1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/CGSCCPassManager.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/LazyCallGraph.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/IPO.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <iterator>
63 #include <map>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "function-attrs"
69 
70 STATISTIC(NumReadNone, "Number of functions marked readnone");
71 STATISTIC(NumReadOnly, "Number of functions marked readonly");
72 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
73 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
74 STATISTIC(NumReturned, "Number of arguments marked returned");
75 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
76 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
77 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
78 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
79 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
80 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
81 STATISTIC(NumNoFree, "Number of functions marked as nofree");
82 STATISTIC(NumWillReturn, "Number of functions marked as willreturn");
83 STATISTIC(NumNoSync, "Number of functions marked as nosync");
84 
85 static cl::opt<bool> EnableNonnullArgPropagation(
86     "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
87     cl::desc("Try to propagate nonnull argument attributes from callsites to "
88              "caller functions."));
89 
90 static cl::opt<bool> DisableNoUnwindInference(
91     "disable-nounwind-inference", cl::Hidden,
92     cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
93 
94 static cl::opt<bool> DisableNoFreeInference(
95     "disable-nofree-inference", cl::Hidden,
96     cl::desc("Stop inferring nofree attribute during function-attrs pass"));
97 
98 namespace {
99 
100 using SCCNodeSet = SmallSetVector<Function *, 8>;
101 
102 } // end anonymous namespace
103 
104 /// Returns the memory access attribute for function F using AAR for AA results,
105 /// where SCCNodes is the current SCC.
106 ///
107 /// If ThisBody is true, this function may examine the function body and will
108 /// return a result pertaining to this copy of the function. If it is false, the
109 /// result will be based only on AA results for the function declaration; it
110 /// will be assumed that some other (perhaps less optimized) version of the
111 /// function may be selected at link time.
112 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
113                                                   AAResults &AAR,
114                                                   const SCCNodeSet &SCCNodes) {
115   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
116   if (MRB == FMRB_DoesNotAccessMemory)
117     // Already perfect!
118     return MAK_ReadNone;
119 
120   if (!ThisBody) {
121     if (AliasAnalysis::onlyReadsMemory(MRB))
122       return MAK_ReadOnly;
123 
124     if (AliasAnalysis::doesNotReadMemory(MRB))
125       return MAK_WriteOnly;
126 
127     // Conservatively assume it reads and writes to memory.
128     return MAK_MayWrite;
129   }
130 
131   // Scan the function body for instructions that may read or write memory.
132   bool ReadsMemory = false;
133   bool WritesMemory = false;
134   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
135     Instruction *I = &*II;
136 
137     // Some instructions can be ignored even if they read or write memory.
138     // Detect these now, skipping to the next instruction if one is found.
139     if (auto *Call = dyn_cast<CallBase>(I)) {
140       // Ignore calls to functions in the same SCC, as long as the call sites
141       // don't have operand bundles.  Calls with operand bundles are allowed to
142       // have memory effects not described by the memory effects of the call
143       // target.
144       if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
145           SCCNodes.count(Call->getCalledFunction()))
146         continue;
147       FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
148       ModRefInfo MRI = createModRefInfo(MRB);
149 
150       // If the call doesn't access memory, we're done.
151       if (isNoModRef(MRI))
152         continue;
153 
154       // A pseudo probe call shouldn't change any function attribute since it
155       // doesn't translate to a real instruction. It comes with a memory access
156       // tag to prevent itself being removed by optimizations and not block
157       // other instructions being optimized.
158       if (isa<PseudoProbeInst>(I))
159         continue;
160 
161       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
162         // The call could access any memory. If that includes writes, note it.
163         if (isModSet(MRI))
164           WritesMemory = true;
165         // If it reads, note it.
166         if (isRefSet(MRI))
167           ReadsMemory = true;
168         continue;
169       }
170 
171       // Check whether all pointer arguments point to local memory, and
172       // ignore calls that only access local memory.
173       for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) {
174         Value *Arg = *CI;
175         if (!Arg->getType()->isPtrOrPtrVectorTy())
176           continue;
177 
178         AAMDNodes AAInfo;
179         I->getAAMetadata(AAInfo);
180         MemoryLocation Loc = MemoryLocation::getBeforeOrAfter(Arg, AAInfo);
181 
182         // Skip accesses to local or constant memory as they don't impact the
183         // externally visible mod/ref behavior.
184         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
185           continue;
186 
187         if (isModSet(MRI))
188           // Writes non-local memory.
189           WritesMemory = true;
190         if (isRefSet(MRI))
191           // Ok, it reads non-local memory.
192           ReadsMemory = true;
193       }
194       continue;
195     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
196       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
197       if (!LI->isVolatile()) {
198         MemoryLocation Loc = MemoryLocation::get(LI);
199         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
200           continue;
201       }
202     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
203       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
204       if (!SI->isVolatile()) {
205         MemoryLocation Loc = MemoryLocation::get(SI);
206         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
207           continue;
208       }
209     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
210       // Ignore vaargs on local memory.
211       MemoryLocation Loc = MemoryLocation::get(VI);
212       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
213         continue;
214     }
215 
216     // Any remaining instructions need to be taken seriously!  Check if they
217     // read or write memory.
218     //
219     // Writes memory, remember that.
220     WritesMemory |= I->mayWriteToMemory();
221 
222     // If this instruction may read memory, remember that.
223     ReadsMemory |= I->mayReadFromMemory();
224   }
225 
226   if (WritesMemory) {
227     if (!ReadsMemory)
228       return MAK_WriteOnly;
229     else
230       return MAK_MayWrite;
231   }
232 
233   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
234 }
235 
236 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
237                                                        AAResults &AAR) {
238   return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
239 }
240 
241 /// Deduce readonly/readnone attributes for the SCC.
242 template <typename AARGetterT>
243 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
244   // Check if any of the functions in the SCC read or write memory.  If they
245   // write memory then they can't be marked readnone or readonly.
246   bool ReadsMemory = false;
247   bool WritesMemory = false;
248   for (Function *F : SCCNodes) {
249     // Call the callable parameter to look up AA results for this function.
250     AAResults &AAR = AARGetter(*F);
251 
252     // Non-exact function definitions may not be selected at link time, and an
253     // alternative version that writes to memory may be selected.  See the
254     // comment on GlobalValue::isDefinitionExact for more details.
255     switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
256                                       AAR, SCCNodes)) {
257     case MAK_MayWrite:
258       return false;
259     case MAK_ReadOnly:
260       ReadsMemory = true;
261       break;
262     case MAK_WriteOnly:
263       WritesMemory = true;
264       break;
265     case MAK_ReadNone:
266       // Nothing to do!
267       break;
268     }
269   }
270 
271   // If the SCC contains both functions that read and functions that write, then
272   // we cannot add readonly attributes.
273   if (ReadsMemory && WritesMemory)
274     return false;
275 
276   // Success!  Functions in this SCC do not access memory, or only read memory.
277   // Give them the appropriate attribute.
278   bool MadeChange = false;
279 
280   for (Function *F : SCCNodes) {
281     if (F->doesNotAccessMemory())
282       // Already perfect!
283       continue;
284 
285     if (F->onlyReadsMemory() && ReadsMemory)
286       // No change.
287       continue;
288 
289     if (F->doesNotReadMemory() && WritesMemory)
290       continue;
291 
292     MadeChange = true;
293 
294     // Clear out any existing attributes.
295     AttrBuilder AttrsToRemove;
296     AttrsToRemove.addAttribute(Attribute::ReadOnly);
297     AttrsToRemove.addAttribute(Attribute::ReadNone);
298     AttrsToRemove.addAttribute(Attribute::WriteOnly);
299 
300     if (!WritesMemory && !ReadsMemory) {
301       // Clear out any "access range attributes" if readnone was deduced.
302       AttrsToRemove.addAttribute(Attribute::ArgMemOnly);
303       AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly);
304       AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
305     }
306     F->removeFnAttrs(AttrsToRemove);
307 
308     // Add in the new attribute.
309     if (WritesMemory && !ReadsMemory)
310       F->addFnAttr(Attribute::WriteOnly);
311     else
312       F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
313 
314     if (WritesMemory && !ReadsMemory)
315       ++NumWriteOnly;
316     else if (ReadsMemory)
317       ++NumReadOnly;
318     else
319       ++NumReadNone;
320   }
321 
322   return MadeChange;
323 }
324 
325 namespace {
326 
327 /// For a given pointer Argument, this retains a list of Arguments of functions
328 /// in the same SCC that the pointer data flows into. We use this to build an
329 /// SCC of the arguments.
330 struct ArgumentGraphNode {
331   Argument *Definition;
332   SmallVector<ArgumentGraphNode *, 4> Uses;
333 };
334 
335 class ArgumentGraph {
336   // We store pointers to ArgumentGraphNode objects, so it's important that
337   // that they not move around upon insert.
338   using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
339 
340   ArgumentMapTy ArgumentMap;
341 
342   // There is no root node for the argument graph, in fact:
343   //   void f(int *x, int *y) { if (...) f(x, y); }
344   // is an example where the graph is disconnected. The SCCIterator requires a
345   // single entry point, so we maintain a fake ("synthetic") root node that
346   // uses every node. Because the graph is directed and nothing points into
347   // the root, it will not participate in any SCCs (except for its own).
348   ArgumentGraphNode SyntheticRoot;
349 
350 public:
351   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
352 
353   using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
354 
355   iterator begin() { return SyntheticRoot.Uses.begin(); }
356   iterator end() { return SyntheticRoot.Uses.end(); }
357   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
358 
359   ArgumentGraphNode *operator[](Argument *A) {
360     ArgumentGraphNode &Node = ArgumentMap[A];
361     Node.Definition = A;
362     SyntheticRoot.Uses.push_back(&Node);
363     return &Node;
364   }
365 };
366 
367 /// This tracker checks whether callees are in the SCC, and if so it does not
368 /// consider that a capture, instead adding it to the "Uses" list and
369 /// continuing with the analysis.
370 struct ArgumentUsesTracker : public CaptureTracker {
371   ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
372 
373   void tooManyUses() override { Captured = true; }
374 
375   bool captured(const Use *U) override {
376     CallBase *CB = dyn_cast<CallBase>(U->getUser());
377     if (!CB) {
378       Captured = true;
379       return true;
380     }
381 
382     Function *F = CB->getCalledFunction();
383     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
384       Captured = true;
385       return true;
386     }
387 
388     // Note: the callee and the two successor blocks *follow* the argument
389     // operands.  This means there is no need to adjust UseIndex to account for
390     // these.
391 
392     unsigned UseIndex =
393         std::distance(const_cast<const Use *>(CB->arg_begin()), U);
394 
395     assert(UseIndex < CB->data_operands_size() &&
396            "Indirect function calls should have been filtered above!");
397 
398     if (UseIndex >= CB->getNumArgOperands()) {
399       // Data operand, but not a argument operand -- must be a bundle operand
400       assert(CB->hasOperandBundles() && "Must be!");
401 
402       // CaptureTracking told us that we're being captured by an operand bundle
403       // use.  In this case it does not matter if the callee is within our SCC
404       // or not -- we've been captured in some unknown way, and we have to be
405       // conservative.
406       Captured = true;
407       return true;
408     }
409 
410     if (UseIndex >= F->arg_size()) {
411       assert(F->isVarArg() && "More params than args in non-varargs call");
412       Captured = true;
413       return true;
414     }
415 
416     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
417     return false;
418   }
419 
420   // True only if certainly captured (used outside our SCC).
421   bool Captured = false;
422 
423   // Uses within our SCC.
424   SmallVector<Argument *, 4> Uses;
425 
426   const SCCNodeSet &SCCNodes;
427 };
428 
429 } // end anonymous namespace
430 
431 namespace llvm {
432 
433 template <> struct GraphTraits<ArgumentGraphNode *> {
434   using NodeRef = ArgumentGraphNode *;
435   using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
436 
437   static NodeRef getEntryNode(NodeRef A) { return A; }
438   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
439   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
440 };
441 
442 template <>
443 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
444   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
445 
446   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
447     return AG->begin();
448   }
449 
450   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
451 };
452 
453 } // end namespace llvm
454 
455 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
456 static Attribute::AttrKind
457 determinePointerReadAttrs(Argument *A,
458                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
459   SmallVector<Use *, 32> Worklist;
460   SmallPtrSet<Use *, 32> Visited;
461 
462   // inalloca arguments are always clobbered by the call.
463   if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
464     return Attribute::None;
465 
466   bool IsRead = false;
467   // We don't need to track IsWritten. If A is written to, return immediately.
468 
469   for (Use &U : A->uses()) {
470     Visited.insert(&U);
471     Worklist.push_back(&U);
472   }
473 
474   while (!Worklist.empty()) {
475     Use *U = Worklist.pop_back_val();
476     Instruction *I = cast<Instruction>(U->getUser());
477 
478     switch (I->getOpcode()) {
479     case Instruction::BitCast:
480     case Instruction::GetElementPtr:
481     case Instruction::PHI:
482     case Instruction::Select:
483     case Instruction::AddrSpaceCast:
484       // The original value is not read/written via this if the new value isn't.
485       for (Use &UU : I->uses())
486         if (Visited.insert(&UU).second)
487           Worklist.push_back(&UU);
488       break;
489 
490     case Instruction::Call:
491     case Instruction::Invoke: {
492       bool Captures = true;
493 
494       if (I->getType()->isVoidTy())
495         Captures = false;
496 
497       auto AddUsersToWorklistIfCapturing = [&] {
498         if (Captures)
499           for (Use &UU : I->uses())
500             if (Visited.insert(&UU).second)
501               Worklist.push_back(&UU);
502       };
503 
504       CallBase &CB = cast<CallBase>(*I);
505       if (CB.doesNotAccessMemory()) {
506         AddUsersToWorklistIfCapturing();
507         continue;
508       }
509 
510       Function *F = CB.getCalledFunction();
511       if (!F) {
512         if (CB.onlyReadsMemory()) {
513           IsRead = true;
514           AddUsersToWorklistIfCapturing();
515           continue;
516         }
517         return Attribute::None;
518       }
519 
520       // Note: the callee and the two successor blocks *follow* the argument
521       // operands.  This means there is no need to adjust UseIndex to account
522       // for these.
523 
524       unsigned UseIndex = std::distance(CB.arg_begin(), U);
525 
526       // U cannot be the callee operand use: since we're exploring the
527       // transitive uses of an Argument, having such a use be a callee would
528       // imply the call site is an indirect call or invoke; and we'd take the
529       // early exit above.
530       assert(UseIndex < CB.data_operands_size() &&
531              "Data operand use expected!");
532 
533       bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands();
534 
535       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
536         assert(F->isVarArg() && "More params than args in non-varargs call");
537         return Attribute::None;
538       }
539 
540       Captures &= !CB.doesNotCapture(UseIndex);
541 
542       // Since the optimizer (by design) cannot see the data flow corresponding
543       // to a operand bundle use, these cannot participate in the optimistic SCC
544       // analysis.  Instead, we model the operand bundle uses as arguments in
545       // call to a function external to the SCC.
546       if (IsOperandBundleUse ||
547           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
548 
549         // The accessors used on call site here do the right thing for calls and
550         // invokes with operand bundles.
551 
552         if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
553           return Attribute::None;
554         if (!CB.doesNotAccessMemory(UseIndex))
555           IsRead = true;
556       }
557 
558       AddUsersToWorklistIfCapturing();
559       break;
560     }
561 
562     case Instruction::Load:
563       // A volatile load has side effects beyond what readonly can be relied
564       // upon.
565       if (cast<LoadInst>(I)->isVolatile())
566         return Attribute::None;
567 
568       IsRead = true;
569       break;
570 
571     case Instruction::ICmp:
572     case Instruction::Ret:
573       break;
574 
575     default:
576       return Attribute::None;
577     }
578   }
579 
580   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
581 }
582 
583 /// Deduce returned attributes for the SCC.
584 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
585   bool Changed = false;
586 
587   // Check each function in turn, determining if an argument is always returned.
588   for (Function *F : SCCNodes) {
589     // We can infer and propagate function attributes only when we know that the
590     // definition we'll get at link time is *exactly* the definition we see now.
591     // For more details, see GlobalValue::mayBeDerefined.
592     if (!F->hasExactDefinition())
593       continue;
594 
595     if (F->getReturnType()->isVoidTy())
596       continue;
597 
598     // There is nothing to do if an argument is already marked as 'returned'.
599     if (llvm::any_of(F->args(),
600                      [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
601       continue;
602 
603     auto FindRetArg = [&]() -> Value * {
604       Value *RetArg = nullptr;
605       for (BasicBlock &BB : *F)
606         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
607           // Note that stripPointerCasts should look through functions with
608           // returned arguments.
609           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
610           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
611             return nullptr;
612 
613           if (!RetArg)
614             RetArg = RetVal;
615           else if (RetArg != RetVal)
616             return nullptr;
617         }
618 
619       return RetArg;
620     };
621 
622     if (Value *RetArg = FindRetArg()) {
623       auto *A = cast<Argument>(RetArg);
624       A->addAttr(Attribute::Returned);
625       ++NumReturned;
626       Changed = true;
627     }
628   }
629 
630   return Changed;
631 }
632 
633 /// If a callsite has arguments that are also arguments to the parent function,
634 /// try to propagate attributes from the callsite's arguments to the parent's
635 /// arguments. This may be important because inlining can cause information loss
636 /// when attribute knowledge disappears with the inlined call.
637 static bool addArgumentAttrsFromCallsites(Function &F) {
638   if (!EnableNonnullArgPropagation)
639     return false;
640 
641   bool Changed = false;
642 
643   // For an argument attribute to transfer from a callsite to the parent, the
644   // call must be guaranteed to execute every time the parent is called.
645   // Conservatively, just check for calls in the entry block that are guaranteed
646   // to execute.
647   // TODO: This could be enhanced by testing if the callsite post-dominates the
648   // entry block or by doing simple forward walks or backward walks to the
649   // callsite.
650   BasicBlock &Entry = F.getEntryBlock();
651   for (Instruction &I : Entry) {
652     if (auto *CB = dyn_cast<CallBase>(&I)) {
653       if (auto *CalledFunc = CB->getCalledFunction()) {
654         for (auto &CSArg : CalledFunc->args()) {
655           if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false))
656             continue;
657 
658           // If the non-null callsite argument operand is an argument to 'F'
659           // (the caller) and the call is guaranteed to execute, then the value
660           // must be non-null throughout 'F'.
661           auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
662           if (FArg && !FArg->hasNonNullAttr()) {
663             FArg->addAttr(Attribute::NonNull);
664             Changed = true;
665           }
666         }
667       }
668     }
669     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
670       break;
671   }
672 
673   return Changed;
674 }
675 
676 static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
677   assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
678          && "Must be a Read attribute.");
679   assert(A && "Argument must not be null.");
680 
681   // If the argument already has the attribute, nothing needs to be done.
682   if (A->hasAttribute(R))
683       return false;
684 
685   // Otherwise, remove potentially conflicting attribute, add the new one,
686   // and update statistics.
687   A->removeAttr(Attribute::WriteOnly);
688   A->removeAttr(Attribute::ReadOnly);
689   A->removeAttr(Attribute::ReadNone);
690   A->addAttr(R);
691   R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
692   return true;
693 }
694 
695 /// Deduce nocapture attributes for the SCC.
696 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
697   bool Changed = false;
698 
699   ArgumentGraph AG;
700 
701   // Check each function in turn, determining which pointer arguments are not
702   // captured.
703   for (Function *F : SCCNodes) {
704     // We can infer and propagate function attributes only when we know that the
705     // definition we'll get at link time is *exactly* the definition we see now.
706     // For more details, see GlobalValue::mayBeDerefined.
707     if (!F->hasExactDefinition())
708       continue;
709 
710     Changed |= addArgumentAttrsFromCallsites(*F);
711 
712     // Functions that are readonly (or readnone) and nounwind and don't return
713     // a value can't capture arguments. Don't analyze them.
714     if (F->onlyReadsMemory() && F->doesNotThrow() &&
715         F->getReturnType()->isVoidTy()) {
716       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
717            ++A) {
718         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
719           A->addAttr(Attribute::NoCapture);
720           ++NumNoCapture;
721           Changed = true;
722         }
723       }
724       continue;
725     }
726 
727     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
728          ++A) {
729       if (!A->getType()->isPointerTy())
730         continue;
731       bool HasNonLocalUses = false;
732       if (!A->hasNoCaptureAttr()) {
733         ArgumentUsesTracker Tracker(SCCNodes);
734         PointerMayBeCaptured(&*A, &Tracker);
735         if (!Tracker.Captured) {
736           if (Tracker.Uses.empty()) {
737             // If it's trivially not captured, mark it nocapture now.
738             A->addAttr(Attribute::NoCapture);
739             ++NumNoCapture;
740             Changed = true;
741           } else {
742             // If it's not trivially captured and not trivially not captured,
743             // then it must be calling into another function in our SCC. Save
744             // its particulars for Argument-SCC analysis later.
745             ArgumentGraphNode *Node = AG[&*A];
746             for (Argument *Use : Tracker.Uses) {
747               Node->Uses.push_back(AG[Use]);
748               if (Use != &*A)
749                 HasNonLocalUses = true;
750             }
751           }
752         }
753         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
754       }
755       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
756         // Can we determine that it's readonly/readnone without doing an SCC?
757         // Note that we don't allow any calls at all here, or else our result
758         // will be dependent on the iteration order through the functions in the
759         // SCC.
760         SmallPtrSet<Argument *, 8> Self;
761         Self.insert(&*A);
762         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
763         if (R != Attribute::None)
764           Changed = addReadAttr(A, R);
765       }
766     }
767   }
768 
769   // The graph we've collected is partial because we stopped scanning for
770   // argument uses once we solved the argument trivially. These partial nodes
771   // show up as ArgumentGraphNode objects with an empty Uses list, and for
772   // these nodes the final decision about whether they capture has already been
773   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
774   // captures.
775 
776   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
777     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
778     if (ArgumentSCC.size() == 1) {
779       if (!ArgumentSCC[0]->Definition)
780         continue; // synthetic root node
781 
782       // eg. "void f(int* x) { if (...) f(x); }"
783       if (ArgumentSCC[0]->Uses.size() == 1 &&
784           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
785         Argument *A = ArgumentSCC[0]->Definition;
786         A->addAttr(Attribute::NoCapture);
787         ++NumNoCapture;
788         Changed = true;
789       }
790       continue;
791     }
792 
793     bool SCCCaptured = false;
794     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
795          I != E && !SCCCaptured; ++I) {
796       ArgumentGraphNode *Node = *I;
797       if (Node->Uses.empty()) {
798         if (!Node->Definition->hasNoCaptureAttr())
799           SCCCaptured = true;
800       }
801     }
802     if (SCCCaptured)
803       continue;
804 
805     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
806     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
807     // quickly looking up whether a given Argument is in this ArgumentSCC.
808     for (ArgumentGraphNode *I : ArgumentSCC) {
809       ArgumentSCCNodes.insert(I->Definition);
810     }
811 
812     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
813          I != E && !SCCCaptured; ++I) {
814       ArgumentGraphNode *N = *I;
815       for (ArgumentGraphNode *Use : N->Uses) {
816         Argument *A = Use->Definition;
817         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
818           continue;
819         SCCCaptured = true;
820         break;
821       }
822     }
823     if (SCCCaptured)
824       continue;
825 
826     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
827       Argument *A = ArgumentSCC[i]->Definition;
828       A->addAttr(Attribute::NoCapture);
829       ++NumNoCapture;
830       Changed = true;
831     }
832 
833     // We also want to compute readonly/readnone. With a small number of false
834     // negatives, we can assume that any pointer which is captured isn't going
835     // to be provably readonly or readnone, since by definition we can't
836     // analyze all uses of a captured pointer.
837     //
838     // The false negatives happen when the pointer is captured by a function
839     // that promises readonly/readnone behaviour on the pointer, then the
840     // pointer's lifetime ends before anything that writes to arbitrary memory.
841     // Also, a readonly/readnone pointer may be returned, but returning a
842     // pointer is capturing it.
843 
844     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
845     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
846       Argument *A = ArgumentSCC[i]->Definition;
847       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
848       if (K == Attribute::ReadNone)
849         continue;
850       if (K == Attribute::ReadOnly) {
851         ReadAttr = Attribute::ReadOnly;
852         continue;
853       }
854       ReadAttr = K;
855       break;
856     }
857 
858     if (ReadAttr != Attribute::None) {
859       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
860         Argument *A = ArgumentSCC[i]->Definition;
861         Changed = addReadAttr(A, ReadAttr);
862       }
863     }
864   }
865 
866   return Changed;
867 }
868 
869 /// Tests whether a function is "malloc-like".
870 ///
871 /// A function is "malloc-like" if it returns either null or a pointer that
872 /// doesn't alias any other pointer visible to the caller.
873 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
874   SmallSetVector<Value *, 8> FlowsToReturn;
875   for (BasicBlock &BB : *F)
876     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
877       FlowsToReturn.insert(Ret->getReturnValue());
878 
879   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
880     Value *RetVal = FlowsToReturn[i];
881 
882     if (Constant *C = dyn_cast<Constant>(RetVal)) {
883       if (!C->isNullValue() && !isa<UndefValue>(C))
884         return false;
885 
886       continue;
887     }
888 
889     if (isa<Argument>(RetVal))
890       return false;
891 
892     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
893       switch (RVI->getOpcode()) {
894       // Extend the analysis by looking upwards.
895       case Instruction::BitCast:
896       case Instruction::GetElementPtr:
897       case Instruction::AddrSpaceCast:
898         FlowsToReturn.insert(RVI->getOperand(0));
899         continue;
900       case Instruction::Select: {
901         SelectInst *SI = cast<SelectInst>(RVI);
902         FlowsToReturn.insert(SI->getTrueValue());
903         FlowsToReturn.insert(SI->getFalseValue());
904         continue;
905       }
906       case Instruction::PHI: {
907         PHINode *PN = cast<PHINode>(RVI);
908         for (Value *IncValue : PN->incoming_values())
909           FlowsToReturn.insert(IncValue);
910         continue;
911       }
912 
913       // Check whether the pointer came from an allocation.
914       case Instruction::Alloca:
915         break;
916       case Instruction::Call:
917       case Instruction::Invoke: {
918         CallBase &CB = cast<CallBase>(*RVI);
919         if (CB.hasRetAttr(Attribute::NoAlias))
920           break;
921         if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
922           break;
923         LLVM_FALLTHROUGH;
924       }
925       default:
926         return false; // Did not come from an allocation.
927       }
928 
929     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
930       return false;
931   }
932 
933   return true;
934 }
935 
936 /// Deduce noalias attributes for the SCC.
937 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
938   // Check each function in turn, determining which functions return noalias
939   // pointers.
940   for (Function *F : SCCNodes) {
941     // Already noalias.
942     if (F->returnDoesNotAlias())
943       continue;
944 
945     // We can infer and propagate function attributes only when we know that the
946     // definition we'll get at link time is *exactly* the definition we see now.
947     // For more details, see GlobalValue::mayBeDerefined.
948     if (!F->hasExactDefinition())
949       return false;
950 
951     // We annotate noalias return values, which are only applicable to
952     // pointer types.
953     if (!F->getReturnType()->isPointerTy())
954       continue;
955 
956     if (!isFunctionMallocLike(F, SCCNodes))
957       return false;
958   }
959 
960   bool MadeChange = false;
961   for (Function *F : SCCNodes) {
962     if (F->returnDoesNotAlias() ||
963         !F->getReturnType()->isPointerTy())
964       continue;
965 
966     F->setReturnDoesNotAlias();
967     ++NumNoAlias;
968     MadeChange = true;
969   }
970 
971   return MadeChange;
972 }
973 
974 /// Tests whether this function is known to not return null.
975 ///
976 /// Requires that the function returns a pointer.
977 ///
978 /// Returns true if it believes the function will not return a null, and sets
979 /// \p Speculative based on whether the returned conclusion is a speculative
980 /// conclusion due to SCC calls.
981 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
982                             bool &Speculative) {
983   assert(F->getReturnType()->isPointerTy() &&
984          "nonnull only meaningful on pointer types");
985   Speculative = false;
986 
987   SmallSetVector<Value *, 8> FlowsToReturn;
988   for (BasicBlock &BB : *F)
989     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
990       FlowsToReturn.insert(Ret->getReturnValue());
991 
992   auto &DL = F->getParent()->getDataLayout();
993 
994   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
995     Value *RetVal = FlowsToReturn[i];
996 
997     // If this value is locally known to be non-null, we're good
998     if (isKnownNonZero(RetVal, DL))
999       continue;
1000 
1001     // Otherwise, we need to look upwards since we can't make any local
1002     // conclusions.
1003     Instruction *RVI = dyn_cast<Instruction>(RetVal);
1004     if (!RVI)
1005       return false;
1006     switch (RVI->getOpcode()) {
1007     // Extend the analysis by looking upwards.
1008     case Instruction::BitCast:
1009     case Instruction::GetElementPtr:
1010     case Instruction::AddrSpaceCast:
1011       FlowsToReturn.insert(RVI->getOperand(0));
1012       continue;
1013     case Instruction::Select: {
1014       SelectInst *SI = cast<SelectInst>(RVI);
1015       FlowsToReturn.insert(SI->getTrueValue());
1016       FlowsToReturn.insert(SI->getFalseValue());
1017       continue;
1018     }
1019     case Instruction::PHI: {
1020       PHINode *PN = cast<PHINode>(RVI);
1021       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1022         FlowsToReturn.insert(PN->getIncomingValue(i));
1023       continue;
1024     }
1025     case Instruction::Call:
1026     case Instruction::Invoke: {
1027       CallBase &CB = cast<CallBase>(*RVI);
1028       Function *Callee = CB.getCalledFunction();
1029       // A call to a node within the SCC is assumed to return null until
1030       // proven otherwise
1031       if (Callee && SCCNodes.count(Callee)) {
1032         Speculative = true;
1033         continue;
1034       }
1035       return false;
1036     }
1037     default:
1038       return false; // Unknown source, may be null
1039     };
1040     llvm_unreachable("should have either continued or returned");
1041   }
1042 
1043   return true;
1044 }
1045 
1046 /// Deduce nonnull attributes for the SCC.
1047 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1048   // Speculative that all functions in the SCC return only nonnull
1049   // pointers.  We may refute this as we analyze functions.
1050   bool SCCReturnsNonNull = true;
1051 
1052   bool MadeChange = false;
1053 
1054   // Check each function in turn, determining which functions return nonnull
1055   // pointers.
1056   for (Function *F : SCCNodes) {
1057     // Already nonnull.
1058     if (F->getAttributes().hasRetAttr(Attribute::NonNull))
1059       continue;
1060 
1061     // We can infer and propagate function attributes only when we know that the
1062     // definition we'll get at link time is *exactly* the definition we see now.
1063     // For more details, see GlobalValue::mayBeDerefined.
1064     if (!F->hasExactDefinition())
1065       return false;
1066 
1067     // We annotate nonnull return values, which are only applicable to
1068     // pointer types.
1069     if (!F->getReturnType()->isPointerTy())
1070       continue;
1071 
1072     bool Speculative = false;
1073     if (isReturnNonNull(F, SCCNodes, Speculative)) {
1074       if (!Speculative) {
1075         // Mark the function eagerly since we may discover a function
1076         // which prevents us from speculating about the entire SCC
1077         LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1078                           << " as nonnull\n");
1079         F->addRetAttr(Attribute::NonNull);
1080         ++NumNonNullReturn;
1081         MadeChange = true;
1082       }
1083       continue;
1084     }
1085     // At least one function returns something which could be null, can't
1086     // speculate any more.
1087     SCCReturnsNonNull = false;
1088   }
1089 
1090   if (SCCReturnsNonNull) {
1091     for (Function *F : SCCNodes) {
1092       if (F->getAttributes().hasRetAttr(Attribute::NonNull) ||
1093           !F->getReturnType()->isPointerTy())
1094         continue;
1095 
1096       LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1097       F->addRetAttr(Attribute::NonNull);
1098       ++NumNonNullReturn;
1099       MadeChange = true;
1100     }
1101   }
1102 
1103   return MadeChange;
1104 }
1105 
1106 namespace {
1107 
1108 /// Collects a set of attribute inference requests and performs them all in one
1109 /// go on a single SCC Node. Inference involves scanning function bodies
1110 /// looking for instructions that violate attribute assumptions.
1111 /// As soon as all the bodies are fine we are free to set the attribute.
1112 /// Customization of inference for individual attributes is performed by
1113 /// providing a handful of predicates for each attribute.
1114 class AttributeInferer {
1115 public:
1116   /// Describes a request for inference of a single attribute.
1117   struct InferenceDescriptor {
1118 
1119     /// Returns true if this function does not have to be handled.
1120     /// General intent for this predicate is to provide an optimization
1121     /// for functions that do not need this attribute inference at all
1122     /// (say, for functions that already have the attribute).
1123     std::function<bool(const Function &)> SkipFunction;
1124 
1125     /// Returns true if this instruction violates attribute assumptions.
1126     std::function<bool(Instruction &)> InstrBreaksAttribute;
1127 
1128     /// Sets the inferred attribute for this function.
1129     std::function<void(Function &)> SetAttribute;
1130 
1131     /// Attribute we derive.
1132     Attribute::AttrKind AKind;
1133 
1134     /// If true, only "exact" definitions can be used to infer this attribute.
1135     /// See GlobalValue::isDefinitionExact.
1136     bool RequiresExactDefinition;
1137 
1138     InferenceDescriptor(Attribute::AttrKind AK,
1139                         std::function<bool(const Function &)> SkipFunc,
1140                         std::function<bool(Instruction &)> InstrScan,
1141                         std::function<void(Function &)> SetAttr,
1142                         bool ReqExactDef)
1143         : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1144           SetAttribute(SetAttr), AKind(AK),
1145           RequiresExactDefinition(ReqExactDef) {}
1146   };
1147 
1148 private:
1149   SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1150 
1151 public:
1152   void registerAttrInference(InferenceDescriptor AttrInference) {
1153     InferenceDescriptors.push_back(AttrInference);
1154   }
1155 
1156   bool run(const SCCNodeSet &SCCNodes);
1157 };
1158 
1159 /// Perform all the requested attribute inference actions according to the
1160 /// attribute predicates stored before.
1161 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1162   SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1163   // Go through all the functions in SCC and check corresponding attribute
1164   // assumptions for each of them. Attributes that are invalid for this SCC
1165   // will be removed from InferInSCC.
1166   for (Function *F : SCCNodes) {
1167 
1168     // No attributes whose assumptions are still valid - done.
1169     if (InferInSCC.empty())
1170       return false;
1171 
1172     // Check if our attributes ever need scanning/can be scanned.
1173     llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1174       if (ID.SkipFunction(*F))
1175         return false;
1176 
1177       // Remove from further inference (invalidate) when visiting a function
1178       // that has no instructions to scan/has an unsuitable definition.
1179       return F->isDeclaration() ||
1180              (ID.RequiresExactDefinition && !F->hasExactDefinition());
1181     });
1182 
1183     // For each attribute still in InferInSCC that doesn't explicitly skip F,
1184     // set up the F instructions scan to verify assumptions of the attribute.
1185     SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1186     llvm::copy_if(
1187         InferInSCC, std::back_inserter(InferInThisFunc),
1188         [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1189 
1190     if (InferInThisFunc.empty())
1191       continue;
1192 
1193     // Start instruction scan.
1194     for (Instruction &I : instructions(*F)) {
1195       llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1196         if (!ID.InstrBreaksAttribute(I))
1197           return false;
1198         // Remove attribute from further inference on any other functions
1199         // because attribute assumptions have just been violated.
1200         llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1201           return D.AKind == ID.AKind;
1202         });
1203         // Remove attribute from the rest of current instruction scan.
1204         return true;
1205       });
1206 
1207       if (InferInThisFunc.empty())
1208         break;
1209     }
1210   }
1211 
1212   if (InferInSCC.empty())
1213     return false;
1214 
1215   bool Changed = false;
1216   for (Function *F : SCCNodes)
1217     // At this point InferInSCC contains only functions that were either:
1218     //   - explicitly skipped from scan/inference, or
1219     //   - verified to have no instructions that break attribute assumptions.
1220     // Hence we just go and force the attribute for all non-skipped functions.
1221     for (auto &ID : InferInSCC) {
1222       if (ID.SkipFunction(*F))
1223         continue;
1224       Changed = true;
1225       ID.SetAttribute(*F);
1226     }
1227   return Changed;
1228 }
1229 
1230 struct SCCNodesResult {
1231   SCCNodeSet SCCNodes;
1232   bool HasUnknownCall;
1233 };
1234 
1235 } // end anonymous namespace
1236 
1237 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1238 static bool InstrBreaksNonConvergent(Instruction &I,
1239                                      const SCCNodeSet &SCCNodes) {
1240   const CallBase *CB = dyn_cast<CallBase>(&I);
1241   // Breaks non-convergent assumption if CS is a convergent call to a function
1242   // not in the SCC.
1243   return CB && CB->isConvergent() &&
1244          SCCNodes.count(CB->getCalledFunction()) == 0;
1245 }
1246 
1247 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1248 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1249   if (!I.mayThrow())
1250     return false;
1251   if (const auto *CI = dyn_cast<CallInst>(&I)) {
1252     if (Function *Callee = CI->getCalledFunction()) {
1253       // I is a may-throw call to a function inside our SCC. This doesn't
1254       // invalidate our current working assumption that the SCC is no-throw; we
1255       // just have to scan that other function.
1256       if (SCCNodes.contains(Callee))
1257         return false;
1258     }
1259   }
1260   return true;
1261 }
1262 
1263 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1264 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
1265   CallBase *CB = dyn_cast<CallBase>(&I);
1266   if (!CB)
1267     return false;
1268 
1269   if (CB->hasFnAttr(Attribute::NoFree))
1270     return false;
1271 
1272   // Speculatively assume in SCC.
1273   if (Function *Callee = CB->getCalledFunction())
1274     if (SCCNodes.contains(Callee))
1275       return false;
1276 
1277   return true;
1278 }
1279 
1280 /// Attempt to remove convergent function attribute when possible.
1281 ///
1282 /// Returns true if any changes to function attributes were made.
1283 static bool inferConvergent(const SCCNodeSet &SCCNodes) {
1284   AttributeInferer AI;
1285 
1286   // Request to remove the convergent attribute from all functions in the SCC
1287   // if every callsite within the SCC is not convergent (except for calls
1288   // to functions within the SCC).
1289   // Note: Removal of the attr from the callsites will happen in
1290   // InstCombineCalls separately.
1291   AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1292       Attribute::Convergent,
1293       // Skip non-convergent functions.
1294       [](const Function &F) { return !F.isConvergent(); },
1295       // Instructions that break non-convergent assumption.
1296       [SCCNodes](Instruction &I) {
1297         return InstrBreaksNonConvergent(I, SCCNodes);
1298       },
1299       [](Function &F) {
1300         LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1301                           << "\n");
1302         F.setNotConvergent();
1303       },
1304       /* RequiresExactDefinition= */ false});
1305   // Perform all the requested attribute inference actions.
1306   return AI.run(SCCNodes);
1307 }
1308 
1309 /// Infer attributes from all functions in the SCC by scanning every
1310 /// instruction for compliance to the attribute assumptions. Currently it
1311 /// does:
1312 ///   - addition of NoUnwind attribute
1313 ///
1314 /// Returns true if any changes to function attributes were made.
1315 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1316   AttributeInferer AI;
1317 
1318   if (!DisableNoUnwindInference)
1319     // Request to infer nounwind attribute for all the functions in the SCC if
1320     // every callsite within the SCC is not throwing (except for calls to
1321     // functions within the SCC). Note that nounwind attribute suffers from
1322     // derefinement - results may change depending on how functions are
1323     // optimized. Thus it can be inferred only from exact definitions.
1324     AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1325         Attribute::NoUnwind,
1326         // Skip non-throwing functions.
1327         [](const Function &F) { return F.doesNotThrow(); },
1328         // Instructions that break non-throwing assumption.
1329         [&SCCNodes](Instruction &I) {
1330           return InstrBreaksNonThrowing(I, SCCNodes);
1331         },
1332         [](Function &F) {
1333           LLVM_DEBUG(dbgs()
1334                      << "Adding nounwind attr to fn " << F.getName() << "\n");
1335           F.setDoesNotThrow();
1336           ++NumNoUnwind;
1337         },
1338         /* RequiresExactDefinition= */ true});
1339 
1340   if (!DisableNoFreeInference)
1341     // Request to infer nofree attribute for all the functions in the SCC if
1342     // every callsite within the SCC does not directly or indirectly free
1343     // memory (except for calls to functions within the SCC). Note that nofree
1344     // attribute suffers from derefinement - results may change depending on
1345     // how functions are optimized. Thus it can be inferred only from exact
1346     // definitions.
1347     AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1348         Attribute::NoFree,
1349         // Skip functions known not to free memory.
1350         [](const Function &F) { return F.doesNotFreeMemory(); },
1351         // Instructions that break non-deallocating assumption.
1352         [&SCCNodes](Instruction &I) {
1353           return InstrBreaksNoFree(I, SCCNodes);
1354         },
1355         [](Function &F) {
1356           LLVM_DEBUG(dbgs()
1357                      << "Adding nofree attr to fn " << F.getName() << "\n");
1358           F.setDoesNotFreeMemory();
1359           ++NumNoFree;
1360         },
1361         /* RequiresExactDefinition= */ true});
1362 
1363   // Perform all the requested attribute inference actions.
1364   return AI.run(SCCNodes);
1365 }
1366 
1367 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1368   // Try and identify functions that do not recurse.
1369 
1370   // If the SCC contains multiple nodes we know for sure there is recursion.
1371   if (SCCNodes.size() != 1)
1372     return false;
1373 
1374   Function *F = *SCCNodes.begin();
1375   if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
1376     return false;
1377 
1378   // If all of the calls in F are identifiable and are to norecurse functions, F
1379   // is norecurse. This check also detects self-recursion as F is not currently
1380   // marked norecurse, so any called from F to F will not be marked norecurse.
1381   for (auto &BB : *F)
1382     for (auto &I : BB.instructionsWithoutDebug())
1383       if (auto *CB = dyn_cast<CallBase>(&I)) {
1384         Function *Callee = CB->getCalledFunction();
1385         if (!Callee || Callee == F || !Callee->doesNotRecurse())
1386           // Function calls a potentially recursive function.
1387           return false;
1388       }
1389 
1390   // Every call was to a non-recursive function other than this function, and
1391   // we have no indirect recursion as the SCC size is one. This function cannot
1392   // recurse.
1393   F->setDoesNotRecurse();
1394   ++NumNoRecurse;
1395   return true;
1396 }
1397 
1398 static bool instructionDoesNotReturn(Instruction &I) {
1399   if (auto *CB = dyn_cast<CallBase>(&I))
1400     return CB->hasFnAttr(Attribute::NoReturn);
1401   return false;
1402 }
1403 
1404 // A basic block can only return if it terminates with a ReturnInst and does not
1405 // contain calls to noreturn functions.
1406 static bool basicBlockCanReturn(BasicBlock &BB) {
1407   if (!isa<ReturnInst>(BB.getTerminator()))
1408     return false;
1409   return none_of(BB, instructionDoesNotReturn);
1410 }
1411 
1412 // Set the noreturn function attribute if possible.
1413 static bool addNoReturnAttrs(const SCCNodeSet &SCCNodes) {
1414   bool Changed = false;
1415 
1416   for (Function *F : SCCNodes) {
1417     if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) ||
1418         F->doesNotReturn())
1419       continue;
1420 
1421     // The function can return if any basic blocks can return.
1422     // FIXME: this doesn't handle recursion or unreachable blocks.
1423     if (none_of(*F, basicBlockCanReturn)) {
1424       F->setDoesNotReturn();
1425       Changed = true;
1426     }
1427   }
1428 
1429   return Changed;
1430 }
1431 
1432 static bool functionWillReturn(const Function &F) {
1433   // We can infer and propagate function attributes only when we know that the
1434   // definition we'll get at link time is *exactly* the definition we see now.
1435   // For more details, see GlobalValue::mayBeDerefined.
1436   if (!F.hasExactDefinition())
1437     return false;
1438 
1439   // Must-progress function without side-effects must return.
1440   if (F.mustProgress() && F.onlyReadsMemory())
1441     return true;
1442 
1443   // Can only analyze functions with a definition.
1444   if (F.isDeclaration())
1445     return false;
1446 
1447   // Functions with loops require more sophisticated analysis, as the loop
1448   // may be infinite. For now, don't try to handle them.
1449   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges;
1450   FindFunctionBackedges(F, Backedges);
1451   if (!Backedges.empty())
1452     return false;
1453 
1454   // If there are no loops, then the function is willreturn if all calls in
1455   // it are willreturn.
1456   return all_of(instructions(F), [](const Instruction &I) {
1457     return I.willReturn();
1458   });
1459 }
1460 
1461 // Set the willreturn function attribute if possible.
1462 static bool addWillReturn(const SCCNodeSet &SCCNodes) {
1463   bool Changed = false;
1464 
1465   for (Function *F : SCCNodes) {
1466     if (!F || F->willReturn() || !functionWillReturn(*F))
1467       continue;
1468 
1469     F->setWillReturn();
1470     NumWillReturn++;
1471     Changed = true;
1472   }
1473 
1474   return Changed;
1475 }
1476 
1477 // Return true if this is an atomic which has an ordering stronger than
1478 // unordered.  Note that this is different than the predicate we use in
1479 // Attributor.  Here we chose to be conservative and consider monotonic
1480 // operations potentially synchronizing.  We generally don't do much with
1481 // monotonic operations, so this is simply risk reduction.
1482 static bool isOrderedAtomic(Instruction *I) {
1483   if (!I->isAtomic())
1484     return false;
1485 
1486   if (auto *FI = dyn_cast<FenceInst>(I))
1487     // All legal orderings for fence are stronger than monotonic.
1488     return FI->getSyncScopeID() != SyncScope::SingleThread;
1489   else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I))
1490     return true;
1491   else if (auto *SI = dyn_cast<StoreInst>(I))
1492     return !SI->isUnordered();
1493   else if (auto *LI = dyn_cast<LoadInst>(I))
1494     return !LI->isUnordered();
1495   else {
1496     llvm_unreachable("unknown atomic instruction?");
1497   }
1498 }
1499 
1500 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) {
1501   // Volatile may synchronize
1502   if (I.isVolatile())
1503     return true;
1504 
1505   // An ordered atomic may synchronize.  (See comment about on monotonic.)
1506   if (isOrderedAtomic(&I))
1507     return true;
1508 
1509   auto *CB = dyn_cast<CallBase>(&I);
1510   if (!CB)
1511     // Non call site cases covered by the two checks above
1512     return false;
1513 
1514   if (CB->hasFnAttr(Attribute::NoSync))
1515     return false;
1516 
1517   // Non volatile memset/memcpy/memmoves are nosync
1518   // NOTE: Only intrinsics with volatile flags should be handled here.  All
1519   // others should be marked in Intrinsics.td.
1520   if (auto *MI = dyn_cast<MemIntrinsic>(&I))
1521     if (!MI->isVolatile())
1522       return false;
1523 
1524   // Speculatively assume in SCC.
1525   if (Function *Callee = CB->getCalledFunction())
1526     if (SCCNodes.contains(Callee))
1527       return false;
1528 
1529   return true;
1530 }
1531 
1532 // Infer the nosync attribute.
1533 static bool addNoSyncAttr(const SCCNodeSet &SCCNodes) {
1534   AttributeInferer AI;
1535   AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1536       Attribute::NoSync,
1537       // Skip already marked functions.
1538       [](const Function &F) { return F.hasNoSync(); },
1539       // Instructions that break nosync assumption.
1540       [&SCCNodes](Instruction &I) {
1541         return InstrBreaksNoSync(I, SCCNodes);
1542       },
1543       [](Function &F) {
1544         LLVM_DEBUG(dbgs()
1545                    << "Adding nosync attr to fn " << F.getName() << "\n");
1546         F.setNoSync();
1547         ++NumNoSync;
1548       },
1549       /* RequiresExactDefinition= */ true});
1550   return AI.run(SCCNodes);
1551 }
1552 
1553 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) {
1554   SCCNodesResult Res;
1555   Res.HasUnknownCall = false;
1556   for (Function *F : Functions) {
1557     if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
1558       // Treat any function we're trying not to optimize as if it were an
1559       // indirect call and omit it from the node set used below.
1560       Res.HasUnknownCall = true;
1561       continue;
1562     }
1563     // Track whether any functions in this SCC have an unknown call edge.
1564     // Note: if this is ever a performance hit, we can common it with
1565     // subsequent routines which also do scans over the instructions of the
1566     // function.
1567     if (!Res.HasUnknownCall) {
1568       for (Instruction &I : instructions(*F)) {
1569         if (auto *CB = dyn_cast<CallBase>(&I)) {
1570           if (!CB->getCalledFunction()) {
1571             Res.HasUnknownCall = true;
1572             break;
1573           }
1574         }
1575       }
1576     }
1577     Res.SCCNodes.insert(F);
1578   }
1579   return Res;
1580 }
1581 
1582 template <typename AARGetterT>
1583 static bool deriveAttrsInPostOrder(ArrayRef<Function *> Functions,
1584                                    AARGetterT &&AARGetter) {
1585   SCCNodesResult Nodes = createSCCNodeSet(Functions);
1586   bool Changed = false;
1587 
1588   // Bail if the SCC only contains optnone functions.
1589   if (Nodes.SCCNodes.empty())
1590     return Changed;
1591 
1592   Changed |= addArgumentReturnedAttrs(Nodes.SCCNodes);
1593   Changed |= addReadAttrs(Nodes.SCCNodes, AARGetter);
1594   Changed |= addArgumentAttrs(Nodes.SCCNodes);
1595   Changed |= inferConvergent(Nodes.SCCNodes);
1596   Changed |= addNoReturnAttrs(Nodes.SCCNodes);
1597   Changed |= addWillReturn(Nodes.SCCNodes);
1598 
1599   // If we have no external nodes participating in the SCC, we can deduce some
1600   // more precise attributes as well.
1601   if (!Nodes.HasUnknownCall) {
1602     Changed |= addNoAliasAttrs(Nodes.SCCNodes);
1603     Changed |= addNonNullAttrs(Nodes.SCCNodes);
1604     Changed |= inferAttrsFromFunctionBodies(Nodes.SCCNodes);
1605     Changed |= addNoRecurseAttrs(Nodes.SCCNodes);
1606   }
1607 
1608   Changed |= addNoSyncAttr(Nodes.SCCNodes);
1609 
1610   // Finally, infer the maximal set of attributes from the ones we've inferred
1611   // above.  This is handling the cases where one attribute on a signature
1612   // implies another, but for implementation reasons the inference rule for
1613   // the later is missing (or simply less sophisticated).
1614   for (Function *F : Nodes.SCCNodes)
1615     if (F)
1616       Changed |= inferAttributesFromOthers(*F);
1617 
1618   return Changed;
1619 }
1620 
1621 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1622                                                   CGSCCAnalysisManager &AM,
1623                                                   LazyCallGraph &CG,
1624                                                   CGSCCUpdateResult &) {
1625   FunctionAnalysisManager &FAM =
1626       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1627 
1628   // We pass a lambda into functions to wire them up to the analysis manager
1629   // for getting function analyses.
1630   auto AARGetter = [&](Function &F) -> AAResults & {
1631     return FAM.getResult<AAManager>(F);
1632   };
1633 
1634   SmallVector<Function *, 8> Functions;
1635   for (LazyCallGraph::Node &N : C) {
1636     Functions.push_back(&N.getFunction());
1637   }
1638 
1639   if (deriveAttrsInPostOrder(Functions, AARGetter)) {
1640     // We have not changed the call graph or removed/added functions.
1641     PreservedAnalyses PA;
1642     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1643     return PA;
1644   }
1645 
1646   return PreservedAnalyses::all();
1647 }
1648 
1649 namespace {
1650 
1651 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1652   // Pass identification, replacement for typeid
1653   static char ID;
1654 
1655   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1656     initializePostOrderFunctionAttrsLegacyPassPass(
1657         *PassRegistry::getPassRegistry());
1658   }
1659 
1660   bool runOnSCC(CallGraphSCC &SCC) override;
1661 
1662   void getAnalysisUsage(AnalysisUsage &AU) const override {
1663     AU.setPreservesCFG();
1664     AU.addRequired<AssumptionCacheTracker>();
1665     getAAResultsAnalysisUsage(AU);
1666     CallGraphSCCPass::getAnalysisUsage(AU);
1667   }
1668 };
1669 
1670 } // end anonymous namespace
1671 
1672 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1673 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1674                       "Deduce function attributes", false, false)
1675 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1676 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1677 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1678                     "Deduce function attributes", false, false)
1679 
1680 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1681   return new PostOrderFunctionAttrsLegacyPass();
1682 }
1683 
1684 template <typename AARGetterT>
1685 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1686   SmallVector<Function *, 8> Functions;
1687   for (CallGraphNode *I : SCC) {
1688     Functions.push_back(I->getFunction());
1689   }
1690 
1691   return deriveAttrsInPostOrder(Functions, AARGetter);
1692 }
1693 
1694 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1695   if (skipSCC(SCC))
1696     return false;
1697   return runImpl(SCC, LegacyAARGetter(*this));
1698 }
1699 
1700 namespace {
1701 
1702 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1703   // Pass identification, replacement for typeid
1704   static char ID;
1705 
1706   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1707     initializeReversePostOrderFunctionAttrsLegacyPassPass(
1708         *PassRegistry::getPassRegistry());
1709   }
1710 
1711   bool runOnModule(Module &M) override;
1712 
1713   void getAnalysisUsage(AnalysisUsage &AU) const override {
1714     AU.setPreservesCFG();
1715     AU.addRequired<CallGraphWrapperPass>();
1716     AU.addPreserved<CallGraphWrapperPass>();
1717   }
1718 };
1719 
1720 } // end anonymous namespace
1721 
1722 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1723 
1724 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass,
1725                       "rpo-function-attrs", "Deduce function attributes in RPO",
1726                       false, false)
1727 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1728 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass,
1729                     "rpo-function-attrs", "Deduce function attributes in RPO",
1730                     false, false)
1731 
1732 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1733   return new ReversePostOrderFunctionAttrsLegacyPass();
1734 }
1735 
1736 static bool addNoRecurseAttrsTopDown(Function &F) {
1737   // We check the preconditions for the function prior to calling this to avoid
1738   // the cost of building up a reversible post-order list. We assert them here
1739   // to make sure none of the invariants this relies on were violated.
1740   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1741   assert(!F.doesNotRecurse() &&
1742          "This function has already been deduced as norecurs!");
1743   assert(F.hasInternalLinkage() &&
1744          "Can only do top-down deduction for internal linkage functions!");
1745 
1746   // If F is internal and all of its uses are calls from a non-recursive
1747   // functions, then none of its calls could in fact recurse without going
1748   // through a function marked norecurse, and so we can mark this function too
1749   // as norecurse. Note that the uses must actually be calls -- otherwise
1750   // a pointer to this function could be returned from a norecurse function but
1751   // this function could be recursively (indirectly) called. Note that this
1752   // also detects if F is directly recursive as F is not yet marked as
1753   // a norecurse function.
1754   for (auto *U : F.users()) {
1755     auto *I = dyn_cast<Instruction>(U);
1756     if (!I)
1757       return false;
1758     CallBase *CB = dyn_cast<CallBase>(I);
1759     if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
1760       return false;
1761   }
1762   F.setDoesNotRecurse();
1763   ++NumNoRecurse;
1764   return true;
1765 }
1766 
1767 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1768   // We only have a post-order SCC traversal (because SCCs are inherently
1769   // discovered in post-order), so we accumulate them in a vector and then walk
1770   // it in reverse. This is simpler than using the RPO iterator infrastructure
1771   // because we need to combine SCC detection and the PO walk of the call
1772   // graph. We can also cheat egregiously because we're primarily interested in
1773   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1774   // with multiple functions in them will clearly be recursive.
1775   SmallVector<Function *, 16> Worklist;
1776   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1777     if (I->size() != 1)
1778       continue;
1779 
1780     Function *F = I->front()->getFunction();
1781     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1782         F->hasInternalLinkage())
1783       Worklist.push_back(F);
1784   }
1785 
1786   bool Changed = false;
1787   for (auto *F : llvm::reverse(Worklist))
1788     Changed |= addNoRecurseAttrsTopDown(*F);
1789 
1790   return Changed;
1791 }
1792 
1793 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1794   if (skipModule(M))
1795     return false;
1796 
1797   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1798 
1799   return deduceFunctionAttributeInRPO(M, CG);
1800 }
1801 
1802 PreservedAnalyses
1803 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1804   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1805 
1806   if (!deduceFunctionAttributeInRPO(M, CG))
1807     return PreservedAnalyses::all();
1808 
1809   PreservedAnalyses PA;
1810   PA.preserve<CallGraphAnalysis>();
1811   return PA;
1812 }
1813