1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 assert(!CB->isCallee(U) && "callee operand reported captured?"); 585 const unsigned UseIndex = CB->getDataOperandNo(U); 586 if (UseIndex >= CB->arg_size()) { 587 // Data operand, but not a argument operand -- must be a bundle operand 588 assert(CB->hasOperandBundles() && "Must be!"); 589 590 // CaptureTracking told us that we're being captured by an operand bundle 591 // use. In this case it does not matter if the callee is within our SCC 592 // or not -- we've been captured in some unknown way, and we have to be 593 // conservative. 594 Captured = true; 595 return true; 596 } 597 598 if (UseIndex >= F->arg_size()) { 599 assert(F->isVarArg() && "More params than args in non-varargs call"); 600 Captured = true; 601 return true; 602 } 603 604 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 605 return false; 606 } 607 608 // True only if certainly captured (used outside our SCC). 609 bool Captured = false; 610 611 // Uses within our SCC. 612 SmallVector<Argument *, 4> Uses; 613 614 const SCCNodeSet &SCCNodes; 615 }; 616 617 } // end anonymous namespace 618 619 namespace llvm { 620 621 template <> struct GraphTraits<ArgumentGraphNode *> { 622 using NodeRef = ArgumentGraphNode *; 623 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 624 625 static NodeRef getEntryNode(NodeRef A) { return A; } 626 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 627 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 628 }; 629 630 template <> 631 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 632 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 633 634 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 635 return AG->begin(); 636 } 637 638 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 639 }; 640 641 } // end namespace llvm 642 643 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 644 static Attribute::AttrKind 645 determinePointerAccessAttrs(Argument *A, 646 const SmallPtrSet<Argument *, 8> &SCCNodes) { 647 SmallVector<Use *, 32> Worklist; 648 SmallPtrSet<Use *, 32> Visited; 649 650 // inalloca arguments are always clobbered by the call. 651 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 652 return Attribute::None; 653 654 bool IsRead = false; 655 bool IsWrite = false; 656 657 for (Use &U : A->uses()) { 658 Visited.insert(&U); 659 Worklist.push_back(&U); 660 } 661 662 while (!Worklist.empty()) { 663 if (IsWrite && IsRead) 664 // No point in searching further.. 665 return Attribute::None; 666 667 Use *U = Worklist.pop_back_val(); 668 Instruction *I = cast<Instruction>(U->getUser()); 669 670 switch (I->getOpcode()) { 671 case Instruction::BitCast: 672 case Instruction::GetElementPtr: 673 case Instruction::PHI: 674 case Instruction::Select: 675 case Instruction::AddrSpaceCast: 676 // The original value is not read/written via this if the new value isn't. 677 for (Use &UU : I->uses()) 678 if (Visited.insert(&UU).second) 679 Worklist.push_back(&UU); 680 break; 681 682 case Instruction::Call: 683 case Instruction::Invoke: { 684 bool Captures = true; 685 686 if (I->getType()->isVoidTy()) 687 Captures = false; 688 689 auto AddUsersToWorklistIfCapturing = [&] { 690 if (Captures) 691 for (Use &UU : I->uses()) 692 if (Visited.insert(&UU).second) 693 Worklist.push_back(&UU); 694 }; 695 696 CallBase &CB = cast<CallBase>(*I); 697 if (CB.isCallee(U)) { 698 IsRead = true; 699 Captures = false; // See comment in CaptureTracking for context 700 continue; 701 } 702 if (CB.doesNotAccessMemory()) { 703 AddUsersToWorklistIfCapturing(); 704 continue; 705 } 706 707 Function *F = CB.getCalledFunction(); 708 if (!F) { 709 if (CB.onlyReadsMemory()) { 710 IsRead = true; 711 AddUsersToWorklistIfCapturing(); 712 continue; 713 } 714 return Attribute::None; 715 } 716 717 // Given we've explictily handled the callee operand above, what's left 718 // must be a data operand (e.g. argument or operand bundle) 719 const unsigned UseIndex = CB.getDataOperandNo(U); 720 const bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 721 722 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 723 assert(F->isVarArg() && "More params than args in non-varargs call"); 724 return Attribute::None; 725 } 726 727 Captures &= !CB.doesNotCapture(UseIndex); 728 729 // Since the optimizer (by design) cannot see the data flow corresponding 730 // to a operand bundle use, these cannot participate in the optimistic SCC 731 // analysis. Instead, we model the operand bundle uses as arguments in 732 // call to a function external to the SCC. 733 if (IsOperandBundleUse || 734 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 735 736 // The accessors used on call site here do the right thing for calls and 737 // invokes with operand bundles. 738 739 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 740 return Attribute::None; 741 if (!CB.doesNotAccessMemory(UseIndex)) 742 IsRead = true; 743 } 744 745 AddUsersToWorklistIfCapturing(); 746 break; 747 } 748 749 case Instruction::Load: 750 // A volatile load has side effects beyond what readonly can be relied 751 // upon. 752 if (cast<LoadInst>(I)->isVolatile()) 753 return Attribute::None; 754 755 IsRead = true; 756 break; 757 758 case Instruction::Store: 759 if (cast<StoreInst>(I)->getValueOperand() == *U) 760 // untrackable capture 761 return Attribute::None; 762 763 // A volatile store has side effects beyond what writeonly can be relied 764 // upon. 765 if (cast<StoreInst>(I)->isVolatile()) 766 return Attribute::None; 767 768 IsWrite = true; 769 break; 770 771 case Instruction::ICmp: 772 case Instruction::Ret: 773 break; 774 775 default: 776 return Attribute::None; 777 } 778 } 779 780 if (IsWrite && IsRead) 781 return Attribute::None; 782 else if (IsRead) 783 return Attribute::ReadOnly; 784 else if (IsWrite) 785 return Attribute::WriteOnly; 786 else 787 return Attribute::ReadNone; 788 } 789 790 /// Deduce returned attributes for the SCC. 791 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 792 SmallSet<Function *, 8> &Changed) { 793 // Check each function in turn, determining if an argument is always returned. 794 for (Function *F : SCCNodes) { 795 // We can infer and propagate function attributes only when we know that the 796 // definition we'll get at link time is *exactly* the definition we see now. 797 // For more details, see GlobalValue::mayBeDerefined. 798 if (!F->hasExactDefinition()) 799 continue; 800 801 if (F->getReturnType()->isVoidTy()) 802 continue; 803 804 // There is nothing to do if an argument is already marked as 'returned'. 805 if (llvm::any_of(F->args(), 806 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 807 continue; 808 809 auto FindRetArg = [&]() -> Value * { 810 Value *RetArg = nullptr; 811 for (BasicBlock &BB : *F) 812 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 813 // Note that stripPointerCasts should look through functions with 814 // returned arguments. 815 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 816 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 817 return nullptr; 818 819 if (!RetArg) 820 RetArg = RetVal; 821 else if (RetArg != RetVal) 822 return nullptr; 823 } 824 825 return RetArg; 826 }; 827 828 if (Value *RetArg = FindRetArg()) { 829 auto *A = cast<Argument>(RetArg); 830 A->addAttr(Attribute::Returned); 831 ++NumReturned; 832 Changed.insert(F); 833 } 834 } 835 } 836 837 /// If a callsite has arguments that are also arguments to the parent function, 838 /// try to propagate attributes from the callsite's arguments to the parent's 839 /// arguments. This may be important because inlining can cause information loss 840 /// when attribute knowledge disappears with the inlined call. 841 static bool addArgumentAttrsFromCallsites(Function &F) { 842 if (!EnableNonnullArgPropagation) 843 return false; 844 845 bool Changed = false; 846 847 // For an argument attribute to transfer from a callsite to the parent, the 848 // call must be guaranteed to execute every time the parent is called. 849 // Conservatively, just check for calls in the entry block that are guaranteed 850 // to execute. 851 // TODO: This could be enhanced by testing if the callsite post-dominates the 852 // entry block or by doing simple forward walks or backward walks to the 853 // callsite. 854 BasicBlock &Entry = F.getEntryBlock(); 855 for (Instruction &I : Entry) { 856 if (auto *CB = dyn_cast<CallBase>(&I)) { 857 if (auto *CalledFunc = CB->getCalledFunction()) { 858 for (auto &CSArg : CalledFunc->args()) { 859 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 860 continue; 861 862 // If the non-null callsite argument operand is an argument to 'F' 863 // (the caller) and the call is guaranteed to execute, then the value 864 // must be non-null throughout 'F'. 865 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 866 if (FArg && !FArg->hasNonNullAttr()) { 867 FArg->addAttr(Attribute::NonNull); 868 Changed = true; 869 } 870 } 871 } 872 } 873 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 874 break; 875 } 876 877 return Changed; 878 } 879 880 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 881 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 882 R == Attribute::WriteOnly) 883 && "Must be an access attribute."); 884 assert(A && "Argument must not be null."); 885 886 // If the argument already has the attribute, nothing needs to be done. 887 if (A->hasAttribute(R)) 888 return false; 889 890 // Otherwise, remove potentially conflicting attribute, add the new one, 891 // and update statistics. 892 A->removeAttr(Attribute::WriteOnly); 893 A->removeAttr(Attribute::ReadOnly); 894 A->removeAttr(Attribute::ReadNone); 895 A->addAttr(R); 896 if (R == Attribute::ReadOnly) 897 ++NumReadOnlyArg; 898 else if (R == Attribute::WriteOnly) 899 ++NumWriteOnlyArg; 900 else 901 ++NumReadNoneArg; 902 return true; 903 } 904 905 /// Deduce nocapture attributes for the SCC. 906 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 907 SmallSet<Function *, 8> &Changed) { 908 ArgumentGraph AG; 909 910 // Check each function in turn, determining which pointer arguments are not 911 // captured. 912 for (Function *F : SCCNodes) { 913 // We can infer and propagate function attributes only when we know that the 914 // definition we'll get at link time is *exactly* the definition we see now. 915 // For more details, see GlobalValue::mayBeDerefined. 916 if (!F->hasExactDefinition()) 917 continue; 918 919 if (addArgumentAttrsFromCallsites(*F)) 920 Changed.insert(F); 921 922 // Functions that are readonly (or readnone) and nounwind and don't return 923 // a value can't capture arguments. Don't analyze them. 924 if (F->onlyReadsMemory() && F->doesNotThrow() && 925 F->getReturnType()->isVoidTy()) { 926 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 927 ++A) { 928 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 929 A->addAttr(Attribute::NoCapture); 930 ++NumNoCapture; 931 Changed.insert(F); 932 } 933 } 934 continue; 935 } 936 937 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 938 ++A) { 939 if (!A->getType()->isPointerTy()) 940 continue; 941 bool HasNonLocalUses = false; 942 if (!A->hasNoCaptureAttr()) { 943 ArgumentUsesTracker Tracker(SCCNodes); 944 PointerMayBeCaptured(&*A, &Tracker); 945 if (!Tracker.Captured) { 946 if (Tracker.Uses.empty()) { 947 // If it's trivially not captured, mark it nocapture now. 948 A->addAttr(Attribute::NoCapture); 949 ++NumNoCapture; 950 Changed.insert(F); 951 } else { 952 // If it's not trivially captured and not trivially not captured, 953 // then it must be calling into another function in our SCC. Save 954 // its particulars for Argument-SCC analysis later. 955 ArgumentGraphNode *Node = AG[&*A]; 956 for (Argument *Use : Tracker.Uses) { 957 Node->Uses.push_back(AG[Use]); 958 if (Use != &*A) 959 HasNonLocalUses = true; 960 } 961 } 962 } 963 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 964 } 965 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 966 // Can we determine that it's readonly/readnone/writeonly without doing 967 // an SCC? Note that we don't allow any calls at all here, or else our 968 // result will be dependent on the iteration order through the 969 // functions in the SCC. 970 SmallPtrSet<Argument *, 8> Self; 971 Self.insert(&*A); 972 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 973 if (R != Attribute::None) 974 if (addAccessAttr(A, R)) 975 Changed.insert(F); 976 } 977 } 978 } 979 980 // The graph we've collected is partial because we stopped scanning for 981 // argument uses once we solved the argument trivially. These partial nodes 982 // show up as ArgumentGraphNode objects with an empty Uses list, and for 983 // these nodes the final decision about whether they capture has already been 984 // made. If the definition doesn't have a 'nocapture' attribute by now, it 985 // captures. 986 987 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 988 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 989 if (ArgumentSCC.size() == 1) { 990 if (!ArgumentSCC[0]->Definition) 991 continue; // synthetic root node 992 993 // eg. "void f(int* x) { if (...) f(x); }" 994 if (ArgumentSCC[0]->Uses.size() == 1 && 995 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 996 Argument *A = ArgumentSCC[0]->Definition; 997 A->addAttr(Attribute::NoCapture); 998 ++NumNoCapture; 999 Changed.insert(A->getParent()); 1000 } 1001 continue; 1002 } 1003 1004 bool SCCCaptured = false; 1005 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1006 I != E && !SCCCaptured; ++I) { 1007 ArgumentGraphNode *Node = *I; 1008 if (Node->Uses.empty()) { 1009 if (!Node->Definition->hasNoCaptureAttr()) 1010 SCCCaptured = true; 1011 } 1012 } 1013 if (SCCCaptured) 1014 continue; 1015 1016 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1017 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1018 // quickly looking up whether a given Argument is in this ArgumentSCC. 1019 for (ArgumentGraphNode *I : ArgumentSCC) { 1020 ArgumentSCCNodes.insert(I->Definition); 1021 } 1022 1023 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1024 I != E && !SCCCaptured; ++I) { 1025 ArgumentGraphNode *N = *I; 1026 for (ArgumentGraphNode *Use : N->Uses) { 1027 Argument *A = Use->Definition; 1028 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1029 continue; 1030 SCCCaptured = true; 1031 break; 1032 } 1033 } 1034 if (SCCCaptured) 1035 continue; 1036 1037 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1038 Argument *A = ArgumentSCC[i]->Definition; 1039 A->addAttr(Attribute::NoCapture); 1040 ++NumNoCapture; 1041 Changed.insert(A->getParent()); 1042 } 1043 1044 // We also want to compute readonly/readnone/writeonly. With a small number 1045 // of false negatives, we can assume that any pointer which is captured 1046 // isn't going to be provably readonly or readnone, since by definition 1047 // we can't analyze all uses of a captured pointer. 1048 // 1049 // The false negatives happen when the pointer is captured by a function 1050 // that promises readonly/readnone behaviour on the pointer, then the 1051 // pointer's lifetime ends before anything that writes to arbitrary memory. 1052 // Also, a readonly/readnone pointer may be returned, but returning a 1053 // pointer is capturing it. 1054 1055 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1056 if (A == B) 1057 return A; 1058 if (A == Attribute::ReadNone) 1059 return B; 1060 if (B == Attribute::ReadNone) 1061 return A; 1062 return Attribute::None; 1063 }; 1064 1065 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1066 for (unsigned i = 0, e = ArgumentSCC.size(); 1067 i != e && AccessAttr != Attribute::None; ++i) { 1068 Argument *A = ArgumentSCC[i]->Definition; 1069 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1070 AccessAttr = meetAccessAttr(AccessAttr, K); 1071 } 1072 1073 if (AccessAttr != Attribute::None) { 1074 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1075 Argument *A = ArgumentSCC[i]->Definition; 1076 if (addAccessAttr(A, AccessAttr)) 1077 Changed.insert(A->getParent()); 1078 } 1079 } 1080 } 1081 } 1082 1083 /// Tests whether a function is "malloc-like". 1084 /// 1085 /// A function is "malloc-like" if it returns either null or a pointer that 1086 /// doesn't alias any other pointer visible to the caller. 1087 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1088 SmallSetVector<Value *, 8> FlowsToReturn; 1089 for (BasicBlock &BB : *F) 1090 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1091 FlowsToReturn.insert(Ret->getReturnValue()); 1092 1093 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1094 Value *RetVal = FlowsToReturn[i]; 1095 1096 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1097 if (!C->isNullValue() && !isa<UndefValue>(C)) 1098 return false; 1099 1100 continue; 1101 } 1102 1103 if (isa<Argument>(RetVal)) 1104 return false; 1105 1106 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1107 switch (RVI->getOpcode()) { 1108 // Extend the analysis by looking upwards. 1109 case Instruction::BitCast: 1110 case Instruction::GetElementPtr: 1111 case Instruction::AddrSpaceCast: 1112 FlowsToReturn.insert(RVI->getOperand(0)); 1113 continue; 1114 case Instruction::Select: { 1115 SelectInst *SI = cast<SelectInst>(RVI); 1116 FlowsToReturn.insert(SI->getTrueValue()); 1117 FlowsToReturn.insert(SI->getFalseValue()); 1118 continue; 1119 } 1120 case Instruction::PHI: { 1121 PHINode *PN = cast<PHINode>(RVI); 1122 for (Value *IncValue : PN->incoming_values()) 1123 FlowsToReturn.insert(IncValue); 1124 continue; 1125 } 1126 1127 // Check whether the pointer came from an allocation. 1128 case Instruction::Alloca: 1129 break; 1130 case Instruction::Call: 1131 case Instruction::Invoke: { 1132 CallBase &CB = cast<CallBase>(*RVI); 1133 if (CB.hasRetAttr(Attribute::NoAlias)) 1134 break; 1135 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1136 break; 1137 LLVM_FALLTHROUGH; 1138 } 1139 default: 1140 return false; // Did not come from an allocation. 1141 } 1142 1143 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1144 return false; 1145 } 1146 1147 return true; 1148 } 1149 1150 /// Deduce noalias attributes for the SCC. 1151 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1152 SmallSet<Function *, 8> &Changed) { 1153 // Check each function in turn, determining which functions return noalias 1154 // pointers. 1155 for (Function *F : SCCNodes) { 1156 // Already noalias. 1157 if (F->returnDoesNotAlias()) 1158 continue; 1159 1160 // We can infer and propagate function attributes only when we know that the 1161 // definition we'll get at link time is *exactly* the definition we see now. 1162 // For more details, see GlobalValue::mayBeDerefined. 1163 if (!F->hasExactDefinition()) 1164 return; 1165 1166 // We annotate noalias return values, which are only applicable to 1167 // pointer types. 1168 if (!F->getReturnType()->isPointerTy()) 1169 continue; 1170 1171 if (!isFunctionMallocLike(F, SCCNodes)) 1172 return; 1173 } 1174 1175 for (Function *F : SCCNodes) { 1176 if (F->returnDoesNotAlias() || 1177 !F->getReturnType()->isPointerTy()) 1178 continue; 1179 1180 F->setReturnDoesNotAlias(); 1181 ++NumNoAlias; 1182 Changed.insert(F); 1183 } 1184 } 1185 1186 /// Tests whether this function is known to not return null. 1187 /// 1188 /// Requires that the function returns a pointer. 1189 /// 1190 /// Returns true if it believes the function will not return a null, and sets 1191 /// \p Speculative based on whether the returned conclusion is a speculative 1192 /// conclusion due to SCC calls. 1193 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1194 bool &Speculative) { 1195 assert(F->getReturnType()->isPointerTy() && 1196 "nonnull only meaningful on pointer types"); 1197 Speculative = false; 1198 1199 SmallSetVector<Value *, 8> FlowsToReturn; 1200 for (BasicBlock &BB : *F) 1201 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1202 FlowsToReturn.insert(Ret->getReturnValue()); 1203 1204 auto &DL = F->getParent()->getDataLayout(); 1205 1206 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1207 Value *RetVal = FlowsToReturn[i]; 1208 1209 // If this value is locally known to be non-null, we're good 1210 if (isKnownNonZero(RetVal, DL)) 1211 continue; 1212 1213 // Otherwise, we need to look upwards since we can't make any local 1214 // conclusions. 1215 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1216 if (!RVI) 1217 return false; 1218 switch (RVI->getOpcode()) { 1219 // Extend the analysis by looking upwards. 1220 case Instruction::BitCast: 1221 case Instruction::GetElementPtr: 1222 case Instruction::AddrSpaceCast: 1223 FlowsToReturn.insert(RVI->getOperand(0)); 1224 continue; 1225 case Instruction::Select: { 1226 SelectInst *SI = cast<SelectInst>(RVI); 1227 FlowsToReturn.insert(SI->getTrueValue()); 1228 FlowsToReturn.insert(SI->getFalseValue()); 1229 continue; 1230 } 1231 case Instruction::PHI: { 1232 PHINode *PN = cast<PHINode>(RVI); 1233 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1234 FlowsToReturn.insert(PN->getIncomingValue(i)); 1235 continue; 1236 } 1237 case Instruction::Call: 1238 case Instruction::Invoke: { 1239 CallBase &CB = cast<CallBase>(*RVI); 1240 Function *Callee = CB.getCalledFunction(); 1241 // A call to a node within the SCC is assumed to return null until 1242 // proven otherwise 1243 if (Callee && SCCNodes.count(Callee)) { 1244 Speculative = true; 1245 continue; 1246 } 1247 return false; 1248 } 1249 default: 1250 return false; // Unknown source, may be null 1251 }; 1252 llvm_unreachable("should have either continued or returned"); 1253 } 1254 1255 return true; 1256 } 1257 1258 /// Deduce nonnull attributes for the SCC. 1259 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1260 SmallSet<Function *, 8> &Changed) { 1261 // Speculative that all functions in the SCC return only nonnull 1262 // pointers. We may refute this as we analyze functions. 1263 bool SCCReturnsNonNull = true; 1264 1265 // Check each function in turn, determining which functions return nonnull 1266 // pointers. 1267 for (Function *F : SCCNodes) { 1268 // Already nonnull. 1269 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1270 continue; 1271 1272 // We can infer and propagate function attributes only when we know that the 1273 // definition we'll get at link time is *exactly* the definition we see now. 1274 // For more details, see GlobalValue::mayBeDerefined. 1275 if (!F->hasExactDefinition()) 1276 return; 1277 1278 // We annotate nonnull return values, which are only applicable to 1279 // pointer types. 1280 if (!F->getReturnType()->isPointerTy()) 1281 continue; 1282 1283 bool Speculative = false; 1284 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1285 if (!Speculative) { 1286 // Mark the function eagerly since we may discover a function 1287 // which prevents us from speculating about the entire SCC 1288 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1289 << " as nonnull\n"); 1290 F->addRetAttr(Attribute::NonNull); 1291 ++NumNonNullReturn; 1292 Changed.insert(F); 1293 } 1294 continue; 1295 } 1296 // At least one function returns something which could be null, can't 1297 // speculate any more. 1298 SCCReturnsNonNull = false; 1299 } 1300 1301 if (SCCReturnsNonNull) { 1302 for (Function *F : SCCNodes) { 1303 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1304 !F->getReturnType()->isPointerTy()) 1305 continue; 1306 1307 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1308 F->addRetAttr(Attribute::NonNull); 1309 ++NumNonNullReturn; 1310 Changed.insert(F); 1311 } 1312 } 1313 } 1314 1315 namespace { 1316 1317 /// Collects a set of attribute inference requests and performs them all in one 1318 /// go on a single SCC Node. Inference involves scanning function bodies 1319 /// looking for instructions that violate attribute assumptions. 1320 /// As soon as all the bodies are fine we are free to set the attribute. 1321 /// Customization of inference for individual attributes is performed by 1322 /// providing a handful of predicates for each attribute. 1323 class AttributeInferer { 1324 public: 1325 /// Describes a request for inference of a single attribute. 1326 struct InferenceDescriptor { 1327 1328 /// Returns true if this function does not have to be handled. 1329 /// General intent for this predicate is to provide an optimization 1330 /// for functions that do not need this attribute inference at all 1331 /// (say, for functions that already have the attribute). 1332 std::function<bool(const Function &)> SkipFunction; 1333 1334 /// Returns true if this instruction violates attribute assumptions. 1335 std::function<bool(Instruction &)> InstrBreaksAttribute; 1336 1337 /// Sets the inferred attribute for this function. 1338 std::function<void(Function &)> SetAttribute; 1339 1340 /// Attribute we derive. 1341 Attribute::AttrKind AKind; 1342 1343 /// If true, only "exact" definitions can be used to infer this attribute. 1344 /// See GlobalValue::isDefinitionExact. 1345 bool RequiresExactDefinition; 1346 1347 InferenceDescriptor(Attribute::AttrKind AK, 1348 std::function<bool(const Function &)> SkipFunc, 1349 std::function<bool(Instruction &)> InstrScan, 1350 std::function<void(Function &)> SetAttr, 1351 bool ReqExactDef) 1352 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1353 SetAttribute(SetAttr), AKind(AK), 1354 RequiresExactDefinition(ReqExactDef) {} 1355 }; 1356 1357 private: 1358 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1359 1360 public: 1361 void registerAttrInference(InferenceDescriptor AttrInference) { 1362 InferenceDescriptors.push_back(AttrInference); 1363 } 1364 1365 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1366 }; 1367 1368 /// Perform all the requested attribute inference actions according to the 1369 /// attribute predicates stored before. 1370 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1371 SmallSet<Function *, 8> &Changed) { 1372 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1373 // Go through all the functions in SCC and check corresponding attribute 1374 // assumptions for each of them. Attributes that are invalid for this SCC 1375 // will be removed from InferInSCC. 1376 for (Function *F : SCCNodes) { 1377 1378 // No attributes whose assumptions are still valid - done. 1379 if (InferInSCC.empty()) 1380 return; 1381 1382 // Check if our attributes ever need scanning/can be scanned. 1383 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1384 if (ID.SkipFunction(*F)) 1385 return false; 1386 1387 // Remove from further inference (invalidate) when visiting a function 1388 // that has no instructions to scan/has an unsuitable definition. 1389 return F->isDeclaration() || 1390 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1391 }); 1392 1393 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1394 // set up the F instructions scan to verify assumptions of the attribute. 1395 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1396 llvm::copy_if( 1397 InferInSCC, std::back_inserter(InferInThisFunc), 1398 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1399 1400 if (InferInThisFunc.empty()) 1401 continue; 1402 1403 // Start instruction scan. 1404 for (Instruction &I : instructions(*F)) { 1405 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1406 if (!ID.InstrBreaksAttribute(I)) 1407 return false; 1408 // Remove attribute from further inference on any other functions 1409 // because attribute assumptions have just been violated. 1410 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1411 return D.AKind == ID.AKind; 1412 }); 1413 // Remove attribute from the rest of current instruction scan. 1414 return true; 1415 }); 1416 1417 if (InferInThisFunc.empty()) 1418 break; 1419 } 1420 } 1421 1422 if (InferInSCC.empty()) 1423 return; 1424 1425 for (Function *F : SCCNodes) 1426 // At this point InferInSCC contains only functions that were either: 1427 // - explicitly skipped from scan/inference, or 1428 // - verified to have no instructions that break attribute assumptions. 1429 // Hence we just go and force the attribute for all non-skipped functions. 1430 for (auto &ID : InferInSCC) { 1431 if (ID.SkipFunction(*F)) 1432 continue; 1433 Changed.insert(F); 1434 ID.SetAttribute(*F); 1435 } 1436 } 1437 1438 struct SCCNodesResult { 1439 SCCNodeSet SCCNodes; 1440 bool HasUnknownCall; 1441 }; 1442 1443 } // end anonymous namespace 1444 1445 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1446 static bool InstrBreaksNonConvergent(Instruction &I, 1447 const SCCNodeSet &SCCNodes) { 1448 const CallBase *CB = dyn_cast<CallBase>(&I); 1449 // Breaks non-convergent assumption if CS is a convergent call to a function 1450 // not in the SCC. 1451 return CB && CB->isConvergent() && 1452 !SCCNodes.contains(CB->getCalledFunction()); 1453 } 1454 1455 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1456 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1457 if (!I.mayThrow()) 1458 return false; 1459 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1460 if (Function *Callee = CI->getCalledFunction()) { 1461 // I is a may-throw call to a function inside our SCC. This doesn't 1462 // invalidate our current working assumption that the SCC is no-throw; we 1463 // just have to scan that other function. 1464 if (SCCNodes.contains(Callee)) 1465 return false; 1466 } 1467 } 1468 return true; 1469 } 1470 1471 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1472 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1473 CallBase *CB = dyn_cast<CallBase>(&I); 1474 if (!CB) 1475 return false; 1476 1477 if (CB->hasFnAttr(Attribute::NoFree)) 1478 return false; 1479 1480 // Speculatively assume in SCC. 1481 if (Function *Callee = CB->getCalledFunction()) 1482 if (SCCNodes.contains(Callee)) 1483 return false; 1484 1485 return true; 1486 } 1487 1488 /// Attempt to remove convergent function attribute when possible. 1489 /// 1490 /// Returns true if any changes to function attributes were made. 1491 static void inferConvergent(const SCCNodeSet &SCCNodes, 1492 SmallSet<Function *, 8> &Changed) { 1493 AttributeInferer AI; 1494 1495 // Request to remove the convergent attribute from all functions in the SCC 1496 // if every callsite within the SCC is not convergent (except for calls 1497 // to functions within the SCC). 1498 // Note: Removal of the attr from the callsites will happen in 1499 // InstCombineCalls separately. 1500 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1501 Attribute::Convergent, 1502 // Skip non-convergent functions. 1503 [](const Function &F) { return !F.isConvergent(); }, 1504 // Instructions that break non-convergent assumption. 1505 [SCCNodes](Instruction &I) { 1506 return InstrBreaksNonConvergent(I, SCCNodes); 1507 }, 1508 [](Function &F) { 1509 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1510 << "\n"); 1511 F.setNotConvergent(); 1512 }, 1513 /* RequiresExactDefinition= */ false}); 1514 // Perform all the requested attribute inference actions. 1515 AI.run(SCCNodes, Changed); 1516 } 1517 1518 /// Infer attributes from all functions in the SCC by scanning every 1519 /// instruction for compliance to the attribute assumptions. Currently it 1520 /// does: 1521 /// - addition of NoUnwind attribute 1522 /// 1523 /// Returns true if any changes to function attributes were made. 1524 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1525 SmallSet<Function *, 8> &Changed) { 1526 AttributeInferer AI; 1527 1528 if (!DisableNoUnwindInference) 1529 // Request to infer nounwind attribute for all the functions in the SCC if 1530 // every callsite within the SCC is not throwing (except for calls to 1531 // functions within the SCC). Note that nounwind attribute suffers from 1532 // derefinement - results may change depending on how functions are 1533 // optimized. Thus it can be inferred only from exact definitions. 1534 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1535 Attribute::NoUnwind, 1536 // Skip non-throwing functions. 1537 [](const Function &F) { return F.doesNotThrow(); }, 1538 // Instructions that break non-throwing assumption. 1539 [&SCCNodes](Instruction &I) { 1540 return InstrBreaksNonThrowing(I, SCCNodes); 1541 }, 1542 [](Function &F) { 1543 LLVM_DEBUG(dbgs() 1544 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1545 F.setDoesNotThrow(); 1546 ++NumNoUnwind; 1547 }, 1548 /* RequiresExactDefinition= */ true}); 1549 1550 if (!DisableNoFreeInference) 1551 // Request to infer nofree attribute for all the functions in the SCC if 1552 // every callsite within the SCC does not directly or indirectly free 1553 // memory (except for calls to functions within the SCC). Note that nofree 1554 // attribute suffers from derefinement - results may change depending on 1555 // how functions are optimized. Thus it can be inferred only from exact 1556 // definitions. 1557 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1558 Attribute::NoFree, 1559 // Skip functions known not to free memory. 1560 [](const Function &F) { return F.doesNotFreeMemory(); }, 1561 // Instructions that break non-deallocating assumption. 1562 [&SCCNodes](Instruction &I) { 1563 return InstrBreaksNoFree(I, SCCNodes); 1564 }, 1565 [](Function &F) { 1566 LLVM_DEBUG(dbgs() 1567 << "Adding nofree attr to fn " << F.getName() << "\n"); 1568 F.setDoesNotFreeMemory(); 1569 ++NumNoFree; 1570 }, 1571 /* RequiresExactDefinition= */ true}); 1572 1573 // Perform all the requested attribute inference actions. 1574 AI.run(SCCNodes, Changed); 1575 } 1576 1577 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1578 SmallSet<Function *, 8> &Changed) { 1579 // Try and identify functions that do not recurse. 1580 1581 // If the SCC contains multiple nodes we know for sure there is recursion. 1582 if (SCCNodes.size() != 1) 1583 return; 1584 1585 Function *F = *SCCNodes.begin(); 1586 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1587 return; 1588 1589 // If all of the calls in F are identifiable and are to norecurse functions, F 1590 // is norecurse. This check also detects self-recursion as F is not currently 1591 // marked norecurse, so any called from F to F will not be marked norecurse. 1592 for (auto &BB : *F) 1593 for (auto &I : BB.instructionsWithoutDebug()) 1594 if (auto *CB = dyn_cast<CallBase>(&I)) { 1595 Function *Callee = CB->getCalledFunction(); 1596 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1597 // Function calls a potentially recursive function. 1598 return; 1599 } 1600 1601 // Every call was to a non-recursive function other than this function, and 1602 // we have no indirect recursion as the SCC size is one. This function cannot 1603 // recurse. 1604 F->setDoesNotRecurse(); 1605 ++NumNoRecurse; 1606 Changed.insert(F); 1607 } 1608 1609 static bool instructionDoesNotReturn(Instruction &I) { 1610 if (auto *CB = dyn_cast<CallBase>(&I)) 1611 return CB->hasFnAttr(Attribute::NoReturn); 1612 return false; 1613 } 1614 1615 // A basic block can only return if it terminates with a ReturnInst and does not 1616 // contain calls to noreturn functions. 1617 static bool basicBlockCanReturn(BasicBlock &BB) { 1618 if (!isa<ReturnInst>(BB.getTerminator())) 1619 return false; 1620 return none_of(BB, instructionDoesNotReturn); 1621 } 1622 1623 // Set the noreturn function attribute if possible. 1624 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1625 SmallSet<Function *, 8> &Changed) { 1626 for (Function *F : SCCNodes) { 1627 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1628 F->doesNotReturn()) 1629 continue; 1630 1631 // The function can return if any basic blocks can return. 1632 // FIXME: this doesn't handle recursion or unreachable blocks. 1633 if (none_of(*F, basicBlockCanReturn)) { 1634 F->setDoesNotReturn(); 1635 Changed.insert(F); 1636 } 1637 } 1638 } 1639 1640 static bool functionWillReturn(const Function &F) { 1641 // We can infer and propagate function attributes only when we know that the 1642 // definition we'll get at link time is *exactly* the definition we see now. 1643 // For more details, see GlobalValue::mayBeDerefined. 1644 if (!F.hasExactDefinition()) 1645 return false; 1646 1647 // Must-progress function without side-effects must return. 1648 if (F.mustProgress() && F.onlyReadsMemory()) 1649 return true; 1650 1651 // Can only analyze functions with a definition. 1652 if (F.isDeclaration()) 1653 return false; 1654 1655 // Functions with loops require more sophisticated analysis, as the loop 1656 // may be infinite. For now, don't try to handle them. 1657 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1658 FindFunctionBackedges(F, Backedges); 1659 if (!Backedges.empty()) 1660 return false; 1661 1662 // If there are no loops, then the function is willreturn if all calls in 1663 // it are willreturn. 1664 return all_of(instructions(F), [](const Instruction &I) { 1665 return I.willReturn(); 1666 }); 1667 } 1668 1669 // Set the willreturn function attribute if possible. 1670 static void addWillReturn(const SCCNodeSet &SCCNodes, 1671 SmallSet<Function *, 8> &Changed) { 1672 for (Function *F : SCCNodes) { 1673 if (!F || F->willReturn() || !functionWillReturn(*F)) 1674 continue; 1675 1676 F->setWillReturn(); 1677 NumWillReturn++; 1678 Changed.insert(F); 1679 } 1680 } 1681 1682 // Return true if this is an atomic which has an ordering stronger than 1683 // unordered. Note that this is different than the predicate we use in 1684 // Attributor. Here we chose to be conservative and consider monotonic 1685 // operations potentially synchronizing. We generally don't do much with 1686 // monotonic operations, so this is simply risk reduction. 1687 static bool isOrderedAtomic(Instruction *I) { 1688 if (!I->isAtomic()) 1689 return false; 1690 1691 if (auto *FI = dyn_cast<FenceInst>(I)) 1692 // All legal orderings for fence are stronger than monotonic. 1693 return FI->getSyncScopeID() != SyncScope::SingleThread; 1694 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1695 return true; 1696 else if (auto *SI = dyn_cast<StoreInst>(I)) 1697 return !SI->isUnordered(); 1698 else if (auto *LI = dyn_cast<LoadInst>(I)) 1699 return !LI->isUnordered(); 1700 else { 1701 llvm_unreachable("unknown atomic instruction?"); 1702 } 1703 } 1704 1705 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1706 // Volatile may synchronize 1707 if (I.isVolatile()) 1708 return true; 1709 1710 // An ordered atomic may synchronize. (See comment about on monotonic.) 1711 if (isOrderedAtomic(&I)) 1712 return true; 1713 1714 auto *CB = dyn_cast<CallBase>(&I); 1715 if (!CB) 1716 // Non call site cases covered by the two checks above 1717 return false; 1718 1719 if (CB->hasFnAttr(Attribute::NoSync)) 1720 return false; 1721 1722 // Non volatile memset/memcpy/memmoves are nosync 1723 // NOTE: Only intrinsics with volatile flags should be handled here. All 1724 // others should be marked in Intrinsics.td. 1725 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1726 if (!MI->isVolatile()) 1727 return false; 1728 1729 // Speculatively assume in SCC. 1730 if (Function *Callee = CB->getCalledFunction()) 1731 if (SCCNodes.contains(Callee)) 1732 return false; 1733 1734 return true; 1735 } 1736 1737 // Infer the nosync attribute. 1738 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1739 SmallSet<Function *, 8> &Changed) { 1740 AttributeInferer AI; 1741 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1742 Attribute::NoSync, 1743 // Skip already marked functions. 1744 [](const Function &F) { return F.hasNoSync(); }, 1745 // Instructions that break nosync assumption. 1746 [&SCCNodes](Instruction &I) { 1747 return InstrBreaksNoSync(I, SCCNodes); 1748 }, 1749 [](Function &F) { 1750 LLVM_DEBUG(dbgs() 1751 << "Adding nosync attr to fn " << F.getName() << "\n"); 1752 F.setNoSync(); 1753 ++NumNoSync; 1754 }, 1755 /* RequiresExactDefinition= */ true}); 1756 AI.run(SCCNodes, Changed); 1757 } 1758 1759 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1760 SCCNodesResult Res; 1761 Res.HasUnknownCall = false; 1762 for (Function *F : Functions) { 1763 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1764 F->isPresplitCoroutine()) { 1765 // Treat any function we're trying not to optimize as if it were an 1766 // indirect call and omit it from the node set used below. 1767 Res.HasUnknownCall = true; 1768 continue; 1769 } 1770 // Track whether any functions in this SCC have an unknown call edge. 1771 // Note: if this is ever a performance hit, we can common it with 1772 // subsequent routines which also do scans over the instructions of the 1773 // function. 1774 if (!Res.HasUnknownCall) { 1775 for (Instruction &I : instructions(*F)) { 1776 if (auto *CB = dyn_cast<CallBase>(&I)) { 1777 if (!CB->getCalledFunction()) { 1778 Res.HasUnknownCall = true; 1779 break; 1780 } 1781 } 1782 } 1783 } 1784 Res.SCCNodes.insert(F); 1785 } 1786 return Res; 1787 } 1788 1789 template <typename AARGetterT> 1790 static SmallSet<Function *, 8> 1791 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1792 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1793 1794 // Bail if the SCC only contains optnone functions. 1795 if (Nodes.SCCNodes.empty()) 1796 return {}; 1797 1798 SmallSet<Function *, 8> Changed; 1799 1800 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1801 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1802 addArgumentAttrs(Nodes.SCCNodes, Changed); 1803 inferConvergent(Nodes.SCCNodes, Changed); 1804 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1805 addWillReturn(Nodes.SCCNodes, Changed); 1806 1807 // If we have no external nodes participating in the SCC, we can deduce some 1808 // more precise attributes as well. 1809 if (!Nodes.HasUnknownCall) { 1810 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1811 addNonNullAttrs(Nodes.SCCNodes, Changed); 1812 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1813 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1814 } 1815 1816 addNoSyncAttr(Nodes.SCCNodes, Changed); 1817 1818 // Finally, infer the maximal set of attributes from the ones we've inferred 1819 // above. This is handling the cases where one attribute on a signature 1820 // implies another, but for implementation reasons the inference rule for 1821 // the later is missing (or simply less sophisticated). 1822 for (Function *F : Nodes.SCCNodes) 1823 if (F) 1824 if (inferAttributesFromOthers(*F)) 1825 Changed.insert(F); 1826 1827 return Changed; 1828 } 1829 1830 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1831 CGSCCAnalysisManager &AM, 1832 LazyCallGraph &CG, 1833 CGSCCUpdateResult &) { 1834 FunctionAnalysisManager &FAM = 1835 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1836 1837 // We pass a lambda into functions to wire them up to the analysis manager 1838 // for getting function analyses. 1839 auto AARGetter = [&](Function &F) -> AAResults & { 1840 return FAM.getResult<AAManager>(F); 1841 }; 1842 1843 SmallVector<Function *, 8> Functions; 1844 for (LazyCallGraph::Node &N : C) { 1845 Functions.push_back(&N.getFunction()); 1846 } 1847 1848 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1849 if (ChangedFunctions.empty()) 1850 return PreservedAnalyses::all(); 1851 1852 // Invalidate analyses for modified functions so that we don't have to 1853 // invalidate all analyses for all functions in this SCC. 1854 PreservedAnalyses FuncPA; 1855 // We haven't changed the CFG for modified functions. 1856 FuncPA.preserveSet<CFGAnalyses>(); 1857 for (Function *Changed : ChangedFunctions) { 1858 FAM.invalidate(*Changed, FuncPA); 1859 // Also invalidate any direct callers of changed functions since analyses 1860 // may care about attributes of direct callees. For example, MemorySSA cares 1861 // about whether or not a call's callee modifies memory and queries that 1862 // through function attributes. 1863 for (auto *U : Changed->users()) { 1864 if (auto *Call = dyn_cast<CallBase>(U)) { 1865 if (Call->getCalledFunction() == Changed) 1866 FAM.invalidate(*Call->getFunction(), FuncPA); 1867 } 1868 } 1869 } 1870 1871 PreservedAnalyses PA; 1872 // We have not added or removed functions. 1873 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1874 // We already invalidated all relevant function analyses above. 1875 PA.preserveSet<AllAnalysesOn<Function>>(); 1876 return PA; 1877 } 1878 1879 namespace { 1880 1881 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1882 // Pass identification, replacement for typeid 1883 static char ID; 1884 1885 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1886 initializePostOrderFunctionAttrsLegacyPassPass( 1887 *PassRegistry::getPassRegistry()); 1888 } 1889 1890 bool runOnSCC(CallGraphSCC &SCC) override; 1891 1892 void getAnalysisUsage(AnalysisUsage &AU) const override { 1893 AU.setPreservesCFG(); 1894 AU.addRequired<AssumptionCacheTracker>(); 1895 getAAResultsAnalysisUsage(AU); 1896 CallGraphSCCPass::getAnalysisUsage(AU); 1897 } 1898 }; 1899 1900 } // end anonymous namespace 1901 1902 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1903 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1904 "Deduce function attributes", false, false) 1905 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1906 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1907 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1908 "Deduce function attributes", false, false) 1909 1910 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1911 return new PostOrderFunctionAttrsLegacyPass(); 1912 } 1913 1914 template <typename AARGetterT> 1915 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1916 SmallVector<Function *, 8> Functions; 1917 for (CallGraphNode *I : SCC) { 1918 Functions.push_back(I->getFunction()); 1919 } 1920 1921 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1922 } 1923 1924 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1925 if (skipSCC(SCC)) 1926 return false; 1927 return runImpl(SCC, LegacyAARGetter(*this)); 1928 } 1929 1930 namespace { 1931 1932 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1933 // Pass identification, replacement for typeid 1934 static char ID; 1935 1936 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1937 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1938 *PassRegistry::getPassRegistry()); 1939 } 1940 1941 bool runOnModule(Module &M) override; 1942 1943 void getAnalysisUsage(AnalysisUsage &AU) const override { 1944 AU.setPreservesCFG(); 1945 AU.addRequired<CallGraphWrapperPass>(); 1946 AU.addPreserved<CallGraphWrapperPass>(); 1947 } 1948 }; 1949 1950 } // end anonymous namespace 1951 1952 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1953 1954 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1955 "rpo-function-attrs", "Deduce function attributes in RPO", 1956 false, false) 1957 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1958 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1959 "rpo-function-attrs", "Deduce function attributes in RPO", 1960 false, false) 1961 1962 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1963 return new ReversePostOrderFunctionAttrsLegacyPass(); 1964 } 1965 1966 static bool addNoRecurseAttrsTopDown(Function &F) { 1967 // We check the preconditions for the function prior to calling this to avoid 1968 // the cost of building up a reversible post-order list. We assert them here 1969 // to make sure none of the invariants this relies on were violated. 1970 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1971 assert(!F.doesNotRecurse() && 1972 "This function has already been deduced as norecurs!"); 1973 assert(F.hasInternalLinkage() && 1974 "Can only do top-down deduction for internal linkage functions!"); 1975 1976 // If F is internal and all of its uses are calls from a non-recursive 1977 // functions, then none of its calls could in fact recurse without going 1978 // through a function marked norecurse, and so we can mark this function too 1979 // as norecurse. Note that the uses must actually be calls -- otherwise 1980 // a pointer to this function could be returned from a norecurse function but 1981 // this function could be recursively (indirectly) called. Note that this 1982 // also detects if F is directly recursive as F is not yet marked as 1983 // a norecurse function. 1984 for (auto *U : F.users()) { 1985 auto *I = dyn_cast<Instruction>(U); 1986 if (!I) 1987 return false; 1988 CallBase *CB = dyn_cast<CallBase>(I); 1989 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1990 return false; 1991 } 1992 F.setDoesNotRecurse(); 1993 ++NumNoRecurse; 1994 return true; 1995 } 1996 1997 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1998 // We only have a post-order SCC traversal (because SCCs are inherently 1999 // discovered in post-order), so we accumulate them in a vector and then walk 2000 // it in reverse. This is simpler than using the RPO iterator infrastructure 2001 // because we need to combine SCC detection and the PO walk of the call 2002 // graph. We can also cheat egregiously because we're primarily interested in 2003 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2004 // with multiple functions in them will clearly be recursive. 2005 SmallVector<Function *, 16> Worklist; 2006 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2007 if (I->size() != 1) 2008 continue; 2009 2010 Function *F = I->front()->getFunction(); 2011 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2012 F->hasInternalLinkage()) 2013 Worklist.push_back(F); 2014 } 2015 2016 bool Changed = false; 2017 for (auto *F : llvm::reverse(Worklist)) 2018 Changed |= addNoRecurseAttrsTopDown(*F); 2019 2020 return Changed; 2021 } 2022 2023 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2024 if (skipModule(M)) 2025 return false; 2026 2027 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2028 2029 return deduceFunctionAttributeInRPO(M, CG); 2030 } 2031 2032 PreservedAnalyses 2033 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2034 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2035 2036 if (!deduceFunctionAttributeInRPO(M, CG)) 2037 return PreservedAnalyses::all(); 2038 2039 PreservedAnalyses PA; 2040 PA.preserve<CallGraphAnalysis>(); 2041 return PA; 2042 } 2043