1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReturned, "Number of arguments marked returned");
46 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
47 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
48 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
49 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
50 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
51 
52 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
53 // in C/C++ code compiled by clang:
54 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
55 static cl::opt<bool> EnableNonnullArgPropagation(
56     "enable-nonnull-arg-prop", cl::Hidden,
57     cl::desc("Try to propagate nonnull argument attributes from callsites to "
58              "caller functions."));
59 
60 namespace {
61 typedef SmallSetVector<Function *, 8> SCCNodeSet;
62 }
63 
64 /// Returns the memory access attribute for function F using AAR for AA results,
65 /// where SCCNodes is the current SCC.
66 ///
67 /// If ThisBody is true, this function may examine the function body and will
68 /// return a result pertaining to this copy of the function. If it is false, the
69 /// result will be based only on AA results for the function declaration; it
70 /// will be assumed that some other (perhaps less optimized) version of the
71 /// function may be selected at link time.
72 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
73                                                   AAResults &AAR,
74                                                   const SCCNodeSet &SCCNodes) {
75   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
76   if (MRB == FMRB_DoesNotAccessMemory)
77     // Already perfect!
78     return MAK_ReadNone;
79 
80   if (!ThisBody) {
81     if (AliasAnalysis::onlyReadsMemory(MRB))
82       return MAK_ReadOnly;
83 
84     // Conservatively assume it writes to memory.
85     return MAK_MayWrite;
86   }
87 
88   // Scan the function body for instructions that may read or write memory.
89   bool ReadsMemory = false;
90   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
91     Instruction *I = &*II;
92 
93     // Some instructions can be ignored even if they read or write memory.
94     // Detect these now, skipping to the next instruction if one is found.
95     CallSite CS(cast<Value>(I));
96     if (CS) {
97       // Ignore calls to functions in the same SCC, as long as the call sites
98       // don't have operand bundles.  Calls with operand bundles are allowed to
99       // have memory effects not described by the memory effects of the call
100       // target.
101       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
102           SCCNodes.count(CS.getCalledFunction()))
103         continue;
104       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
105 
106       // If the call doesn't access memory, we're done.
107       if (!(MRB & MRI_ModRef))
108         continue;
109 
110       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
111         // The call could access any memory. If that includes writes, give up.
112         if (MRB & MRI_Mod)
113           return MAK_MayWrite;
114         // If it reads, note it.
115         if (MRB & MRI_Ref)
116           ReadsMemory = true;
117         continue;
118       }
119 
120       // Check whether all pointer arguments point to local memory, and
121       // ignore calls that only access local memory.
122       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
123            CI != CE; ++CI) {
124         Value *Arg = *CI;
125         if (!Arg->getType()->isPtrOrPtrVectorTy())
126           continue;
127 
128         AAMDNodes AAInfo;
129         I->getAAMetadata(AAInfo);
130         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
131 
132         // Skip accesses to local or constant memory as they don't impact the
133         // externally visible mod/ref behavior.
134         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
135           continue;
136 
137         if (MRB & MRI_Mod)
138           // Writes non-local memory.  Give up.
139           return MAK_MayWrite;
140         if (MRB & MRI_Ref)
141           // Ok, it reads non-local memory.
142           ReadsMemory = true;
143       }
144       continue;
145     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
146       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
147       if (!LI->isVolatile()) {
148         MemoryLocation Loc = MemoryLocation::get(LI);
149         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
150           continue;
151       }
152     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
153       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
154       if (!SI->isVolatile()) {
155         MemoryLocation Loc = MemoryLocation::get(SI);
156         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
157           continue;
158       }
159     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
160       // Ignore vaargs on local memory.
161       MemoryLocation Loc = MemoryLocation::get(VI);
162       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
163         continue;
164     }
165 
166     // Any remaining instructions need to be taken seriously!  Check if they
167     // read or write memory.
168     if (I->mayWriteToMemory())
169       // Writes memory.  Just give up.
170       return MAK_MayWrite;
171 
172     // If this instruction may read memory, remember that.
173     ReadsMemory |= I->mayReadFromMemory();
174   }
175 
176   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
177 }
178 
179 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
180                                                        AAResults &AAR) {
181   return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
182 }
183 
184 /// Deduce readonly/readnone attributes for the SCC.
185 template <typename AARGetterT>
186 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
187   // Check if any of the functions in the SCC read or write memory.  If they
188   // write memory then they can't be marked readnone or readonly.
189   bool ReadsMemory = false;
190   for (Function *F : SCCNodes) {
191     // Call the callable parameter to look up AA results for this function.
192     AAResults &AAR = AARGetter(*F);
193 
194     // Non-exact function definitions may not be selected at link time, and an
195     // alternative version that writes to memory may be selected.  See the
196     // comment on GlobalValue::isDefinitionExact for more details.
197     switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
198                                       AAR, SCCNodes)) {
199     case MAK_MayWrite:
200       return false;
201     case MAK_ReadOnly:
202       ReadsMemory = true;
203       break;
204     case MAK_ReadNone:
205       // Nothing to do!
206       break;
207     }
208   }
209 
210   // Success!  Functions in this SCC do not access memory, or only read memory.
211   // Give them the appropriate attribute.
212   bool MadeChange = false;
213   for (Function *F : SCCNodes) {
214     if (F->doesNotAccessMemory())
215       // Already perfect!
216       continue;
217 
218     if (F->onlyReadsMemory() && ReadsMemory)
219       // No change.
220       continue;
221 
222     MadeChange = true;
223 
224     // Clear out any existing attributes.
225     AttrBuilder B;
226     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
227     F->removeAttributes(
228         AttributeSet::FunctionIndex,
229         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
230 
231     // Add in the new attribute.
232     F->addAttribute(AttributeSet::FunctionIndex,
233                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
234 
235     if (ReadsMemory)
236       ++NumReadOnly;
237     else
238       ++NumReadNone;
239   }
240 
241   return MadeChange;
242 }
243 
244 namespace {
245 /// For a given pointer Argument, this retains a list of Arguments of functions
246 /// in the same SCC that the pointer data flows into. We use this to build an
247 /// SCC of the arguments.
248 struct ArgumentGraphNode {
249   Argument *Definition;
250   SmallVector<ArgumentGraphNode *, 4> Uses;
251 };
252 
253 class ArgumentGraph {
254   // We store pointers to ArgumentGraphNode objects, so it's important that
255   // that they not move around upon insert.
256   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
257 
258   ArgumentMapTy ArgumentMap;
259 
260   // There is no root node for the argument graph, in fact:
261   //   void f(int *x, int *y) { if (...) f(x, y); }
262   // is an example where the graph is disconnected. The SCCIterator requires a
263   // single entry point, so we maintain a fake ("synthetic") root node that
264   // uses every node. Because the graph is directed and nothing points into
265   // the root, it will not participate in any SCCs (except for its own).
266   ArgumentGraphNode SyntheticRoot;
267 
268 public:
269   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
270 
271   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
272 
273   iterator begin() { return SyntheticRoot.Uses.begin(); }
274   iterator end() { return SyntheticRoot.Uses.end(); }
275   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
276 
277   ArgumentGraphNode *operator[](Argument *A) {
278     ArgumentGraphNode &Node = ArgumentMap[A];
279     Node.Definition = A;
280     SyntheticRoot.Uses.push_back(&Node);
281     return &Node;
282   }
283 };
284 
285 /// This tracker checks whether callees are in the SCC, and if so it does not
286 /// consider that a capture, instead adding it to the "Uses" list and
287 /// continuing with the analysis.
288 struct ArgumentUsesTracker : public CaptureTracker {
289   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
290       : Captured(false), SCCNodes(SCCNodes) {}
291 
292   void tooManyUses() override { Captured = true; }
293 
294   bool captured(const Use *U) override {
295     CallSite CS(U->getUser());
296     if (!CS.getInstruction()) {
297       Captured = true;
298       return true;
299     }
300 
301     Function *F = CS.getCalledFunction();
302     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
303       Captured = true;
304       return true;
305     }
306 
307     // Note: the callee and the two successor blocks *follow* the argument
308     // operands.  This means there is no need to adjust UseIndex to account for
309     // these.
310 
311     unsigned UseIndex =
312         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
313 
314     assert(UseIndex < CS.data_operands_size() &&
315            "Indirect function calls should have been filtered above!");
316 
317     if (UseIndex >= CS.getNumArgOperands()) {
318       // Data operand, but not a argument operand -- must be a bundle operand
319       assert(CS.hasOperandBundles() && "Must be!");
320 
321       // CaptureTracking told us that we're being captured by an operand bundle
322       // use.  In this case it does not matter if the callee is within our SCC
323       // or not -- we've been captured in some unknown way, and we have to be
324       // conservative.
325       Captured = true;
326       return true;
327     }
328 
329     if (UseIndex >= F->arg_size()) {
330       assert(F->isVarArg() && "More params than args in non-varargs call");
331       Captured = true;
332       return true;
333     }
334 
335     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
336     return false;
337   }
338 
339   bool Captured; // True only if certainly captured (used outside our SCC).
340   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
341 
342   const SCCNodeSet &SCCNodes;
343 };
344 }
345 
346 namespace llvm {
347 template <> struct GraphTraits<ArgumentGraphNode *> {
348   typedef ArgumentGraphNode *NodeRef;
349   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
350 
351   static NodeRef getEntryNode(NodeRef A) { return A; }
352   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
353   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
354 };
355 template <>
356 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
357   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
358   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
359     return AG->begin();
360   }
361   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
362 };
363 }
364 
365 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
366 static Attribute::AttrKind
367 determinePointerReadAttrs(Argument *A,
368                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
369 
370   SmallVector<Use *, 32> Worklist;
371   SmallSet<Use *, 32> Visited;
372 
373   // inalloca arguments are always clobbered by the call.
374   if (A->hasInAllocaAttr())
375     return Attribute::None;
376 
377   bool IsRead = false;
378   // We don't need to track IsWritten. If A is written to, return immediately.
379 
380   for (Use &U : A->uses()) {
381     Visited.insert(&U);
382     Worklist.push_back(&U);
383   }
384 
385   while (!Worklist.empty()) {
386     Use *U = Worklist.pop_back_val();
387     Instruction *I = cast<Instruction>(U->getUser());
388 
389     switch (I->getOpcode()) {
390     case Instruction::BitCast:
391     case Instruction::GetElementPtr:
392     case Instruction::PHI:
393     case Instruction::Select:
394     case Instruction::AddrSpaceCast:
395       // The original value is not read/written via this if the new value isn't.
396       for (Use &UU : I->uses())
397         if (Visited.insert(&UU).second)
398           Worklist.push_back(&UU);
399       break;
400 
401     case Instruction::Call:
402     case Instruction::Invoke: {
403       bool Captures = true;
404 
405       if (I->getType()->isVoidTy())
406         Captures = false;
407 
408       auto AddUsersToWorklistIfCapturing = [&] {
409         if (Captures)
410           for (Use &UU : I->uses())
411             if (Visited.insert(&UU).second)
412               Worklist.push_back(&UU);
413       };
414 
415       CallSite CS(I);
416       if (CS.doesNotAccessMemory()) {
417         AddUsersToWorklistIfCapturing();
418         continue;
419       }
420 
421       Function *F = CS.getCalledFunction();
422       if (!F) {
423         if (CS.onlyReadsMemory()) {
424           IsRead = true;
425           AddUsersToWorklistIfCapturing();
426           continue;
427         }
428         return Attribute::None;
429       }
430 
431       // Note: the callee and the two successor blocks *follow* the argument
432       // operands.  This means there is no need to adjust UseIndex to account
433       // for these.
434 
435       unsigned UseIndex = std::distance(CS.arg_begin(), U);
436 
437       // U cannot be the callee operand use: since we're exploring the
438       // transitive uses of an Argument, having such a use be a callee would
439       // imply the CallSite is an indirect call or invoke; and we'd take the
440       // early exit above.
441       assert(UseIndex < CS.data_operands_size() &&
442              "Data operand use expected!");
443 
444       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
445 
446       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
447         assert(F->isVarArg() && "More params than args in non-varargs call");
448         return Attribute::None;
449       }
450 
451       Captures &= !CS.doesNotCapture(UseIndex);
452 
453       // Since the optimizer (by design) cannot see the data flow corresponding
454       // to a operand bundle use, these cannot participate in the optimistic SCC
455       // analysis.  Instead, we model the operand bundle uses as arguments in
456       // call to a function external to the SCC.
457       if (IsOperandBundleUse ||
458           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
459 
460         // The accessors used on CallSite here do the right thing for calls and
461         // invokes with operand bundles.
462 
463         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
464           return Attribute::None;
465         if (!CS.doesNotAccessMemory(UseIndex))
466           IsRead = true;
467       }
468 
469       AddUsersToWorklistIfCapturing();
470       break;
471     }
472 
473     case Instruction::Load:
474       // A volatile load has side effects beyond what readonly can be relied
475       // upon.
476       if (cast<LoadInst>(I)->isVolatile())
477         return Attribute::None;
478 
479       IsRead = true;
480       break;
481 
482     case Instruction::ICmp:
483     case Instruction::Ret:
484       break;
485 
486     default:
487       return Attribute::None;
488     }
489   }
490 
491   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
492 }
493 
494 /// Deduce returned attributes for the SCC.
495 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
496   bool Changed = false;
497 
498   AttrBuilder B;
499   B.addAttribute(Attribute::Returned);
500 
501   // Check each function in turn, determining if an argument is always returned.
502   for (Function *F : SCCNodes) {
503     // We can infer and propagate function attributes only when we know that the
504     // definition we'll get at link time is *exactly* the definition we see now.
505     // For more details, see GlobalValue::mayBeDerefined.
506     if (!F->hasExactDefinition())
507       continue;
508 
509     if (F->getReturnType()->isVoidTy())
510       continue;
511 
512     // There is nothing to do if an argument is already marked as 'returned'.
513     if (any_of(F->args(),
514                [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
515       continue;
516 
517     auto FindRetArg = [&]() -> Value * {
518       Value *RetArg = nullptr;
519       for (BasicBlock &BB : *F)
520         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
521           // Note that stripPointerCasts should look through functions with
522           // returned arguments.
523           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
524           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
525             return nullptr;
526 
527           if (!RetArg)
528             RetArg = RetVal;
529           else if (RetArg != RetVal)
530             return nullptr;
531         }
532 
533       return RetArg;
534     };
535 
536     if (Value *RetArg = FindRetArg()) {
537       auto *A = cast<Argument>(RetArg);
538       A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
539       ++NumReturned;
540       Changed = true;
541     }
542   }
543 
544   return Changed;
545 }
546 
547 /// If a callsite has arguments that are also arguments to the parent function,
548 /// try to propagate attributes from the callsite's arguments to the parent's
549 /// arguments. This may be important because inlining can cause information loss
550 /// when attribute knowledge disappears with the inlined call.
551 static bool addArgumentAttrsFromCallsites(Function &F) {
552   if (!EnableNonnullArgPropagation)
553     return false;
554 
555   bool Changed = false;
556 
557   // For an argument attribute to transfer from a callsite to the parent, the
558   // call must be guaranteed to execute every time the parent is called.
559   // Conservatively, just check for calls in the entry block that are guaranteed
560   // to execute.
561   // TODO: This could be enhanced by testing if the callsite post-dominates the
562   // entry block or by doing simple forward walks or backward walks to the
563   // callsite.
564   BasicBlock &Entry = F.getEntryBlock();
565   for (Instruction &I : Entry) {
566     if (auto CS = CallSite(&I)) {
567       if (auto *CalledFunc = CS.getCalledFunction()) {
568         for (auto &CSArg : CalledFunc->args()) {
569           if (!CSArg.hasNonNullAttr())
570             continue;
571 
572           // If the non-null callsite argument operand is an argument to 'F'
573           // (the caller) and the call is guaranteed to execute, then the value
574           // must be non-null throughout 'F'.
575           auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
576           if (FArg && !FArg->hasNonNullAttr()) {
577             FArg->addAttr(Attribute::NonNull);
578             Changed = true;
579           }
580         }
581       }
582     }
583     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
584       break;
585   }
586 
587   return Changed;
588 }
589 
590 /// Deduce nocapture attributes for the SCC.
591 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
592   bool Changed = false;
593 
594   ArgumentGraph AG;
595 
596   AttrBuilder B;
597   B.addAttribute(Attribute::NoCapture);
598 
599   // Check each function in turn, determining which pointer arguments are not
600   // captured.
601   for (Function *F : SCCNodes) {
602     // We can infer and propagate function attributes only when we know that the
603     // definition we'll get at link time is *exactly* the definition we see now.
604     // For more details, see GlobalValue::mayBeDerefined.
605     if (!F->hasExactDefinition())
606       continue;
607 
608     Changed |= addArgumentAttrsFromCallsites(*F);
609 
610     // Functions that are readonly (or readnone) and nounwind and don't return
611     // a value can't capture arguments. Don't analyze them.
612     if (F->onlyReadsMemory() && F->doesNotThrow() &&
613         F->getReturnType()->isVoidTy()) {
614       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
615            ++A) {
616         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
617           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
618           ++NumNoCapture;
619           Changed = true;
620         }
621       }
622       continue;
623     }
624 
625     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
626          ++A) {
627       if (!A->getType()->isPointerTy())
628         continue;
629       bool HasNonLocalUses = false;
630       if (!A->hasNoCaptureAttr()) {
631         ArgumentUsesTracker Tracker(SCCNodes);
632         PointerMayBeCaptured(&*A, &Tracker);
633         if (!Tracker.Captured) {
634           if (Tracker.Uses.empty()) {
635             // If it's trivially not captured, mark it nocapture now.
636             A->addAttr(
637                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
638             ++NumNoCapture;
639             Changed = true;
640           } else {
641             // If it's not trivially captured and not trivially not captured,
642             // then it must be calling into another function in our SCC. Save
643             // its particulars for Argument-SCC analysis later.
644             ArgumentGraphNode *Node = AG[&*A];
645             for (Argument *Use : Tracker.Uses) {
646               Node->Uses.push_back(AG[Use]);
647               if (Use != &*A)
648                 HasNonLocalUses = true;
649             }
650           }
651         }
652         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
653       }
654       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
655         // Can we determine that it's readonly/readnone without doing an SCC?
656         // Note that we don't allow any calls at all here, or else our result
657         // will be dependent on the iteration order through the functions in the
658         // SCC.
659         SmallPtrSet<Argument *, 8> Self;
660         Self.insert(&*A);
661         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
662         if (R != Attribute::None) {
663           AttrBuilder B;
664           B.addAttribute(R);
665           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
666           Changed = true;
667           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
668         }
669       }
670     }
671   }
672 
673   // The graph we've collected is partial because we stopped scanning for
674   // argument uses once we solved the argument trivially. These partial nodes
675   // show up as ArgumentGraphNode objects with an empty Uses list, and for
676   // these nodes the final decision about whether they capture has already been
677   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
678   // captures.
679 
680   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
681     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
682     if (ArgumentSCC.size() == 1) {
683       if (!ArgumentSCC[0]->Definition)
684         continue; // synthetic root node
685 
686       // eg. "void f(int* x) { if (...) f(x); }"
687       if (ArgumentSCC[0]->Uses.size() == 1 &&
688           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
689         Argument *A = ArgumentSCC[0]->Definition;
690         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
691         ++NumNoCapture;
692         Changed = true;
693       }
694       continue;
695     }
696 
697     bool SCCCaptured = false;
698     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
699          I != E && !SCCCaptured; ++I) {
700       ArgumentGraphNode *Node = *I;
701       if (Node->Uses.empty()) {
702         if (!Node->Definition->hasNoCaptureAttr())
703           SCCCaptured = true;
704       }
705     }
706     if (SCCCaptured)
707       continue;
708 
709     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
710     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
711     // quickly looking up whether a given Argument is in this ArgumentSCC.
712     for (ArgumentGraphNode *I : ArgumentSCC) {
713       ArgumentSCCNodes.insert(I->Definition);
714     }
715 
716     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
717          I != E && !SCCCaptured; ++I) {
718       ArgumentGraphNode *N = *I;
719       for (ArgumentGraphNode *Use : N->Uses) {
720         Argument *A = Use->Definition;
721         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
722           continue;
723         SCCCaptured = true;
724         break;
725       }
726     }
727     if (SCCCaptured)
728       continue;
729 
730     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
731       Argument *A = ArgumentSCC[i]->Definition;
732       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
733       ++NumNoCapture;
734       Changed = true;
735     }
736 
737     // We also want to compute readonly/readnone. With a small number of false
738     // negatives, we can assume that any pointer which is captured isn't going
739     // to be provably readonly or readnone, since by definition we can't
740     // analyze all uses of a captured pointer.
741     //
742     // The false negatives happen when the pointer is captured by a function
743     // that promises readonly/readnone behaviour on the pointer, then the
744     // pointer's lifetime ends before anything that writes to arbitrary memory.
745     // Also, a readonly/readnone pointer may be returned, but returning a
746     // pointer is capturing it.
747 
748     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
749     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
750       Argument *A = ArgumentSCC[i]->Definition;
751       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
752       if (K == Attribute::ReadNone)
753         continue;
754       if (K == Attribute::ReadOnly) {
755         ReadAttr = Attribute::ReadOnly;
756         continue;
757       }
758       ReadAttr = K;
759       break;
760     }
761 
762     if (ReadAttr != Attribute::None) {
763       AttrBuilder B, R;
764       B.addAttribute(ReadAttr);
765       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
766       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
767         Argument *A = ArgumentSCC[i]->Definition;
768         // Clear out existing readonly/readnone attributes
769         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
770         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
771         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
772         Changed = true;
773       }
774     }
775   }
776 
777   return Changed;
778 }
779 
780 /// Tests whether a function is "malloc-like".
781 ///
782 /// A function is "malloc-like" if it returns either null or a pointer that
783 /// doesn't alias any other pointer visible to the caller.
784 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
785   SmallSetVector<Value *, 8> FlowsToReturn;
786   for (BasicBlock &BB : *F)
787     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
788       FlowsToReturn.insert(Ret->getReturnValue());
789 
790   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
791     Value *RetVal = FlowsToReturn[i];
792 
793     if (Constant *C = dyn_cast<Constant>(RetVal)) {
794       if (!C->isNullValue() && !isa<UndefValue>(C))
795         return false;
796 
797       continue;
798     }
799 
800     if (isa<Argument>(RetVal))
801       return false;
802 
803     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
804       switch (RVI->getOpcode()) {
805       // Extend the analysis by looking upwards.
806       case Instruction::BitCast:
807       case Instruction::GetElementPtr:
808       case Instruction::AddrSpaceCast:
809         FlowsToReturn.insert(RVI->getOperand(0));
810         continue;
811       case Instruction::Select: {
812         SelectInst *SI = cast<SelectInst>(RVI);
813         FlowsToReturn.insert(SI->getTrueValue());
814         FlowsToReturn.insert(SI->getFalseValue());
815         continue;
816       }
817       case Instruction::PHI: {
818         PHINode *PN = cast<PHINode>(RVI);
819         for (Value *IncValue : PN->incoming_values())
820           FlowsToReturn.insert(IncValue);
821         continue;
822       }
823 
824       // Check whether the pointer came from an allocation.
825       case Instruction::Alloca:
826         break;
827       case Instruction::Call:
828       case Instruction::Invoke: {
829         CallSite CS(RVI);
830         if (CS.paramHasAttr(0, Attribute::NoAlias))
831           break;
832         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
833           break;
834         LLVM_FALLTHROUGH;
835       }
836       default:
837         return false; // Did not come from an allocation.
838       }
839 
840     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
841       return false;
842   }
843 
844   return true;
845 }
846 
847 /// Deduce noalias attributes for the SCC.
848 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
849   // Check each function in turn, determining which functions return noalias
850   // pointers.
851   for (Function *F : SCCNodes) {
852     // Already noalias.
853     if (F->doesNotAlias(0))
854       continue;
855 
856     // We can infer and propagate function attributes only when we know that the
857     // definition we'll get at link time is *exactly* the definition we see now.
858     // For more details, see GlobalValue::mayBeDerefined.
859     if (!F->hasExactDefinition())
860       return false;
861 
862     // We annotate noalias return values, which are only applicable to
863     // pointer types.
864     if (!F->getReturnType()->isPointerTy())
865       continue;
866 
867     if (!isFunctionMallocLike(F, SCCNodes))
868       return false;
869   }
870 
871   bool MadeChange = false;
872   for (Function *F : SCCNodes) {
873     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
874       continue;
875 
876     F->setDoesNotAlias(0);
877     ++NumNoAlias;
878     MadeChange = true;
879   }
880 
881   return MadeChange;
882 }
883 
884 /// Tests whether this function is known to not return null.
885 ///
886 /// Requires that the function returns a pointer.
887 ///
888 /// Returns true if it believes the function will not return a null, and sets
889 /// \p Speculative based on whether the returned conclusion is a speculative
890 /// conclusion due to SCC calls.
891 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
892                             bool &Speculative) {
893   assert(F->getReturnType()->isPointerTy() &&
894          "nonnull only meaningful on pointer types");
895   Speculative = false;
896 
897   SmallSetVector<Value *, 8> FlowsToReturn;
898   for (BasicBlock &BB : *F)
899     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
900       FlowsToReturn.insert(Ret->getReturnValue());
901 
902   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
903     Value *RetVal = FlowsToReturn[i];
904 
905     // If this value is locally known to be non-null, we're good
906     if (isKnownNonNull(RetVal))
907       continue;
908 
909     // Otherwise, we need to look upwards since we can't make any local
910     // conclusions.
911     Instruction *RVI = dyn_cast<Instruction>(RetVal);
912     if (!RVI)
913       return false;
914     switch (RVI->getOpcode()) {
915     // Extend the analysis by looking upwards.
916     case Instruction::BitCast:
917     case Instruction::GetElementPtr:
918     case Instruction::AddrSpaceCast:
919       FlowsToReturn.insert(RVI->getOperand(0));
920       continue;
921     case Instruction::Select: {
922       SelectInst *SI = cast<SelectInst>(RVI);
923       FlowsToReturn.insert(SI->getTrueValue());
924       FlowsToReturn.insert(SI->getFalseValue());
925       continue;
926     }
927     case Instruction::PHI: {
928       PHINode *PN = cast<PHINode>(RVI);
929       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
930         FlowsToReturn.insert(PN->getIncomingValue(i));
931       continue;
932     }
933     case Instruction::Call:
934     case Instruction::Invoke: {
935       CallSite CS(RVI);
936       Function *Callee = CS.getCalledFunction();
937       // A call to a node within the SCC is assumed to return null until
938       // proven otherwise
939       if (Callee && SCCNodes.count(Callee)) {
940         Speculative = true;
941         continue;
942       }
943       return false;
944     }
945     default:
946       return false; // Unknown source, may be null
947     };
948     llvm_unreachable("should have either continued or returned");
949   }
950 
951   return true;
952 }
953 
954 /// Deduce nonnull attributes for the SCC.
955 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
956   // Speculative that all functions in the SCC return only nonnull
957   // pointers.  We may refute this as we analyze functions.
958   bool SCCReturnsNonNull = true;
959 
960   bool MadeChange = false;
961 
962   // Check each function in turn, determining which functions return nonnull
963   // pointers.
964   for (Function *F : SCCNodes) {
965     // Already nonnull.
966     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
967                                         Attribute::NonNull))
968       continue;
969 
970     // We can infer and propagate function attributes only when we know that the
971     // definition we'll get at link time is *exactly* the definition we see now.
972     // For more details, see GlobalValue::mayBeDerefined.
973     if (!F->hasExactDefinition())
974       return false;
975 
976     // We annotate nonnull return values, which are only applicable to
977     // pointer types.
978     if (!F->getReturnType()->isPointerTy())
979       continue;
980 
981     bool Speculative = false;
982     if (isReturnNonNull(F, SCCNodes, Speculative)) {
983       if (!Speculative) {
984         // Mark the function eagerly since we may discover a function
985         // which prevents us from speculating about the entire SCC
986         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
987         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
988         ++NumNonNullReturn;
989         MadeChange = true;
990       }
991       continue;
992     }
993     // At least one function returns something which could be null, can't
994     // speculate any more.
995     SCCReturnsNonNull = false;
996   }
997 
998   if (SCCReturnsNonNull) {
999     for (Function *F : SCCNodes) {
1000       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1001                                           Attribute::NonNull) ||
1002           !F->getReturnType()->isPointerTy())
1003         continue;
1004 
1005       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1006       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1007       ++NumNonNullReturn;
1008       MadeChange = true;
1009     }
1010   }
1011 
1012   return MadeChange;
1013 }
1014 
1015 /// Remove the convergent attribute from all functions in the SCC if every
1016 /// callsite within the SCC is not convergent (except for calls to functions
1017 /// within the SCC).  Returns true if changes were made.
1018 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
1019   // For every function in SCC, ensure that either
1020   //  * it is not convergent, or
1021   //  * we can remove its convergent attribute.
1022   bool HasConvergentFn = false;
1023   for (Function *F : SCCNodes) {
1024     if (!F->isConvergent()) continue;
1025     HasConvergentFn = true;
1026 
1027     // Can't remove convergent from function declarations.
1028     if (F->isDeclaration()) return false;
1029 
1030     // Can't remove convergent if any of our functions has a convergent call to a
1031     // function not in the SCC.
1032     for (Instruction &I : instructions(*F)) {
1033       CallSite CS(&I);
1034       // Bail if CS is a convergent call to a function not in the SCC.
1035       if (CS && CS.isConvergent() &&
1036           SCCNodes.count(CS.getCalledFunction()) == 0)
1037         return false;
1038     }
1039   }
1040 
1041   // If the SCC doesn't have any convergent functions, we have nothing to do.
1042   if (!HasConvergentFn) return false;
1043 
1044   // If we got here, all of the calls the SCC makes to functions not in the SCC
1045   // are non-convergent.  Therefore all of the SCC's functions can also be made
1046   // non-convergent.  We'll remove the attr from the callsites in
1047   // InstCombineCalls.
1048   for (Function *F : SCCNodes) {
1049     if (!F->isConvergent()) continue;
1050 
1051     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
1052                  << "\n");
1053     F->setNotConvergent();
1054   }
1055   return true;
1056 }
1057 
1058 static bool setDoesNotRecurse(Function &F) {
1059   if (F.doesNotRecurse())
1060     return false;
1061   F.setDoesNotRecurse();
1062   ++NumNoRecurse;
1063   return true;
1064 }
1065 
1066 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1067   // Try and identify functions that do not recurse.
1068 
1069   // If the SCC contains multiple nodes we know for sure there is recursion.
1070   if (SCCNodes.size() != 1)
1071     return false;
1072 
1073   Function *F = *SCCNodes.begin();
1074   if (!F || F->isDeclaration() || F->doesNotRecurse())
1075     return false;
1076 
1077   // If all of the calls in F are identifiable and are to norecurse functions, F
1078   // is norecurse. This check also detects self-recursion as F is not currently
1079   // marked norecurse, so any called from F to F will not be marked norecurse.
1080   for (Instruction &I : instructions(*F))
1081     if (auto CS = CallSite(&I)) {
1082       Function *Callee = CS.getCalledFunction();
1083       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1084         // Function calls a potentially recursive function.
1085         return false;
1086     }
1087 
1088   // Every call was to a non-recursive function other than this function, and
1089   // we have no indirect recursion as the SCC size is one. This function cannot
1090   // recurse.
1091   return setDoesNotRecurse(*F);
1092 }
1093 
1094 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1095                                                   CGSCCAnalysisManager &AM,
1096                                                   LazyCallGraph &CG,
1097                                                   CGSCCUpdateResult &) {
1098   FunctionAnalysisManager &FAM =
1099       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1100 
1101   // We pass a lambda into functions to wire them up to the analysis manager
1102   // for getting function analyses.
1103   auto AARGetter = [&](Function &F) -> AAResults & {
1104     return FAM.getResult<AAManager>(F);
1105   };
1106 
1107   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1108   // any external or opt-none nodes that will prevent us from optimizing any
1109   // part of the SCC.
1110   SCCNodeSet SCCNodes;
1111   bool HasUnknownCall = false;
1112   for (LazyCallGraph::Node &N : C) {
1113     Function &F = N.getFunction();
1114     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1115       // Treat any function we're trying not to optimize as if it were an
1116       // indirect call and omit it from the node set used below.
1117       HasUnknownCall = true;
1118       continue;
1119     }
1120     // Track whether any functions in this SCC have an unknown call edge.
1121     // Note: if this is ever a performance hit, we can common it with
1122     // subsequent routines which also do scans over the instructions of the
1123     // function.
1124     if (!HasUnknownCall)
1125       for (Instruction &I : instructions(F))
1126         if (auto CS = CallSite(&I))
1127           if (!CS.getCalledFunction()) {
1128             HasUnknownCall = true;
1129             break;
1130           }
1131 
1132     SCCNodes.insert(&F);
1133   }
1134 
1135   bool Changed = false;
1136   Changed |= addArgumentReturnedAttrs(SCCNodes);
1137   Changed |= addReadAttrs(SCCNodes, AARGetter);
1138   Changed |= addArgumentAttrs(SCCNodes);
1139 
1140   // If we have no external nodes participating in the SCC, we can deduce some
1141   // more precise attributes as well.
1142   if (!HasUnknownCall) {
1143     Changed |= addNoAliasAttrs(SCCNodes);
1144     Changed |= addNonNullAttrs(SCCNodes);
1145     Changed |= removeConvergentAttrs(SCCNodes);
1146     Changed |= addNoRecurseAttrs(SCCNodes);
1147   }
1148 
1149   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1150 }
1151 
1152 namespace {
1153 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1154   static char ID; // Pass identification, replacement for typeid
1155   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1156     initializePostOrderFunctionAttrsLegacyPassPass(
1157         *PassRegistry::getPassRegistry());
1158   }
1159 
1160   bool runOnSCC(CallGraphSCC &SCC) override;
1161 
1162   void getAnalysisUsage(AnalysisUsage &AU) const override {
1163     AU.setPreservesCFG();
1164     AU.addRequired<AssumptionCacheTracker>();
1165     getAAResultsAnalysisUsage(AU);
1166     CallGraphSCCPass::getAnalysisUsage(AU);
1167   }
1168 };
1169 }
1170 
1171 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1172 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1173                       "Deduce function attributes", false, false)
1174 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1175 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1176 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1177                     "Deduce function attributes", false, false)
1178 
1179 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1180   return new PostOrderFunctionAttrsLegacyPass();
1181 }
1182 
1183 template <typename AARGetterT>
1184 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1185   bool Changed = false;
1186 
1187   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1188   // whether a given CallGraphNode is in this SCC. Also track whether there are
1189   // any external or opt-none nodes that will prevent us from optimizing any
1190   // part of the SCC.
1191   SCCNodeSet SCCNodes;
1192   bool ExternalNode = false;
1193   for (CallGraphNode *I : SCC) {
1194     Function *F = I->getFunction();
1195     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1196       // External node or function we're trying not to optimize - we both avoid
1197       // transform them and avoid leveraging information they provide.
1198       ExternalNode = true;
1199       continue;
1200     }
1201 
1202     SCCNodes.insert(F);
1203   }
1204 
1205   Changed |= addArgumentReturnedAttrs(SCCNodes);
1206   Changed |= addReadAttrs(SCCNodes, AARGetter);
1207   Changed |= addArgumentAttrs(SCCNodes);
1208 
1209   // If we have no external nodes participating in the SCC, we can deduce some
1210   // more precise attributes as well.
1211   if (!ExternalNode) {
1212     Changed |= addNoAliasAttrs(SCCNodes);
1213     Changed |= addNonNullAttrs(SCCNodes);
1214     Changed |= removeConvergentAttrs(SCCNodes);
1215     Changed |= addNoRecurseAttrs(SCCNodes);
1216   }
1217 
1218   return Changed;
1219 }
1220 
1221 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1222   if (skipSCC(SCC))
1223     return false;
1224   return runImpl(SCC, LegacyAARGetter(*this));
1225 }
1226 
1227 namespace {
1228 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1229   static char ID; // Pass identification, replacement for typeid
1230   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1231     initializeReversePostOrderFunctionAttrsLegacyPassPass(
1232         *PassRegistry::getPassRegistry());
1233   }
1234 
1235   bool runOnModule(Module &M) override;
1236 
1237   void getAnalysisUsage(AnalysisUsage &AU) const override {
1238     AU.setPreservesCFG();
1239     AU.addRequired<CallGraphWrapperPass>();
1240     AU.addPreserved<CallGraphWrapperPass>();
1241   }
1242 };
1243 }
1244 
1245 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1246 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1247                       "Deduce function attributes in RPO", false, false)
1248 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1249 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1250                     "Deduce function attributes in RPO", false, false)
1251 
1252 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1253   return new ReversePostOrderFunctionAttrsLegacyPass();
1254 }
1255 
1256 static bool addNoRecurseAttrsTopDown(Function &F) {
1257   // We check the preconditions for the function prior to calling this to avoid
1258   // the cost of building up a reversible post-order list. We assert them here
1259   // to make sure none of the invariants this relies on were violated.
1260   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1261   assert(!F.doesNotRecurse() &&
1262          "This function has already been deduced as norecurs!");
1263   assert(F.hasInternalLinkage() &&
1264          "Can only do top-down deduction for internal linkage functions!");
1265 
1266   // If F is internal and all of its uses are calls from a non-recursive
1267   // functions, then none of its calls could in fact recurse without going
1268   // through a function marked norecurse, and so we can mark this function too
1269   // as norecurse. Note that the uses must actually be calls -- otherwise
1270   // a pointer to this function could be returned from a norecurse function but
1271   // this function could be recursively (indirectly) called. Note that this
1272   // also detects if F is directly recursive as F is not yet marked as
1273   // a norecurse function.
1274   for (auto *U : F.users()) {
1275     auto *I = dyn_cast<Instruction>(U);
1276     if (!I)
1277       return false;
1278     CallSite CS(I);
1279     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1280       return false;
1281   }
1282   return setDoesNotRecurse(F);
1283 }
1284 
1285 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1286   // We only have a post-order SCC traversal (because SCCs are inherently
1287   // discovered in post-order), so we accumulate them in a vector and then walk
1288   // it in reverse. This is simpler than using the RPO iterator infrastructure
1289   // because we need to combine SCC detection and the PO walk of the call
1290   // graph. We can also cheat egregiously because we're primarily interested in
1291   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1292   // with multiple functions in them will clearly be recursive.
1293   SmallVector<Function *, 16> Worklist;
1294   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1295     if (I->size() != 1)
1296       continue;
1297 
1298     Function *F = I->front()->getFunction();
1299     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1300         F->hasInternalLinkage())
1301       Worklist.push_back(F);
1302   }
1303 
1304   bool Changed = false;
1305   for (auto *F : reverse(Worklist))
1306     Changed |= addNoRecurseAttrsTopDown(*F);
1307 
1308   return Changed;
1309 }
1310 
1311 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1312   if (skipModule(M))
1313     return false;
1314 
1315   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1316 
1317   return deduceFunctionAttributeInRPO(M, CG);
1318 }
1319 
1320 PreservedAnalyses
1321 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1322   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1323 
1324   if (!deduceFunctionAttributeInRPO(M, CG))
1325     return PreservedAnalyses::all();
1326 
1327   PreservedAnalyses PA;
1328   PA.preserve<CallGraphAnalysis>();
1329   return PA;
1330 }
1331