction::PHI: { 1119 PHINode *PN = cast<PHINode>(RVI); 1120 for (Value *IncValue : PN->incoming_values()) 1121 FlowsToReturn.insert(IncValue); 1122 continue; 1123 } 1124 1125 // Check whether the pointer came from an allocation. 1126 case Instruction::Alloca: 1127 break; 1128 case Instruction::Call: 1129 case Instruction::Invoke: { 1130 CallBase &CB = cast<CallBase>(*RVI); 1131 if (CB.hasRetAttr(Attribute::NoAlias)) 1132 break; 1133 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1134 break; 1135 LLVM_FALLTHROUGH; 1136 } 1137 default: 1138 return false; // Did not come from an allocation. 1139 } 1140 1141 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1142 return false; 1143 } 1144 1145 return true; 1146 } 1147 1148 /// Deduce noalias attributes for the SCC. 1149 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1150 SmallSet<Function *, 8> &Changed) { 1151 // Check each function in turn, determining which functions return noalias 1152 // pointers. 1153 for (Function *F : SCCNodes) { 1154 // Already noalias. 1155 if (F->returnDoesNotAlias()) 1156 continue; 1157 1158 // We can infer and propagate function attributes only when we know that the 1159 // definition we'll get at link time is *exactly* the definition we see now. 1160 // For more details, see GlobalValue::mayBeDerefined. 1161 if (!F->hasExactDefinition()) 1162 return; 1163 1164 // We annotate noalias return values, which are only applicable to 1165 // pointer types. 1166 if (!F->getReturnType()->isPointerTy()) 1167 continue; 1168 1169 if (!isFunctionMallocLike(F, SCCNodes)) 1170 return; 1171 } 1172 1173 for (Function *F : SCCNodes) { 1174 if (F->returnDoesNotAlias() || 1175 !F->getReturnType()->isPointerTy()) 1176 continue; 1177 1178 F->setReturnDoesNotAlias(); 1179 ++NumNoAlias; 1180 Changed.insert(F); 1181 } 1182 } 1183 1184 /// Tests whether this function is known to not return null. 1185 /// 1186 /// Requires that the function returns a pointer. 1187 /// 1188 /// Returns true if it believes the function will not return a null, and sets 1189 /// \p Speculative based on whether the returned conclusion is a speculative 1190 /// conclusion due to SCC calls. 1191 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1192 bool &Speculative) { 1193 assert(F->getReturnType()->isPointerTy() && 1194 "nonnull only meaningful on pointer types"); 1195 Speculative = false; 1196 1197 SmallSetVector<Value *, 8> FlowsToReturn; 1198 for (BasicBlock &BB : *F) 1199 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1200 FlowsToReturn.insert(Ret->getReturnValue()); 1201 1202 auto &DL = F->getParent()->getDataLayout(); 1203 1204 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1205 Value *RetVal = FlowsToReturn[i]; 1206 1207 // If this value is locally known to be non-null, we're good 1208 if (isKnownNonZero(RetVal, DL)) 1209 continue; 1210 1211 // Otherwise, we need to look upwards since we can't make any local 1212 // conclusions. 1213 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1214 if (!RVI) 1215 return false; 1216 switch (RVI->getOpcode()) { 1217 // Extend the analysis by looking upwards. 1218 case Instruction::BitCast: 1219 case Instruction::GetElementPtr: 1220 case Instruction::AddrSpaceCast: 1221 FlowsToReturn.insert(RVI->getOperand(0)); 1222 continue; 1223 case Instruction::Select: { 1224 SelectInst *SI = cast<SelectInst>(RVI); 1225 FlowsToReturn.insert(SI->getTrueValue()); 1226 FlowsToReturn.insert(SI->getFalseValue()); 1227 continue; 1228 } 1229 case Instruction::PHI: { 1230 PHINode *PN = cast<PHINode>(RVI); 1231 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1232 FlowsToReturn.insert(PN->getIncomingValue(i)); 1233 continue; 1234 } 1235 case Instruction::Call: 1236 case Instruction::Invoke: { 1237 CallBase &CB = cast<CallBase>(*RVI); 1238 Function *Callee = CB.getCalledFunction(); 1239 // A call to a node within the SCC is assumed to return null until 1240 // proven otherwise 1241 if (Callee && SCCNodes.count(Callee)) { 1242 Speculative = true; 1243 continue; 1244 } 1245 return false; 1246 } 1247 default: 1248 return false; // Unknown source, may be null 1249 }; 1250 llvm_unreachable("should have either continued or returned"); 1251 } 1252 1253 return true; 1254 } 1255 1256 /// Deduce nonnull attributes for the SCC. 1257 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1258 SmallSet<Function *, 8> &Changed) { 1259 // Speculative that all functions in the SCC return only nonnull 1260 // pointers. We may refute this as we analyze functions. 1261 bool SCCReturnsNonNull = true; 1262 1263 // Check each function in turn, determining which functions return nonnull 1264 // pointers. 1265 for (Function *F : SCCNodes) { 1266 // Already nonnull. 1267 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1268 continue; 1269 1270 // We can infer and propagate function attributes only when we know that the 1271 // definition we'll get at link time is *exactly* the definition we see now. 1272 // For more details, see GlobalValue::mayBeDerefined. 1273 if (!F->hasExactDefinition()) 1274 return; 1275 1276 // We annotate nonnull return values, which are only applicable to 1277 // pointer types. 1278 if (!F->getReturnType()->isPointerTy()) 1279 continue; 1280 1281 bool Speculative = false; 1282 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1283 if (!Speculative) { 1284 // Mark the function eagerly since we may discover a function 1285 // which prevents us from speculating about the entire SCC 1286 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1287 << " as nonnull\n"); 1288 F->addRetAttr(Attribute::NonNull); 1289 ++NumNonNullReturn; 1290 Changed.insert(F); 1291 } 1292 continue; 1293 } 1294 // At least one function returns something which could be null, can't 1295 // speculate any more. 1296 SCCReturnsNonNull = false; 1297 } 1298 1299 if (SCCReturnsNonNull) { 1300 for (Function *F : SCCNodes) { 1301 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1302 !F->getReturnType()->isPointerTy()) 1303 continue; 1304 1305 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1306 F->addRetAttr(Attribute::NonNull); 1307 ++NumNonNullReturn; 1308 Changed.insert(F); 1309 } 1310 } 1311 } 1312 1313 namespace { 1314 1315 /// Collects a set of attribute inference requests and performs them all in one 1316 /// go on a single SCC Node. Inference involves scanning function bodies 1317 /// looking for instructions that violate attribute assumptions. 1318 /// As soon as all the bodies are fine we are free to set the attribute. 1319 /// Customization of inference for individual attributes is performed by 1320 /// providing a handful of predicates for each attribute. 1321 class AttributeInferer { 1322 public: 1323 /// Describes a request for inference of a single attribute. 1324 struct InferenceDescriptor { 1325 1326 /// Returns true if this function does not have to be handled. 1327 /// General intent for this predicate is to provide an optimization 1328 /// for functions that do not need this attribute inference at all 1329 /// (say, for functions that already have the attribute). 1330 std::function<bool(const Function &)> SkipFunction; 1331 1332 /// Returns true if this instruction violates attribute assumptions. 1333 std::function<bool(Instruction &)> InstrBreaksAttribute; 1334 1335 /// Sets the inferred attribute for this function. 1336 std::function<void(Function &)> SetAttribute; 1337 1338 /// Attribute we derive. 1339 Attribute::AttrKind AKind; 1340 1341 /// If true, only "exact" definitions can be used to infer this attribute. 1342 /// See GlobalValue::isDefinitionExact. 1343 bool RequiresExactDefinition; 1344 1345 InferenceDescriptor(Attribute::AttrKind AK, 1346 std::function<bool(const Function &)> SkipFunc, 1347 std::function<bool(Instruction &)> InstrScan, 1348 std::function<void(Function &)> SetAttr, 1349 bool ReqExactDef) 1350 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1351 SetAttribute(SetAttr), AKind(AK), 1352 RequiresExactDefinition(ReqExactDef) {} 1353 }; 1354 1355 private: 1356 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1357 1358 public: 1359 void registerAttrInference(InferenceDescriptor AttrInference) { 1360 InferenceDescriptors.push_back(AttrInference); 1361 } 1362 1363 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1364 }; 1365 1366 /// Perform all the requested attribute inference actions according to the 1367 /// attribute predicates stored before. 1368 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1369 SmallSet<Function *, 8> &Changed) { 1370 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1371 // Go through all the functions in SCC and check corresponding attribute 1372 // assumptions for each of them. Attributes that are invalid for this SCC 1373 // will be removed from InferInSCC. 1374 for (Function *F : SCCNodes) { 1375 1376 // No attributes whose assumptions are still valid - done. 1377 if (InferInSCC.empty()) 1378 return; 1379 1380 // Check if our attributes ever need scanning/can be scanned. 1381 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1382 if (ID.SkipFunction(*F)) 1383 return false; 1384 1385 // Remove from further inference (invalidate) when visiting a function 1386 // that has no instructions to scan/has an unsuitable definition. 1387 return F->isDeclaration() || 1388 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1389 }); 1390 1391 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1392 // set up the F instructions scan to verify assumptions of the attribute. 1393 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1394 llvm::copy_if( 1395 InferInSCC, std::back_inserter(InferInThisFunc), 1396 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1397 1398 if (InferInThisFunc.empty()) 1399 continue; 1400 1401 // Start instruction scan. 1402 for (Instruction &I : instructions(*F)) { 1403 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1404 if (!ID.InstrBreaksAttribute(I)) 1405 return false; 1406 // Remove attribute from further inference on any other functions 1407 // because attribute assumptions have just been violated. 1408 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1409 return D.AKind == ID.AKind; 1410 }); 1411 // Remove attribute from the rest of current instruction scan. 1412 return true; 1413 }); 1414 1415 if (InferInThisFunc.empty()) 1416 break; 1417 } 1418 } 1419 1420 if (InferInSCC.empty()) 1421 return; 1422 1423 for (Function *F : SCCNodes) 1424 // At this point InferInSCC contains only functions that were either: 1425 // - explicitly skipped from scan/inference, or 1426 // - verified to have no instructions that break attribute assumptions. 1427 // Hence we just go and force the attribute for all non-skipped functions. 1428 for (auto &ID : InferInSCC) { 1429 if (ID.SkipFunction(*F)) 1430 continue; 1431 Changed.insert(F); 1432 ID.SetAttribute(*F); 1433 } 1434 } 1435 1436 struct SCCNodesResult { 1437 SCCNodeSet SCCNodes; 1438 bool HasUnknownCall; 1439 }; 1440 1441 } // end anonymous namespace 1442 1443 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1444 static bool InstrBreaksNonConvergent(Instruction &I, 1445 const SCCNodeSet &SCCNodes) { 1446 const CallBase *CB = dyn_cast<CallBase>(&I); 1447 // Breaks non-convergent assumption if CS is a convergent call to a function 1448 // not in the SCC. 1449 return CB && CB->isConvergent() && 1450 !SCCNodes.contains(CB->getCalledFunction()); 1451 } 1452 1453 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1454 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1455 if (!I.mayThrow()) 1456 return false; 1457 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1458 if (Function *Callee = CI->getCalledFunction()) { 1459 // I is a may-throw call to a function inside our SCC. This doesn't 1460 // invalidate our current working assumption that the SCC is no-throw; we 1461 // just have to scan that other function. 1462 if (SCCNodes.contains(Callee)) 1463 return false; 1464 } 1465 } 1466 return true; 1467 } 1468 1469 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1470 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1471 CallBase *CB = dyn_cast<CallBase>(&I); 1472 if (!CB) 1473 return false; 1474 1475 if (CB->hasFnAttr(Attribute::NoFree)) 1476 return false; 1477 1478 // Speculatively assume in SCC. 1479 if (Function *Callee = CB->getCalledFunction()) 1480 if (SCCNodes.contains(Callee)) 1481 return false; 1482 1483 return true; 1484 } 1485 1486 /// Attempt to remove convergent function attribute when possible. 1487 /// 1488 /// Returns true if any changes to function attributes were made. 1489 static void inferConvergent(const SCCNodeSet &SCCNodes, 1490 SmallSet<Function *, 8> &Changed) { 1491 AttributeInferer AI; 1492 1493 // Request to remove the convergent attribute from all functions in the SCC 1494 // if every callsite within the SCC is not convergent (except for calls 1495 // to functions within the SCC). 1496 // Note: Removal of the attr from the callsites will happen in 1497 // InstCombineCalls separately. 1498 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1499 Attribute::Convergent, 1500 // Skip non-convergent functions. 1501 [](const Function &F) { return !F.isConvergent(); }, 1502 // Instructions that break non-convergent assumption. 1503 [SCCNodes](Instruction &I) { 1504 return InstrBreaksNonConvergent(I, SCCNodes); 1505 }, 1506 [](Function &F) { 1507 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1508 << "\n"); 1509 F.setNotConvergent(); 1510 }, 1511 /* RequiresExactDefinition= */ false}); 1512 // Perform all the requested attribute inference actions. 1513 AI.run(SCCNodes, Changed); 1514 } 1515 1516 /// Infer attributes from all functions in the SCC by scanning every 1517 /// instruction for compliance to the attribute assumptions. Currently it 1518 /// does: 1519 /// - addition of NoUnwind attribute 1520 /// 1521 /// Returns true if any changes to function attributes were made. 1522 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1523 SmallSet<Function *, 8> &Changed) { 1524 AttributeInferer AI; 1525 1526 if (!DisableNoUnwindInference) 1527 // Request to infer nounwind attribute for all the functions in the SCC if 1528 // every callsite within the SCC is not throwing (except for calls to 1529 // functions within the SCC). Note that nounwind attribute suffers from 1530 // derefinement - results may change depending on how functions are 1531 // optimized. Thus it can be inferred only from exact definitions. 1532 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1533 Attribute::NoUnwind, 1534 // Skip non-throwing functions. 1535 [](const Function &F) { return F.doesNotThrow(); }, 1536 // Instructions that break non-throwing assumption. 1537 [&SCCNodes](Instruction &I) { 1538 return InstrBreaksNonThrowing(I, SCCNodes); 1539 }, 1540 [](Function &F) { 1541 LLVM_DEBUG(dbgs() 1542 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1543 F.setDoesNotThrow(); 1544 ++NumNoUnwind; 1545 }, 1546 /* RequiresExactDefinition= */ true}); 1547 1548 if (!DisableNoFreeInference) 1549 // Request to infer nofree attribute for all the functions in the SCC if 1550 // every callsite within the SCC does not directly or indirectly free 1551 // memory (except for calls to functions within the SCC). Note that nofree 1552 // attribute suffers from derefinement - results may change depending on 1553 // how functions are optimized. Thus it can be inferred only from exact 1554 // definitions. 1555 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1556 Attribute::NoFree, 1557 // Skip functions known not to free memory. 1558 [](const Function &F) { return F.doesNotFreeMemory(); }, 1559 // Instructions that break non-deallocating assumption. 1560 [&SCCNodes](Instruction &I) { 1561 return InstrBreaksNoFree(I, SCCNodes); 1562 }, 1563 [](Function &F) { 1564 LLVM_DEBUG(dbgs() 1565 << "Adding nofree attr to fn " << F.getName() << "\n"); 1566 F.setDoesNotFreeMemory(); 1567 ++NumNoFree; 1568 }, 1569 /* RequiresExactDefinition= */ true}); 1570 1571 // Perform all the requested attribute inference actions. 1572 AI.run(SCCNodes, Changed); 1573 } 1574 1575 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1576 SmallSet<Function *, 8> &Changed) { 1577 // Try and identify functions that do not recurse. 1578 1579 // If the SCC contains multiple nodes we know for sure there is recursion. 1580 if (SCCNodes.size() != 1) 1581 return; 1582 1583 Function *F = *SCCNodes.begin(); 1584 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1585 return; 1586 1587 // If all of the calls in F are identifiable and are to norecurse functions, F 1588 // is norecurse. This check also detects self-recursion as F is not currently 1589 // marked norecurse, so any called from F to F will not be marked norecurse. 1590 for (auto &BB : *F) 1591 for (auto &I : BB.instructionsWithoutDebug()) 1592 if (auto *CB = dyn_cast<CallBase>(&I)) { 1593 Function *Callee = CB->getCalledFunction(); 1594 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1595 // Function calls a potentially recursive function. 1596 return; 1597 } 1598 1599 // Every call was to a non-recursive function other than this function, and 1600 // we have no indirect recursion as the SCC size is one. This function cannot 1601 // recurse. 1602 F->setDoesNotRecurse(); 1603 ++NumNoRecurse; 1604 Changed.insert(F); 1605 } 1606 1607 static bool instructionDoesNotReturn(Instruction &I) { 1608 if (auto *CB = dyn_cast<CallBase>(&I)) 1609 return CB->hasFnAttr(Attribute::NoReturn); 1610 return false; 1611 } 1612 1613 // A basic block can only return if it terminates with a ReturnInst and does not 1614 // contain calls to noreturn functions. 1615 static bool basicBlockCanReturn(BasicBlock &BB) { 1616 if (!isa<ReturnInst>(BB.getTerminator())) 1617 return false; 1618 return none_of(BB, instructionDoesNotReturn); 1619 } 1620 1621 // Set the noreturn function attribute if possible. 1622 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1623 SmallSet<Function *, 8> &Changed) { 1624 for (Function *F : SCCNodes) { 1625 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1626 F->doesNotReturn()) 1627 continue; 1628 1629 // The function can return if any basic blocks can return. 1630 // FIXME: this doesn't handle recursion or unreachable blocks. 1631 if (none_of(*F, basicBlockCanReturn)) { 1632 F->setDoesNotReturn(); 1633 Changed.insert(F); 1634 } 1635 } 1636 } 1637 1638 static bool functionWillReturn(const Function &F) { 1639 // We can infer and propagate function attributes only when we know that the 1640 // definition we'll get at link time is *exactly* the definition we see now. 1641 // For more details, see GlobalValue::mayBeDerefined. 1642 if (!F.hasExactDefinition()) 1643 return false; 1644 1645 // Must-progress function without side-effects must return. 1646 if (F.mustProgress() && F.onlyReadsMemory()) 1647 return true; 1648 1649 // Can only analyze functions with a definition. 1650 if (F.isDeclaration()) 1651 return false; 1652 1653 // Functions with loops require more sophisticated analysis, as the loop 1654 // may be infinite. For now, don't try to handle them. 1655 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1656 FindFunctionBackedges(F, Backedges); 1657 if (!Backedges.empty()) 1658 return false; 1659 1660 // If there are no loops, then the function is willreturn if all calls in 1661 // it are willreturn. 1662 return all_of(instructions(F), [](const Instruction &I) { 1663 return I.willReturn(); 1664 }); 1665 } 1666 1667 // Set the willreturn function attribute if possible. 1668 static void addWillReturn(const SCCNodeSet &SCCNodes, 1669 SmallSet<Function *, 8> &Changed) { 1670 for (Function *F : SCCNodes) { 1671 if (!F || F->willReturn() || !functionWillReturn(*F)) 1672 continue; 1673 1674 F->setWillReturn(); 1675 NumWillReturn++; 1676 Changed.insert(F); 1677 } 1678 } 1679 1680 // Return true if this is an atomic which has an ordering stronger than 1681 // unordered. Note that this is different than the predicate we use in 1682 // Attributor. Here we chose to be conservative and consider monotonic 1683 // operations potentially synchronizing. We generally don't do much with 1684 // monotonic operations, so this is simply risk reduction. 1685 static bool isOrderedAtomic(Instruction *I) { 1686 if (!I->isAtomic()) 1687 return false; 1688 1689 if (auto *FI = dyn_cast<FenceInst>(I)) 1690 // All legal orderings for fence are stronger than monotonic. 1691 return FI->getSyncScopeID() != SyncScope::SingleThread; 1692 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1693 return true; 1694 else if (auto *SI = dyn_cast<StoreInst>(I)) 1695 return !SI->isUnordered(); 1696 else if (auto *LI = dyn_cast<LoadInst>(I)) 1697 return !LI->isUnordered(); 1698 else { 1699 llvm_unreachable("unknown atomic instruction?"); 1700 } 1701 } 1702 1703 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1704 // Volatile may synchronize 1705 if (I.isVolatile()) 1706 return true; 1707 1708 // An ordered atomic may synchronize. (See comment about on monotonic.) 1709 if (isOrderedAtomic(&I)) 1710 return true; 1711 1712 auto *CB = dyn_cast<CallBase>(&I); 1713 if (!CB) 1714 // Non call site cases covered by the two checks above 1715 return false; 1716 1717 if (CB->hasFnAttr(Attribute::NoSync)) 1718 return false; 1719 1720 // Non volatile memset/memcpy/memmoves are nosync 1721 // NOTE: Only intrinsics with volatile flags should be handled here. All 1722 // others should be marked in Intrinsics.td. 1723 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1724 if (!MI->isVolatile()) 1725 return false; 1726 1727 // Speculatively assume in SCC. 1728 if (Function *Callee = CB->getCalledFunction()) 1729 if (SCCNodes.contains(Callee)) 1730 return false; 1731 1732 return true; 1733 } 1734 1735 // Infer the nosync attribute. 1736 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1737 SmallSet<Function *, 8> &Changed) { 1738 AttributeInferer AI; 1739 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1740 Attribute::NoSync, 1741 // Skip already marked functions. 1742 [](const Function &F) { return F.hasNoSync(); }, 1743 // Instructions that break nosync assumption. 1744 [&SCCNodes](Instruction &I) { 1745 return InstrBreaksNoSync(I, SCCNodes); 1746 }, 1747 [](Function &F) { 1748 LLVM_DEBUG(dbgs() 1749 << "Adding nosync attr to fn " << F.getName() << "\n"); 1750 F.setNoSync(); 1751 ++NumNoSync; 1752 }, 1753 /* RequiresExactDefinition= */ true}); 1754 AI.run(SCCNodes, Changed); 1755 } 1756 1757 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1758 SCCNodesResult Res; 1759 Res.HasUnknownCall = false; 1760 for (Function *F : Functions) { 1761 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1762 F->isPresplitCoroutine()) { 1763 // Treat any function we're trying not to optimize as if it were an 1764 // indirect call and omit it from the node set used below. 1765 Res.HasUnknownCall = true; 1766 continue; 1767 } 1768 // Track whether any functions in this SCC have an unknown call edge. 1769 // Note: if this is ever a performance hit, we can common it with 1770 // subsequent routines which also do scans over the instructions of the 1771 // function. 1772 if (!Res.HasUnknownCall) { 1773 for (Instruction &I : instructions(*F)) { 1774 if (auto *CB = dyn_cast<CallBase>(&I)) { 1775 if (!CB->getCalledFunction()) { 1776 Res.HasUnknownCall = true; 1777 break; 1778 } 1779 } 1780 } 1781 } 1782 Res.SCCNodes.insert(F); 1783 } 1784 return Res; 1785 } 1786 1787 template <typename AARGetterT> 1788 static SmallSet<Function *, 8> 1789 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1790 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1791 1792 // Bail if the SCC only contains optnone functions. 1793 if (Nodes.SCCNodes.empty()) 1794 return {}; 1795 1796 SmallSet<Function *, 8> Changed; 1797 1798 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1799 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1800 addArgumentAttrs(Nodes.SCCNodes, Changed); 1801 inferConvergent(Nodes.SCCNodes, Changed); 1802 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1803 addWillReturn(Nodes.SCCNodes, Changed); 1804 1805 // If we have no external nodes participating in the SCC, we can deduce some 1806 // more precise attributes as well. 1807 if (!Nodes.HasUnknownCall) { 1808 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1809 addNonNullAttrs(Nodes.SCCNodes, Changed); 1810 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1811 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1812 } 1813 1814 addNoSyncAttr(Nodes.SCCNodes, Changed); 1815 1816 // Finally, infer the maximal set of attributes from the ones we've inferred 1817 // above. This is handling the cases where one attribute on a signature 1818 // implies another, but for implementation reasons the inference rule for 1819 // the later is missing (or simply less sophisticated). 1820 for (Function *F : Nodes.SCCNodes) 1821 if (F) 1822 if (inferAttributesFromOthers(*F)) 1823 Changed.insert(F); 1824 1825 return Changed; 1826 } 1827 1828 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1829 CGSCCAnalysisManager &AM, 1830 LazyCallGraph &CG, 1831 CGSCCUpdateResult &) { 1832 FunctionAnalysisManager &FAM = 1833 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1834 1835 // We pass a lambda into functions to wire them up to the analysis manager 1836 // for getting function analyses. 1837 auto AARGetter = [&](Function &F) -> AAResults & { 1838 return FAM.getResult<AAManager>(F); 1839 }; 1840 1841 SmallVector<Function *, 8> Functions; 1842 for (LazyCallGraph::Node &N : C) { 1843 Functions.push_back(&N.getFunction()); 1844 } 1845 1846 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1847 if (ChangedFunctions.empty()) 1848 return PreservedAnalyses::all(); 1849 1850 // Invalidate analyses for modified functions so that we don't have to 1851 // invalidate all analyses for all functions in this SCC. 1852 PreservedAnalyses FuncPA; 1853 // We haven't changed the CFG for modified functions. 1854 FuncPA.preserveSet<CFGAnalyses>(); 1855 for (Function *Changed : ChangedFunctions) { 1856 FAM.invalidate(*Changed, FuncPA); 1857 // Also invalidate any direct callers of changed functions since analyses 1858 // may care about attributes of direct callees. For example, MemorySSA cares 1859 // about whether or not a call's callee modifies memory and queries that 1860 // through function attributes. 1861 for (auto *U : Changed->users()) { 1862 if (auto *Call = dyn_cast<CallBase>(U)) { 1863 if (Call->getCalledFunction() == Changed) 1864 FAM.invalidate(*Call->getFunction(), FuncPA); 1865 } 1866 } 1867 } 1868 1869 PreservedAnalyses PA; 1870 // We have not added or removed functions. 1871 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1872 // We already invalidated all relevant function analyses above. 1873 PA.preserveSet<AllAnalysesOn<Function>>(); 1874 return PA; 1875 } 1876 1877 namespace { 1878 1879 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1880 // Pass identification, replacement for typeid 1881 static char ID; 1882 1883 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1884 initializePostOrderFunctionAttrsLegacyPassPass( 1885 *PassRegistry::getPassRegistry()); 1886 } 1887 1888 bool runOnSCC(CallGraphSCC &SCC) override; 1889 1890 void getAnalysisUsage(AnalysisUsage &AU) const override { 1891 AU.setPreservesCFG(); 1892 AU.addRequired<AssumptionCacheTracker>(); 1893 getAAResultsAnalysisUsage(AU); 1894 CallGraphSCCPass::getAnalysisUsage(AU); 1895 } 1896 }; 1897 1898 } // end anonymous namespace 1899 1900 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1901 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1902 "Deduce function attributes", false, false) 1903 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1904 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1905 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1906 "Deduce function attributes", false, false) 1907 1908 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1909 return new PostOrderFunctionAttrsLegacyPass(); 1910 } 1911 1912 template <typename AARGetterT> 1913 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1914 SmallVector<Function *, 8> Functions; 1915 for (CallGraphNode *I : SCC) { 1916 Functions.push_back(I->getFunction()); 1917 } 1918 1919 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1920 } 1921 1922 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1923 if (skipSCC(SCC)) 1924 return false; 1925 return runImpl(SCC, LegacyAARGetter(*this)); 1926 } 1927 1928 namespace { 1929 1930 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1931 // Pass identification, replacement for typeid 1932 static char ID; 1933 1934 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1935 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1936 *PassRegistry::getPassRegistry()); 1937 } 1938 1939 bool runOnModule(Module &M) override; 1940 1941 void getAnalysisUsage(AnalysisUsage &AU) const override { 1942 AU.setPreservesCFG(); 1943 AU.addRequired<CallGraphWrapperPass>(); 1944 AU.addPreserved<CallGraphWrapperPass>(); 1945 } 1946 }; 1947 1948 } // end anonymous namespace 1949 1950 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1951 1952 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1953 "rpo-function-attrs", "Deduce function attributes in RPO", 1954 false, false) 1955 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1956 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1957 "rpo-function-attrs", "Deduce function attributes in RPO", 1958 false, false) 1959 1960 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1961 return new ReversePostOrderFunctionAttrsLegacyPass(); 1962 } 1963 1964 static bool addNoRecurseAttrsTopDown(Function &F) { 1965 // We check the preconditions for the function prior to calling this to avoid 1966 // the cost of building up a reversible post-order list. We assert them here 1967 // to make sure none of the invariants this relies on were violated. 1968 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1969 assert(!F.doesNotRecurse() && 1970 "This function has already been deduced as norecurs!"); 1971 assert(F.hasInternalLinkage() && 1972 "Can only do top-down deduction for internal linkage functions!"); 1973 1974 // If F is internal and all of its uses are calls from a non-recursive 1975 // functions, then none of its calls could in fact recurse without going 1976 // through a function marked norecurse, and so we can mark this function too 1977 // as norecurse. Note that the uses must actually be calls -- otherwise 1978 // a pointer to this function could be returned from a norecurse function but 1979 // this function could be recursively (indirectly) called. Note that this 1980 // also detects if F is directly recursive as F is not yet marked as 1981 // a norecurse function. 1982 for (auto *U : F.users()) { 1983 auto *I = dyn_cast<Instruction>(U); 1984 if (!I) 1985 return false; 1986 CallBase *CB = dyn_cast<CallBase>(I); 1987 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1988 return false; 1989 } 1990 F.setDoesNotRecurse(); 1991 ++NumNoRecurse; 1992 return true; 1993 } 1994 1995 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1996 // We only have a post-order SCC traversal (because SCCs are inherently 1997 // discovered in post-order), so we accumulate them in a vector and then walk 1998 // it in reverse. This is simpler than using the RPO iterator infrastructure 1999 // because we need to combine SCC detection and the PO walk of the call 2000 // graph. We can also cheat egregiously because we're primarily interested in 2001 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2002 // with multiple functions in them will clearly be recursive. 2003 SmallVector<Function *, 16> Worklist; 2004 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2005 if (I->size() != 1) 2006 continue; 2007 2008 Function *F = I->front()->getFunction(); 2009 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2010 F->hasInternalLinkage()) 2011 Worklist.push_back(F); 2012 } 2013 2014 bool Changed = false; 2015 for (auto *F : llvm::reverse(Worklist)) 2016 Changed |= addNoRecurseAttrsTopDown(*F); 2017 2018 return Changed; 2019 } 2020 2021 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2022 if (skipModule(M)) 2023 return false; 2024 2025 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2026 2027 return deduceFunctionAttributeInRPO(M, CG); 2028 } 2029 2030 PreservedAnalyses 2031 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2032 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2033 2034 if (!deduceFunctionAttributeInRPO(M, CG)) 2035 return PreservedAnalyses::all(); 2036 2037 PreservedAnalyses PA; 2038 PA.preserve<CallGraphAnalysis>(); 2039 return PA; 2040 } 2041