1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReturned, "Number of arguments marked returned");
46 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
47 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
48 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
49 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
50 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
51 
52 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
53 // in C/C++ code compiled by clang:
54 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
55 static cl::opt<bool> EnableNonnullArgPropagation(
56     "enable-nonnull-arg-prop", cl::Hidden,
57     cl::desc("Try to propagate nonnull argument attributes from callsites to "
58              "caller functions."));
59 
60 namespace {
61 typedef SmallSetVector<Function *, 8> SCCNodeSet;
62 }
63 
64 /// Returns the memory access attribute for function F using AAR for AA results,
65 /// where SCCNodes is the current SCC.
66 ///
67 /// If ThisBody is true, this function may examine the function body and will
68 /// return a result pertaining to this copy of the function. If it is false, the
69 /// result will be based only on AA results for the function declaration; it
70 /// will be assumed that some other (perhaps less optimized) version of the
71 /// function may be selected at link time.
72 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
73                                                   AAResults &AAR,
74                                                   const SCCNodeSet &SCCNodes) {
75   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
76   if (MRB == FMRB_DoesNotAccessMemory)
77     // Already perfect!
78     return MAK_ReadNone;
79 
80   if (!ThisBody) {
81     if (AliasAnalysis::onlyReadsMemory(MRB))
82       return MAK_ReadOnly;
83 
84     // Conservatively assume it writes to memory.
85     return MAK_MayWrite;
86   }
87 
88   // Scan the function body for instructions that may read or write memory.
89   bool ReadsMemory = false;
90   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
91     Instruction *I = &*II;
92 
93     // Some instructions can be ignored even if they read or write memory.
94     // Detect these now, skipping to the next instruction if one is found.
95     CallSite CS(cast<Value>(I));
96     if (CS) {
97       // Ignore calls to functions in the same SCC, as long as the call sites
98       // don't have operand bundles.  Calls with operand bundles are allowed to
99       // have memory effects not described by the memory effects of the call
100       // target.
101       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
102           SCCNodes.count(CS.getCalledFunction()))
103         continue;
104       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
105 
106       // If the call doesn't access memory, we're done.
107       if (!(MRB & MRI_ModRef))
108         continue;
109 
110       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
111         // The call could access any memory. If that includes writes, give up.
112         if (MRB & MRI_Mod)
113           return MAK_MayWrite;
114         // If it reads, note it.
115         if (MRB & MRI_Ref)
116           ReadsMemory = true;
117         continue;
118       }
119 
120       // Check whether all pointer arguments point to local memory, and
121       // ignore calls that only access local memory.
122       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
123            CI != CE; ++CI) {
124         Value *Arg = *CI;
125         if (!Arg->getType()->isPtrOrPtrVectorTy())
126           continue;
127 
128         AAMDNodes AAInfo;
129         I->getAAMetadata(AAInfo);
130         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
131 
132         // Skip accesses to local or constant memory as they don't impact the
133         // externally visible mod/ref behavior.
134         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
135           continue;
136 
137         if (MRB & MRI_Mod)
138           // Writes non-local memory.  Give up.
139           return MAK_MayWrite;
140         if (MRB & MRI_Ref)
141           // Ok, it reads non-local memory.
142           ReadsMemory = true;
143       }
144       continue;
145     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
146       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
147       if (!LI->isVolatile()) {
148         MemoryLocation Loc = MemoryLocation::get(LI);
149         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
150           continue;
151       }
152     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
153       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
154       if (!SI->isVolatile()) {
155         MemoryLocation Loc = MemoryLocation::get(SI);
156         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
157           continue;
158       }
159     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
160       // Ignore vaargs on local memory.
161       MemoryLocation Loc = MemoryLocation::get(VI);
162       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
163         continue;
164     }
165 
166     // Any remaining instructions need to be taken seriously!  Check if they
167     // read or write memory.
168     if (I->mayWriteToMemory())
169       // Writes memory.  Just give up.
170       return MAK_MayWrite;
171 
172     // If this instruction may read memory, remember that.
173     ReadsMemory |= I->mayReadFromMemory();
174   }
175 
176   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
177 }
178 
179 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
180                                                        AAResults &AAR) {
181   return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
182 }
183 
184 /// Deduce readonly/readnone attributes for the SCC.
185 template <typename AARGetterT>
186 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
187   // Check if any of the functions in the SCC read or write memory.  If they
188   // write memory then they can't be marked readnone or readonly.
189   bool ReadsMemory = false;
190   for (Function *F : SCCNodes) {
191     // Call the callable parameter to look up AA results for this function.
192     AAResults &AAR = AARGetter(*F);
193 
194     // Non-exact function definitions may not be selected at link time, and an
195     // alternative version that writes to memory may be selected.  See the
196     // comment on GlobalValue::isDefinitionExact for more details.
197     switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
198                                       AAR, SCCNodes)) {
199     case MAK_MayWrite:
200       return false;
201     case MAK_ReadOnly:
202       ReadsMemory = true;
203       break;
204     case MAK_ReadNone:
205       // Nothing to do!
206       break;
207     }
208   }
209 
210   // Success!  Functions in this SCC do not access memory, or only read memory.
211   // Give them the appropriate attribute.
212   bool MadeChange = false;
213   for (Function *F : SCCNodes) {
214     if (F->doesNotAccessMemory())
215       // Already perfect!
216       continue;
217 
218     if (F->onlyReadsMemory() && ReadsMemory)
219       // No change.
220       continue;
221 
222     MadeChange = true;
223 
224     // Clear out any existing attributes.
225     AttrBuilder B;
226     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
227     F->removeAttributes(
228         AttributeList::FunctionIndex,
229         AttributeList::get(F->getContext(), AttributeList::FunctionIndex, B));
230 
231     // Add in the new attribute.
232     F->addAttribute(AttributeList::FunctionIndex,
233                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
234 
235     if (ReadsMemory)
236       ++NumReadOnly;
237     else
238       ++NumReadNone;
239   }
240 
241   return MadeChange;
242 }
243 
244 namespace {
245 /// For a given pointer Argument, this retains a list of Arguments of functions
246 /// in the same SCC that the pointer data flows into. We use this to build an
247 /// SCC of the arguments.
248 struct ArgumentGraphNode {
249   Argument *Definition;
250   SmallVector<ArgumentGraphNode *, 4> Uses;
251 };
252 
253 class ArgumentGraph {
254   // We store pointers to ArgumentGraphNode objects, so it's important that
255   // that they not move around upon insert.
256   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
257 
258   ArgumentMapTy ArgumentMap;
259 
260   // There is no root node for the argument graph, in fact:
261   //   void f(int *x, int *y) { if (...) f(x, y); }
262   // is an example where the graph is disconnected. The SCCIterator requires a
263   // single entry point, so we maintain a fake ("synthetic") root node that
264   // uses every node. Because the graph is directed and nothing points into
265   // the root, it will not participate in any SCCs (except for its own).
266   ArgumentGraphNode SyntheticRoot;
267 
268 public:
269   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
270 
271   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
272 
273   iterator begin() { return SyntheticRoot.Uses.begin(); }
274   iterator end() { return SyntheticRoot.Uses.end(); }
275   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
276 
277   ArgumentGraphNode *operator[](Argument *A) {
278     ArgumentGraphNode &Node = ArgumentMap[A];
279     Node.Definition = A;
280     SyntheticRoot.Uses.push_back(&Node);
281     return &Node;
282   }
283 };
284 
285 /// This tracker checks whether callees are in the SCC, and if so it does not
286 /// consider that a capture, instead adding it to the "Uses" list and
287 /// continuing with the analysis.
288 struct ArgumentUsesTracker : public CaptureTracker {
289   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
290       : Captured(false), SCCNodes(SCCNodes) {}
291 
292   void tooManyUses() override { Captured = true; }
293 
294   bool captured(const Use *U) override {
295     CallSite CS(U->getUser());
296     if (!CS.getInstruction()) {
297       Captured = true;
298       return true;
299     }
300 
301     Function *F = CS.getCalledFunction();
302     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
303       Captured = true;
304       return true;
305     }
306 
307     // Note: the callee and the two successor blocks *follow* the argument
308     // operands.  This means there is no need to adjust UseIndex to account for
309     // these.
310 
311     unsigned UseIndex =
312         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
313 
314     assert(UseIndex < CS.data_operands_size() &&
315            "Indirect function calls should have been filtered above!");
316 
317     if (UseIndex >= CS.getNumArgOperands()) {
318       // Data operand, but not a argument operand -- must be a bundle operand
319       assert(CS.hasOperandBundles() && "Must be!");
320 
321       // CaptureTracking told us that we're being captured by an operand bundle
322       // use.  In this case it does not matter if the callee is within our SCC
323       // or not -- we've been captured in some unknown way, and we have to be
324       // conservative.
325       Captured = true;
326       return true;
327     }
328 
329     if (UseIndex >= F->arg_size()) {
330       assert(F->isVarArg() && "More params than args in non-varargs call");
331       Captured = true;
332       return true;
333     }
334 
335     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
336     return false;
337   }
338 
339   bool Captured; // True only if certainly captured (used outside our SCC).
340   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
341 
342   const SCCNodeSet &SCCNodes;
343 };
344 }
345 
346 namespace llvm {
347 template <> struct GraphTraits<ArgumentGraphNode *> {
348   typedef ArgumentGraphNode *NodeRef;
349   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
350 
351   static NodeRef getEntryNode(NodeRef A) { return A; }
352   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
353   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
354 };
355 template <>
356 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
357   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
358   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
359     return AG->begin();
360   }
361   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
362 };
363 }
364 
365 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
366 static Attribute::AttrKind
367 determinePointerReadAttrs(Argument *A,
368                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
369 
370   SmallVector<Use *, 32> Worklist;
371   SmallSet<Use *, 32> Visited;
372 
373   // inalloca arguments are always clobbered by the call.
374   if (A->hasInAllocaAttr())
375     return Attribute::None;
376 
377   bool IsRead = false;
378   // We don't need to track IsWritten. If A is written to, return immediately.
379 
380   for (Use &U : A->uses()) {
381     Visited.insert(&U);
382     Worklist.push_back(&U);
383   }
384 
385   while (!Worklist.empty()) {
386     Use *U = Worklist.pop_back_val();
387     Instruction *I = cast<Instruction>(U->getUser());
388 
389     switch (I->getOpcode()) {
390     case Instruction::BitCast:
391     case Instruction::GetElementPtr:
392     case Instruction::PHI:
393     case Instruction::Select:
394     case Instruction::AddrSpaceCast:
395       // The original value is not read/written via this if the new value isn't.
396       for (Use &UU : I->uses())
397         if (Visited.insert(&UU).second)
398           Worklist.push_back(&UU);
399       break;
400 
401     case Instruction::Call:
402     case Instruction::Invoke: {
403       bool Captures = true;
404 
405       if (I->getType()->isVoidTy())
406         Captures = false;
407 
408       auto AddUsersToWorklistIfCapturing = [&] {
409         if (Captures)
410           for (Use &UU : I->uses())
411             if (Visited.insert(&UU).second)
412               Worklist.push_back(&UU);
413       };
414 
415       CallSite CS(I);
416       if (CS.doesNotAccessMemory()) {
417         AddUsersToWorklistIfCapturing();
418         continue;
419       }
420 
421       Function *F = CS.getCalledFunction();
422       if (!F) {
423         if (CS.onlyReadsMemory()) {
424           IsRead = true;
425           AddUsersToWorklistIfCapturing();
426           continue;
427         }
428         return Attribute::None;
429       }
430 
431       // Note: the callee and the two successor blocks *follow* the argument
432       // operands.  This means there is no need to adjust UseIndex to account
433       // for these.
434 
435       unsigned UseIndex = std::distance(CS.arg_begin(), U);
436 
437       // U cannot be the callee operand use: since we're exploring the
438       // transitive uses of an Argument, having such a use be a callee would
439       // imply the CallSite is an indirect call or invoke; and we'd take the
440       // early exit above.
441       assert(UseIndex < CS.data_operands_size() &&
442              "Data operand use expected!");
443 
444       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
445 
446       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
447         assert(F->isVarArg() && "More params than args in non-varargs call");
448         return Attribute::None;
449       }
450 
451       Captures &= !CS.doesNotCapture(UseIndex);
452 
453       // Since the optimizer (by design) cannot see the data flow corresponding
454       // to a operand bundle use, these cannot participate in the optimistic SCC
455       // analysis.  Instead, we model the operand bundle uses as arguments in
456       // call to a function external to the SCC.
457       if (IsOperandBundleUse ||
458           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
459 
460         // The accessors used on CallSite here do the right thing for calls and
461         // invokes with operand bundles.
462 
463         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
464           return Attribute::None;
465         if (!CS.doesNotAccessMemory(UseIndex))
466           IsRead = true;
467       }
468 
469       AddUsersToWorklistIfCapturing();
470       break;
471     }
472 
473     case Instruction::Load:
474       // A volatile load has side effects beyond what readonly can be relied
475       // upon.
476       if (cast<LoadInst>(I)->isVolatile())
477         return Attribute::None;
478 
479       IsRead = true;
480       break;
481 
482     case Instruction::ICmp:
483     case Instruction::Ret:
484       break;
485 
486     default:
487       return Attribute::None;
488     }
489   }
490 
491   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
492 }
493 
494 /// Deduce returned attributes for the SCC.
495 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
496   bool Changed = false;
497 
498   AttrBuilder B;
499   B.addAttribute(Attribute::Returned);
500 
501   // Check each function in turn, determining if an argument is always returned.
502   for (Function *F : SCCNodes) {
503     // We can infer and propagate function attributes only when we know that the
504     // definition we'll get at link time is *exactly* the definition we see now.
505     // For more details, see GlobalValue::mayBeDerefined.
506     if (!F->hasExactDefinition())
507       continue;
508 
509     if (F->getReturnType()->isVoidTy())
510       continue;
511 
512     // There is nothing to do if an argument is already marked as 'returned'.
513     if (any_of(F->args(),
514                [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
515       continue;
516 
517     auto FindRetArg = [&]() -> Value * {
518       Value *RetArg = nullptr;
519       for (BasicBlock &BB : *F)
520         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
521           // Note that stripPointerCasts should look through functions with
522           // returned arguments.
523           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
524           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
525             return nullptr;
526 
527           if (!RetArg)
528             RetArg = RetVal;
529           else if (RetArg != RetVal)
530             return nullptr;
531         }
532 
533       return RetArg;
534     };
535 
536     if (Value *RetArg = FindRetArg()) {
537       auto *A = cast<Argument>(RetArg);
538       A->addAttr(AttributeList::get(F->getContext(), A->getArgNo() + 1, B));
539       ++NumReturned;
540       Changed = true;
541     }
542   }
543 
544   return Changed;
545 }
546 
547 /// If a callsite has arguments that are also arguments to the parent function,
548 /// try to propagate attributes from the callsite's arguments to the parent's
549 /// arguments. This may be important because inlining can cause information loss
550 /// when attribute knowledge disappears with the inlined call.
551 static bool addArgumentAttrsFromCallsites(Function &F) {
552   if (!EnableNonnullArgPropagation)
553     return false;
554 
555   bool Changed = false;
556 
557   // For an argument attribute to transfer from a callsite to the parent, the
558   // call must be guaranteed to execute every time the parent is called.
559   // Conservatively, just check for calls in the entry block that are guaranteed
560   // to execute.
561   // TODO: This could be enhanced by testing if the callsite post-dominates the
562   // entry block or by doing simple forward walks or backward walks to the
563   // callsite.
564   BasicBlock &Entry = F.getEntryBlock();
565   for (Instruction &I : Entry) {
566     if (auto CS = CallSite(&I)) {
567       if (auto *CalledFunc = CS.getCalledFunction()) {
568         for (auto &CSArg : CalledFunc->args()) {
569           if (!CSArg.hasNonNullAttr())
570             continue;
571 
572           // If the non-null callsite argument operand is an argument to 'F'
573           // (the caller) and the call is guaranteed to execute, then the value
574           // must be non-null throughout 'F'.
575           auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
576           if (FArg && !FArg->hasNonNullAttr()) {
577             FArg->addAttr(Attribute::NonNull);
578             Changed = true;
579           }
580         }
581       }
582     }
583     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
584       break;
585   }
586 
587   return Changed;
588 }
589 
590 /// Deduce nocapture attributes for the SCC.
591 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
592   bool Changed = false;
593 
594   ArgumentGraph AG;
595 
596   AttrBuilder B;
597   B.addAttribute(Attribute::NoCapture);
598 
599   // Check each function in turn, determining which pointer arguments are not
600   // captured.
601   for (Function *F : SCCNodes) {
602     // We can infer and propagate function attributes only when we know that the
603     // definition we'll get at link time is *exactly* the definition we see now.
604     // For more details, see GlobalValue::mayBeDerefined.
605     if (!F->hasExactDefinition())
606       continue;
607 
608     Changed |= addArgumentAttrsFromCallsites(*F);
609 
610     // Functions that are readonly (or readnone) and nounwind and don't return
611     // a value can't capture arguments. Don't analyze them.
612     if (F->onlyReadsMemory() && F->doesNotThrow() &&
613         F->getReturnType()->isVoidTy()) {
614       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
615            ++A) {
616         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
617           A->addAttr(AttributeList::get(F->getContext(), A->getArgNo() + 1, B));
618           ++NumNoCapture;
619           Changed = true;
620         }
621       }
622       continue;
623     }
624 
625     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
626          ++A) {
627       if (!A->getType()->isPointerTy())
628         continue;
629       bool HasNonLocalUses = false;
630       if (!A->hasNoCaptureAttr()) {
631         ArgumentUsesTracker Tracker(SCCNodes);
632         PointerMayBeCaptured(&*A, &Tracker);
633         if (!Tracker.Captured) {
634           if (Tracker.Uses.empty()) {
635             // If it's trivially not captured, mark it nocapture now.
636             A->addAttr(
637                 AttributeList::get(F->getContext(), A->getArgNo() + 1, B));
638             ++NumNoCapture;
639             Changed = true;
640           } else {
641             // If it's not trivially captured and not trivially not captured,
642             // then it must be calling into another function in our SCC. Save
643             // its particulars for Argument-SCC analysis later.
644             ArgumentGraphNode *Node = AG[&*A];
645             for (Argument *Use : Tracker.Uses) {
646               Node->Uses.push_back(AG[Use]);
647               if (Use != &*A)
648                 HasNonLocalUses = true;
649             }
650           }
651         }
652         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
653       }
654       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
655         // Can we determine that it's readonly/readnone without doing an SCC?
656         // Note that we don't allow any calls at all here, or else our result
657         // will be dependent on the iteration order through the functions in the
658         // SCC.
659         SmallPtrSet<Argument *, 8> Self;
660         Self.insert(&*A);
661         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
662         if (R != Attribute::None) {
663           AttrBuilder B;
664           B.addAttribute(R);
665           A->addAttr(AttributeList::get(A->getContext(), A->getArgNo() + 1, B));
666           Changed = true;
667           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
668         }
669       }
670     }
671   }
672 
673   // The graph we've collected is partial because we stopped scanning for
674   // argument uses once we solved the argument trivially. These partial nodes
675   // show up as ArgumentGraphNode objects with an empty Uses list, and for
676   // these nodes the final decision about whether they capture has already been
677   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
678   // captures.
679 
680   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
681     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
682     if (ArgumentSCC.size() == 1) {
683       if (!ArgumentSCC[0]->Definition)
684         continue; // synthetic root node
685 
686       // eg. "void f(int* x) { if (...) f(x); }"
687       if (ArgumentSCC[0]->Uses.size() == 1 &&
688           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
689         Argument *A = ArgumentSCC[0]->Definition;
690         A->addAttr(AttributeList::get(A->getContext(), A->getArgNo() + 1, B));
691         ++NumNoCapture;
692         Changed = true;
693       }
694       continue;
695     }
696 
697     bool SCCCaptured = false;
698     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
699          I != E && !SCCCaptured; ++I) {
700       ArgumentGraphNode *Node = *I;
701       if (Node->Uses.empty()) {
702         if (!Node->Definition->hasNoCaptureAttr())
703           SCCCaptured = true;
704       }
705     }
706     if (SCCCaptured)
707       continue;
708 
709     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
710     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
711     // quickly looking up whether a given Argument is in this ArgumentSCC.
712     for (ArgumentGraphNode *I : ArgumentSCC) {
713       ArgumentSCCNodes.insert(I->Definition);
714     }
715 
716     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
717          I != E && !SCCCaptured; ++I) {
718       ArgumentGraphNode *N = *I;
719       for (ArgumentGraphNode *Use : N->Uses) {
720         Argument *A = Use->Definition;
721         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
722           continue;
723         SCCCaptured = true;
724         break;
725       }
726     }
727     if (SCCCaptured)
728       continue;
729 
730     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
731       Argument *A = ArgumentSCC[i]->Definition;
732       A->addAttr(AttributeList::get(A->getContext(), A->getArgNo() + 1, B));
733       ++NumNoCapture;
734       Changed = true;
735     }
736 
737     // We also want to compute readonly/readnone. With a small number of false
738     // negatives, we can assume that any pointer which is captured isn't going
739     // to be provably readonly or readnone, since by definition we can't
740     // analyze all uses of a captured pointer.
741     //
742     // The false negatives happen when the pointer is captured by a function
743     // that promises readonly/readnone behaviour on the pointer, then the
744     // pointer's lifetime ends before anything that writes to arbitrary memory.
745     // Also, a readonly/readnone pointer may be returned, but returning a
746     // pointer is capturing it.
747 
748     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
749     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
750       Argument *A = ArgumentSCC[i]->Definition;
751       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
752       if (K == Attribute::ReadNone)
753         continue;
754       if (K == Attribute::ReadOnly) {
755         ReadAttr = Attribute::ReadOnly;
756         continue;
757       }
758       ReadAttr = K;
759       break;
760     }
761 
762     if (ReadAttr != Attribute::None) {
763       AttrBuilder B, R;
764       B.addAttribute(ReadAttr);
765       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
766       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
767         Argument *A = ArgumentSCC[i]->Definition;
768         // Clear out existing readonly/readnone attributes
769         A->removeAttr(
770             AttributeList::get(A->getContext(), A->getArgNo() + 1, R));
771         A->addAttr(AttributeList::get(A->getContext(), A->getArgNo() + 1, B));
772         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
773         Changed = true;
774       }
775     }
776   }
777 
778   return Changed;
779 }
780 
781 /// Tests whether a function is "malloc-like".
782 ///
783 /// A function is "malloc-like" if it returns either null or a pointer that
784 /// doesn't alias any other pointer visible to the caller.
785 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
786   SmallSetVector<Value *, 8> FlowsToReturn;
787   for (BasicBlock &BB : *F)
788     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
789       FlowsToReturn.insert(Ret->getReturnValue());
790 
791   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
792     Value *RetVal = FlowsToReturn[i];
793 
794     if (Constant *C = dyn_cast<Constant>(RetVal)) {
795       if (!C->isNullValue() && !isa<UndefValue>(C))
796         return false;
797 
798       continue;
799     }
800 
801     if (isa<Argument>(RetVal))
802       return false;
803 
804     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
805       switch (RVI->getOpcode()) {
806       // Extend the analysis by looking upwards.
807       case Instruction::BitCast:
808       case Instruction::GetElementPtr:
809       case Instruction::AddrSpaceCast:
810         FlowsToReturn.insert(RVI->getOperand(0));
811         continue;
812       case Instruction::Select: {
813         SelectInst *SI = cast<SelectInst>(RVI);
814         FlowsToReturn.insert(SI->getTrueValue());
815         FlowsToReturn.insert(SI->getFalseValue());
816         continue;
817       }
818       case Instruction::PHI: {
819         PHINode *PN = cast<PHINode>(RVI);
820         for (Value *IncValue : PN->incoming_values())
821           FlowsToReturn.insert(IncValue);
822         continue;
823       }
824 
825       // Check whether the pointer came from an allocation.
826       case Instruction::Alloca:
827         break;
828       case Instruction::Call:
829       case Instruction::Invoke: {
830         CallSite CS(RVI);
831         if (CS.hasRetAttr(Attribute::NoAlias))
832           break;
833         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
834           break;
835         LLVM_FALLTHROUGH;
836       }
837       default:
838         return false; // Did not come from an allocation.
839       }
840 
841     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
842       return false;
843   }
844 
845   return true;
846 }
847 
848 /// Deduce noalias attributes for the SCC.
849 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
850   // Check each function in turn, determining which functions return noalias
851   // pointers.
852   for (Function *F : SCCNodes) {
853     // Already noalias.
854     if (F->doesNotAlias(0))
855       continue;
856 
857     // We can infer and propagate function attributes only when we know that the
858     // definition we'll get at link time is *exactly* the definition we see now.
859     // For more details, see GlobalValue::mayBeDerefined.
860     if (!F->hasExactDefinition())
861       return false;
862 
863     // We annotate noalias return values, which are only applicable to
864     // pointer types.
865     if (!F->getReturnType()->isPointerTy())
866       continue;
867 
868     if (!isFunctionMallocLike(F, SCCNodes))
869       return false;
870   }
871 
872   bool MadeChange = false;
873   for (Function *F : SCCNodes) {
874     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
875       continue;
876 
877     F->setDoesNotAlias(0);
878     ++NumNoAlias;
879     MadeChange = true;
880   }
881 
882   return MadeChange;
883 }
884 
885 /// Tests whether this function is known to not return null.
886 ///
887 /// Requires that the function returns a pointer.
888 ///
889 /// Returns true if it believes the function will not return a null, and sets
890 /// \p Speculative based on whether the returned conclusion is a speculative
891 /// conclusion due to SCC calls.
892 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
893                             bool &Speculative) {
894   assert(F->getReturnType()->isPointerTy() &&
895          "nonnull only meaningful on pointer types");
896   Speculative = false;
897 
898   SmallSetVector<Value *, 8> FlowsToReturn;
899   for (BasicBlock &BB : *F)
900     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
901       FlowsToReturn.insert(Ret->getReturnValue());
902 
903   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
904     Value *RetVal = FlowsToReturn[i];
905 
906     // If this value is locally known to be non-null, we're good
907     if (isKnownNonNull(RetVal))
908       continue;
909 
910     // Otherwise, we need to look upwards since we can't make any local
911     // conclusions.
912     Instruction *RVI = dyn_cast<Instruction>(RetVal);
913     if (!RVI)
914       return false;
915     switch (RVI->getOpcode()) {
916     // Extend the analysis by looking upwards.
917     case Instruction::BitCast:
918     case Instruction::GetElementPtr:
919     case Instruction::AddrSpaceCast:
920       FlowsToReturn.insert(RVI->getOperand(0));
921       continue;
922     case Instruction::Select: {
923       SelectInst *SI = cast<SelectInst>(RVI);
924       FlowsToReturn.insert(SI->getTrueValue());
925       FlowsToReturn.insert(SI->getFalseValue());
926       continue;
927     }
928     case Instruction::PHI: {
929       PHINode *PN = cast<PHINode>(RVI);
930       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
931         FlowsToReturn.insert(PN->getIncomingValue(i));
932       continue;
933     }
934     case Instruction::Call:
935     case Instruction::Invoke: {
936       CallSite CS(RVI);
937       Function *Callee = CS.getCalledFunction();
938       // A call to a node within the SCC is assumed to return null until
939       // proven otherwise
940       if (Callee && SCCNodes.count(Callee)) {
941         Speculative = true;
942         continue;
943       }
944       return false;
945     }
946     default:
947       return false; // Unknown source, may be null
948     };
949     llvm_unreachable("should have either continued or returned");
950   }
951 
952   return true;
953 }
954 
955 /// Deduce nonnull attributes for the SCC.
956 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
957   // Speculative that all functions in the SCC return only nonnull
958   // pointers.  We may refute this as we analyze functions.
959   bool SCCReturnsNonNull = true;
960 
961   bool MadeChange = false;
962 
963   // Check each function in turn, determining which functions return nonnull
964   // pointers.
965   for (Function *F : SCCNodes) {
966     // Already nonnull.
967     if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
968                                         Attribute::NonNull))
969       continue;
970 
971     // We can infer and propagate function attributes only when we know that the
972     // definition we'll get at link time is *exactly* the definition we see now.
973     // For more details, see GlobalValue::mayBeDerefined.
974     if (!F->hasExactDefinition())
975       return false;
976 
977     // We annotate nonnull return values, which are only applicable to
978     // pointer types.
979     if (!F->getReturnType()->isPointerTy())
980       continue;
981 
982     bool Speculative = false;
983     if (isReturnNonNull(F, SCCNodes, Speculative)) {
984       if (!Speculative) {
985         // Mark the function eagerly since we may discover a function
986         // which prevents us from speculating about the entire SCC
987         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
988         F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
989         ++NumNonNullReturn;
990         MadeChange = true;
991       }
992       continue;
993     }
994     // At least one function returns something which could be null, can't
995     // speculate any more.
996     SCCReturnsNonNull = false;
997   }
998 
999   if (SCCReturnsNonNull) {
1000     for (Function *F : SCCNodes) {
1001       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1002                                           Attribute::NonNull) ||
1003           !F->getReturnType()->isPointerTy())
1004         continue;
1005 
1006       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1007       F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1008       ++NumNonNullReturn;
1009       MadeChange = true;
1010     }
1011   }
1012 
1013   return MadeChange;
1014 }
1015 
1016 /// Remove the convergent attribute from all functions in the SCC if every
1017 /// callsite within the SCC is not convergent (except for calls to functions
1018 /// within the SCC).  Returns true if changes were made.
1019 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
1020   // For every function in SCC, ensure that either
1021   //  * it is not convergent, or
1022   //  * we can remove its convergent attribute.
1023   bool HasConvergentFn = false;
1024   for (Function *F : SCCNodes) {
1025     if (!F->isConvergent()) continue;
1026     HasConvergentFn = true;
1027 
1028     // Can't remove convergent from function declarations.
1029     if (F->isDeclaration()) return false;
1030 
1031     // Can't remove convergent if any of our functions has a convergent call to a
1032     // function not in the SCC.
1033     for (Instruction &I : instructions(*F)) {
1034       CallSite CS(&I);
1035       // Bail if CS is a convergent call to a function not in the SCC.
1036       if (CS && CS.isConvergent() &&
1037           SCCNodes.count(CS.getCalledFunction()) == 0)
1038         return false;
1039     }
1040   }
1041 
1042   // If the SCC doesn't have any convergent functions, we have nothing to do.
1043   if (!HasConvergentFn) return false;
1044 
1045   // If we got here, all of the calls the SCC makes to functions not in the SCC
1046   // are non-convergent.  Therefore all of the SCC's functions can also be made
1047   // non-convergent.  We'll remove the attr from the callsites in
1048   // InstCombineCalls.
1049   for (Function *F : SCCNodes) {
1050     if (!F->isConvergent()) continue;
1051 
1052     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
1053                  << "\n");
1054     F->setNotConvergent();
1055   }
1056   return true;
1057 }
1058 
1059 static bool setDoesNotRecurse(Function &F) {
1060   if (F.doesNotRecurse())
1061     return false;
1062   F.setDoesNotRecurse();
1063   ++NumNoRecurse;
1064   return true;
1065 }
1066 
1067 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1068   // Try and identify functions that do not recurse.
1069 
1070   // If the SCC contains multiple nodes we know for sure there is recursion.
1071   if (SCCNodes.size() != 1)
1072     return false;
1073 
1074   Function *F = *SCCNodes.begin();
1075   if (!F || F->isDeclaration() || F->doesNotRecurse())
1076     return false;
1077 
1078   // If all of the calls in F are identifiable and are to norecurse functions, F
1079   // is norecurse. This check also detects self-recursion as F is not currently
1080   // marked norecurse, so any called from F to F will not be marked norecurse.
1081   for (Instruction &I : instructions(*F))
1082     if (auto CS = CallSite(&I)) {
1083       Function *Callee = CS.getCalledFunction();
1084       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1085         // Function calls a potentially recursive function.
1086         return false;
1087     }
1088 
1089   // Every call was to a non-recursive function other than this function, and
1090   // we have no indirect recursion as the SCC size is one. This function cannot
1091   // recurse.
1092   return setDoesNotRecurse(*F);
1093 }
1094 
1095 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1096                                                   CGSCCAnalysisManager &AM,
1097                                                   LazyCallGraph &CG,
1098                                                   CGSCCUpdateResult &) {
1099   FunctionAnalysisManager &FAM =
1100       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1101 
1102   // We pass a lambda into functions to wire them up to the analysis manager
1103   // for getting function analyses.
1104   auto AARGetter = [&](Function &F) -> AAResults & {
1105     return FAM.getResult<AAManager>(F);
1106   };
1107 
1108   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1109   // any external or opt-none nodes that will prevent us from optimizing any
1110   // part of the SCC.
1111   SCCNodeSet SCCNodes;
1112   bool HasUnknownCall = false;
1113   for (LazyCallGraph::Node &N : C) {
1114     Function &F = N.getFunction();
1115     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1116       // Treat any function we're trying not to optimize as if it were an
1117       // indirect call and omit it from the node set used below.
1118       HasUnknownCall = true;
1119       continue;
1120     }
1121     // Track whether any functions in this SCC have an unknown call edge.
1122     // Note: if this is ever a performance hit, we can common it with
1123     // subsequent routines which also do scans over the instructions of the
1124     // function.
1125     if (!HasUnknownCall)
1126       for (Instruction &I : instructions(F))
1127         if (auto CS = CallSite(&I))
1128           if (!CS.getCalledFunction()) {
1129             HasUnknownCall = true;
1130             break;
1131           }
1132 
1133     SCCNodes.insert(&F);
1134   }
1135 
1136   bool Changed = false;
1137   Changed |= addArgumentReturnedAttrs(SCCNodes);
1138   Changed |= addReadAttrs(SCCNodes, AARGetter);
1139   Changed |= addArgumentAttrs(SCCNodes);
1140 
1141   // If we have no external nodes participating in the SCC, we can deduce some
1142   // more precise attributes as well.
1143   if (!HasUnknownCall) {
1144     Changed |= addNoAliasAttrs(SCCNodes);
1145     Changed |= addNonNullAttrs(SCCNodes);
1146     Changed |= removeConvergentAttrs(SCCNodes);
1147     Changed |= addNoRecurseAttrs(SCCNodes);
1148   }
1149 
1150   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1151 }
1152 
1153 namespace {
1154 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1155   static char ID; // Pass identification, replacement for typeid
1156   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1157     initializePostOrderFunctionAttrsLegacyPassPass(
1158         *PassRegistry::getPassRegistry());
1159   }
1160 
1161   bool runOnSCC(CallGraphSCC &SCC) override;
1162 
1163   void getAnalysisUsage(AnalysisUsage &AU) const override {
1164     AU.setPreservesCFG();
1165     AU.addRequired<AssumptionCacheTracker>();
1166     getAAResultsAnalysisUsage(AU);
1167     CallGraphSCCPass::getAnalysisUsage(AU);
1168   }
1169 };
1170 }
1171 
1172 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1173 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1174                       "Deduce function attributes", false, false)
1175 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1176 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1177 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1178                     "Deduce function attributes", false, false)
1179 
1180 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1181   return new PostOrderFunctionAttrsLegacyPass();
1182 }
1183 
1184 template <typename AARGetterT>
1185 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1186   bool Changed = false;
1187 
1188   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1189   // whether a given CallGraphNode is in this SCC. Also track whether there are
1190   // any external or opt-none nodes that will prevent us from optimizing any
1191   // part of the SCC.
1192   SCCNodeSet SCCNodes;
1193   bool ExternalNode = false;
1194   for (CallGraphNode *I : SCC) {
1195     Function *F = I->getFunction();
1196     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1197       // External node or function we're trying not to optimize - we both avoid
1198       // transform them and avoid leveraging information they provide.
1199       ExternalNode = true;
1200       continue;
1201     }
1202 
1203     SCCNodes.insert(F);
1204   }
1205 
1206   Changed |= addArgumentReturnedAttrs(SCCNodes);
1207   Changed |= addReadAttrs(SCCNodes, AARGetter);
1208   Changed |= addArgumentAttrs(SCCNodes);
1209 
1210   // If we have no external nodes participating in the SCC, we can deduce some
1211   // more precise attributes as well.
1212   if (!ExternalNode) {
1213     Changed |= addNoAliasAttrs(SCCNodes);
1214     Changed |= addNonNullAttrs(SCCNodes);
1215     Changed |= removeConvergentAttrs(SCCNodes);
1216     Changed |= addNoRecurseAttrs(SCCNodes);
1217   }
1218 
1219   return Changed;
1220 }
1221 
1222 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1223   if (skipSCC(SCC))
1224     return false;
1225   return runImpl(SCC, LegacyAARGetter(*this));
1226 }
1227 
1228 namespace {
1229 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1230   static char ID; // Pass identification, replacement for typeid
1231   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1232     initializeReversePostOrderFunctionAttrsLegacyPassPass(
1233         *PassRegistry::getPassRegistry());
1234   }
1235 
1236   bool runOnModule(Module &M) override;
1237 
1238   void getAnalysisUsage(AnalysisUsage &AU) const override {
1239     AU.setPreservesCFG();
1240     AU.addRequired<CallGraphWrapperPass>();
1241     AU.addPreserved<CallGraphWrapperPass>();
1242   }
1243 };
1244 }
1245 
1246 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1247 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1248                       "Deduce function attributes in RPO", false, false)
1249 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1250 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1251                     "Deduce function attributes in RPO", false, false)
1252 
1253 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1254   return new ReversePostOrderFunctionAttrsLegacyPass();
1255 }
1256 
1257 static bool addNoRecurseAttrsTopDown(Function &F) {
1258   // We check the preconditions for the function prior to calling this to avoid
1259   // the cost of building up a reversible post-order list. We assert them here
1260   // to make sure none of the invariants this relies on were violated.
1261   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1262   assert(!F.doesNotRecurse() &&
1263          "This function has already been deduced as norecurs!");
1264   assert(F.hasInternalLinkage() &&
1265          "Can only do top-down deduction for internal linkage functions!");
1266 
1267   // If F is internal and all of its uses are calls from a non-recursive
1268   // functions, then none of its calls could in fact recurse without going
1269   // through a function marked norecurse, and so we can mark this function too
1270   // as norecurse. Note that the uses must actually be calls -- otherwise
1271   // a pointer to this function could be returned from a norecurse function but
1272   // this function could be recursively (indirectly) called. Note that this
1273   // also detects if F is directly recursive as F is not yet marked as
1274   // a norecurse function.
1275   for (auto *U : F.users()) {
1276     auto *I = dyn_cast<Instruction>(U);
1277     if (!I)
1278       return false;
1279     CallSite CS(I);
1280     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1281       return false;
1282   }
1283   return setDoesNotRecurse(F);
1284 }
1285 
1286 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1287   // We only have a post-order SCC traversal (because SCCs are inherently
1288   // discovered in post-order), so we accumulate them in a vector and then walk
1289   // it in reverse. This is simpler than using the RPO iterator infrastructure
1290   // because we need to combine SCC detection and the PO walk of the call
1291   // graph. We can also cheat egregiously because we're primarily interested in
1292   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1293   // with multiple functions in them will clearly be recursive.
1294   SmallVector<Function *, 16> Worklist;
1295   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1296     if (I->size() != 1)
1297       continue;
1298 
1299     Function *F = I->front()->getFunction();
1300     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1301         F->hasInternalLinkage())
1302       Worklist.push_back(F);
1303   }
1304 
1305   bool Changed = false;
1306   for (auto *F : reverse(Worklist))
1307     Changed |= addNoRecurseAttrsTopDown(*F);
1308 
1309   return Changed;
1310 }
1311 
1312 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1313   if (skipModule(M))
1314     return false;
1315 
1316   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1317 
1318   return deduceFunctionAttributeInRPO(M, CG);
1319 }
1320 
1321 PreservedAnalyses
1322 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1323   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1324 
1325   if (!deduceFunctionAttributeInRPO(M, CG))
1326     return PreservedAnalyses::all();
1327 
1328   PreservedAnalyses PA;
1329   PA.preserve<CallGraphAnalysis>();
1330   return PA;
1331 }
1332