1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 assert(!CB->isCallee(U) && "callee operand reported captured?"); 585 const unsigned UseIndex = CB->getDataOperandNo(U); 586 if (UseIndex >= CB->arg_size()) { 587 // Data operand, but not a argument operand -- must be a bundle operand 588 assert(CB->hasOperandBundles() && "Must be!"); 589 590 // CaptureTracking told us that we're being captured by an operand bundle 591 // use. In this case it does not matter if the callee is within our SCC 592 // or not -- we've been captured in some unknown way, and we have to be 593 // conservative. 594 Captured = true; 595 return true; 596 } 597 598 if (UseIndex >= F->arg_size()) { 599 assert(F->isVarArg() && "More params than args in non-varargs call"); 600 Captured = true; 601 return true; 602 } 603 604 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 605 return false; 606 } 607 608 // True only if certainly captured (used outside our SCC). 609 bool Captured = false; 610 611 // Uses within our SCC. 612 SmallVector<Argument *, 4> Uses; 613 614 const SCCNodeSet &SCCNodes; 615 }; 616 617 } // end anonymous namespace 618 619 namespace llvm { 620 621 template <> struct GraphTraits<ArgumentGraphNode *> { 622 using NodeRef = ArgumentGraphNode *; 623 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 624 625 static NodeRef getEntryNode(NodeRef A) { return A; } 626 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 627 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 628 }; 629 630 template <> 631 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 632 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 633 634 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 635 return AG->begin(); 636 } 637 638 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 639 }; 640 641 } // end namespace llvm 642 643 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 644 static Attribute::AttrKind 645 determinePointerAccessAttrs(Argument *A, 646 const SmallPtrSet<Argument *, 8> &SCCNodes) { 647 SmallVector<Use *, 32> Worklist; 648 SmallPtrSet<Use *, 32> Visited; 649 650 // inalloca arguments are always clobbered by the call. 651 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 652 return Attribute::None; 653 654 bool IsRead = false; 655 bool IsWrite = false; 656 657 for (Use &U : A->uses()) { 658 Visited.insert(&U); 659 Worklist.push_back(&U); 660 } 661 662 while (!Worklist.empty()) { 663 if (IsWrite && IsRead) 664 // No point in searching further.. 665 return Attribute::None; 666 667 Use *U = Worklist.pop_back_val(); 668 Instruction *I = cast<Instruction>(U->getUser()); 669 670 switch (I->getOpcode()) { 671 case Instruction::BitCast: 672 case Instruction::GetElementPtr: 673 case Instruction::PHI: 674 case Instruction::Select: 675 case Instruction::AddrSpaceCast: 676 // The original value is not read/written via this if the new value isn't. 677 for (Use &UU : I->uses()) 678 if (Visited.insert(&UU).second) 679 Worklist.push_back(&UU); 680 break; 681 682 case Instruction::Call: 683 case Instruction::Invoke: { 684 CallBase &CB = cast<CallBase>(*I); 685 if (CB.isCallee(U)) { 686 IsRead = true; 687 // Note that indirect calls do not capture, see comment in 688 // CaptureTracking for context 689 continue; 690 } 691 692 // Given we've explictily handled the callee operand above, what's left 693 // must be a data operand (e.g. argument or operand bundle) 694 const unsigned UseIndex = CB.getDataOperandNo(U); 695 696 if (!CB.doesNotCapture(UseIndex)) { 697 if (!CB.onlyReadsMemory()) 698 // If the callee can save a copy into other memory, then simply 699 // scanning uses of the call is insufficient. We have no way 700 // of tracking copies of the pointer through memory to see 701 // if a reloaded copy is written to, thus we must give up. 702 return Attribute::None; 703 // Push users for processing once we finish this one 704 if (!I->getType()->isVoidTy()) 705 for (Use &UU : I->uses()) 706 if (Visited.insert(&UU).second) 707 Worklist.push_back(&UU); 708 } 709 710 if (CB.doesNotAccessMemory()) 711 continue; 712 713 Function *F = CB.getCalledFunction(); 714 if (!F) { 715 if (CB.onlyReadsMemory()) { 716 IsRead = true; 717 continue; 718 } 719 return Attribute::None; 720 } 721 722 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 723 SCCNodes.count(F->getArg(UseIndex))) { 724 // This is an argument which is part of the speculative SCC. Note that 725 // only operands corresponding to formal arguments of the callee can 726 // participate in the speculation. 727 break; 728 } 729 730 // The accessors used on call site here do the right thing for calls and 731 // invokes with operand bundles. 732 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 733 return Attribute::None; 734 if (!CB.doesNotAccessMemory(UseIndex)) 735 IsRead = true; 736 break; 737 } 738 739 case Instruction::Load: 740 // A volatile load has side effects beyond what readonly can be relied 741 // upon. 742 if (cast<LoadInst>(I)->isVolatile()) 743 return Attribute::None; 744 745 IsRead = true; 746 break; 747 748 case Instruction::Store: 749 if (cast<StoreInst>(I)->getValueOperand() == *U) 750 // untrackable capture 751 return Attribute::None; 752 753 // A volatile store has side effects beyond what writeonly can be relied 754 // upon. 755 if (cast<StoreInst>(I)->isVolatile()) 756 return Attribute::None; 757 758 IsWrite = true; 759 break; 760 761 case Instruction::ICmp: 762 case Instruction::Ret: 763 break; 764 765 default: 766 return Attribute::None; 767 } 768 } 769 770 if (IsWrite && IsRead) 771 return Attribute::None; 772 else if (IsRead) 773 return Attribute::ReadOnly; 774 else if (IsWrite) 775 return Attribute::WriteOnly; 776 else 777 return Attribute::ReadNone; 778 } 779 780 /// Deduce returned attributes for the SCC. 781 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 782 SmallSet<Function *, 8> &Changed) { 783 // Check each function in turn, determining if an argument is always returned. 784 for (Function *F : SCCNodes) { 785 // We can infer and propagate function attributes only when we know that the 786 // definition we'll get at link time is *exactly* the definition we see now. 787 // For more details, see GlobalValue::mayBeDerefined. 788 if (!F->hasExactDefinition()) 789 continue; 790 791 if (F->getReturnType()->isVoidTy()) 792 continue; 793 794 // There is nothing to do if an argument is already marked as 'returned'. 795 if (llvm::any_of(F->args(), 796 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 797 continue; 798 799 auto FindRetArg = [&]() -> Value * { 800 Value *RetArg = nullptr; 801 for (BasicBlock &BB : *F) 802 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 803 // Note that stripPointerCasts should look through functions with 804 // returned arguments. 805 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 806 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 807 return nullptr; 808 809 if (!RetArg) 810 RetArg = RetVal; 811 else if (RetArg != RetVal) 812 return nullptr; 813 } 814 815 return RetArg; 816 }; 817 818 if (Value *RetArg = FindRetArg()) { 819 auto *A = cast<Argument>(RetArg); 820 A->addAttr(Attribute::Returned); 821 ++NumReturned; 822 Changed.insert(F); 823 } 824 } 825 } 826 827 /// If a callsite has arguments that are also arguments to the parent function, 828 /// try to propagate attributes from the callsite's arguments to the parent's 829 /// arguments. This may be important because inlining can cause information loss 830 /// when attribute knowledge disappears with the inlined call. 831 static bool addArgumentAttrsFromCallsites(Function &F) { 832 if (!EnableNonnullArgPropagation) 833 return false; 834 835 bool Changed = false; 836 837 // For an argument attribute to transfer from a callsite to the parent, the 838 // call must be guaranteed to execute every time the parent is called. 839 // Conservatively, just check for calls in the entry block that are guaranteed 840 // to execute. 841 // TODO: This could be enhanced by testing if the callsite post-dominates the 842 // entry block or by doing simple forward walks or backward walks to the 843 // callsite. 844 BasicBlock &Entry = F.getEntryBlock(); 845 for (Instruction &I : Entry) { 846 if (auto *CB = dyn_cast<CallBase>(&I)) { 847 if (auto *CalledFunc = CB->getCalledFunction()) { 848 for (auto &CSArg : CalledFunc->args()) { 849 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 850 continue; 851 852 // If the non-null callsite argument operand is an argument to 'F' 853 // (the caller) and the call is guaranteed to execute, then the value 854 // must be non-null throughout 'F'. 855 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 856 if (FArg && !FArg->hasNonNullAttr()) { 857 FArg->addAttr(Attribute::NonNull); 858 Changed = true; 859 } 860 } 861 } 862 } 863 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 864 break; 865 } 866 867 return Changed; 868 } 869 870 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 871 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 872 R == Attribute::WriteOnly) 873 && "Must be an access attribute."); 874 assert(A && "Argument must not be null."); 875 876 // If the argument already has the attribute, nothing needs to be done. 877 if (A->hasAttribute(R)) 878 return false; 879 880 // Otherwise, remove potentially conflicting attribute, add the new one, 881 // and update statistics. 882 A->removeAttr(Attribute::WriteOnly); 883 A->removeAttr(Attribute::ReadOnly); 884 A->removeAttr(Attribute::ReadNone); 885 A->addAttr(R); 886 if (R == Attribute::ReadOnly) 887 ++NumReadOnlyArg; 888 else if (R == Attribute::WriteOnly) 889 ++NumWriteOnlyArg; 890 else 891 ++NumReadNoneArg; 892 return true; 893 } 894 895 /// Deduce nocapture attributes for the SCC. 896 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 897 SmallSet<Function *, 8> &Changed) { 898 ArgumentGraph AG; 899 900 // Check each function in turn, determining which pointer arguments are not 901 // captured. 902 for (Function *F : SCCNodes) { 903 // We can infer and propagate function attributes only when we know that the 904 // definition we'll get at link time is *exactly* the definition we see now. 905 // For more details, see GlobalValue::mayBeDerefined. 906 if (!F->hasExactDefinition()) 907 continue; 908 909 if (addArgumentAttrsFromCallsites(*F)) 910 Changed.insert(F); 911 912 // Functions that are readonly (or readnone) and nounwind and don't return 913 // a value can't capture arguments. Don't analyze them. 914 if (F->onlyReadsMemory() && F->doesNotThrow() && 915 F->getReturnType()->isVoidTy()) { 916 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 917 ++A) { 918 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 919 A->addAttr(Attribute::NoCapture); 920 ++NumNoCapture; 921 Changed.insert(F); 922 } 923 } 924 continue; 925 } 926 927 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 928 ++A) { 929 if (!A->getType()->isPointerTy()) 930 continue; 931 bool HasNonLocalUses = false; 932 if (!A->hasNoCaptureAttr()) { 933 ArgumentUsesTracker Tracker(SCCNodes); 934 PointerMayBeCaptured(&*A, &Tracker); 935 if (!Tracker.Captured) { 936 if (Tracker.Uses.empty()) { 937 // If it's trivially not captured, mark it nocapture now. 938 A->addAttr(Attribute::NoCapture); 939 ++NumNoCapture; 940 Changed.insert(F); 941 } else { 942 // If it's not trivially captured and not trivially not captured, 943 // then it must be calling into another function in our SCC. Save 944 // its particulars for Argument-SCC analysis later. 945 ArgumentGraphNode *Node = AG[&*A]; 946 for (Argument *Use : Tracker.Uses) { 947 Node->Uses.push_back(AG[Use]); 948 if (Use != &*A) 949 HasNonLocalUses = true; 950 } 951 } 952 } 953 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 954 } 955 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 956 // Can we determine that it's readonly/readnone/writeonly without doing 957 // an SCC? Note that we don't allow any calls at all here, or else our 958 // result will be dependent on the iteration order through the 959 // functions in the SCC. 960 SmallPtrSet<Argument *, 8> Self; 961 Self.insert(&*A); 962 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 963 if (R != Attribute::None) 964 if (addAccessAttr(A, R)) 965 Changed.insert(F); 966 } 967 } 968 } 969 970 // The graph we've collected is partial because we stopped scanning for 971 // argument uses once we solved the argument trivially. These partial nodes 972 // show up as ArgumentGraphNode objects with an empty Uses list, and for 973 // these nodes the final decision about whether they capture has already been 974 // made. If the definition doesn't have a 'nocapture' attribute by now, it 975 // captures. 976 977 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 978 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 979 if (ArgumentSCC.size() == 1) { 980 if (!ArgumentSCC[0]->Definition) 981 continue; // synthetic root node 982 983 // eg. "void f(int* x) { if (...) f(x); }" 984 if (ArgumentSCC[0]->Uses.size() == 1 && 985 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 986 Argument *A = ArgumentSCC[0]->Definition; 987 A->addAttr(Attribute::NoCapture); 988 ++NumNoCapture; 989 Changed.insert(A->getParent()); 990 991 // Infer the access attributes given the new nocapture one 992 SmallPtrSet<Argument *, 8> Self; 993 Self.insert(&*A); 994 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 995 if (R != Attribute::None) 996 addAccessAttr(A, R); 997 } 998 continue; 999 } 1000 1001 bool SCCCaptured = false; 1002 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1003 I != E && !SCCCaptured; ++I) { 1004 ArgumentGraphNode *Node = *I; 1005 if (Node->Uses.empty()) { 1006 if (!Node->Definition->hasNoCaptureAttr()) 1007 SCCCaptured = true; 1008 } 1009 } 1010 if (SCCCaptured) 1011 continue; 1012 1013 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1014 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1015 // quickly looking up whether a given Argument is in this ArgumentSCC. 1016 for (ArgumentGraphNode *I : ArgumentSCC) { 1017 ArgumentSCCNodes.insert(I->Definition); 1018 } 1019 1020 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1021 I != E && !SCCCaptured; ++I) { 1022 ArgumentGraphNode *N = *I; 1023 for (ArgumentGraphNode *Use : N->Uses) { 1024 Argument *A = Use->Definition; 1025 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1026 continue; 1027 SCCCaptured = true; 1028 break; 1029 } 1030 } 1031 if (SCCCaptured) 1032 continue; 1033 1034 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1035 Argument *A = ArgumentSCC[i]->Definition; 1036 A->addAttr(Attribute::NoCapture); 1037 ++NumNoCapture; 1038 Changed.insert(A->getParent()); 1039 } 1040 1041 // We also want to compute readonly/readnone/writeonly. With a small number 1042 // of false negatives, we can assume that any pointer which is captured 1043 // isn't going to be provably readonly or readnone, since by definition 1044 // we can't analyze all uses of a captured pointer. 1045 // 1046 // The false negatives happen when the pointer is captured by a function 1047 // that promises readonly/readnone behaviour on the pointer, then the 1048 // pointer's lifetime ends before anything that writes to arbitrary memory. 1049 // Also, a readonly/readnone pointer may be returned, but returning a 1050 // pointer is capturing it. 1051 1052 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1053 if (A == B) 1054 return A; 1055 if (A == Attribute::ReadNone) 1056 return B; 1057 if (B == Attribute::ReadNone) 1058 return A; 1059 return Attribute::None; 1060 }; 1061 1062 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1063 for (unsigned i = 0, e = ArgumentSCC.size(); 1064 i != e && AccessAttr != Attribute::None; ++i) { 1065 Argument *A = ArgumentSCC[i]->Definition; 1066 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1067 AccessAttr = meetAccessAttr(AccessAttr, K); 1068 } 1069 1070 if (AccessAttr != Attribute::None) { 1071 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1072 Argument *A = ArgumentSCC[i]->Definition; 1073 if (addAccessAttr(A, AccessAttr)) 1074 Changed.insert(A->getParent()); 1075 } 1076 } 1077 } 1078 } 1079 1080 /// Tests whether a function is "malloc-like". 1081 /// 1082 /// A function is "malloc-like" if it returns either null or a pointer that 1083 /// doesn't alias any other pointer visible to the caller. 1084 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1085 SmallSetVector<Value *, 8> FlowsToReturn; 1086 for (BasicBlock &BB : *F) 1087 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1088 FlowsToReturn.insert(Ret->getReturnValue()); 1089 1090 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1091 Value *RetVal = FlowsToReturn[i]; 1092 1093 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1094 if (!C->isNullValue() && !isa<UndefValue>(C)) 1095 return false; 1096 1097 continue; 1098 } 1099 1100 if (isa<Argument>(RetVal)) 1101 return false; 1102 1103 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1104 switch (RVI->getOpcode()) { 1105 // Extend the analysis by looking upwards. 1106 case Instruction::BitCast: 1107 case Instruction::GetElementPtr: 1108 case Instruction::AddrSpaceCast: 1109 FlowsToReturn.insert(RVI->getOperand(0)); 1110 continue; 1111 case Instruction::Select: { 1112 SelectInst *SI = cast<SelectInst>(RVI); 1113 FlowsToReturn.insert(SI->getTrueValue()); 1114 FlowsToReturn.insert(SI->getFalseValue()); 1115 continue; 1116 } 1117 case Instruction::PHI: { 1118 PHINode *PN = cast<PHINode>(RVI); 1119 for (Value *IncValue : PN->incoming_values()) 1120 FlowsToReturn.insert(IncValue); 1121 continue; 1122 } 1123 1124 // Check whether the pointer came from an allocation. 1125 case Instruction::Alloca: 1126 break; 1127 case Instruction::Call: 1128 case Instruction::Invoke: { 1129 CallBase &CB = cast<CallBase>(*RVI); 1130 if (CB.hasRetAttr(Attribute::NoAlias)) 1131 break; 1132 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1133 break; 1134 LLVM_FALLTHROUGH; 1135 } 1136 default: 1137 return false; // Did not come from an allocation. 1138 } 1139 1140 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1141 return false; 1142 } 1143 1144 return true; 1145 } 1146 1147 /// Deduce noalias attributes for the SCC. 1148 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1149 SmallSet<Function *, 8> &Changed) { 1150 // Check each function in turn, determining which functions return noalias 1151 // pointers. 1152 for (Function *F : SCCNodes) { 1153 // Already noalias. 1154 if (F->returnDoesNotAlias()) 1155 continue; 1156 1157 // We can infer and propagate function attributes only when we know that the 1158 // definition we'll get at link time is *exactly* the definition we see now. 1159 // For more details, see GlobalValue::mayBeDerefined. 1160 if (!F->hasExactDefinition()) 1161 return; 1162 1163 // We annotate noalias return values, which are only applicable to 1164 // pointer types. 1165 if (!F->getReturnType()->isPointerTy()) 1166 continue; 1167 1168 if (!isFunctionMallocLike(F, SCCNodes)) 1169 return; 1170 } 1171 1172 for (Function *F : SCCNodes) { 1173 if (F->returnDoesNotAlias() || 1174 !F->getReturnType()->isPointerTy()) 1175 continue; 1176 1177 F->setReturnDoesNotAlias(); 1178 ++NumNoAlias; 1179 Changed.insert(F); 1180 } 1181 } 1182 1183 /// Tests whether this function is known to not return null. 1184 /// 1185 /// Requires that the function returns a pointer. 1186 /// 1187 /// Returns true if it believes the function will not return a null, and sets 1188 /// \p Speculative based on whether the returned conclusion is a speculative 1189 /// conclusion due to SCC calls. 1190 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1191 bool &Speculative) { 1192 assert(F->getReturnType()->isPointerTy() && 1193 "nonnull only meaningful on pointer types"); 1194 Speculative = false; 1195 1196 SmallSetVector<Value *, 8> FlowsToReturn; 1197 for (BasicBlock &BB : *F) 1198 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1199 FlowsToReturn.insert(Ret->getReturnValue()); 1200 1201 auto &DL = F->getParent()->getDataLayout(); 1202 1203 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1204 Value *RetVal = FlowsToReturn[i]; 1205 1206 // If this value is locally known to be non-null, we're good 1207 if (isKnownNonZero(RetVal, DL)) 1208 continue; 1209 1210 // Otherwise, we need to look upwards since we can't make any local 1211 // conclusions. 1212 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1213 if (!RVI) 1214 return false; 1215 switch (RVI->getOpcode()) { 1216 // Extend the analysis by looking upwards. 1217 case Instruction::BitCast: 1218 case Instruction::GetElementPtr: 1219 case Instruction::AddrSpaceCast: 1220 FlowsToReturn.insert(RVI->getOperand(0)); 1221 continue; 1222 case Instruction::Select: { 1223 SelectInst *SI = cast<SelectInst>(RVI); 1224 FlowsToReturn.insert(SI->getTrueValue()); 1225 FlowsToReturn.insert(SI->getFalseValue()); 1226 continue; 1227 } 1228 case Instruction::PHI: { 1229 PHINode *PN = cast<PHINode>(RVI); 1230 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1231 FlowsToReturn.insert(PN->getIncomingValue(i)); 1232 continue; 1233 } 1234 case Instruction::Call: 1235 case Instruction::Invoke: { 1236 CallBase &CB = cast<CallBase>(*RVI); 1237 Function *Callee = CB.getCalledFunction(); 1238 // A call to a node within the SCC is assumed to return null until 1239 // proven otherwise 1240 if (Callee && SCCNodes.count(Callee)) { 1241 Speculative = true; 1242 continue; 1243 } 1244 return false; 1245 } 1246 default: 1247 return false; // Unknown source, may be null 1248 }; 1249 llvm_unreachable("should have either continued or returned"); 1250 } 1251 1252 return true; 1253 } 1254 1255 /// Deduce nonnull attributes for the SCC. 1256 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1257 SmallSet<Function *, 8> &Changed) { 1258 // Speculative that all functions in the SCC return only nonnull 1259 // pointers. We may refute this as we analyze functions. 1260 bool SCCReturnsNonNull = true; 1261 1262 // Check each function in turn, determining which functions return nonnull 1263 // pointers. 1264 for (Function *F : SCCNodes) { 1265 // Already nonnull. 1266 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1267 continue; 1268 1269 // We can infer and propagate function attributes only when we know that the 1270 // definition we'll get at link time is *exactly* the definition we see now. 1271 // For more details, see GlobalValue::mayBeDerefined. 1272 if (!F->hasExactDefinition()) 1273 return; 1274 1275 // We annotate nonnull return values, which are only applicable to 1276 // pointer types. 1277 if (!F->getReturnType()->isPointerTy()) 1278 continue; 1279 1280 bool Speculative = false; 1281 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1282 if (!Speculative) { 1283 // Mark the function eagerly since we may discover a function 1284 // which prevents us from speculating about the entire SCC 1285 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1286 << " as nonnull\n"); 1287 F->addRetAttr(Attribute::NonNull); 1288 ++NumNonNullReturn; 1289 Changed.insert(F); 1290 } 1291 continue; 1292 } 1293 // At least one function returns something which could be null, can't 1294 // speculate any more. 1295 SCCReturnsNonNull = false; 1296 } 1297 1298 if (SCCReturnsNonNull) { 1299 for (Function *F : SCCNodes) { 1300 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1301 !F->getReturnType()->isPointerTy()) 1302 continue; 1303 1304 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1305 F->addRetAttr(Attribute::NonNull); 1306 ++NumNonNullReturn; 1307 Changed.insert(F); 1308 } 1309 } 1310 } 1311 1312 namespace { 1313 1314 /// Collects a set of attribute inference requests and performs them all in one 1315 /// go on a single SCC Node. Inference involves scanning function bodies 1316 /// looking for instructions that violate attribute assumptions. 1317 /// As soon as all the bodies are fine we are free to set the attribute. 1318 /// Customization of inference for individual attributes is performed by 1319 /// providing a handful of predicates for each attribute. 1320 class AttributeInferer { 1321 public: 1322 /// Describes a request for inference of a single attribute. 1323 struct InferenceDescriptor { 1324 1325 /// Returns true if this function does not have to be handled. 1326 /// General intent for this predicate is to provide an optimization 1327 /// for functions that do not need this attribute inference at all 1328 /// (say, for functions that already have the attribute). 1329 std::function<bool(const Function &)> SkipFunction; 1330 1331 /// Returns true if this instruction violates attribute assumptions. 1332 std::function<bool(Instruction &)> InstrBreaksAttribute; 1333 1334 /// Sets the inferred attribute for this function. 1335 std::function<void(Function &)> SetAttribute; 1336 1337 /// Attribute we derive. 1338 Attribute::AttrKind AKind; 1339 1340 /// If true, only "exact" definitions can be used to infer this attribute. 1341 /// See GlobalValue::isDefinitionExact. 1342 bool RequiresExactDefinition; 1343 1344 InferenceDescriptor(Attribute::AttrKind AK, 1345 std::function<bool(const Function &)> SkipFunc, 1346 std::function<bool(Instruction &)> InstrScan, 1347 std::function<void(Function &)> SetAttr, 1348 bool ReqExactDef) 1349 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1350 SetAttribute(SetAttr), AKind(AK), 1351 RequiresExactDefinition(ReqExactDef) {} 1352 }; 1353 1354 private: 1355 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1356 1357 public: 1358 void registerAttrInference(InferenceDescriptor AttrInference) { 1359 InferenceDescriptors.push_back(AttrInference); 1360 } 1361 1362 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1363 }; 1364 1365 /// Perform all the requested attribute inference actions according to the 1366 /// attribute predicates stored before. 1367 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1368 SmallSet<Function *, 8> &Changed) { 1369 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1370 // Go through all the functions in SCC and check corresponding attribute 1371 // assumptions for each of them. Attributes that are invalid for this SCC 1372 // will be removed from InferInSCC. 1373 for (Function *F : SCCNodes) { 1374 1375 // No attributes whose assumptions are still valid - done. 1376 if (InferInSCC.empty()) 1377 return; 1378 1379 // Check if our attributes ever need scanning/can be scanned. 1380 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1381 if (ID.SkipFunction(*F)) 1382 return false; 1383 1384 // Remove from further inference (invalidate) when visiting a function 1385 // that has no instructions to scan/has an unsuitable definition. 1386 return F->isDeclaration() || 1387 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1388 }); 1389 1390 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1391 // set up the F instructions scan to verify assumptions of the attribute. 1392 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1393 llvm::copy_if( 1394 InferInSCC, std::back_inserter(InferInThisFunc), 1395 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1396 1397 if (InferInThisFunc.empty()) 1398 continue; 1399 1400 // Start instruction scan. 1401 for (Instruction &I : instructions(*F)) { 1402 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1403 if (!ID.InstrBreaksAttribute(I)) 1404 return false; 1405 // Remove attribute from further inference on any other functions 1406 // because attribute assumptions have just been violated. 1407 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1408 return D.AKind == ID.AKind; 1409 }); 1410 // Remove attribute from the rest of current instruction scan. 1411 return true; 1412 }); 1413 1414 if (InferInThisFunc.empty()) 1415 break; 1416 } 1417 } 1418 1419 if (InferInSCC.empty()) 1420 return; 1421 1422 for (Function *F : SCCNodes) 1423 // At this point InferInSCC contains only functions that were either: 1424 // - explicitly skipped from scan/inference, or 1425 // - verified to have no instructions that break attribute assumptions. 1426 // Hence we just go and force the attribute for all non-skipped functions. 1427 for (auto &ID : InferInSCC) { 1428 if (ID.SkipFunction(*F)) 1429 continue; 1430 Changed.insert(F); 1431 ID.SetAttribute(*F); 1432 } 1433 } 1434 1435 struct SCCNodesResult { 1436 SCCNodeSet SCCNodes; 1437 bool HasUnknownCall; 1438 }; 1439 1440 } // end anonymous namespace 1441 1442 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1443 static bool InstrBreaksNonConvergent(Instruction &I, 1444 const SCCNodeSet &SCCNodes) { 1445 const CallBase *CB = dyn_cast<CallBase>(&I); 1446 // Breaks non-convergent assumption if CS is a convergent call to a function 1447 // not in the SCC. 1448 return CB && CB->isConvergent() && 1449 !SCCNodes.contains(CB->getCalledFunction()); 1450 } 1451 1452 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1453 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1454 if (!I.mayThrow()) 1455 return false; 1456 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1457 if (Function *Callee = CI->getCalledFunction()) { 1458 // I is a may-throw call to a function inside our SCC. This doesn't 1459 // invalidate our current working assumption that the SCC is no-throw; we 1460 // just have to scan that other function. 1461 if (SCCNodes.contains(Callee)) 1462 return false; 1463 } 1464 } 1465 return true; 1466 } 1467 1468 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1469 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1470 CallBase *CB = dyn_cast<CallBase>(&I); 1471 if (!CB) 1472 return false; 1473 1474 if (CB->hasFnAttr(Attribute::NoFree)) 1475 return false; 1476 1477 // Speculatively assume in SCC. 1478 if (Function *Callee = CB->getCalledFunction()) 1479 if (SCCNodes.contains(Callee)) 1480 return false; 1481 1482 return true; 1483 } 1484 1485 /// Attempt to remove convergent function attribute when possible. 1486 /// 1487 /// Returns true if any changes to function attributes were made. 1488 static void inferConvergent(const SCCNodeSet &SCCNodes, 1489 SmallSet<Function *, 8> &Changed) { 1490 AttributeInferer AI; 1491 1492 // Request to remove the convergent attribute from all functions in the SCC 1493 // if every callsite within the SCC is not convergent (except for calls 1494 // to functions within the SCC). 1495 // Note: Removal of the attr from the callsites will happen in 1496 // InstCombineCalls separately. 1497 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1498 Attribute::Convergent, 1499 // Skip non-convergent functions. 1500 [](const Function &F) { return !F.isConvergent(); }, 1501 // Instructions that break non-convergent assumption. 1502 [SCCNodes](Instruction &I) { 1503 return InstrBreaksNonConvergent(I, SCCNodes); 1504 }, 1505 [](Function &F) { 1506 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1507 << "\n"); 1508 F.setNotConvergent(); 1509 }, 1510 /* RequiresExactDefinition= */ false}); 1511 // Perform all the requested attribute inference actions. 1512 AI.run(SCCNodes, Changed); 1513 } 1514 1515 /// Infer attributes from all functions in the SCC by scanning every 1516 /// instruction for compliance to the attribute assumptions. Currently it 1517 /// does: 1518 /// - addition of NoUnwind attribute 1519 /// 1520 /// Returns true if any changes to function attributes were made. 1521 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1522 SmallSet<Function *, 8> &Changed) { 1523 AttributeInferer AI; 1524 1525 if (!DisableNoUnwindInference) 1526 // Request to infer nounwind attribute for all the functions in the SCC if 1527 // every callsite within the SCC is not throwing (except for calls to 1528 // functions within the SCC). Note that nounwind attribute suffers from 1529 // derefinement - results may change depending on how functions are 1530 // optimized. Thus it can be inferred only from exact definitions. 1531 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1532 Attribute::NoUnwind, 1533 // Skip non-throwing functions. 1534 [](const Function &F) { return F.doesNotThrow(); }, 1535 // Instructions that break non-throwing assumption. 1536 [&SCCNodes](Instruction &I) { 1537 return InstrBreaksNonThrowing(I, SCCNodes); 1538 }, 1539 [](Function &F) { 1540 LLVM_DEBUG(dbgs() 1541 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1542 F.setDoesNotThrow(); 1543 ++NumNoUnwind; 1544 }, 1545 /* RequiresExactDefinition= */ true}); 1546 1547 if (!DisableNoFreeInference) 1548 // Request to infer nofree attribute for all the functions in the SCC if 1549 // every callsite within the SCC does not directly or indirectly free 1550 // memory (except for calls to functions within the SCC). Note that nofree 1551 // attribute suffers from derefinement - results may change depending on 1552 // how functions are optimized. Thus it can be inferred only from exact 1553 // definitions. 1554 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1555 Attribute::NoFree, 1556 // Skip functions known not to free memory. 1557 [](const Function &F) { return F.doesNotFreeMemory(); }, 1558 // Instructions that break non-deallocating assumption. 1559 [&SCCNodes](Instruction &I) { 1560 return InstrBreaksNoFree(I, SCCNodes); 1561 }, 1562 [](Function &F) { 1563 LLVM_DEBUG(dbgs() 1564 << "Adding nofree attr to fn " << F.getName() << "\n"); 1565 F.setDoesNotFreeMemory(); 1566 ++NumNoFree; 1567 }, 1568 /* RequiresExactDefinition= */ true}); 1569 1570 // Perform all the requested attribute inference actions. 1571 AI.run(SCCNodes, Changed); 1572 } 1573 1574 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1575 SmallSet<Function *, 8> &Changed) { 1576 // Try and identify functions that do not recurse. 1577 1578 // If the SCC contains multiple nodes we know for sure there is recursion. 1579 if (SCCNodes.size() != 1) 1580 return; 1581 1582 Function *F = *SCCNodes.begin(); 1583 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1584 return; 1585 1586 // If all of the calls in F are identifiable and are to norecurse functions, F 1587 // is norecurse. This check also detects self-recursion as F is not currently 1588 // marked norecurse, so any called from F to F will not be marked norecurse. 1589 for (auto &BB : *F) 1590 for (auto &I : BB.instructionsWithoutDebug()) 1591 if (auto *CB = dyn_cast<CallBase>(&I)) { 1592 Function *Callee = CB->getCalledFunction(); 1593 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1594 // Function calls a potentially recursive function. 1595 return; 1596 } 1597 1598 // Every call was to a non-recursive function other than this function, and 1599 // we have no indirect recursion as the SCC size is one. This function cannot 1600 // recurse. 1601 F->setDoesNotRecurse(); 1602 ++NumNoRecurse; 1603 Changed.insert(F); 1604 } 1605 1606 static bool instructionDoesNotReturn(Instruction &I) { 1607 if (auto *CB = dyn_cast<CallBase>(&I)) 1608 return CB->hasFnAttr(Attribute::NoReturn); 1609 return false; 1610 } 1611 1612 // A basic block can only return if it terminates with a ReturnInst and does not 1613 // contain calls to noreturn functions. 1614 static bool basicBlockCanReturn(BasicBlock &BB) { 1615 if (!isa<ReturnInst>(BB.getTerminator())) 1616 return false; 1617 return none_of(BB, instructionDoesNotReturn); 1618 } 1619 1620 // Set the noreturn function attribute if possible. 1621 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1622 SmallSet<Function *, 8> &Changed) { 1623 for (Function *F : SCCNodes) { 1624 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1625 F->doesNotReturn()) 1626 continue; 1627 1628 // The function can return if any basic blocks can return. 1629 // FIXME: this doesn't handle recursion or unreachable blocks. 1630 if (none_of(*F, basicBlockCanReturn)) { 1631 F->setDoesNotReturn(); 1632 Changed.insert(F); 1633 } 1634 } 1635 } 1636 1637 static bool functionWillReturn(const Function &F) { 1638 // We can infer and propagate function attributes only when we know that the 1639 // definition we'll get at link time is *exactly* the definition we see now. 1640 // For more details, see GlobalValue::mayBeDerefined. 1641 if (!F.hasExactDefinition()) 1642 return false; 1643 1644 // Must-progress function without side-effects must return. 1645 if (F.mustProgress() && F.onlyReadsMemory()) 1646 return true; 1647 1648 // Can only analyze functions with a definition. 1649 if (F.isDeclaration()) 1650 return false; 1651 1652 // Functions with loops require more sophisticated analysis, as the loop 1653 // may be infinite. For now, don't try to handle them. 1654 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1655 FindFunctionBackedges(F, Backedges); 1656 if (!Backedges.empty()) 1657 return false; 1658 1659 // If there are no loops, then the function is willreturn if all calls in 1660 // it are willreturn. 1661 return all_of(instructions(F), [](const Instruction &I) { 1662 return I.willReturn(); 1663 }); 1664 } 1665 1666 // Set the willreturn function attribute if possible. 1667 static void addWillReturn(const SCCNodeSet &SCCNodes, 1668 SmallSet<Function *, 8> &Changed) { 1669 for (Function *F : SCCNodes) { 1670 if (!F || F->willReturn() || !functionWillReturn(*F)) 1671 continue; 1672 1673 F->setWillReturn(); 1674 NumWillReturn++; 1675 Changed.insert(F); 1676 } 1677 } 1678 1679 // Return true if this is an atomic which has an ordering stronger than 1680 // unordered. Note that this is different than the predicate we use in 1681 // Attributor. Here we chose to be conservative and consider monotonic 1682 // operations potentially synchronizing. We generally don't do much with 1683 // monotonic operations, so this is simply risk reduction. 1684 static bool isOrderedAtomic(Instruction *I) { 1685 if (!I->isAtomic()) 1686 return false; 1687 1688 if (auto *FI = dyn_cast<FenceInst>(I)) 1689 // All legal orderings for fence are stronger than monotonic. 1690 return FI->getSyncScopeID() != SyncScope::SingleThread; 1691 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1692 return true; 1693 else if (auto *SI = dyn_cast<StoreInst>(I)) 1694 return !SI->isUnordered(); 1695 else if (auto *LI = dyn_cast<LoadInst>(I)) 1696 return !LI->isUnordered(); 1697 else { 1698 llvm_unreachable("unknown atomic instruction?"); 1699 } 1700 } 1701 1702 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1703 // Volatile may synchronize 1704 if (I.isVolatile()) 1705 return true; 1706 1707 // An ordered atomic may synchronize. (See comment about on monotonic.) 1708 if (isOrderedAtomic(&I)) 1709 return true; 1710 1711 auto *CB = dyn_cast<CallBase>(&I); 1712 if (!CB) 1713 // Non call site cases covered by the two checks above 1714 return false; 1715 1716 if (CB->hasFnAttr(Attribute::NoSync)) 1717 return false; 1718 1719 // Non volatile memset/memcpy/memmoves are nosync 1720 // NOTE: Only intrinsics with volatile flags should be handled here. All 1721 // others should be marked in Intrinsics.td. 1722 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1723 if (!MI->isVolatile()) 1724 return false; 1725 1726 // Speculatively assume in SCC. 1727 if (Function *Callee = CB->getCalledFunction()) 1728 if (SCCNodes.contains(Callee)) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 // Infer the nosync attribute. 1735 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1736 SmallSet<Function *, 8> &Changed) { 1737 AttributeInferer AI; 1738 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1739 Attribute::NoSync, 1740 // Skip already marked functions. 1741 [](const Function &F) { return F.hasNoSync(); }, 1742 // Instructions that break nosync assumption. 1743 [&SCCNodes](Instruction &I) { 1744 return InstrBreaksNoSync(I, SCCNodes); 1745 }, 1746 [](Function &F) { 1747 LLVM_DEBUG(dbgs() 1748 << "Adding nosync attr to fn " << F.getName() << "\n"); 1749 F.setNoSync(); 1750 ++NumNoSync; 1751 }, 1752 /* RequiresExactDefinition= */ true}); 1753 AI.run(SCCNodes, Changed); 1754 } 1755 1756 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1757 SCCNodesResult Res; 1758 Res.HasUnknownCall = false; 1759 for (Function *F : Functions) { 1760 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1761 F->isPresplitCoroutine()) { 1762 // Treat any function we're trying not to optimize as if it were an 1763 // indirect call and omit it from the node set used below. 1764 Res.HasUnknownCall = true; 1765 continue; 1766 } 1767 // Track whether any functions in this SCC have an unknown call edge. 1768 // Note: if this is ever a performance hit, we can common it with 1769 // subsequent routines which also do scans over the instructions of the 1770 // function. 1771 if (!Res.HasUnknownCall) { 1772 for (Instruction &I : instructions(*F)) { 1773 if (auto *CB = dyn_cast<CallBase>(&I)) { 1774 if (!CB->getCalledFunction()) { 1775 Res.HasUnknownCall = true; 1776 break; 1777 } 1778 } 1779 } 1780 } 1781 Res.SCCNodes.insert(F); 1782 } 1783 return Res; 1784 } 1785 1786 template <typename AARGetterT> 1787 static SmallSet<Function *, 8> 1788 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1789 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1790 1791 // Bail if the SCC only contains optnone functions. 1792 if (Nodes.SCCNodes.empty()) 1793 return {}; 1794 1795 SmallSet<Function *, 8> Changed; 1796 1797 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1798 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1799 addArgumentAttrs(Nodes.SCCNodes, Changed); 1800 inferConvergent(Nodes.SCCNodes, Changed); 1801 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1802 addWillReturn(Nodes.SCCNodes, Changed); 1803 1804 // If we have no external nodes participating in the SCC, we can deduce some 1805 // more precise attributes as well. 1806 if (!Nodes.HasUnknownCall) { 1807 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1808 addNonNullAttrs(Nodes.SCCNodes, Changed); 1809 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1810 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1811 } 1812 1813 addNoSyncAttr(Nodes.SCCNodes, Changed); 1814 1815 // Finally, infer the maximal set of attributes from the ones we've inferred 1816 // above. This is handling the cases where one attribute on a signature 1817 // implies another, but for implementation reasons the inference rule for 1818 // the later is missing (or simply less sophisticated). 1819 for (Function *F : Nodes.SCCNodes) 1820 if (F) 1821 if (inferAttributesFromOthers(*F)) 1822 Changed.insert(F); 1823 1824 return Changed; 1825 } 1826 1827 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1828 CGSCCAnalysisManager &AM, 1829 LazyCallGraph &CG, 1830 CGSCCUpdateResult &) { 1831 FunctionAnalysisManager &FAM = 1832 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1833 1834 // We pass a lambda into functions to wire them up to the analysis manager 1835 // for getting function analyses. 1836 auto AARGetter = [&](Function &F) -> AAResults & { 1837 return FAM.getResult<AAManager>(F); 1838 }; 1839 1840 SmallVector<Function *, 8> Functions; 1841 for (LazyCallGraph::Node &N : C) { 1842 Functions.push_back(&N.getFunction()); 1843 } 1844 1845 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1846 if (ChangedFunctions.empty()) 1847 return PreservedAnalyses::all(); 1848 1849 // Invalidate analyses for modified functions so that we don't have to 1850 // invalidate all analyses for all functions in this SCC. 1851 PreservedAnalyses FuncPA; 1852 // We haven't changed the CFG for modified functions. 1853 FuncPA.preserveSet<CFGAnalyses>(); 1854 for (Function *Changed : ChangedFunctions) { 1855 FAM.invalidate(*Changed, FuncPA); 1856 // Also invalidate any direct callers of changed functions since analyses 1857 // may care about attributes of direct callees. For example, MemorySSA cares 1858 // about whether or not a call's callee modifies memory and queries that 1859 // through function attributes. 1860 for (auto *U : Changed->users()) { 1861 if (auto *Call = dyn_cast<CallBase>(U)) { 1862 if (Call->getCalledFunction() == Changed) 1863 FAM.invalidate(*Call->getFunction(), FuncPA); 1864 } 1865 } 1866 } 1867 1868 PreservedAnalyses PA; 1869 // We have not added or removed functions. 1870 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1871 // We already invalidated all relevant function analyses above. 1872 PA.preserveSet<AllAnalysesOn<Function>>(); 1873 return PA; 1874 } 1875 1876 namespace { 1877 1878 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1879 // Pass identification, replacement for typeid 1880 static char ID; 1881 1882 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1883 initializePostOrderFunctionAttrsLegacyPassPass( 1884 *PassRegistry::getPassRegistry()); 1885 } 1886 1887 bool runOnSCC(CallGraphSCC &SCC) override; 1888 1889 void getAnalysisUsage(AnalysisUsage &AU) const override { 1890 AU.setPreservesCFG(); 1891 AU.addRequired<AssumptionCacheTracker>(); 1892 getAAResultsAnalysisUsage(AU); 1893 CallGraphSCCPass::getAnalysisUsage(AU); 1894 } 1895 }; 1896 1897 } // end anonymous namespace 1898 1899 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1900 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1901 "Deduce function attributes", false, false) 1902 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1903 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1904 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1905 "Deduce function attributes", false, false) 1906 1907 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1908 return new PostOrderFunctionAttrsLegacyPass(); 1909 } 1910 1911 template <typename AARGetterT> 1912 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1913 SmallVector<Function *, 8> Functions; 1914 for (CallGraphNode *I : SCC) { 1915 Functions.push_back(I->getFunction()); 1916 } 1917 1918 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1919 } 1920 1921 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1922 if (skipSCC(SCC)) 1923 return false; 1924 return runImpl(SCC, LegacyAARGetter(*this)); 1925 } 1926 1927 namespace { 1928 1929 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1930 // Pass identification, replacement for typeid 1931 static char ID; 1932 1933 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1934 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1935 *PassRegistry::getPassRegistry()); 1936 } 1937 1938 bool runOnModule(Module &M) override; 1939 1940 void getAnalysisUsage(AnalysisUsage &AU) const override { 1941 AU.setPreservesCFG(); 1942 AU.addRequired<CallGraphWrapperPass>(); 1943 AU.addPreserved<CallGraphWrapperPass>(); 1944 } 1945 }; 1946 1947 } // end anonymous namespace 1948 1949 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1950 1951 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1952 "rpo-function-attrs", "Deduce function attributes in RPO", 1953 false, false) 1954 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1955 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1956 "rpo-function-attrs", "Deduce function attributes in RPO", 1957 false, false) 1958 1959 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1960 return new ReversePostOrderFunctionAttrsLegacyPass(); 1961 } 1962 1963 static bool addNoRecurseAttrsTopDown(Function &F) { 1964 // We check the preconditions for the function prior to calling this to avoid 1965 // the cost of building up a reversible post-order list. We assert them here 1966 // to make sure none of the invariants this relies on were violated. 1967 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1968 assert(!F.doesNotRecurse() && 1969 "This function has already been deduced as norecurs!"); 1970 assert(F.hasInternalLinkage() && 1971 "Can only do top-down deduction for internal linkage functions!"); 1972 1973 // If F is internal and all of its uses are calls from a non-recursive 1974 // functions, then none of its calls could in fact recurse without going 1975 // through a function marked norecurse, and so we can mark this function too 1976 // as norecurse. Note that the uses must actually be calls -- otherwise 1977 // a pointer to this function could be returned from a norecurse function but 1978 // this function could be recursively (indirectly) called. Note that this 1979 // also detects if F is directly recursive as F is not yet marked as 1980 // a norecurse function. 1981 for (auto *U : F.users()) { 1982 auto *I = dyn_cast<Instruction>(U); 1983 if (!I) 1984 return false; 1985 CallBase *CB = dyn_cast<CallBase>(I); 1986 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1987 return false; 1988 } 1989 F.setDoesNotRecurse(); 1990 ++NumNoRecurse; 1991 return true; 1992 } 1993 1994 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1995 // We only have a post-order SCC traversal (because SCCs are inherently 1996 // discovered in post-order), so we accumulate them in a vector and then walk 1997 // it in reverse. This is simpler than using the RPO iterator infrastructure 1998 // because we need to combine SCC detection and the PO walk of the call 1999 // graph. We can also cheat egregiously because we're primarily interested in 2000 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2001 // with multiple functions in them will clearly be recursive. 2002 SmallVector<Function *, 16> Worklist; 2003 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2004 if (I->size() != 1) 2005 continue; 2006 2007 Function *F = I->front()->getFunction(); 2008 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2009 F->hasInternalLinkage()) 2010 Worklist.push_back(F); 2011 } 2012 2013 bool Changed = false; 2014 for (auto *F : llvm::reverse(Worklist)) 2015 Changed |= addNoRecurseAttrsTopDown(*F); 2016 2017 return Changed; 2018 } 2019 2020 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2021 if (skipModule(M)) 2022 return false; 2023 2024 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2025 2026 return deduceFunctionAttributeInRPO(M, CG); 2027 } 2028 2029 PreservedAnalyses 2030 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2031 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2032 2033 if (!deduceFunctionAttributeInRPO(M, CG)) 2034 return PreservedAnalyses::all(); 2035 2036 PreservedAnalyses PA; 2037 PA.preserve<CallGraphAnalysis>(); 2038 return PA; 2039 } 2040