1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 80 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 81 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 82 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 83 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 84 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 85 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 86 87 STATISTIC(NumThinLinkNoRecurse, 88 "Number of functions marked as norecurse during thinlink"); 89 STATISTIC(NumThinLinkNoUnwind, 90 "Number of functions marked as nounwind during thinlink"); 91 92 static cl::opt<bool> EnableNonnullArgPropagation( 93 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 94 cl::desc("Try to propagate nonnull argument attributes from callsites to " 95 "caller functions.")); 96 97 static cl::opt<bool> DisableNoUnwindInference( 98 "disable-nounwind-inference", cl::Hidden, 99 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 100 101 static cl::opt<bool> DisableNoFreeInference( 102 "disable-nofree-inference", cl::Hidden, 103 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 104 105 static cl::opt<bool> DisableThinLTOPropagation( 106 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 107 cl::desc("Don't propagate function-attrs in thinLTO")); 108 109 namespace { 110 111 using SCCNodeSet = SmallSetVector<Function *, 8>; 112 113 } // end anonymous namespace 114 115 /// Returns the memory access attribute for function F using AAR for AA results, 116 /// where SCCNodes is the current SCC. 117 /// 118 /// If ThisBody is true, this function may examine the function body and will 119 /// return a result pertaining to this copy of the function. If it is false, the 120 /// result will be based only on AA results for the function declaration; it 121 /// will be assumed that some other (perhaps less optimized) version of the 122 /// function may be selected at link time. 123 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 124 AAResults &AAR, 125 const SCCNodeSet &SCCNodes) { 126 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 127 if (MRB == FMRB_DoesNotAccessMemory) 128 // Already perfect! 129 return MAK_ReadNone; 130 131 if (!ThisBody) { 132 if (AliasAnalysis::onlyReadsMemory(MRB)) 133 return MAK_ReadOnly; 134 135 if (AliasAnalysis::doesNotReadMemory(MRB)) 136 return MAK_WriteOnly; 137 138 // Conservatively assume it reads and writes to memory. 139 return MAK_MayWrite; 140 } 141 142 // Scan the function body for instructions that may read or write memory. 143 bool ReadsMemory = false; 144 bool WritesMemory = false; 145 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 146 Instruction *I = &*II; 147 148 // Some instructions can be ignored even if they read or write memory. 149 // Detect these now, skipping to the next instruction if one is found. 150 if (auto *Call = dyn_cast<CallBase>(I)) { 151 // Ignore calls to functions in the same SCC, as long as the call sites 152 // don't have operand bundles. Calls with operand bundles are allowed to 153 // have memory effects not described by the memory effects of the call 154 // target. 155 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 156 SCCNodes.count(Call->getCalledFunction())) 157 continue; 158 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 159 ModRefInfo MRI = createModRefInfo(MRB); 160 161 // If the call doesn't access memory, we're done. 162 if (isNoModRef(MRI)) 163 continue; 164 165 // A pseudo probe call shouldn't change any function attribute since it 166 // doesn't translate to a real instruction. It comes with a memory access 167 // tag to prevent itself being removed by optimizations and not block 168 // other instructions being optimized. 169 if (isa<PseudoProbeInst>(I)) 170 continue; 171 172 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 173 // The call could access any memory. If that includes writes, note it. 174 if (isModSet(MRI)) 175 WritesMemory = true; 176 // If it reads, note it. 177 if (isRefSet(MRI)) 178 ReadsMemory = true; 179 continue; 180 } 181 182 // Check whether all pointer arguments point to local memory, and 183 // ignore calls that only access local memory. 184 for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) { 185 Value *Arg = *CI; 186 if (!Arg->getType()->isPtrOrPtrVectorTy()) 187 continue; 188 189 MemoryLocation Loc = 190 MemoryLocation::getBeforeOrAfter(Arg, I->getAAMetadata()); 191 192 // Skip accesses to local or constant memory as they don't impact the 193 // externally visible mod/ref behavior. 194 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 195 continue; 196 197 if (isModSet(MRI)) 198 // Writes non-local memory. 199 WritesMemory = true; 200 if (isRefSet(MRI)) 201 // Ok, it reads non-local memory. 202 ReadsMemory = true; 203 } 204 continue; 205 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 206 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 207 if (!LI->isVolatile()) { 208 MemoryLocation Loc = MemoryLocation::get(LI); 209 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 210 continue; 211 } 212 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 213 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 214 if (!SI->isVolatile()) { 215 MemoryLocation Loc = MemoryLocation::get(SI); 216 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 217 continue; 218 } 219 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { 220 // Ignore vaargs on local memory. 221 MemoryLocation Loc = MemoryLocation::get(VI); 222 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 223 continue; 224 } 225 226 // Any remaining instructions need to be taken seriously! Check if they 227 // read or write memory. 228 // 229 // Writes memory, remember that. 230 WritesMemory |= I->mayWriteToMemory(); 231 232 // If this instruction may read memory, remember that. 233 ReadsMemory |= I->mayReadFromMemory(); 234 } 235 236 if (WritesMemory) { 237 if (!ReadsMemory) 238 return MAK_WriteOnly; 239 else 240 return MAK_MayWrite; 241 } 242 243 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 244 } 245 246 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 247 AAResults &AAR) { 248 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 249 } 250 251 /// Deduce readonly/readnone attributes for the SCC. 252 template <typename AARGetterT> 253 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 254 SmallSet<Function *, 8> &Changed) { 255 // Check if any of the functions in the SCC read or write memory. If they 256 // write memory then they can't be marked readnone or readonly. 257 bool ReadsMemory = false; 258 bool WritesMemory = false; 259 for (Function *F : SCCNodes) { 260 // Call the callable parameter to look up AA results for this function. 261 AAResults &AAR = AARGetter(*F); 262 263 // Non-exact function definitions may not be selected at link time, and an 264 // alternative version that writes to memory may be selected. See the 265 // comment on GlobalValue::isDefinitionExact for more details. 266 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 267 AAR, SCCNodes)) { 268 case MAK_MayWrite: 269 return; 270 case MAK_ReadOnly: 271 ReadsMemory = true; 272 break; 273 case MAK_WriteOnly: 274 WritesMemory = true; 275 break; 276 case MAK_ReadNone: 277 // Nothing to do! 278 break; 279 } 280 } 281 282 // If the SCC contains both functions that read and functions that write, then 283 // we cannot add readonly attributes. 284 if (ReadsMemory && WritesMemory) 285 return; 286 287 // Success! Functions in this SCC do not access memory, or only read memory. 288 // Give them the appropriate attribute. 289 290 for (Function *F : SCCNodes) { 291 if (F->doesNotAccessMemory()) 292 // Already perfect! 293 continue; 294 295 if (F->onlyReadsMemory() && ReadsMemory) 296 // No change. 297 continue; 298 299 if (F->doesNotReadMemory() && WritesMemory) 300 continue; 301 302 Changed.insert(F); 303 304 // Clear out any existing attributes. 305 AttrBuilder AttrsToRemove; 306 AttrsToRemove.addAttribute(Attribute::ReadOnly); 307 AttrsToRemove.addAttribute(Attribute::ReadNone); 308 AttrsToRemove.addAttribute(Attribute::WriteOnly); 309 310 if (!WritesMemory && !ReadsMemory) { 311 // Clear out any "access range attributes" if readnone was deduced. 312 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 314 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 315 } 316 F->removeFnAttrs(AttrsToRemove); 317 318 // Add in the new attribute. 319 if (WritesMemory && !ReadsMemory) 320 F->addFnAttr(Attribute::WriteOnly); 321 else 322 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 323 324 if (WritesMemory && !ReadsMemory) 325 ++NumWriteOnly; 326 else if (ReadsMemory) 327 ++NumReadOnly; 328 else 329 ++NumReadNone; 330 } 331 } 332 333 // Compute definitive function attributes for a function taking into account 334 // prevailing definitions and linkage types 335 static FunctionSummary *calculatePrevailingSummary( 336 ValueInfo VI, 337 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 338 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 339 IsPrevailing) { 340 341 if (CachedPrevailingSummary.count(VI)) 342 return CachedPrevailingSummary[VI]; 343 344 /// At this point, prevailing symbols have been resolved. The following leads 345 /// to returning a conservative result: 346 /// - Multiple instances with local linkage. Normally local linkage would be 347 /// unique per module 348 /// as the GUID includes the module path. We could have a guid alias if 349 /// there wasn't any distinguishing path when each file was compiled, but 350 /// that should be rare so we'll punt on those. 351 352 /// These next 2 cases should not happen and will assert: 353 /// - Multiple instances with external linkage. This should be caught in 354 /// symbol resolution 355 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 356 /// knowledge meaning we have to go conservative. 357 358 /// Otherwise, we calculate attributes for a function as: 359 /// 1. If we have a local linkage, take its attributes. If there's somehow 360 /// multiple, bail and go conservative. 361 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 362 /// prevailing, take its attributes. 363 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 364 /// differences. However, if the prevailing copy is known it will be used 365 /// so take its attributes. If the prevailing copy is in a native file 366 /// all IR copies will be dead and propagation will go conservative. 367 /// 4. AvailableExternally summaries without a prevailing copy are known to 368 /// occur in a couple of circumstances: 369 /// a. An internal function gets imported due to its caller getting 370 /// imported, it becomes AvailableExternally but no prevailing 371 /// definition exists. Because it has to get imported along with its 372 /// caller the attributes will be captured by propagating on its 373 /// caller. 374 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 375 /// definitions of explicitly instanced template declarations 376 /// for inlining which are ultimately dropped from the TU. Since this 377 /// is localized to the TU the attributes will have already made it to 378 /// the callers. 379 /// These are edge cases and already captured by their callers so we 380 /// ignore these for now. If they become relevant to optimize in the 381 /// future this can be revisited. 382 /// 5. Otherwise, go conservative. 383 384 CachedPrevailingSummary[VI] = nullptr; 385 FunctionSummary *Local = nullptr; 386 FunctionSummary *Prevailing = nullptr; 387 388 for (const auto &GVS : VI.getSummaryList()) { 389 if (!GVS->isLive()) 390 continue; 391 392 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 393 // Virtual and Unknown (e.g. indirect) calls require going conservative 394 if (!FS || FS->fflags().HasUnknownCall) 395 return nullptr; 396 397 const auto &Linkage = GVS->linkage(); 398 if (GlobalValue::isLocalLinkage(Linkage)) { 399 if (Local) { 400 LLVM_DEBUG( 401 dbgs() 402 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 403 "function " 404 << VI.name() << " from " << FS->modulePath() << ". Previous module " 405 << Local->modulePath() << "\n"); 406 return nullptr; 407 } 408 Local = FS; 409 } else if (GlobalValue::isExternalLinkage(Linkage)) { 410 assert(IsPrevailing(VI.getGUID(), GVS.get())); 411 Prevailing = FS; 412 break; 413 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 414 GlobalValue::isLinkOnceODRLinkage(Linkage) || 415 GlobalValue::isWeakAnyLinkage(Linkage) || 416 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 417 if (IsPrevailing(VI.getGUID(), GVS.get())) { 418 Prevailing = FS; 419 break; 420 } 421 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 422 // TODO: Handle these cases if they become meaningful 423 continue; 424 } 425 } 426 427 if (Local) { 428 assert(!Prevailing); 429 CachedPrevailingSummary[VI] = Local; 430 } else if (Prevailing) { 431 assert(!Local); 432 CachedPrevailingSummary[VI] = Prevailing; 433 } 434 435 return CachedPrevailingSummary[VI]; 436 } 437 438 bool llvm::thinLTOPropagateFunctionAttrs( 439 ModuleSummaryIndex &Index, 440 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 441 IsPrevailing) { 442 // TODO: implement addNoAliasAttrs once 443 // there's more information about the return type in the summary 444 if (DisableThinLTOPropagation) 445 return false; 446 447 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 448 bool Changed = false; 449 450 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 451 // Assume we can propagate unless we discover otherwise 452 FunctionSummary::FFlags InferredFlags; 453 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 454 InferredFlags.NoUnwind = true; 455 456 for (auto &V : SCCNodes) { 457 FunctionSummary *CallerSummary = 458 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 459 460 // Function summaries can fail to contain information such as declarations 461 if (!CallerSummary) 462 return; 463 464 if (CallerSummary->fflags().MayThrow) 465 InferredFlags.NoUnwind = false; 466 467 for (const auto &Callee : CallerSummary->calls()) { 468 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 469 Callee.first, CachedPrevailingSummary, IsPrevailing); 470 471 if (!CalleeSummary) 472 return; 473 474 if (!CalleeSummary->fflags().NoRecurse) 475 InferredFlags.NoRecurse = false; 476 477 if (!CalleeSummary->fflags().NoUnwind) 478 InferredFlags.NoUnwind = false; 479 480 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 481 break; 482 } 483 } 484 485 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 486 Changed = true; 487 for (auto &V : SCCNodes) { 488 if (InferredFlags.NoRecurse) { 489 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 490 << V.name() << "\n"); 491 ++NumThinLinkNoRecurse; 492 } 493 494 if (InferredFlags.NoUnwind) { 495 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 496 << V.name() << "\n"); 497 ++NumThinLinkNoUnwind; 498 } 499 500 for (auto &S : V.getSummaryList()) { 501 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 502 if (InferredFlags.NoRecurse) 503 FS->setNoRecurse(); 504 505 if (InferredFlags.NoUnwind) 506 FS->setNoUnwind(); 507 } 508 } 509 } 510 } 511 }; 512 513 // Call propagation functions on each SCC in the Index 514 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 515 ++I) { 516 std::vector<ValueInfo> Nodes(*I); 517 PropagateAttributes(Nodes); 518 } 519 return Changed; 520 } 521 522 namespace { 523 524 /// For a given pointer Argument, this retains a list of Arguments of functions 525 /// in the same SCC that the pointer data flows into. We use this to build an 526 /// SCC of the arguments. 527 struct ArgumentGraphNode { 528 Argument *Definition; 529 SmallVector<ArgumentGraphNode *, 4> Uses; 530 }; 531 532 class ArgumentGraph { 533 // We store pointers to ArgumentGraphNode objects, so it's important that 534 // that they not move around upon insert. 535 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 536 537 ArgumentMapTy ArgumentMap; 538 539 // There is no root node for the argument graph, in fact: 540 // void f(int *x, int *y) { if (...) f(x, y); } 541 // is an example where the graph is disconnected. The SCCIterator requires a 542 // single entry point, so we maintain a fake ("synthetic") root node that 543 // uses every node. Because the graph is directed and nothing points into 544 // the root, it will not participate in any SCCs (except for its own). 545 ArgumentGraphNode SyntheticRoot; 546 547 public: 548 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 549 550 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 551 552 iterator begin() { return SyntheticRoot.Uses.begin(); } 553 iterator end() { return SyntheticRoot.Uses.end(); } 554 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 555 556 ArgumentGraphNode *operator[](Argument *A) { 557 ArgumentGraphNode &Node = ArgumentMap[A]; 558 Node.Definition = A; 559 SyntheticRoot.Uses.push_back(&Node); 560 return &Node; 561 } 562 }; 563 564 /// This tracker checks whether callees are in the SCC, and if so it does not 565 /// consider that a capture, instead adding it to the "Uses" list and 566 /// continuing with the analysis. 567 struct ArgumentUsesTracker : public CaptureTracker { 568 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 569 570 void tooManyUses() override { Captured = true; } 571 572 bool captured(const Use *U) override { 573 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 574 if (!CB) { 575 Captured = true; 576 return true; 577 } 578 579 Function *F = CB->getCalledFunction(); 580 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 581 Captured = true; 582 return true; 583 } 584 585 // Note: the callee and the two successor blocks *follow* the argument 586 // operands. This means there is no need to adjust UseIndex to account for 587 // these. 588 589 unsigned UseIndex = 590 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 591 592 assert(UseIndex < CB->data_operands_size() && 593 "Indirect function calls should have been filtered above!"); 594 595 if (UseIndex >= CB->arg_size()) { 596 // Data operand, but not a argument operand -- must be a bundle operand 597 assert(CB->hasOperandBundles() && "Must be!"); 598 599 // CaptureTracking told us that we're being captured by an operand bundle 600 // use. In this case it does not matter if the callee is within our SCC 601 // or not -- we've been captured in some unknown way, and we have to be 602 // conservative. 603 Captured = true; 604 return true; 605 } 606 607 if (UseIndex >= F->arg_size()) { 608 assert(F->isVarArg() && "More params than args in non-varargs call"); 609 Captured = true; 610 return true; 611 } 612 613 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 614 return false; 615 } 616 617 // True only if certainly captured (used outside our SCC). 618 bool Captured = false; 619 620 // Uses within our SCC. 621 SmallVector<Argument *, 4> Uses; 622 623 const SCCNodeSet &SCCNodes; 624 }; 625 626 } // end anonymous namespace 627 628 namespace llvm { 629 630 template <> struct GraphTraits<ArgumentGraphNode *> { 631 using NodeRef = ArgumentGraphNode *; 632 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 633 634 static NodeRef getEntryNode(NodeRef A) { return A; } 635 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 636 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 637 }; 638 639 template <> 640 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 641 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 642 643 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 644 return AG->begin(); 645 } 646 647 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 648 }; 649 650 } // end namespace llvm 651 652 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 653 static Attribute::AttrKind 654 determinePointerReadAttrs(Argument *A, 655 const SmallPtrSet<Argument *, 8> &SCCNodes) { 656 SmallVector<Use *, 32> Worklist; 657 SmallPtrSet<Use *, 32> Visited; 658 659 // inalloca arguments are always clobbered by the call. 660 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 661 return Attribute::None; 662 663 bool IsRead = false; 664 // We don't need to track IsWritten. If A is written to, return immediately. 665 666 for (Use &U : A->uses()) { 667 Visited.insert(&U); 668 Worklist.push_back(&U); 669 } 670 671 while (!Worklist.empty()) { 672 Use *U = Worklist.pop_back_val(); 673 Instruction *I = cast<Instruction>(U->getUser()); 674 675 switch (I->getOpcode()) { 676 case Instruction::BitCast: 677 case Instruction::GetElementPtr: 678 case Instruction::PHI: 679 case Instruction::Select: 680 case Instruction::AddrSpaceCast: 681 // The original value is not read/written via this if the new value isn't. 682 for (Use &UU : I->uses()) 683 if (Visited.insert(&UU).second) 684 Worklist.push_back(&UU); 685 break; 686 687 case Instruction::Call: 688 case Instruction::Invoke: { 689 bool Captures = true; 690 691 if (I->getType()->isVoidTy()) 692 Captures = false; 693 694 auto AddUsersToWorklistIfCapturing = [&] { 695 if (Captures) 696 for (Use &UU : I->uses()) 697 if (Visited.insert(&UU).second) 698 Worklist.push_back(&UU); 699 }; 700 701 CallBase &CB = cast<CallBase>(*I); 702 if (CB.doesNotAccessMemory()) { 703 AddUsersToWorklistIfCapturing(); 704 continue; 705 } 706 707 Function *F = CB.getCalledFunction(); 708 if (!F) { 709 if (CB.onlyReadsMemory()) { 710 IsRead = true; 711 AddUsersToWorklistIfCapturing(); 712 continue; 713 } 714 return Attribute::None; 715 } 716 717 // Note: the callee and the two successor blocks *follow* the argument 718 // operands. This means there is no need to adjust UseIndex to account 719 // for these. 720 721 unsigned UseIndex = std::distance(CB.arg_begin(), U); 722 723 // U cannot be the callee operand use: since we're exploring the 724 // transitive uses of an Argument, having such a use be a callee would 725 // imply the call site is an indirect call or invoke; and we'd take the 726 // early exit above. 727 assert(UseIndex < CB.data_operands_size() && 728 "Data operand use expected!"); 729 730 bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 731 732 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 733 assert(F->isVarArg() && "More params than args in non-varargs call"); 734 return Attribute::None; 735 } 736 737 Captures &= !CB.doesNotCapture(UseIndex); 738 739 // Since the optimizer (by design) cannot see the data flow corresponding 740 // to a operand bundle use, these cannot participate in the optimistic SCC 741 // analysis. Instead, we model the operand bundle uses as arguments in 742 // call to a function external to the SCC. 743 if (IsOperandBundleUse || 744 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 745 746 // The accessors used on call site here do the right thing for calls and 747 // invokes with operand bundles. 748 749 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 750 return Attribute::None; 751 if (!CB.doesNotAccessMemory(UseIndex)) 752 IsRead = true; 753 } 754 755 AddUsersToWorklistIfCapturing(); 756 break; 757 } 758 759 case Instruction::Load: 760 // A volatile load has side effects beyond what readonly can be relied 761 // upon. 762 if (cast<LoadInst>(I)->isVolatile()) 763 return Attribute::None; 764 765 IsRead = true; 766 break; 767 768 case Instruction::ICmp: 769 case Instruction::Ret: 770 break; 771 772 default: 773 return Attribute::None; 774 } 775 } 776 777 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 778 } 779 780 /// Deduce returned attributes for the SCC. 781 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 782 SmallSet<Function *, 8> &Changed) { 783 // Check each function in turn, determining if an argument is always returned. 784 for (Function *F : SCCNodes) { 785 // We can infer and propagate function attributes only when we know that the 786 // definition we'll get at link time is *exactly* the definition we see now. 787 // For more details, see GlobalValue::mayBeDerefined. 788 if (!F->hasExactDefinition()) 789 continue; 790 791 if (F->getReturnType()->isVoidTy()) 792 continue; 793 794 // There is nothing to do if an argument is already marked as 'returned'. 795 if (llvm::any_of(F->args(), 796 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 797 continue; 798 799 auto FindRetArg = [&]() -> Value * { 800 Value *RetArg = nullptr; 801 for (BasicBlock &BB : *F) 802 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 803 // Note that stripPointerCasts should look through functions with 804 // returned arguments. 805 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 806 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 807 return nullptr; 808 809 if (!RetArg) 810 RetArg = RetVal; 811 else if (RetArg != RetVal) 812 return nullptr; 813 } 814 815 return RetArg; 816 }; 817 818 if (Value *RetArg = FindRetArg()) { 819 auto *A = cast<Argument>(RetArg); 820 A->addAttr(Attribute::Returned); 821 ++NumReturned; 822 Changed.insert(F); 823 } 824 } 825 } 826 827 /// If a callsite has arguments that are also arguments to the parent function, 828 /// try to propagate attributes from the callsite's arguments to the parent's 829 /// arguments. This may be important because inlining can cause information loss 830 /// when attribute knowledge disappears with the inlined call. 831 static bool addArgumentAttrsFromCallsites(Function &F) { 832 if (!EnableNonnullArgPropagation) 833 return false; 834 835 bool Changed = false; 836 837 // For an argument attribute to transfer from a callsite to the parent, the 838 // call must be guaranteed to execute every time the parent is called. 839 // Conservatively, just check for calls in the entry block that are guaranteed 840 // to execute. 841 // TODO: This could be enhanced by testing if the callsite post-dominates the 842 // entry block or by doing simple forward walks or backward walks to the 843 // callsite. 844 BasicBlock &Entry = F.getEntryBlock(); 845 for (Instruction &I : Entry) { 846 if (auto *CB = dyn_cast<CallBase>(&I)) { 847 if (auto *CalledFunc = CB->getCalledFunction()) { 848 for (auto &CSArg : CalledFunc->args()) { 849 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 850 continue; 851 852 // If the non-null callsite argument operand is an argument to 'F' 853 // (the caller) and the call is guaranteed to execute, then the value 854 // must be non-null throughout 'F'. 855 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 856 if (FArg && !FArg->hasNonNullAttr()) { 857 FArg->addAttr(Attribute::NonNull); 858 Changed = true; 859 } 860 } 861 } 862 } 863 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 864 break; 865 } 866 867 return Changed; 868 } 869 870 static bool addReadAttr(Argument *A, Attribute::AttrKind R) { 871 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone) 872 && "Must be a Read attribute."); 873 assert(A && "Argument must not be null."); 874 875 // If the argument already has the attribute, nothing needs to be done. 876 if (A->hasAttribute(R)) 877 return false; 878 879 // Otherwise, remove potentially conflicting attribute, add the new one, 880 // and update statistics. 881 A->removeAttr(Attribute::WriteOnly); 882 A->removeAttr(Attribute::ReadOnly); 883 A->removeAttr(Attribute::ReadNone); 884 A->addAttr(R); 885 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 886 return true; 887 } 888 889 /// Deduce nocapture attributes for the SCC. 890 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 891 SmallSet<Function *, 8> &Changed) { 892 ArgumentGraph AG; 893 894 // Check each function in turn, determining which pointer arguments are not 895 // captured. 896 for (Function *F : SCCNodes) { 897 // We can infer and propagate function attributes only when we know that the 898 // definition we'll get at link time is *exactly* the definition we see now. 899 // For more details, see GlobalValue::mayBeDerefined. 900 if (!F->hasExactDefinition()) 901 continue; 902 903 if (addArgumentAttrsFromCallsites(*F)) 904 Changed.insert(F); 905 906 // Functions that are readonly (or readnone) and nounwind and don't return 907 // a value can't capture arguments. Don't analyze them. 908 if (F->onlyReadsMemory() && F->doesNotThrow() && 909 F->getReturnType()->isVoidTy()) { 910 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 911 ++A) { 912 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 913 A->addAttr(Attribute::NoCapture); 914 ++NumNoCapture; 915 Changed.insert(F); 916 } 917 } 918 continue; 919 } 920 921 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 922 ++A) { 923 if (!A->getType()->isPointerTy()) 924 continue; 925 bool HasNonLocalUses = false; 926 if (!A->hasNoCaptureAttr()) { 927 ArgumentUsesTracker Tracker(SCCNodes); 928 PointerMayBeCaptured(&*A, &Tracker); 929 if (!Tracker.Captured) { 930 if (Tracker.Uses.empty()) { 931 // If it's trivially not captured, mark it nocapture now. 932 A->addAttr(Attribute::NoCapture); 933 ++NumNoCapture; 934 Changed.insert(F); 935 } else { 936 // If it's not trivially captured and not trivially not captured, 937 // then it must be calling into another function in our SCC. Save 938 // its particulars for Argument-SCC analysis later. 939 ArgumentGraphNode *Node = AG[&*A]; 940 for (Argument *Use : Tracker.Uses) { 941 Node->Uses.push_back(AG[Use]); 942 if (Use != &*A) 943 HasNonLocalUses = true; 944 } 945 } 946 } 947 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 948 } 949 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 950 // Can we determine that it's readonly/readnone without doing an SCC? 951 // Note that we don't allow any calls at all here, or else our result 952 // will be dependent on the iteration order through the functions in the 953 // SCC. 954 SmallPtrSet<Argument *, 8> Self; 955 Self.insert(&*A); 956 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 957 if (R != Attribute::None) 958 if (addReadAttr(A, R)) 959 Changed.insert(F); 960 } 961 } 962 } 963 964 // The graph we've collected is partial because we stopped scanning for 965 // argument uses once we solved the argument trivially. These partial nodes 966 // show up as ArgumentGraphNode objects with an empty Uses list, and for 967 // these nodes the final decision about whether they capture has already been 968 // made. If the definition doesn't have a 'nocapture' attribute by now, it 969 // captures. 970 971 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 972 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 973 if (ArgumentSCC.size() == 1) { 974 if (!ArgumentSCC[0]->Definition) 975 continue; // synthetic root node 976 977 // eg. "void f(int* x) { if (...) f(x); }" 978 if (ArgumentSCC[0]->Uses.size() == 1 && 979 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 980 Argument *A = ArgumentSCC[0]->Definition; 981 A->addAttr(Attribute::NoCapture); 982 ++NumNoCapture; 983 Changed.insert(A->getParent()); 984 } 985 continue; 986 } 987 988 bool SCCCaptured = false; 989 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 990 I != E && !SCCCaptured; ++I) { 991 ArgumentGraphNode *Node = *I; 992 if (Node->Uses.empty()) { 993 if (!Node->Definition->hasNoCaptureAttr()) 994 SCCCaptured = true; 995 } 996 } 997 if (SCCCaptured) 998 continue; 999 1000 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1001 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1002 // quickly looking up whether a given Argument is in this ArgumentSCC. 1003 for (ArgumentGraphNode *I : ArgumentSCC) { 1004 ArgumentSCCNodes.insert(I->Definition); 1005 } 1006 1007 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1008 I != E && !SCCCaptured; ++I) { 1009 ArgumentGraphNode *N = *I; 1010 for (ArgumentGraphNode *Use : N->Uses) { 1011 Argument *A = Use->Definition; 1012 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1013 continue; 1014 SCCCaptured = true; 1015 break; 1016 } 1017 } 1018 if (SCCCaptured) 1019 continue; 1020 1021 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1022 Argument *A = ArgumentSCC[i]->Definition; 1023 A->addAttr(Attribute::NoCapture); 1024 ++NumNoCapture; 1025 Changed.insert(A->getParent()); 1026 } 1027 1028 // We also want to compute readonly/readnone. With a small number of false 1029 // negatives, we can assume that any pointer which is captured isn't going 1030 // to be provably readonly or readnone, since by definition we can't 1031 // analyze all uses of a captured pointer. 1032 // 1033 // The false negatives happen when the pointer is captured by a function 1034 // that promises readonly/readnone behaviour on the pointer, then the 1035 // pointer's lifetime ends before anything that writes to arbitrary memory. 1036 // Also, a readonly/readnone pointer may be returned, but returning a 1037 // pointer is capturing it. 1038 1039 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 1040 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1041 Argument *A = ArgumentSCC[i]->Definition; 1042 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 1043 if (K == Attribute::ReadNone) 1044 continue; 1045 if (K == Attribute::ReadOnly) { 1046 ReadAttr = Attribute::ReadOnly; 1047 continue; 1048 } 1049 ReadAttr = K; 1050 break; 1051 } 1052 1053 if (ReadAttr != Attribute::None) { 1054 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1055 Argument *A = ArgumentSCC[i]->Definition; 1056 if (addReadAttr(A, ReadAttr)) 1057 Changed.insert(A->getParent()); 1058 } 1059 } 1060 } 1061 } 1062 1063 /// Tests whether a function is "malloc-like". 1064 /// 1065 /// A function is "malloc-like" if it returns either null or a pointer that 1066 /// doesn't alias any other pointer visible to the caller. 1067 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1068 SmallSetVector<Value *, 8> FlowsToReturn; 1069 for (BasicBlock &BB : *F) 1070 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1071 FlowsToReturn.insert(Ret->getReturnValue()); 1072 1073 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1074 Value *RetVal = FlowsToReturn[i]; 1075 1076 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1077 if (!C->isNullValue() && !isa<UndefValue>(C)) 1078 return false; 1079 1080 continue; 1081 } 1082 1083 if (isa<Argument>(RetVal)) 1084 return false; 1085 1086 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1087 switch (RVI->getOpcode()) { 1088 // Extend the analysis by looking upwards. 1089 case Instruction::BitCast: 1090 case Instruction::GetElementPtr: 1091 case Instruction::AddrSpaceCast: 1092 FlowsToReturn.insert(RVI->getOperand(0)); 1093 continue; 1094 case Instruction::Select: { 1095 SelectInst *SI = cast<SelectInst>(RVI); 1096 FlowsToReturn.insert(SI->getTrueValue()); 1097 FlowsToReturn.insert(SI->getFalseValue()); 1098 continue; 1099 } 1100 case Instruction::PHI: { 1101 PHINode *PN = cast<PHINode>(RVI); 1102 for (Value *IncValue : PN->incoming_values()) 1103 FlowsToReturn.insert(IncValue); 1104 continue; 1105 } 1106 1107 // Check whether the pointer came from an allocation. 1108 case Instruction::Alloca: 1109 break; 1110 case Instruction::Call: 1111 case Instruction::Invoke: { 1112 CallBase &CB = cast<CallBase>(*RVI); 1113 if (CB.hasRetAttr(Attribute::NoAlias)) 1114 break; 1115 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1116 break; 1117 LLVM_FALLTHROUGH; 1118 } 1119 default: 1120 return false; // Did not come from an allocation. 1121 } 1122 1123 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1124 return false; 1125 } 1126 1127 return true; 1128 } 1129 1130 /// Deduce noalias attributes for the SCC. 1131 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1132 SmallSet<Function *, 8> &Changed) { 1133 // Check each function in turn, determining which functions return noalias 1134 // pointers. 1135 for (Function *F : SCCNodes) { 1136 // Already noalias. 1137 if (F->returnDoesNotAlias()) 1138 continue; 1139 1140 // We can infer and propagate function attributes only when we know that the 1141 // definition we'll get at link time is *exactly* the definition we see now. 1142 // For more details, see GlobalValue::mayBeDerefined. 1143 if (!F->hasExactDefinition()) 1144 return; 1145 1146 // We annotate noalias return values, which are only applicable to 1147 // pointer types. 1148 if (!F->getReturnType()->isPointerTy()) 1149 continue; 1150 1151 if (!isFunctionMallocLike(F, SCCNodes)) 1152 return; 1153 } 1154 1155 for (Function *F : SCCNodes) { 1156 if (F->returnDoesNotAlias() || 1157 !F->getReturnType()->isPointerTy()) 1158 continue; 1159 1160 F->setReturnDoesNotAlias(); 1161 ++NumNoAlias; 1162 Changed.insert(F); 1163 } 1164 } 1165 1166 /// Tests whether this function is known to not return null. 1167 /// 1168 /// Requires that the function returns a pointer. 1169 /// 1170 /// Returns true if it believes the function will not return a null, and sets 1171 /// \p Speculative based on whether the returned conclusion is a speculative 1172 /// conclusion due to SCC calls. 1173 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1174 bool &Speculative) { 1175 assert(F->getReturnType()->isPointerTy() && 1176 "nonnull only meaningful on pointer types"); 1177 Speculative = false; 1178 1179 SmallSetVector<Value *, 8> FlowsToReturn; 1180 for (BasicBlock &BB : *F) 1181 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1182 FlowsToReturn.insert(Ret->getReturnValue()); 1183 1184 auto &DL = F->getParent()->getDataLayout(); 1185 1186 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1187 Value *RetVal = FlowsToReturn[i]; 1188 1189 // If this value is locally known to be non-null, we're good 1190 if (isKnownNonZero(RetVal, DL)) 1191 continue; 1192 1193 // Otherwise, we need to look upwards since we can't make any local 1194 // conclusions. 1195 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1196 if (!RVI) 1197 return false; 1198 switch (RVI->getOpcode()) { 1199 // Extend the analysis by looking upwards. 1200 case Instruction::BitCast: 1201 case Instruction::GetElementPtr: 1202 case Instruction::AddrSpaceCast: 1203 FlowsToReturn.insert(RVI->getOperand(0)); 1204 continue; 1205 case Instruction::Select: { 1206 SelectInst *SI = cast<SelectInst>(RVI); 1207 FlowsToReturn.insert(SI->getTrueValue()); 1208 FlowsToReturn.insert(SI->getFalseValue()); 1209 continue; 1210 } 1211 case Instruction::PHI: { 1212 PHINode *PN = cast<PHINode>(RVI); 1213 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1214 FlowsToReturn.insert(PN->getIncomingValue(i)); 1215 continue; 1216 } 1217 case Instruction::Call: 1218 case Instruction::Invoke: { 1219 CallBase &CB = cast<CallBase>(*RVI); 1220 Function *Callee = CB.getCalledFunction(); 1221 // A call to a node within the SCC is assumed to return null until 1222 // proven otherwise 1223 if (Callee && SCCNodes.count(Callee)) { 1224 Speculative = true; 1225 continue; 1226 } 1227 return false; 1228 } 1229 default: 1230 return false; // Unknown source, may be null 1231 }; 1232 llvm_unreachable("should have either continued or returned"); 1233 } 1234 1235 return true; 1236 } 1237 1238 /// Deduce nonnull attributes for the SCC. 1239 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1240 SmallSet<Function *, 8> &Changed) { 1241 // Speculative that all functions in the SCC return only nonnull 1242 // pointers. We may refute this as we analyze functions. 1243 bool SCCReturnsNonNull = true; 1244 1245 // Check each function in turn, determining which functions return nonnull 1246 // pointers. 1247 for (Function *F : SCCNodes) { 1248 // Already nonnull. 1249 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1250 continue; 1251 1252 // We can infer and propagate function attributes only when we know that the 1253 // definition we'll get at link time is *exactly* the definition we see now. 1254 // For more details, see GlobalValue::mayBeDerefined. 1255 if (!F->hasExactDefinition()) 1256 return; 1257 1258 // We annotate nonnull return values, which are only applicable to 1259 // pointer types. 1260 if (!F->getReturnType()->isPointerTy()) 1261 continue; 1262 1263 bool Speculative = false; 1264 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1265 if (!Speculative) { 1266 // Mark the function eagerly since we may discover a function 1267 // which prevents us from speculating about the entire SCC 1268 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1269 << " as nonnull\n"); 1270 F->addRetAttr(Attribute::NonNull); 1271 ++NumNonNullReturn; 1272 Changed.insert(F); 1273 } 1274 continue; 1275 } 1276 // At least one function returns something which could be null, can't 1277 // speculate any more. 1278 SCCReturnsNonNull = false; 1279 } 1280 1281 if (SCCReturnsNonNull) { 1282 for (Function *F : SCCNodes) { 1283 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1284 !F->getReturnType()->isPointerTy()) 1285 continue; 1286 1287 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1288 F->addRetAttr(Attribute::NonNull); 1289 ++NumNonNullReturn; 1290 Changed.insert(F); 1291 } 1292 } 1293 } 1294 1295 namespace { 1296 1297 /// Collects a set of attribute inference requests and performs them all in one 1298 /// go on a single SCC Node. Inference involves scanning function bodies 1299 /// looking for instructions that violate attribute assumptions. 1300 /// As soon as all the bodies are fine we are free to set the attribute. 1301 /// Customization of inference for individual attributes is performed by 1302 /// providing a handful of predicates for each attribute. 1303 class AttributeInferer { 1304 public: 1305 /// Describes a request for inference of a single attribute. 1306 struct InferenceDescriptor { 1307 1308 /// Returns true if this function does not have to be handled. 1309 /// General intent for this predicate is to provide an optimization 1310 /// for functions that do not need this attribute inference at all 1311 /// (say, for functions that already have the attribute). 1312 std::function<bool(const Function &)> SkipFunction; 1313 1314 /// Returns true if this instruction violates attribute assumptions. 1315 std::function<bool(Instruction &)> InstrBreaksAttribute; 1316 1317 /// Sets the inferred attribute for this function. 1318 std::function<void(Function &)> SetAttribute; 1319 1320 /// Attribute we derive. 1321 Attribute::AttrKind AKind; 1322 1323 /// If true, only "exact" definitions can be used to infer this attribute. 1324 /// See GlobalValue::isDefinitionExact. 1325 bool RequiresExactDefinition; 1326 1327 InferenceDescriptor(Attribute::AttrKind AK, 1328 std::function<bool(const Function &)> SkipFunc, 1329 std::function<bool(Instruction &)> InstrScan, 1330 std::function<void(Function &)> SetAttr, 1331 bool ReqExactDef) 1332 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1333 SetAttribute(SetAttr), AKind(AK), 1334 RequiresExactDefinition(ReqExactDef) {} 1335 }; 1336 1337 private: 1338 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1339 1340 public: 1341 void registerAttrInference(InferenceDescriptor AttrInference) { 1342 InferenceDescriptors.push_back(AttrInference); 1343 } 1344 1345 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1346 }; 1347 1348 /// Perform all the requested attribute inference actions according to the 1349 /// attribute predicates stored before. 1350 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1351 SmallSet<Function *, 8> &Changed) { 1352 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1353 // Go through all the functions in SCC and check corresponding attribute 1354 // assumptions for each of them. Attributes that are invalid for this SCC 1355 // will be removed from InferInSCC. 1356 for (Function *F : SCCNodes) { 1357 1358 // No attributes whose assumptions are still valid - done. 1359 if (InferInSCC.empty()) 1360 return; 1361 1362 // Check if our attributes ever need scanning/can be scanned. 1363 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1364 if (ID.SkipFunction(*F)) 1365 return false; 1366 1367 // Remove from further inference (invalidate) when visiting a function 1368 // that has no instructions to scan/has an unsuitable definition. 1369 return F->isDeclaration() || 1370 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1371 }); 1372 1373 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1374 // set up the F instructions scan to verify assumptions of the attribute. 1375 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1376 llvm::copy_if( 1377 InferInSCC, std::back_inserter(InferInThisFunc), 1378 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1379 1380 if (InferInThisFunc.empty()) 1381 continue; 1382 1383 // Start instruction scan. 1384 for (Instruction &I : instructions(*F)) { 1385 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1386 if (!ID.InstrBreaksAttribute(I)) 1387 return false; 1388 // Remove attribute from further inference on any other functions 1389 // because attribute assumptions have just been violated. 1390 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1391 return D.AKind == ID.AKind; 1392 }); 1393 // Remove attribute from the rest of current instruction scan. 1394 return true; 1395 }); 1396 1397 if (InferInThisFunc.empty()) 1398 break; 1399 } 1400 } 1401 1402 if (InferInSCC.empty()) 1403 return; 1404 1405 for (Function *F : SCCNodes) 1406 // At this point InferInSCC contains only functions that were either: 1407 // - explicitly skipped from scan/inference, or 1408 // - verified to have no instructions that break attribute assumptions. 1409 // Hence we just go and force the attribute for all non-skipped functions. 1410 for (auto &ID : InferInSCC) { 1411 if (ID.SkipFunction(*F)) 1412 continue; 1413 Changed.insert(F); 1414 ID.SetAttribute(*F); 1415 } 1416 } 1417 1418 struct SCCNodesResult { 1419 SCCNodeSet SCCNodes; 1420 bool HasUnknownCall; 1421 }; 1422 1423 } // end anonymous namespace 1424 1425 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1426 static bool InstrBreaksNonConvergent(Instruction &I, 1427 const SCCNodeSet &SCCNodes) { 1428 const CallBase *CB = dyn_cast<CallBase>(&I); 1429 // Breaks non-convergent assumption if CS is a convergent call to a function 1430 // not in the SCC. 1431 return CB && CB->isConvergent() && 1432 !SCCNodes.contains(CB->getCalledFunction()); 1433 } 1434 1435 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1436 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1437 if (!I.mayThrow()) 1438 return false; 1439 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1440 if (Function *Callee = CI->getCalledFunction()) { 1441 // I is a may-throw call to a function inside our SCC. This doesn't 1442 // invalidate our current working assumption that the SCC is no-throw; we 1443 // just have to scan that other function. 1444 if (SCCNodes.contains(Callee)) 1445 return false; 1446 } 1447 } 1448 return true; 1449 } 1450 1451 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1452 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1453 CallBase *CB = dyn_cast<CallBase>(&I); 1454 if (!CB) 1455 return false; 1456 1457 if (CB->hasFnAttr(Attribute::NoFree)) 1458 return false; 1459 1460 // Speculatively assume in SCC. 1461 if (Function *Callee = CB->getCalledFunction()) 1462 if (SCCNodes.contains(Callee)) 1463 return false; 1464 1465 return true; 1466 } 1467 1468 /// Attempt to remove convergent function attribute when possible. 1469 /// 1470 /// Returns true if any changes to function attributes were made. 1471 static void inferConvergent(const SCCNodeSet &SCCNodes, 1472 SmallSet<Function *, 8> &Changed) { 1473 AttributeInferer AI; 1474 1475 // Request to remove the convergent attribute from all functions in the SCC 1476 // if every callsite within the SCC is not convergent (except for calls 1477 // to functions within the SCC). 1478 // Note: Removal of the attr from the callsites will happen in 1479 // InstCombineCalls separately. 1480 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1481 Attribute::Convergent, 1482 // Skip non-convergent functions. 1483 [](const Function &F) { return !F.isConvergent(); }, 1484 // Instructions that break non-convergent assumption. 1485 [SCCNodes](Instruction &I) { 1486 return InstrBreaksNonConvergent(I, SCCNodes); 1487 }, 1488 [](Function &F) { 1489 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1490 << "\n"); 1491 F.setNotConvergent(); 1492 }, 1493 /* RequiresExactDefinition= */ false}); 1494 // Perform all the requested attribute inference actions. 1495 AI.run(SCCNodes, Changed); 1496 } 1497 1498 /// Infer attributes from all functions in the SCC by scanning every 1499 /// instruction for compliance to the attribute assumptions. Currently it 1500 /// does: 1501 /// - addition of NoUnwind attribute 1502 /// 1503 /// Returns true if any changes to function attributes were made. 1504 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1505 SmallSet<Function *, 8> &Changed) { 1506 AttributeInferer AI; 1507 1508 if (!DisableNoUnwindInference) 1509 // Request to infer nounwind attribute for all the functions in the SCC if 1510 // every callsite within the SCC is not throwing (except for calls to 1511 // functions within the SCC). Note that nounwind attribute suffers from 1512 // derefinement - results may change depending on how functions are 1513 // optimized. Thus it can be inferred only from exact definitions. 1514 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1515 Attribute::NoUnwind, 1516 // Skip non-throwing functions. 1517 [](const Function &F) { return F.doesNotThrow(); }, 1518 // Instructions that break non-throwing assumption. 1519 [&SCCNodes](Instruction &I) { 1520 return InstrBreaksNonThrowing(I, SCCNodes); 1521 }, 1522 [](Function &F) { 1523 LLVM_DEBUG(dbgs() 1524 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1525 F.setDoesNotThrow(); 1526 ++NumNoUnwind; 1527 }, 1528 /* RequiresExactDefinition= */ true}); 1529 1530 if (!DisableNoFreeInference) 1531 // Request to infer nofree attribute for all the functions in the SCC if 1532 // every callsite within the SCC does not directly or indirectly free 1533 // memory (except for calls to functions within the SCC). Note that nofree 1534 // attribute suffers from derefinement - results may change depending on 1535 // how functions are optimized. Thus it can be inferred only from exact 1536 // definitions. 1537 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1538 Attribute::NoFree, 1539 // Skip functions known not to free memory. 1540 [](const Function &F) { return F.doesNotFreeMemory(); }, 1541 // Instructions that break non-deallocating assumption. 1542 [&SCCNodes](Instruction &I) { 1543 return InstrBreaksNoFree(I, SCCNodes); 1544 }, 1545 [](Function &F) { 1546 LLVM_DEBUG(dbgs() 1547 << "Adding nofree attr to fn " << F.getName() << "\n"); 1548 F.setDoesNotFreeMemory(); 1549 ++NumNoFree; 1550 }, 1551 /* RequiresExactDefinition= */ true}); 1552 1553 // Perform all the requested attribute inference actions. 1554 AI.run(SCCNodes, Changed); 1555 } 1556 1557 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1558 SmallSet<Function *, 8> &Changed) { 1559 // Try and identify functions that do not recurse. 1560 1561 // If the SCC contains multiple nodes we know for sure there is recursion. 1562 if (SCCNodes.size() != 1) 1563 return; 1564 1565 Function *F = *SCCNodes.begin(); 1566 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1567 return; 1568 1569 // If all of the calls in F are identifiable and are to norecurse functions, F 1570 // is norecurse. This check also detects self-recursion as F is not currently 1571 // marked norecurse, so any called from F to F will not be marked norecurse. 1572 for (auto &BB : *F) 1573 for (auto &I : BB.instructionsWithoutDebug()) 1574 if (auto *CB = dyn_cast<CallBase>(&I)) { 1575 Function *Callee = CB->getCalledFunction(); 1576 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1577 // Function calls a potentially recursive function. 1578 return; 1579 } 1580 1581 // Every call was to a non-recursive function other than this function, and 1582 // we have no indirect recursion as the SCC size is one. This function cannot 1583 // recurse. 1584 F->setDoesNotRecurse(); 1585 ++NumNoRecurse; 1586 Changed.insert(F); 1587 } 1588 1589 static bool instructionDoesNotReturn(Instruction &I) { 1590 if (auto *CB = dyn_cast<CallBase>(&I)) 1591 return CB->hasFnAttr(Attribute::NoReturn); 1592 return false; 1593 } 1594 1595 // A basic block can only return if it terminates with a ReturnInst and does not 1596 // contain calls to noreturn functions. 1597 static bool basicBlockCanReturn(BasicBlock &BB) { 1598 if (!isa<ReturnInst>(BB.getTerminator())) 1599 return false; 1600 return none_of(BB, instructionDoesNotReturn); 1601 } 1602 1603 // Set the noreturn function attribute if possible. 1604 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1605 SmallSet<Function *, 8> &Changed) { 1606 for (Function *F : SCCNodes) { 1607 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1608 F->doesNotReturn()) 1609 continue; 1610 1611 // The function can return if any basic blocks can return. 1612 // FIXME: this doesn't handle recursion or unreachable blocks. 1613 if (none_of(*F, basicBlockCanReturn)) { 1614 F->setDoesNotReturn(); 1615 Changed.insert(F); 1616 } 1617 } 1618 } 1619 1620 static bool functionWillReturn(const Function &F) { 1621 // We can infer and propagate function attributes only when we know that the 1622 // definition we'll get at link time is *exactly* the definition we see now. 1623 // For more details, see GlobalValue::mayBeDerefined. 1624 if (!F.hasExactDefinition()) 1625 return false; 1626 1627 // Must-progress function without side-effects must return. 1628 if (F.mustProgress() && F.onlyReadsMemory()) 1629 return true; 1630 1631 // Can only analyze functions with a definition. 1632 if (F.isDeclaration()) 1633 return false; 1634 1635 // Functions with loops require more sophisticated analysis, as the loop 1636 // may be infinite. For now, don't try to handle them. 1637 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1638 FindFunctionBackedges(F, Backedges); 1639 if (!Backedges.empty()) 1640 return false; 1641 1642 // If there are no loops, then the function is willreturn if all calls in 1643 // it are willreturn. 1644 return all_of(instructions(F), [](const Instruction &I) { 1645 return I.willReturn(); 1646 }); 1647 } 1648 1649 // Set the willreturn function attribute if possible. 1650 static void addWillReturn(const SCCNodeSet &SCCNodes, 1651 SmallSet<Function *, 8> &Changed) { 1652 for (Function *F : SCCNodes) { 1653 if (!F || F->willReturn() || !functionWillReturn(*F)) 1654 continue; 1655 1656 F->setWillReturn(); 1657 NumWillReturn++; 1658 Changed.insert(F); 1659 } 1660 } 1661 1662 // Return true if this is an atomic which has an ordering stronger than 1663 // unordered. Note that this is different than the predicate we use in 1664 // Attributor. Here we chose to be conservative and consider monotonic 1665 // operations potentially synchronizing. We generally don't do much with 1666 // monotonic operations, so this is simply risk reduction. 1667 static bool isOrderedAtomic(Instruction *I) { 1668 if (!I->isAtomic()) 1669 return false; 1670 1671 if (auto *FI = dyn_cast<FenceInst>(I)) 1672 // All legal orderings for fence are stronger than monotonic. 1673 return FI->getSyncScopeID() != SyncScope::SingleThread; 1674 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1675 return true; 1676 else if (auto *SI = dyn_cast<StoreInst>(I)) 1677 return !SI->isUnordered(); 1678 else if (auto *LI = dyn_cast<LoadInst>(I)) 1679 return !LI->isUnordered(); 1680 else { 1681 llvm_unreachable("unknown atomic instruction?"); 1682 } 1683 } 1684 1685 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1686 // Volatile may synchronize 1687 if (I.isVolatile()) 1688 return true; 1689 1690 // An ordered atomic may synchronize. (See comment about on monotonic.) 1691 if (isOrderedAtomic(&I)) 1692 return true; 1693 1694 auto *CB = dyn_cast<CallBase>(&I); 1695 if (!CB) 1696 // Non call site cases covered by the two checks above 1697 return false; 1698 1699 if (CB->hasFnAttr(Attribute::NoSync)) 1700 return false; 1701 1702 // Non volatile memset/memcpy/memmoves are nosync 1703 // NOTE: Only intrinsics with volatile flags should be handled here. All 1704 // others should be marked in Intrinsics.td. 1705 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1706 if (!MI->isVolatile()) 1707 return false; 1708 1709 // Speculatively assume in SCC. 1710 if (Function *Callee = CB->getCalledFunction()) 1711 if (SCCNodes.contains(Callee)) 1712 return false; 1713 1714 return true; 1715 } 1716 1717 // Infer the nosync attribute. 1718 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1719 SmallSet<Function *, 8> &Changed) { 1720 AttributeInferer AI; 1721 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1722 Attribute::NoSync, 1723 // Skip already marked functions. 1724 [](const Function &F) { return F.hasNoSync(); }, 1725 // Instructions that break nosync assumption. 1726 [&SCCNodes](Instruction &I) { 1727 return InstrBreaksNoSync(I, SCCNodes); 1728 }, 1729 [](Function &F) { 1730 LLVM_DEBUG(dbgs() 1731 << "Adding nosync attr to fn " << F.getName() << "\n"); 1732 F.setNoSync(); 1733 ++NumNoSync; 1734 }, 1735 /* RequiresExactDefinition= */ true}); 1736 AI.run(SCCNodes, Changed); 1737 } 1738 1739 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1740 SCCNodesResult Res; 1741 Res.HasUnknownCall = false; 1742 for (Function *F : Functions) { 1743 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1744 F->isPresplitCoroutine()) { 1745 // Treat any function we're trying not to optimize as if it were an 1746 // indirect call and omit it from the node set used below. 1747 Res.HasUnknownCall = true; 1748 continue; 1749 } 1750 // Track whether any functions in this SCC have an unknown call edge. 1751 // Note: if this is ever a performance hit, we can common it with 1752 // subsequent routines which also do scans over the instructions of the 1753 // function. 1754 if (!Res.HasUnknownCall) { 1755 for (Instruction &I : instructions(*F)) { 1756 if (auto *CB = dyn_cast<CallBase>(&I)) { 1757 if (!CB->getCalledFunction()) { 1758 Res.HasUnknownCall = true; 1759 break; 1760 } 1761 } 1762 } 1763 } 1764 Res.SCCNodes.insert(F); 1765 } 1766 return Res; 1767 } 1768 1769 template <typename AARGetterT> 1770 static SmallSet<Function *, 8> 1771 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1772 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1773 1774 // Bail if the SCC only contains optnone functions. 1775 if (Nodes.SCCNodes.empty()) 1776 return {}; 1777 1778 SmallSet<Function *, 8> Changed; 1779 1780 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1781 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1782 addArgumentAttrs(Nodes.SCCNodes, Changed); 1783 inferConvergent(Nodes.SCCNodes, Changed); 1784 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1785 addWillReturn(Nodes.SCCNodes, Changed); 1786 1787 // If we have no external nodes participating in the SCC, we can deduce some 1788 // more precise attributes as well. 1789 if (!Nodes.HasUnknownCall) { 1790 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1791 addNonNullAttrs(Nodes.SCCNodes, Changed); 1792 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1793 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1794 } 1795 1796 addNoSyncAttr(Nodes.SCCNodes, Changed); 1797 1798 // Finally, infer the maximal set of attributes from the ones we've inferred 1799 // above. This is handling the cases where one attribute on a signature 1800 // implies another, but for implementation reasons the inference rule for 1801 // the later is missing (or simply less sophisticated). 1802 for (Function *F : Nodes.SCCNodes) 1803 if (F) 1804 if (inferAttributesFromOthers(*F)) 1805 Changed.insert(F); 1806 1807 return Changed; 1808 } 1809 1810 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1811 CGSCCAnalysisManager &AM, 1812 LazyCallGraph &CG, 1813 CGSCCUpdateResult &) { 1814 FunctionAnalysisManager &FAM = 1815 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1816 1817 // We pass a lambda into functions to wire them up to the analysis manager 1818 // for getting function analyses. 1819 auto AARGetter = [&](Function &F) -> AAResults & { 1820 return FAM.getResult<AAManager>(F); 1821 }; 1822 1823 SmallVector<Function *, 8> Functions; 1824 for (LazyCallGraph::Node &N : C) { 1825 Functions.push_back(&N.getFunction()); 1826 } 1827 1828 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1829 if (ChangedFunctions.empty()) 1830 return PreservedAnalyses::all(); 1831 1832 PreservedAnalyses PA; 1833 // We have not added or removed functions. 1834 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1835 return PA; 1836 } 1837 1838 namespace { 1839 1840 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1841 // Pass identification, replacement for typeid 1842 static char ID; 1843 1844 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1845 initializePostOrderFunctionAttrsLegacyPassPass( 1846 *PassRegistry::getPassRegistry()); 1847 } 1848 1849 bool runOnSCC(CallGraphSCC &SCC) override; 1850 1851 void getAnalysisUsage(AnalysisUsage &AU) const override { 1852 AU.setPreservesCFG(); 1853 AU.addRequired<AssumptionCacheTracker>(); 1854 getAAResultsAnalysisUsage(AU); 1855 CallGraphSCCPass::getAnalysisUsage(AU); 1856 } 1857 }; 1858 1859 } // end anonymous namespace 1860 1861 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1862 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1863 "Deduce function attributes", false, false) 1864 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1865 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1866 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1867 "Deduce function attributes", false, false) 1868 1869 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1870 return new PostOrderFunctionAttrsLegacyPass(); 1871 } 1872 1873 template <typename AARGetterT> 1874 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1875 SmallVector<Function *, 8> Functions; 1876 for (CallGraphNode *I : SCC) { 1877 Functions.push_back(I->getFunction()); 1878 } 1879 1880 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1881 } 1882 1883 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1884 if (skipSCC(SCC)) 1885 return false; 1886 return runImpl(SCC, LegacyAARGetter(*this)); 1887 } 1888 1889 namespace { 1890 1891 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1892 // Pass identification, replacement for typeid 1893 static char ID; 1894 1895 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1896 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1897 *PassRegistry::getPassRegistry()); 1898 } 1899 1900 bool runOnModule(Module &M) override; 1901 1902 void getAnalysisUsage(AnalysisUsage &AU) const override { 1903 AU.setPreservesCFG(); 1904 AU.addRequired<CallGraphWrapperPass>(); 1905 AU.addPreserved<CallGraphWrapperPass>(); 1906 } 1907 }; 1908 1909 } // end anonymous namespace 1910 1911 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1912 1913 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1914 "rpo-function-attrs", "Deduce function attributes in RPO", 1915 false, false) 1916 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1917 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1918 "rpo-function-attrs", "Deduce function attributes in RPO", 1919 false, false) 1920 1921 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1922 return new ReversePostOrderFunctionAttrsLegacyPass(); 1923 } 1924 1925 static bool addNoRecurseAttrsTopDown(Function &F) { 1926 // We check the preconditions for the function prior to calling this to avoid 1927 // the cost of building up a reversible post-order list. We assert them here 1928 // to make sure none of the invariants this relies on were violated. 1929 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1930 assert(!F.doesNotRecurse() && 1931 "This function has already been deduced as norecurs!"); 1932 assert(F.hasInternalLinkage() && 1933 "Can only do top-down deduction for internal linkage functions!"); 1934 1935 // If F is internal and all of its uses are calls from a non-recursive 1936 // functions, then none of its calls could in fact recurse without going 1937 // through a function marked norecurse, and so we can mark this function too 1938 // as norecurse. Note that the uses must actually be calls -- otherwise 1939 // a pointer to this function could be returned from a norecurse function but 1940 // this function could be recursively (indirectly) called. Note that this 1941 // also detects if F is directly recursive as F is not yet marked as 1942 // a norecurse function. 1943 for (auto *U : F.users()) { 1944 auto *I = dyn_cast<Instruction>(U); 1945 if (!I) 1946 return false; 1947 CallBase *CB = dyn_cast<CallBase>(I); 1948 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1949 return false; 1950 } 1951 F.setDoesNotRecurse(); 1952 ++NumNoRecurse; 1953 return true; 1954 } 1955 1956 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1957 // We only have a post-order SCC traversal (because SCCs are inherently 1958 // discovered in post-order), so we accumulate them in a vector and then walk 1959 // it in reverse. This is simpler than using the RPO iterator infrastructure 1960 // because we need to combine SCC detection and the PO walk of the call 1961 // graph. We can also cheat egregiously because we're primarily interested in 1962 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1963 // with multiple functions in them will clearly be recursive. 1964 SmallVector<Function *, 16> Worklist; 1965 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1966 if (I->size() != 1) 1967 continue; 1968 1969 Function *F = I->front()->getFunction(); 1970 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1971 F->hasInternalLinkage()) 1972 Worklist.push_back(F); 1973 } 1974 1975 bool Changed = false; 1976 for (auto *F : llvm::reverse(Worklist)) 1977 Changed |= addNoRecurseAttrsTopDown(*F); 1978 1979 return Changed; 1980 } 1981 1982 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1983 if (skipModule(M)) 1984 return false; 1985 1986 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1987 1988 return deduceFunctionAttributeInRPO(M, CG); 1989 } 1990 1991 PreservedAnalyses 1992 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 1993 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1994 1995 if (!deduceFunctionAttributeInRPO(M, CG)) 1996 return PreservedAnalyses::all(); 1997 1998 PreservedAnalyses PA; 1999 PA.preserve<CallGraphAnalysis>(); 2000 return PA; 2001 } 2002