1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BasicAliasAnalysis.h" 26 #include "llvm/Analysis/CFG.h" 27 #include "llvm/Analysis/CGSCCPassManager.h" 28 #include "llvm/Analysis/CallGraph.h" 29 #include "llvm/Analysis/CallGraphSCCPass.h" 30 #include "llvm/Analysis/CaptureTracking.h" 31 #include "llvm/Analysis/LazyCallGraph.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/IPO.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include <cassert> 63 #include <iterator> 64 #include <map> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "function-attrs" 70 71 STATISTIC(NumReadNone, "Number of functions marked readnone"); 72 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 73 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 74 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 75 STATISTIC(NumReturned, "Number of arguments marked returned"); 76 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 77 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 78 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 79 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 80 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 81 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 82 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 83 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 84 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 85 86 STATISTIC(NumThinLinkNoRecurse, 87 "Number of functions marked as norecurse during thinlink"); 88 STATISTIC(NumThinLinkNoUnwind, 89 "Number of functions marked as nounwind during thinlink"); 90 91 static cl::opt<bool> EnableNonnullArgPropagation( 92 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 93 cl::desc("Try to propagate nonnull argument attributes from callsites to " 94 "caller functions.")); 95 96 static cl::opt<bool> DisableNoUnwindInference( 97 "disable-nounwind-inference", cl::Hidden, 98 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 99 100 static cl::opt<bool> DisableNoFreeInference( 101 "disable-nofree-inference", cl::Hidden, 102 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 103 104 static cl::opt<bool> DisableThinLTOPropagation( 105 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 106 cl::desc("Don't propagate function-attrs in thinLTO")); 107 108 namespace { 109 110 using SCCNodeSet = SmallSetVector<Function *, 8>; 111 112 } // end anonymous namespace 113 114 /// Returns the memory access attribute for function F using AAR for AA results, 115 /// where SCCNodes is the current SCC. 116 /// 117 /// If ThisBody is true, this function may examine the function body and will 118 /// return a result pertaining to this copy of the function. If it is false, the 119 /// result will be based only on AA results for the function declaration; it 120 /// will be assumed that some other (perhaps less optimized) version of the 121 /// function may be selected at link time. 122 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 123 AAResults &AAR, 124 const SCCNodeSet &SCCNodes) { 125 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 126 if (MRB == FMRB_DoesNotAccessMemory) 127 // Already perfect! 128 return MAK_ReadNone; 129 130 if (!ThisBody) { 131 if (AliasAnalysis::onlyReadsMemory(MRB)) 132 return MAK_ReadOnly; 133 134 if (AliasAnalysis::doesNotReadMemory(MRB)) 135 return MAK_WriteOnly; 136 137 // Conservatively assume it reads and writes to memory. 138 return MAK_MayWrite; 139 } 140 141 // Scan the function body for instructions that may read or write memory. 142 bool ReadsMemory = false; 143 bool WritesMemory = false; 144 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 145 Instruction *I = &*II; 146 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) { 184 Value *Arg = *CI; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I->getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I->mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I->mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) { 253 // Check if any of the functions in the SCC read or write memory. If they 254 // write memory then they can't be marked readnone or readonly. 255 bool ReadsMemory = false; 256 bool WritesMemory = false; 257 for (Function *F : SCCNodes) { 258 // Call the callable parameter to look up AA results for this function. 259 AAResults &AAR = AARGetter(*F); 260 261 // Non-exact function definitions may not be selected at link time, and an 262 // alternative version that writes to memory may be selected. See the 263 // comment on GlobalValue::isDefinitionExact for more details. 264 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 265 AAR, SCCNodes)) { 266 case MAK_MayWrite: 267 return false; 268 case MAK_ReadOnly: 269 ReadsMemory = true; 270 break; 271 case MAK_WriteOnly: 272 WritesMemory = true; 273 break; 274 case MAK_ReadNone: 275 // Nothing to do! 276 break; 277 } 278 } 279 280 // If the SCC contains both functions that read and functions that write, then 281 // we cannot add readonly attributes. 282 if (ReadsMemory && WritesMemory) 283 return false; 284 285 // Success! Functions in this SCC do not access memory, or only read memory. 286 // Give them the appropriate attribute. 287 bool MadeChange = false; 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 MadeChange = true; 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 331 return MadeChange; 332 } 333 334 // Compute definitive function attributes for a function taking into account 335 // prevailing definitions and linkage types 336 static FunctionSummary *calculatePrevailingSummary( 337 ValueInfo VI, 338 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 339 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 340 IsPrevailing) { 341 342 if (CachedPrevailingSummary.count(VI)) 343 return CachedPrevailingSummary[VI]; 344 345 /// At this point, prevailing symbols have been resolved. The following leads 346 /// to returning a conservative result: 347 /// - Multiple instances with local linkage. Normally local linkage would be 348 /// unique per module 349 /// as the GUID includes the module path. We could have a guid alias if 350 /// there wasn't any distinguishing path when each file was compiled, but 351 /// that should be rare so we'll punt on those. 352 353 /// These next 2 cases should not happen and will assert: 354 /// - Multiple instances with external linkage. This should be caught in 355 /// symbol resolution 356 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 357 /// knowledge meaning we have to go conservative. 358 359 /// Otherwise, we calculate attributes for a function as: 360 /// 1. If we have a local linkage, take its attributes. If there's somehow 361 /// multiple, bail and go conservative. 362 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 363 /// prevailing, take its attributes. 364 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 365 /// differences. However, if the prevailing copy is known it will be used 366 /// so take its attributes. If the prevailing copy is in a native file 367 /// all IR copies will be dead and propagation will go conservative. 368 /// 4. AvailableExternally summaries without a prevailing copy are known to 369 /// occur in a couple of circumstances: 370 /// a. An internal function gets imported due to its caller getting 371 /// imported, it becomes AvailableExternally but no prevailing 372 /// definition exists. Because it has to get imported along with its 373 /// caller the attributes will be captured by propagating on its 374 /// caller. 375 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 376 /// definitions of explicitly instanced template declarations 377 /// for inlining which are ultimately dropped from the TU. Since this 378 /// is localized to the TU the attributes will have already made it to 379 /// the callers. 380 /// These are edge cases and already captured by their callers so we 381 /// ignore these for now. If they become relevant to optimize in the 382 /// future this can be revisited. 383 /// 5. Otherwise, go conservative. 384 385 CachedPrevailingSummary[VI] = nullptr; 386 FunctionSummary *Local = nullptr; 387 FunctionSummary *Prevailing = nullptr; 388 389 for (const auto &GVS : VI.getSummaryList()) { 390 if (!GVS->isLive()) 391 continue; 392 393 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 394 // Virtual and Unknown (e.g. indirect) calls require going conservative 395 if (!FS || FS->fflags().HasUnknownCall) 396 return nullptr; 397 398 const auto &Linkage = GVS->linkage(); 399 if (GlobalValue::isLocalLinkage(Linkage)) { 400 if (Local) { 401 LLVM_DEBUG( 402 dbgs() 403 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 404 "function " 405 << VI.name() << " from " << FS->modulePath() << ". Previous module " 406 << Local->modulePath() << "\n"); 407 return nullptr; 408 } 409 Local = FS; 410 } else if (GlobalValue::isExternalLinkage(Linkage)) { 411 assert(IsPrevailing(VI.getGUID(), GVS.get())); 412 Prevailing = FS; 413 break; 414 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 415 GlobalValue::isLinkOnceODRLinkage(Linkage) || 416 GlobalValue::isWeakAnyLinkage(Linkage) || 417 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 418 if (IsPrevailing(VI.getGUID(), GVS.get())) { 419 Prevailing = FS; 420 break; 421 } 422 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 423 // TODO: Handle these cases if they become meaningful 424 continue; 425 } 426 } 427 428 if (Local) { 429 assert(!Prevailing); 430 CachedPrevailingSummary[VI] = Local; 431 } else if (Prevailing) { 432 assert(!Local); 433 CachedPrevailingSummary[VI] = Prevailing; 434 } 435 436 return CachedPrevailingSummary[VI]; 437 } 438 439 bool llvm::thinLTOPropagateFunctionAttrs( 440 ModuleSummaryIndex &Index, 441 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 442 IsPrevailing) { 443 // TODO: implement addNoAliasAttrs once 444 // there's more information about the return type in the summary 445 if (DisableThinLTOPropagation) 446 return false; 447 448 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 449 bool Changed = false; 450 451 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 452 // Assume we can propagate unless we discover otherwise 453 FunctionSummary::FFlags InferredFlags; 454 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 455 InferredFlags.NoUnwind = true; 456 457 for (auto &V : SCCNodes) { 458 FunctionSummary *CallerSummary = 459 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 460 461 // Function summaries can fail to contain information such as declarations 462 if (!CallerSummary) 463 return; 464 465 if (CallerSummary->fflags().MayThrow) 466 InferredFlags.NoUnwind = false; 467 468 for (const auto &Callee : CallerSummary->calls()) { 469 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 470 Callee.first, CachedPrevailingSummary, IsPrevailing); 471 472 if (!CalleeSummary) 473 return; 474 475 if (!CalleeSummary->fflags().NoRecurse) 476 InferredFlags.NoRecurse = false; 477 478 if (!CalleeSummary->fflags().NoUnwind) 479 InferredFlags.NoUnwind = false; 480 481 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 482 break; 483 } 484 } 485 486 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 487 Changed = true; 488 for (auto &V : SCCNodes) { 489 if (InferredFlags.NoRecurse) { 490 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 491 << V.name() << "\n"); 492 ++NumThinLinkNoRecurse; 493 } 494 495 if (InferredFlags.NoUnwind) { 496 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 497 << V.name() << "\n"); 498 ++NumThinLinkNoUnwind; 499 } 500 501 for (auto &S : V.getSummaryList()) { 502 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 503 if (InferredFlags.NoRecurse) 504 FS->setNoRecurse(); 505 506 if (InferredFlags.NoUnwind) 507 FS->setNoUnwind(); 508 } 509 } 510 } 511 } 512 }; 513 514 // Call propagation functions on each SCC in the Index 515 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 516 ++I) { 517 std::vector<ValueInfo> Nodes(*I); 518 PropagateAttributes(Nodes); 519 } 520 return Changed; 521 } 522 523 namespace { 524 525 /// For a given pointer Argument, this retains a list of Arguments of functions 526 /// in the same SCC that the pointer data flows into. We use this to build an 527 /// SCC of the arguments. 528 struct ArgumentGraphNode { 529 Argument *Definition; 530 SmallVector<ArgumentGraphNode *, 4> Uses; 531 }; 532 533 class ArgumentGraph { 534 // We store pointers to ArgumentGraphNode objects, so it's important that 535 // that they not move around upon insert. 536 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 537 538 ArgumentMapTy ArgumentMap; 539 540 // There is no root node for the argument graph, in fact: 541 // void f(int *x, int *y) { if (...) f(x, y); } 542 // is an example where the graph is disconnected. The SCCIterator requires a 543 // single entry point, so we maintain a fake ("synthetic") root node that 544 // uses every node. Because the graph is directed and nothing points into 545 // the root, it will not participate in any SCCs (except for its own). 546 ArgumentGraphNode SyntheticRoot; 547 548 public: 549 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 550 551 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 552 553 iterator begin() { return SyntheticRoot.Uses.begin(); } 554 iterator end() { return SyntheticRoot.Uses.end(); } 555 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 556 557 ArgumentGraphNode *operator[](Argument *A) { 558 ArgumentGraphNode &Node = ArgumentMap[A]; 559 Node.Definition = A; 560 SyntheticRoot.Uses.push_back(&Node); 561 return &Node; 562 } 563 }; 564 565 /// This tracker checks whether callees are in the SCC, and if so it does not 566 /// consider that a capture, instead adding it to the "Uses" list and 567 /// continuing with the analysis. 568 struct ArgumentUsesTracker : public CaptureTracker { 569 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 570 571 void tooManyUses() override { Captured = true; } 572 573 bool captured(const Use *U) override { 574 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 575 if (!CB) { 576 Captured = true; 577 return true; 578 } 579 580 Function *F = CB->getCalledFunction(); 581 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 582 Captured = true; 583 return true; 584 } 585 586 // Note: the callee and the two successor blocks *follow* the argument 587 // operands. This means there is no need to adjust UseIndex to account for 588 // these. 589 590 unsigned UseIndex = 591 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 592 593 assert(UseIndex < CB->data_operands_size() && 594 "Indirect function calls should have been filtered above!"); 595 596 if (UseIndex >= CB->arg_size()) { 597 // Data operand, but not a argument operand -- must be a bundle operand 598 assert(CB->hasOperandBundles() && "Must be!"); 599 600 // CaptureTracking told us that we're being captured by an operand bundle 601 // use. In this case it does not matter if the callee is within our SCC 602 // or not -- we've been captured in some unknown way, and we have to be 603 // conservative. 604 Captured = true; 605 return true; 606 } 607 608 if (UseIndex >= F->arg_size()) { 609 assert(F->isVarArg() && "More params than args in non-varargs call"); 610 Captured = true; 611 return true; 612 } 613 614 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 615 return false; 616 } 617 618 // True only if certainly captured (used outside our SCC). 619 bool Captured = false; 620 621 // Uses within our SCC. 622 SmallVector<Argument *, 4> Uses; 623 624 const SCCNodeSet &SCCNodes; 625 }; 626 627 } // end anonymous namespace 628 629 namespace llvm { 630 631 template <> struct GraphTraits<ArgumentGraphNode *> { 632 using NodeRef = ArgumentGraphNode *; 633 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 634 635 static NodeRef getEntryNode(NodeRef A) { return A; } 636 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 637 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 638 }; 639 640 template <> 641 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 642 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 643 644 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 645 return AG->begin(); 646 } 647 648 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 649 }; 650 651 } // end namespace llvm 652 653 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 654 static Attribute::AttrKind 655 determinePointerReadAttrs(Argument *A, 656 const SmallPtrSet<Argument *, 8> &SCCNodes) { 657 SmallVector<Use *, 32> Worklist; 658 SmallPtrSet<Use *, 32> Visited; 659 660 // inalloca arguments are always clobbered by the call. 661 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 662 return Attribute::None; 663 664 bool IsRead = false; 665 // We don't need to track IsWritten. If A is written to, return immediately. 666 667 for (Use &U : A->uses()) { 668 Visited.insert(&U); 669 Worklist.push_back(&U); 670 } 671 672 while (!Worklist.empty()) { 673 Use *U = Worklist.pop_back_val(); 674 Instruction *I = cast<Instruction>(U->getUser()); 675 676 switch (I->getOpcode()) { 677 case Instruction::BitCast: 678 case Instruction::GetElementPtr: 679 case Instruction::PHI: 680 case Instruction::Select: 681 case Instruction::AddrSpaceCast: 682 // The original value is not read/written via this if the new value isn't. 683 for (Use &UU : I->uses()) 684 if (Visited.insert(&UU).second) 685 Worklist.push_back(&UU); 686 break; 687 688 case Instruction::Call: 689 case Instruction::Invoke: { 690 bool Captures = true; 691 692 if (I->getType()->isVoidTy()) 693 Captures = false; 694 695 auto AddUsersToWorklistIfCapturing = [&] { 696 if (Captures) 697 for (Use &UU : I->uses()) 698 if (Visited.insert(&UU).second) 699 Worklist.push_back(&UU); 700 }; 701 702 CallBase &CB = cast<CallBase>(*I); 703 if (CB.doesNotAccessMemory()) { 704 AddUsersToWorklistIfCapturing(); 705 continue; 706 } 707 708 Function *F = CB.getCalledFunction(); 709 if (!F) { 710 if (CB.onlyReadsMemory()) { 711 IsRead = true; 712 AddUsersToWorklistIfCapturing(); 713 continue; 714 } 715 return Attribute::None; 716 } 717 718 // Note: the callee and the two successor blocks *follow* the argument 719 // operands. This means there is no need to adjust UseIndex to account 720 // for these. 721 722 unsigned UseIndex = std::distance(CB.arg_begin(), U); 723 724 // U cannot be the callee operand use: since we're exploring the 725 // transitive uses of an Argument, having such a use be a callee would 726 // imply the call site is an indirect call or invoke; and we'd take the 727 // early exit above. 728 assert(UseIndex < CB.data_operands_size() && 729 "Data operand use expected!"); 730 731 bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 732 733 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 734 assert(F->isVarArg() && "More params than args in non-varargs call"); 735 return Attribute::None; 736 } 737 738 Captures &= !CB.doesNotCapture(UseIndex); 739 740 // Since the optimizer (by design) cannot see the data flow corresponding 741 // to a operand bundle use, these cannot participate in the optimistic SCC 742 // analysis. Instead, we model the operand bundle uses as arguments in 743 // call to a function external to the SCC. 744 if (IsOperandBundleUse || 745 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 746 747 // The accessors used on call site here do the right thing for calls and 748 // invokes with operand bundles. 749 750 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 751 return Attribute::None; 752 if (!CB.doesNotAccessMemory(UseIndex)) 753 IsRead = true; 754 } 755 756 AddUsersToWorklistIfCapturing(); 757 break; 758 } 759 760 case Instruction::Load: 761 // A volatile load has side effects beyond what readonly can be relied 762 // upon. 763 if (cast<LoadInst>(I)->isVolatile()) 764 return Attribute::None; 765 766 IsRead = true; 767 break; 768 769 case Instruction::ICmp: 770 case Instruction::Ret: 771 break; 772 773 default: 774 return Attribute::None; 775 } 776 } 777 778 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 779 } 780 781 /// Deduce returned attributes for the SCC. 782 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) { 783 bool Changed = false; 784 785 // Check each function in turn, determining if an argument is always returned. 786 for (Function *F : SCCNodes) { 787 // We can infer and propagate function attributes only when we know that the 788 // definition we'll get at link time is *exactly* the definition we see now. 789 // For more details, see GlobalValue::mayBeDerefined. 790 if (!F->hasExactDefinition()) 791 continue; 792 793 if (F->getReturnType()->isVoidTy()) 794 continue; 795 796 // There is nothing to do if an argument is already marked as 'returned'. 797 if (llvm::any_of(F->args(), 798 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 799 continue; 800 801 auto FindRetArg = [&]() -> Value * { 802 Value *RetArg = nullptr; 803 for (BasicBlock &BB : *F) 804 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 805 // Note that stripPointerCasts should look through functions with 806 // returned arguments. 807 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 808 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 809 return nullptr; 810 811 if (!RetArg) 812 RetArg = RetVal; 813 else if (RetArg != RetVal) 814 return nullptr; 815 } 816 817 return RetArg; 818 }; 819 820 if (Value *RetArg = FindRetArg()) { 821 auto *A = cast<Argument>(RetArg); 822 A->addAttr(Attribute::Returned); 823 ++NumReturned; 824 Changed = true; 825 } 826 } 827 828 return Changed; 829 } 830 831 /// If a callsite has arguments that are also arguments to the parent function, 832 /// try to propagate attributes from the callsite's arguments to the parent's 833 /// arguments. This may be important because inlining can cause information loss 834 /// when attribute knowledge disappears with the inlined call. 835 static bool addArgumentAttrsFromCallsites(Function &F) { 836 if (!EnableNonnullArgPropagation) 837 return false; 838 839 bool Changed = false; 840 841 // For an argument attribute to transfer from a callsite to the parent, the 842 // call must be guaranteed to execute every time the parent is called. 843 // Conservatively, just check for calls in the entry block that are guaranteed 844 // to execute. 845 // TODO: This could be enhanced by testing if the callsite post-dominates the 846 // entry block or by doing simple forward walks or backward walks to the 847 // callsite. 848 BasicBlock &Entry = F.getEntryBlock(); 849 for (Instruction &I : Entry) { 850 if (auto *CB = dyn_cast<CallBase>(&I)) { 851 if (auto *CalledFunc = CB->getCalledFunction()) { 852 for (auto &CSArg : CalledFunc->args()) { 853 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 854 continue; 855 856 // If the non-null callsite argument operand is an argument to 'F' 857 // (the caller) and the call is guaranteed to execute, then the value 858 // must be non-null throughout 'F'. 859 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 860 if (FArg && !FArg->hasNonNullAttr()) { 861 FArg->addAttr(Attribute::NonNull); 862 Changed = true; 863 } 864 } 865 } 866 } 867 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 868 break; 869 } 870 871 return Changed; 872 } 873 874 static bool addReadAttr(Argument *A, Attribute::AttrKind R) { 875 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone) 876 && "Must be a Read attribute."); 877 assert(A && "Argument must not be null."); 878 879 // If the argument already has the attribute, nothing needs to be done. 880 if (A->hasAttribute(R)) 881 return false; 882 883 // Otherwise, remove potentially conflicting attribute, add the new one, 884 // and update statistics. 885 A->removeAttr(Attribute::WriteOnly); 886 A->removeAttr(Attribute::ReadOnly); 887 A->removeAttr(Attribute::ReadNone); 888 A->addAttr(R); 889 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 890 return true; 891 } 892 893 /// Deduce nocapture attributes for the SCC. 894 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { 895 bool Changed = false; 896 897 ArgumentGraph AG; 898 899 // Check each function in turn, determining which pointer arguments are not 900 // captured. 901 for (Function *F : SCCNodes) { 902 // We can infer and propagate function attributes only when we know that the 903 // definition we'll get at link time is *exactly* the definition we see now. 904 // For more details, see GlobalValue::mayBeDerefined. 905 if (!F->hasExactDefinition()) 906 continue; 907 908 Changed |= addArgumentAttrsFromCallsites(*F); 909 910 // Functions that are readonly (or readnone) and nounwind and don't return 911 // a value can't capture arguments. Don't analyze them. 912 if (F->onlyReadsMemory() && F->doesNotThrow() && 913 F->getReturnType()->isVoidTy()) { 914 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 915 ++A) { 916 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 917 A->addAttr(Attribute::NoCapture); 918 ++NumNoCapture; 919 Changed = true; 920 } 921 } 922 continue; 923 } 924 925 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 926 ++A) { 927 if (!A->getType()->isPointerTy()) 928 continue; 929 bool HasNonLocalUses = false; 930 if (!A->hasNoCaptureAttr()) { 931 ArgumentUsesTracker Tracker(SCCNodes); 932 PointerMayBeCaptured(&*A, &Tracker); 933 if (!Tracker.Captured) { 934 if (Tracker.Uses.empty()) { 935 // If it's trivially not captured, mark it nocapture now. 936 A->addAttr(Attribute::NoCapture); 937 ++NumNoCapture; 938 Changed = true; 939 } else { 940 // If it's not trivially captured and not trivially not captured, 941 // then it must be calling into another function in our SCC. Save 942 // its particulars for Argument-SCC analysis later. 943 ArgumentGraphNode *Node = AG[&*A]; 944 for (Argument *Use : Tracker.Uses) { 945 Node->Uses.push_back(AG[Use]); 946 if (Use != &*A) 947 HasNonLocalUses = true; 948 } 949 } 950 } 951 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 952 } 953 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 954 // Can we determine that it's readonly/readnone without doing an SCC? 955 // Note that we don't allow any calls at all here, or else our result 956 // will be dependent on the iteration order through the functions in the 957 // SCC. 958 SmallPtrSet<Argument *, 8> Self; 959 Self.insert(&*A); 960 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 961 if (R != Attribute::None) 962 Changed = addReadAttr(A, R); 963 } 964 } 965 } 966 967 // The graph we've collected is partial because we stopped scanning for 968 // argument uses once we solved the argument trivially. These partial nodes 969 // show up as ArgumentGraphNode objects with an empty Uses list, and for 970 // these nodes the final decision about whether they capture has already been 971 // made. If the definition doesn't have a 'nocapture' attribute by now, it 972 // captures. 973 974 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 975 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 976 if (ArgumentSCC.size() == 1) { 977 if (!ArgumentSCC[0]->Definition) 978 continue; // synthetic root node 979 980 // eg. "void f(int* x) { if (...) f(x); }" 981 if (ArgumentSCC[0]->Uses.size() == 1 && 982 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 983 Argument *A = ArgumentSCC[0]->Definition; 984 A->addAttr(Attribute::NoCapture); 985 ++NumNoCapture; 986 Changed = true; 987 } 988 continue; 989 } 990 991 bool SCCCaptured = false; 992 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 993 I != E && !SCCCaptured; ++I) { 994 ArgumentGraphNode *Node = *I; 995 if (Node->Uses.empty()) { 996 if (!Node->Definition->hasNoCaptureAttr()) 997 SCCCaptured = true; 998 } 999 } 1000 if (SCCCaptured) 1001 continue; 1002 1003 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1004 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1005 // quickly looking up whether a given Argument is in this ArgumentSCC. 1006 for (ArgumentGraphNode *I : ArgumentSCC) { 1007 ArgumentSCCNodes.insert(I->Definition); 1008 } 1009 1010 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1011 I != E && !SCCCaptured; ++I) { 1012 ArgumentGraphNode *N = *I; 1013 for (ArgumentGraphNode *Use : N->Uses) { 1014 Argument *A = Use->Definition; 1015 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1016 continue; 1017 SCCCaptured = true; 1018 break; 1019 } 1020 } 1021 if (SCCCaptured) 1022 continue; 1023 1024 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1025 Argument *A = ArgumentSCC[i]->Definition; 1026 A->addAttr(Attribute::NoCapture); 1027 ++NumNoCapture; 1028 Changed = true; 1029 } 1030 1031 // We also want to compute readonly/readnone. With a small number of false 1032 // negatives, we can assume that any pointer which is captured isn't going 1033 // to be provably readonly or readnone, since by definition we can't 1034 // analyze all uses of a captured pointer. 1035 // 1036 // The false negatives happen when the pointer is captured by a function 1037 // that promises readonly/readnone behaviour on the pointer, then the 1038 // pointer's lifetime ends before anything that writes to arbitrary memory. 1039 // Also, a readonly/readnone pointer may be returned, but returning a 1040 // pointer is capturing it. 1041 1042 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 1043 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1044 Argument *A = ArgumentSCC[i]->Definition; 1045 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 1046 if (K == Attribute::ReadNone) 1047 continue; 1048 if (K == Attribute::ReadOnly) { 1049 ReadAttr = Attribute::ReadOnly; 1050 continue; 1051 } 1052 ReadAttr = K; 1053 break; 1054 } 1055 1056 if (ReadAttr != Attribute::None) { 1057 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1058 Argument *A = ArgumentSCC[i]->Definition; 1059 Changed = addReadAttr(A, ReadAttr); 1060 } 1061 } 1062 } 1063 1064 return Changed; 1065 } 1066 1067 /// Tests whether a function is "malloc-like". 1068 /// 1069 /// A function is "malloc-like" if it returns either null or a pointer that 1070 /// doesn't alias any other pointer visible to the caller. 1071 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1072 SmallSetVector<Value *, 8> FlowsToReturn; 1073 for (BasicBlock &BB : *F) 1074 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1075 FlowsToReturn.insert(Ret->getReturnValue()); 1076 1077 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1078 Value *RetVal = FlowsToReturn[i]; 1079 1080 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1081 if (!C->isNullValue() && !isa<UndefValue>(C)) 1082 return false; 1083 1084 continue; 1085 } 1086 1087 if (isa<Argument>(RetVal)) 1088 return false; 1089 1090 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1091 switch (RVI->getOpcode()) { 1092 // Extend the analysis by looking upwards. 1093 case Instruction::BitCast: 1094 case Instruction::GetElementPtr: 1095 case Instruction::AddrSpaceCast: 1096 FlowsToReturn.insert(RVI->getOperand(0)); 1097 continue; 1098 case Instruction::Select: { 1099 SelectInst *SI = cast<SelectInst>(RVI); 1100 FlowsToReturn.insert(SI->getTrueValue()); 1101 FlowsToReturn.insert(SI->getFalseValue()); 1102 continue; 1103 } 1104 case Instruction::PHI: { 1105 PHINode *PN = cast<PHINode>(RVI); 1106 for (Value *IncValue : PN->incoming_values()) 1107 FlowsToReturn.insert(IncValue); 1108 continue; 1109 } 1110 1111 // Check whether the pointer came from an allocation. 1112 case Instruction::Alloca: 1113 break; 1114 case Instruction::Call: 1115 case Instruction::Invoke: { 1116 CallBase &CB = cast<CallBase>(*RVI); 1117 if (CB.hasRetAttr(Attribute::NoAlias)) 1118 break; 1119 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1120 break; 1121 LLVM_FALLTHROUGH; 1122 } 1123 default: 1124 return false; // Did not come from an allocation. 1125 } 1126 1127 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1128 return false; 1129 } 1130 1131 return true; 1132 } 1133 1134 /// Deduce noalias attributes for the SCC. 1135 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { 1136 // Check each function in turn, determining which functions return noalias 1137 // pointers. 1138 for (Function *F : SCCNodes) { 1139 // Already noalias. 1140 if (F->returnDoesNotAlias()) 1141 continue; 1142 1143 // We can infer and propagate function attributes only when we know that the 1144 // definition we'll get at link time is *exactly* the definition we see now. 1145 // For more details, see GlobalValue::mayBeDerefined. 1146 if (!F->hasExactDefinition()) 1147 return false; 1148 1149 // We annotate noalias return values, which are only applicable to 1150 // pointer types. 1151 if (!F->getReturnType()->isPointerTy()) 1152 continue; 1153 1154 if (!isFunctionMallocLike(F, SCCNodes)) 1155 return false; 1156 } 1157 1158 bool MadeChange = false; 1159 for (Function *F : SCCNodes) { 1160 if (F->returnDoesNotAlias() || 1161 !F->getReturnType()->isPointerTy()) 1162 continue; 1163 1164 F->setReturnDoesNotAlias(); 1165 ++NumNoAlias; 1166 MadeChange = true; 1167 } 1168 1169 return MadeChange; 1170 } 1171 1172 /// Tests whether this function is known to not return null. 1173 /// 1174 /// Requires that the function returns a pointer. 1175 /// 1176 /// Returns true if it believes the function will not return a null, and sets 1177 /// \p Speculative based on whether the returned conclusion is a speculative 1178 /// conclusion due to SCC calls. 1179 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1180 bool &Speculative) { 1181 assert(F->getReturnType()->isPointerTy() && 1182 "nonnull only meaningful on pointer types"); 1183 Speculative = false; 1184 1185 SmallSetVector<Value *, 8> FlowsToReturn; 1186 for (BasicBlock &BB : *F) 1187 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1188 FlowsToReturn.insert(Ret->getReturnValue()); 1189 1190 auto &DL = F->getParent()->getDataLayout(); 1191 1192 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1193 Value *RetVal = FlowsToReturn[i]; 1194 1195 // If this value is locally known to be non-null, we're good 1196 if (isKnownNonZero(RetVal, DL)) 1197 continue; 1198 1199 // Otherwise, we need to look upwards since we can't make any local 1200 // conclusions. 1201 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1202 if (!RVI) 1203 return false; 1204 switch (RVI->getOpcode()) { 1205 // Extend the analysis by looking upwards. 1206 case Instruction::BitCast: 1207 case Instruction::GetElementPtr: 1208 case Instruction::AddrSpaceCast: 1209 FlowsToReturn.insert(RVI->getOperand(0)); 1210 continue; 1211 case Instruction::Select: { 1212 SelectInst *SI = cast<SelectInst>(RVI); 1213 FlowsToReturn.insert(SI->getTrueValue()); 1214 FlowsToReturn.insert(SI->getFalseValue()); 1215 continue; 1216 } 1217 case Instruction::PHI: { 1218 PHINode *PN = cast<PHINode>(RVI); 1219 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1220 FlowsToReturn.insert(PN->getIncomingValue(i)); 1221 continue; 1222 } 1223 case Instruction::Call: 1224 case Instruction::Invoke: { 1225 CallBase &CB = cast<CallBase>(*RVI); 1226 Function *Callee = CB.getCalledFunction(); 1227 // A call to a node within the SCC is assumed to return null until 1228 // proven otherwise 1229 if (Callee && SCCNodes.count(Callee)) { 1230 Speculative = true; 1231 continue; 1232 } 1233 return false; 1234 } 1235 default: 1236 return false; // Unknown source, may be null 1237 }; 1238 llvm_unreachable("should have either continued or returned"); 1239 } 1240 1241 return true; 1242 } 1243 1244 /// Deduce nonnull attributes for the SCC. 1245 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) { 1246 // Speculative that all functions in the SCC return only nonnull 1247 // pointers. We may refute this as we analyze functions. 1248 bool SCCReturnsNonNull = true; 1249 1250 bool MadeChange = false; 1251 1252 // Check each function in turn, determining which functions return nonnull 1253 // pointers. 1254 for (Function *F : SCCNodes) { 1255 // Already nonnull. 1256 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1257 continue; 1258 1259 // We can infer and propagate function attributes only when we know that the 1260 // definition we'll get at link time is *exactly* the definition we see now. 1261 // For more details, see GlobalValue::mayBeDerefined. 1262 if (!F->hasExactDefinition()) 1263 return false; 1264 1265 // We annotate nonnull return values, which are only applicable to 1266 // pointer types. 1267 if (!F->getReturnType()->isPointerTy()) 1268 continue; 1269 1270 bool Speculative = false; 1271 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1272 if (!Speculative) { 1273 // Mark the function eagerly since we may discover a function 1274 // which prevents us from speculating about the entire SCC 1275 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1276 << " as nonnull\n"); 1277 F->addRetAttr(Attribute::NonNull); 1278 ++NumNonNullReturn; 1279 MadeChange = true; 1280 } 1281 continue; 1282 } 1283 // At least one function returns something which could be null, can't 1284 // speculate any more. 1285 SCCReturnsNonNull = false; 1286 } 1287 1288 if (SCCReturnsNonNull) { 1289 for (Function *F : SCCNodes) { 1290 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1291 !F->getReturnType()->isPointerTy()) 1292 continue; 1293 1294 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1295 F->addRetAttr(Attribute::NonNull); 1296 ++NumNonNullReturn; 1297 MadeChange = true; 1298 } 1299 } 1300 1301 return MadeChange; 1302 } 1303 1304 namespace { 1305 1306 /// Collects a set of attribute inference requests and performs them all in one 1307 /// go on a single SCC Node. Inference involves scanning function bodies 1308 /// looking for instructions that violate attribute assumptions. 1309 /// As soon as all the bodies are fine we are free to set the attribute. 1310 /// Customization of inference for individual attributes is performed by 1311 /// providing a handful of predicates for each attribute. 1312 class AttributeInferer { 1313 public: 1314 /// Describes a request for inference of a single attribute. 1315 struct InferenceDescriptor { 1316 1317 /// Returns true if this function does not have to be handled. 1318 /// General intent for this predicate is to provide an optimization 1319 /// for functions that do not need this attribute inference at all 1320 /// (say, for functions that already have the attribute). 1321 std::function<bool(const Function &)> SkipFunction; 1322 1323 /// Returns true if this instruction violates attribute assumptions. 1324 std::function<bool(Instruction &)> InstrBreaksAttribute; 1325 1326 /// Sets the inferred attribute for this function. 1327 std::function<void(Function &)> SetAttribute; 1328 1329 /// Attribute we derive. 1330 Attribute::AttrKind AKind; 1331 1332 /// If true, only "exact" definitions can be used to infer this attribute. 1333 /// See GlobalValue::isDefinitionExact. 1334 bool RequiresExactDefinition; 1335 1336 InferenceDescriptor(Attribute::AttrKind AK, 1337 std::function<bool(const Function &)> SkipFunc, 1338 std::function<bool(Instruction &)> InstrScan, 1339 std::function<void(Function &)> SetAttr, 1340 bool ReqExactDef) 1341 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1342 SetAttribute(SetAttr), AKind(AK), 1343 RequiresExactDefinition(ReqExactDef) {} 1344 }; 1345 1346 private: 1347 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1348 1349 public: 1350 void registerAttrInference(InferenceDescriptor AttrInference) { 1351 InferenceDescriptors.push_back(AttrInference); 1352 } 1353 1354 bool run(const SCCNodeSet &SCCNodes); 1355 }; 1356 1357 /// Perform all the requested attribute inference actions according to the 1358 /// attribute predicates stored before. 1359 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) { 1360 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1361 // Go through all the functions in SCC and check corresponding attribute 1362 // assumptions for each of them. Attributes that are invalid for this SCC 1363 // will be removed from InferInSCC. 1364 for (Function *F : SCCNodes) { 1365 1366 // No attributes whose assumptions are still valid - done. 1367 if (InferInSCC.empty()) 1368 return false; 1369 1370 // Check if our attributes ever need scanning/can be scanned. 1371 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1372 if (ID.SkipFunction(*F)) 1373 return false; 1374 1375 // Remove from further inference (invalidate) when visiting a function 1376 // that has no instructions to scan/has an unsuitable definition. 1377 return F->isDeclaration() || 1378 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1379 }); 1380 1381 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1382 // set up the F instructions scan to verify assumptions of the attribute. 1383 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1384 llvm::copy_if( 1385 InferInSCC, std::back_inserter(InferInThisFunc), 1386 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1387 1388 if (InferInThisFunc.empty()) 1389 continue; 1390 1391 // Start instruction scan. 1392 for (Instruction &I : instructions(*F)) { 1393 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1394 if (!ID.InstrBreaksAttribute(I)) 1395 return false; 1396 // Remove attribute from further inference on any other functions 1397 // because attribute assumptions have just been violated. 1398 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1399 return D.AKind == ID.AKind; 1400 }); 1401 // Remove attribute from the rest of current instruction scan. 1402 return true; 1403 }); 1404 1405 if (InferInThisFunc.empty()) 1406 break; 1407 } 1408 } 1409 1410 if (InferInSCC.empty()) 1411 return false; 1412 1413 bool Changed = false; 1414 for (Function *F : SCCNodes) 1415 // At this point InferInSCC contains only functions that were either: 1416 // - explicitly skipped from scan/inference, or 1417 // - verified to have no instructions that break attribute assumptions. 1418 // Hence we just go and force the attribute for all non-skipped functions. 1419 for (auto &ID : InferInSCC) { 1420 if (ID.SkipFunction(*F)) 1421 continue; 1422 Changed = true; 1423 ID.SetAttribute(*F); 1424 } 1425 return Changed; 1426 } 1427 1428 struct SCCNodesResult { 1429 SCCNodeSet SCCNodes; 1430 bool HasUnknownCall; 1431 }; 1432 1433 } // end anonymous namespace 1434 1435 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1436 static bool InstrBreaksNonConvergent(Instruction &I, 1437 const SCCNodeSet &SCCNodes) { 1438 const CallBase *CB = dyn_cast<CallBase>(&I); 1439 // Breaks non-convergent assumption if CS is a convergent call to a function 1440 // not in the SCC. 1441 return CB && CB->isConvergent() && 1442 SCCNodes.count(CB->getCalledFunction()) == 0; 1443 } 1444 1445 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1446 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1447 if (!I.mayThrow()) 1448 return false; 1449 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1450 if (Function *Callee = CI->getCalledFunction()) { 1451 // I is a may-throw call to a function inside our SCC. This doesn't 1452 // invalidate our current working assumption that the SCC is no-throw; we 1453 // just have to scan that other function. 1454 if (SCCNodes.contains(Callee)) 1455 return false; 1456 } 1457 } 1458 return true; 1459 } 1460 1461 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1462 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1463 CallBase *CB = dyn_cast<CallBase>(&I); 1464 if (!CB) 1465 return false; 1466 1467 if (CB->hasFnAttr(Attribute::NoFree)) 1468 return false; 1469 1470 // Speculatively assume in SCC. 1471 if (Function *Callee = CB->getCalledFunction()) 1472 if (SCCNodes.contains(Callee)) 1473 return false; 1474 1475 return true; 1476 } 1477 1478 /// Attempt to remove convergent function attribute when possible. 1479 /// 1480 /// Returns true if any changes to function attributes were made. 1481 static bool inferConvergent(const SCCNodeSet &SCCNodes) { 1482 AttributeInferer AI; 1483 1484 // Request to remove the convergent attribute from all functions in the SCC 1485 // if every callsite within the SCC is not convergent (except for calls 1486 // to functions within the SCC). 1487 // Note: Removal of the attr from the callsites will happen in 1488 // InstCombineCalls separately. 1489 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1490 Attribute::Convergent, 1491 // Skip non-convergent functions. 1492 [](const Function &F) { return !F.isConvergent(); }, 1493 // Instructions that break non-convergent assumption. 1494 [SCCNodes](Instruction &I) { 1495 return InstrBreaksNonConvergent(I, SCCNodes); 1496 }, 1497 [](Function &F) { 1498 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1499 << "\n"); 1500 F.setNotConvergent(); 1501 }, 1502 /* RequiresExactDefinition= */ false}); 1503 // Perform all the requested attribute inference actions. 1504 return AI.run(SCCNodes); 1505 } 1506 1507 /// Infer attributes from all functions in the SCC by scanning every 1508 /// instruction for compliance to the attribute assumptions. Currently it 1509 /// does: 1510 /// - addition of NoUnwind attribute 1511 /// 1512 /// Returns true if any changes to function attributes were made. 1513 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) { 1514 AttributeInferer AI; 1515 1516 if (!DisableNoUnwindInference) 1517 // Request to infer nounwind attribute for all the functions in the SCC if 1518 // every callsite within the SCC is not throwing (except for calls to 1519 // functions within the SCC). Note that nounwind attribute suffers from 1520 // derefinement - results may change depending on how functions are 1521 // optimized. Thus it can be inferred only from exact definitions. 1522 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1523 Attribute::NoUnwind, 1524 // Skip non-throwing functions. 1525 [](const Function &F) { return F.doesNotThrow(); }, 1526 // Instructions that break non-throwing assumption. 1527 [&SCCNodes](Instruction &I) { 1528 return InstrBreaksNonThrowing(I, SCCNodes); 1529 }, 1530 [](Function &F) { 1531 LLVM_DEBUG(dbgs() 1532 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1533 F.setDoesNotThrow(); 1534 ++NumNoUnwind; 1535 }, 1536 /* RequiresExactDefinition= */ true}); 1537 1538 if (!DisableNoFreeInference) 1539 // Request to infer nofree attribute for all the functions in the SCC if 1540 // every callsite within the SCC does not directly or indirectly free 1541 // memory (except for calls to functions within the SCC). Note that nofree 1542 // attribute suffers from derefinement - results may change depending on 1543 // how functions are optimized. Thus it can be inferred only from exact 1544 // definitions. 1545 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1546 Attribute::NoFree, 1547 // Skip functions known not to free memory. 1548 [](const Function &F) { return F.doesNotFreeMemory(); }, 1549 // Instructions that break non-deallocating assumption. 1550 [&SCCNodes](Instruction &I) { 1551 return InstrBreaksNoFree(I, SCCNodes); 1552 }, 1553 [](Function &F) { 1554 LLVM_DEBUG(dbgs() 1555 << "Adding nofree attr to fn " << F.getName() << "\n"); 1556 F.setDoesNotFreeMemory(); 1557 ++NumNoFree; 1558 }, 1559 /* RequiresExactDefinition= */ true}); 1560 1561 // Perform all the requested attribute inference actions. 1562 return AI.run(SCCNodes); 1563 } 1564 1565 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) { 1566 // Try and identify functions that do not recurse. 1567 1568 // If the SCC contains multiple nodes we know for sure there is recursion. 1569 if (SCCNodes.size() != 1) 1570 return false; 1571 1572 Function *F = *SCCNodes.begin(); 1573 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1574 return false; 1575 1576 // If all of the calls in F are identifiable and are to norecurse functions, F 1577 // is norecurse. This check also detects self-recursion as F is not currently 1578 // marked norecurse, so any called from F to F will not be marked norecurse. 1579 for (auto &BB : *F) 1580 for (auto &I : BB.instructionsWithoutDebug()) 1581 if (auto *CB = dyn_cast<CallBase>(&I)) { 1582 Function *Callee = CB->getCalledFunction(); 1583 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1584 // Function calls a potentially recursive function. 1585 return false; 1586 } 1587 1588 // Every call was to a non-recursive function other than this function, and 1589 // we have no indirect recursion as the SCC size is one. This function cannot 1590 // recurse. 1591 F->setDoesNotRecurse(); 1592 ++NumNoRecurse; 1593 return true; 1594 } 1595 1596 static bool instructionDoesNotReturn(Instruction &I) { 1597 if (auto *CB = dyn_cast<CallBase>(&I)) 1598 return CB->hasFnAttr(Attribute::NoReturn); 1599 return false; 1600 } 1601 1602 // A basic block can only return if it terminates with a ReturnInst and does not 1603 // contain calls to noreturn functions. 1604 static bool basicBlockCanReturn(BasicBlock &BB) { 1605 if (!isa<ReturnInst>(BB.getTerminator())) 1606 return false; 1607 return none_of(BB, instructionDoesNotReturn); 1608 } 1609 1610 // Set the noreturn function attribute if possible. 1611 static bool addNoReturnAttrs(const SCCNodeSet &SCCNodes) { 1612 bool Changed = false; 1613 1614 for (Function *F : SCCNodes) { 1615 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1616 F->doesNotReturn()) 1617 continue; 1618 1619 // The function can return if any basic blocks can return. 1620 // FIXME: this doesn't handle recursion or unreachable blocks. 1621 if (none_of(*F, basicBlockCanReturn)) { 1622 F->setDoesNotReturn(); 1623 Changed = true; 1624 } 1625 } 1626 1627 return Changed; 1628 } 1629 1630 static bool functionWillReturn(const Function &F) { 1631 // We can infer and propagate function attributes only when we know that the 1632 // definition we'll get at link time is *exactly* the definition we see now. 1633 // For more details, see GlobalValue::mayBeDerefined. 1634 if (!F.hasExactDefinition()) 1635 return false; 1636 1637 // Must-progress function without side-effects must return. 1638 if (F.mustProgress() && F.onlyReadsMemory()) 1639 return true; 1640 1641 // Can only analyze functions with a definition. 1642 if (F.isDeclaration()) 1643 return false; 1644 1645 // Functions with loops require more sophisticated analysis, as the loop 1646 // may be infinite. For now, don't try to handle them. 1647 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1648 FindFunctionBackedges(F, Backedges); 1649 if (!Backedges.empty()) 1650 return false; 1651 1652 // If there are no loops, then the function is willreturn if all calls in 1653 // it are willreturn. 1654 return all_of(instructions(F), [](const Instruction &I) { 1655 return I.willReturn(); 1656 }); 1657 } 1658 1659 // Set the willreturn function attribute if possible. 1660 static bool addWillReturn(const SCCNodeSet &SCCNodes) { 1661 bool Changed = false; 1662 1663 for (Function *F : SCCNodes) { 1664 if (!F || F->willReturn() || !functionWillReturn(*F)) 1665 continue; 1666 1667 F->setWillReturn(); 1668 NumWillReturn++; 1669 Changed = true; 1670 } 1671 1672 return Changed; 1673 } 1674 1675 // Return true if this is an atomic which has an ordering stronger than 1676 // unordered. Note that this is different than the predicate we use in 1677 // Attributor. Here we chose to be conservative and consider monotonic 1678 // operations potentially synchronizing. We generally don't do much with 1679 // monotonic operations, so this is simply risk reduction. 1680 static bool isOrderedAtomic(Instruction *I) { 1681 if (!I->isAtomic()) 1682 return false; 1683 1684 if (auto *FI = dyn_cast<FenceInst>(I)) 1685 // All legal orderings for fence are stronger than monotonic. 1686 return FI->getSyncScopeID() != SyncScope::SingleThread; 1687 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1688 return true; 1689 else if (auto *SI = dyn_cast<StoreInst>(I)) 1690 return !SI->isUnordered(); 1691 else if (auto *LI = dyn_cast<LoadInst>(I)) 1692 return !LI->isUnordered(); 1693 else { 1694 llvm_unreachable("unknown atomic instruction?"); 1695 } 1696 } 1697 1698 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1699 // Volatile may synchronize 1700 if (I.isVolatile()) 1701 return true; 1702 1703 // An ordered atomic may synchronize. (See comment about on monotonic.) 1704 if (isOrderedAtomic(&I)) 1705 return true; 1706 1707 auto *CB = dyn_cast<CallBase>(&I); 1708 if (!CB) 1709 // Non call site cases covered by the two checks above 1710 return false; 1711 1712 if (CB->hasFnAttr(Attribute::NoSync)) 1713 return false; 1714 1715 // Non volatile memset/memcpy/memmoves are nosync 1716 // NOTE: Only intrinsics with volatile flags should be handled here. All 1717 // others should be marked in Intrinsics.td. 1718 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1719 if (!MI->isVolatile()) 1720 return false; 1721 1722 // Speculatively assume in SCC. 1723 if (Function *Callee = CB->getCalledFunction()) 1724 if (SCCNodes.contains(Callee)) 1725 return false; 1726 1727 return true; 1728 } 1729 1730 // Infer the nosync attribute. 1731 static bool addNoSyncAttr(const SCCNodeSet &SCCNodes) { 1732 AttributeInferer AI; 1733 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1734 Attribute::NoSync, 1735 // Skip already marked functions. 1736 [](const Function &F) { return F.hasNoSync(); }, 1737 // Instructions that break nosync assumption. 1738 [&SCCNodes](Instruction &I) { 1739 return InstrBreaksNoSync(I, SCCNodes); 1740 }, 1741 [](Function &F) { 1742 LLVM_DEBUG(dbgs() 1743 << "Adding nosync attr to fn " << F.getName() << "\n"); 1744 F.setNoSync(); 1745 ++NumNoSync; 1746 }, 1747 /* RequiresExactDefinition= */ true}); 1748 return AI.run(SCCNodes); 1749 } 1750 1751 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1752 SCCNodesResult Res; 1753 Res.HasUnknownCall = false; 1754 for (Function *F : Functions) { 1755 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) { 1756 // Treat any function we're trying not to optimize as if it were an 1757 // indirect call and omit it from the node set used below. 1758 Res.HasUnknownCall = true; 1759 continue; 1760 } 1761 // Track whether any functions in this SCC have an unknown call edge. 1762 // Note: if this is ever a performance hit, we can common it with 1763 // subsequent routines which also do scans over the instructions of the 1764 // function. 1765 if (!Res.HasUnknownCall) { 1766 for (Instruction &I : instructions(*F)) { 1767 if (auto *CB = dyn_cast<CallBase>(&I)) { 1768 if (!CB->getCalledFunction()) { 1769 Res.HasUnknownCall = true; 1770 break; 1771 } 1772 } 1773 } 1774 } 1775 Res.SCCNodes.insert(F); 1776 } 1777 return Res; 1778 } 1779 1780 template <typename AARGetterT> 1781 static bool deriveAttrsInPostOrder(ArrayRef<Function *> Functions, 1782 AARGetterT &&AARGetter) { 1783 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1784 bool Changed = false; 1785 1786 // Bail if the SCC only contains optnone functions. 1787 if (Nodes.SCCNodes.empty()) 1788 return Changed; 1789 1790 Changed |= addArgumentReturnedAttrs(Nodes.SCCNodes); 1791 Changed |= addReadAttrs(Nodes.SCCNodes, AARGetter); 1792 Changed |= addArgumentAttrs(Nodes.SCCNodes); 1793 Changed |= inferConvergent(Nodes.SCCNodes); 1794 Changed |= addNoReturnAttrs(Nodes.SCCNodes); 1795 Changed |= addWillReturn(Nodes.SCCNodes); 1796 1797 // If we have no external nodes participating in the SCC, we can deduce some 1798 // more precise attributes as well. 1799 if (!Nodes.HasUnknownCall) { 1800 Changed |= addNoAliasAttrs(Nodes.SCCNodes); 1801 Changed |= addNonNullAttrs(Nodes.SCCNodes); 1802 Changed |= inferAttrsFromFunctionBodies(Nodes.SCCNodes); 1803 Changed |= addNoRecurseAttrs(Nodes.SCCNodes); 1804 } 1805 1806 Changed |= addNoSyncAttr(Nodes.SCCNodes); 1807 1808 // Finally, infer the maximal set of attributes from the ones we've inferred 1809 // above. This is handling the cases where one attribute on a signature 1810 // implies another, but for implementation reasons the inference rule for 1811 // the later is missing (or simply less sophisticated). 1812 for (Function *F : Nodes.SCCNodes) 1813 if (F) 1814 Changed |= inferAttributesFromOthers(*F); 1815 1816 return Changed; 1817 } 1818 1819 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1820 CGSCCAnalysisManager &AM, 1821 LazyCallGraph &CG, 1822 CGSCCUpdateResult &) { 1823 FunctionAnalysisManager &FAM = 1824 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1825 1826 // We pass a lambda into functions to wire them up to the analysis manager 1827 // for getting function analyses. 1828 auto AARGetter = [&](Function &F) -> AAResults & { 1829 return FAM.getResult<AAManager>(F); 1830 }; 1831 1832 SmallVector<Function *, 8> Functions; 1833 for (LazyCallGraph::Node &N : C) { 1834 Functions.push_back(&N.getFunction()); 1835 } 1836 1837 if (deriveAttrsInPostOrder(Functions, AARGetter)) { 1838 // We have not changed the call graph or removed/added functions. 1839 PreservedAnalyses PA; 1840 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1841 return PA; 1842 } 1843 1844 return PreservedAnalyses::all(); 1845 } 1846 1847 namespace { 1848 1849 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1850 // Pass identification, replacement for typeid 1851 static char ID; 1852 1853 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1854 initializePostOrderFunctionAttrsLegacyPassPass( 1855 *PassRegistry::getPassRegistry()); 1856 } 1857 1858 bool runOnSCC(CallGraphSCC &SCC) override; 1859 1860 void getAnalysisUsage(AnalysisUsage &AU) const override { 1861 AU.setPreservesCFG(); 1862 AU.addRequired<AssumptionCacheTracker>(); 1863 getAAResultsAnalysisUsage(AU); 1864 CallGraphSCCPass::getAnalysisUsage(AU); 1865 } 1866 }; 1867 1868 } // end anonymous namespace 1869 1870 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1871 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1872 "Deduce function attributes", false, false) 1873 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1874 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1875 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1876 "Deduce function attributes", false, false) 1877 1878 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1879 return new PostOrderFunctionAttrsLegacyPass(); 1880 } 1881 1882 template <typename AARGetterT> 1883 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1884 SmallVector<Function *, 8> Functions; 1885 for (CallGraphNode *I : SCC) { 1886 Functions.push_back(I->getFunction()); 1887 } 1888 1889 return deriveAttrsInPostOrder(Functions, AARGetter); 1890 } 1891 1892 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1893 if (skipSCC(SCC)) 1894 return false; 1895 return runImpl(SCC, LegacyAARGetter(*this)); 1896 } 1897 1898 namespace { 1899 1900 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1901 // Pass identification, replacement for typeid 1902 static char ID; 1903 1904 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1905 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1906 *PassRegistry::getPassRegistry()); 1907 } 1908 1909 bool runOnModule(Module &M) override; 1910 1911 void getAnalysisUsage(AnalysisUsage &AU) const override { 1912 AU.setPreservesCFG(); 1913 AU.addRequired<CallGraphWrapperPass>(); 1914 AU.addPreserved<CallGraphWrapperPass>(); 1915 } 1916 }; 1917 1918 } // end anonymous namespace 1919 1920 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1921 1922 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1923 "rpo-function-attrs", "Deduce function attributes in RPO", 1924 false, false) 1925 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1926 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1927 "rpo-function-attrs", "Deduce function attributes in RPO", 1928 false, false) 1929 1930 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1931 return new ReversePostOrderFunctionAttrsLegacyPass(); 1932 } 1933 1934 static bool addNoRecurseAttrsTopDown(Function &F) { 1935 // We check the preconditions for the function prior to calling this to avoid 1936 // the cost of building up a reversible post-order list. We assert them here 1937 // to make sure none of the invariants this relies on were violated. 1938 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1939 assert(!F.doesNotRecurse() && 1940 "This function has already been deduced as norecurs!"); 1941 assert(F.hasInternalLinkage() && 1942 "Can only do top-down deduction for internal linkage functions!"); 1943 1944 // If F is internal and all of its uses are calls from a non-recursive 1945 // functions, then none of its calls could in fact recurse without going 1946 // through a function marked norecurse, and so we can mark this function too 1947 // as norecurse. Note that the uses must actually be calls -- otherwise 1948 // a pointer to this function could be returned from a norecurse function but 1949 // this function could be recursively (indirectly) called. Note that this 1950 // also detects if F is directly recursive as F is not yet marked as 1951 // a norecurse function. 1952 for (auto *U : F.users()) { 1953 auto *I = dyn_cast<Instruction>(U); 1954 if (!I) 1955 return false; 1956 CallBase *CB = dyn_cast<CallBase>(I); 1957 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1958 return false; 1959 } 1960 F.setDoesNotRecurse(); 1961 ++NumNoRecurse; 1962 return true; 1963 } 1964 1965 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1966 // We only have a post-order SCC traversal (because SCCs are inherently 1967 // discovered in post-order), so we accumulate them in a vector and then walk 1968 // it in reverse. This is simpler than using the RPO iterator infrastructure 1969 // because we need to combine SCC detection and the PO walk of the call 1970 // graph. We can also cheat egregiously because we're primarily interested in 1971 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1972 // with multiple functions in them will clearly be recursive. 1973 SmallVector<Function *, 16> Worklist; 1974 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1975 if (I->size() != 1) 1976 continue; 1977 1978 Function *F = I->front()->getFunction(); 1979 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1980 F->hasInternalLinkage()) 1981 Worklist.push_back(F); 1982 } 1983 1984 bool Changed = false; 1985 for (auto *F : llvm::reverse(Worklist)) 1986 Changed |= addNoRecurseAttrsTopDown(*F); 1987 1988 return Changed; 1989 } 1990 1991 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1992 if (skipModule(M)) 1993 return false; 1994 1995 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1996 1997 return deduceFunctionAttributeInRPO(M, CG); 1998 } 1999 2000 PreservedAnalyses 2001 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2002 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2003 2004 if (!deduceFunctionAttributeInRPO(M, CG)) 2005 return PreservedAnalyses::all(); 2006 2007 PreservedAnalyses PA; 2008 PA.preserve<CallGraphAnalysis>(); 2009 return PA; 2010 } 2011