1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReturned, "Number of arguments marked returned");
46 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
47 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
48 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
49 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
50 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
51 
52 namespace {
53 typedef SmallSetVector<Function *, 8> SCCNodeSet;
54 }
55 
56 namespace {
57 /// The three kinds of memory access relevant to 'readonly' and
58 /// 'readnone' attributes.
59 enum MemoryAccessKind {
60   MAK_ReadNone = 0,
61   MAK_ReadOnly = 1,
62   MAK_MayWrite = 2
63 };
64 }
65 
66 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
67                                                   const SCCNodeSet &SCCNodes) {
68   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
69   if (MRB == FMRB_DoesNotAccessMemory)
70     // Already perfect!
71     return MAK_ReadNone;
72 
73   // Non-exact function definitions may not be selected at link time, and an
74   // alternative version that writes to memory may be selected.  See the comment
75   // on GlobalValue::isDefinitionExact for more details.
76   if (!F.hasExactDefinition()) {
77     if (AliasAnalysis::onlyReadsMemory(MRB))
78       return MAK_ReadOnly;
79 
80     // Conservatively assume it writes to memory.
81     return MAK_MayWrite;
82   }
83 
84   // Scan the function body for instructions that may read or write memory.
85   bool ReadsMemory = false;
86   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
87     Instruction *I = &*II;
88 
89     // Some instructions can be ignored even if they read or write memory.
90     // Detect these now, skipping to the next instruction if one is found.
91     CallSite CS(cast<Value>(I));
92     if (CS) {
93       // Ignore calls to functions in the same SCC, as long as the call sites
94       // don't have operand bundles.  Calls with operand bundles are allowed to
95       // have memory effects not described by the memory effects of the call
96       // target.
97       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
98           SCCNodes.count(CS.getCalledFunction()))
99         continue;
100       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
101 
102       // If the call doesn't access memory, we're done.
103       if (!(MRB & MRI_ModRef))
104         continue;
105 
106       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
107         // The call could access any memory. If that includes writes, give up.
108         if (MRB & MRI_Mod)
109           return MAK_MayWrite;
110         // If it reads, note it.
111         if (MRB & MRI_Ref)
112           ReadsMemory = true;
113         continue;
114       }
115 
116       // Check whether all pointer arguments point to local memory, and
117       // ignore calls that only access local memory.
118       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
119            CI != CE; ++CI) {
120         Value *Arg = *CI;
121         if (!Arg->getType()->isPtrOrPtrVectorTy())
122           continue;
123 
124         AAMDNodes AAInfo;
125         I->getAAMetadata(AAInfo);
126         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
127 
128         // Skip accesses to local or constant memory as they don't impact the
129         // externally visible mod/ref behavior.
130         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
131           continue;
132 
133         if (MRB & MRI_Mod)
134           // Writes non-local memory.  Give up.
135           return MAK_MayWrite;
136         if (MRB & MRI_Ref)
137           // Ok, it reads non-local memory.
138           ReadsMemory = true;
139       }
140       continue;
141     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
142       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
143       if (!LI->isVolatile()) {
144         MemoryLocation Loc = MemoryLocation::get(LI);
145         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
146           continue;
147       }
148     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
149       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
150       if (!SI->isVolatile()) {
151         MemoryLocation Loc = MemoryLocation::get(SI);
152         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
153           continue;
154       }
155     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
156       // Ignore vaargs on local memory.
157       MemoryLocation Loc = MemoryLocation::get(VI);
158       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
159         continue;
160     }
161 
162     // Any remaining instructions need to be taken seriously!  Check if they
163     // read or write memory.
164     if (I->mayWriteToMemory())
165       // Writes memory.  Just give up.
166       return MAK_MayWrite;
167 
168     // If this instruction may read memory, remember that.
169     ReadsMemory |= I->mayReadFromMemory();
170   }
171 
172   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
173 }
174 
175 /// Deduce readonly/readnone attributes for the SCC.
176 template <typename AARGetterT>
177 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
178   // Check if any of the functions in the SCC read or write memory.  If they
179   // write memory then they can't be marked readnone or readonly.
180   bool ReadsMemory = false;
181   for (Function *F : SCCNodes) {
182     // Call the callable parameter to look up AA results for this function.
183     AAResults &AAR = AARGetter(*F);
184 
185     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
186     case MAK_MayWrite:
187       return false;
188     case MAK_ReadOnly:
189       ReadsMemory = true;
190       break;
191     case MAK_ReadNone:
192       // Nothing to do!
193       break;
194     }
195   }
196 
197   // Success!  Functions in this SCC do not access memory, or only read memory.
198   // Give them the appropriate attribute.
199   bool MadeChange = false;
200   for (Function *F : SCCNodes) {
201     if (F->doesNotAccessMemory())
202       // Already perfect!
203       continue;
204 
205     if (F->onlyReadsMemory() && ReadsMemory)
206       // No change.
207       continue;
208 
209     MadeChange = true;
210 
211     // Clear out any existing attributes.
212     AttrBuilder B;
213     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
214     F->removeAttributes(
215         AttributeSet::FunctionIndex,
216         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
217 
218     // Add in the new attribute.
219     F->addAttribute(AttributeSet::FunctionIndex,
220                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
221 
222     if (ReadsMemory)
223       ++NumReadOnly;
224     else
225       ++NumReadNone;
226   }
227 
228   return MadeChange;
229 }
230 
231 namespace {
232 /// For a given pointer Argument, this retains a list of Arguments of functions
233 /// in the same SCC that the pointer data flows into. We use this to build an
234 /// SCC of the arguments.
235 struct ArgumentGraphNode {
236   Argument *Definition;
237   SmallVector<ArgumentGraphNode *, 4> Uses;
238 };
239 
240 class ArgumentGraph {
241   // We store pointers to ArgumentGraphNode objects, so it's important that
242   // that they not move around upon insert.
243   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
244 
245   ArgumentMapTy ArgumentMap;
246 
247   // There is no root node for the argument graph, in fact:
248   //   void f(int *x, int *y) { if (...) f(x, y); }
249   // is an example where the graph is disconnected. The SCCIterator requires a
250   // single entry point, so we maintain a fake ("synthetic") root node that
251   // uses every node. Because the graph is directed and nothing points into
252   // the root, it will not participate in any SCCs (except for its own).
253   ArgumentGraphNode SyntheticRoot;
254 
255 public:
256   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
257 
258   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
259 
260   iterator begin() { return SyntheticRoot.Uses.begin(); }
261   iterator end() { return SyntheticRoot.Uses.end(); }
262   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
263 
264   ArgumentGraphNode *operator[](Argument *A) {
265     ArgumentGraphNode &Node = ArgumentMap[A];
266     Node.Definition = A;
267     SyntheticRoot.Uses.push_back(&Node);
268     return &Node;
269   }
270 };
271 
272 /// This tracker checks whether callees are in the SCC, and if so it does not
273 /// consider that a capture, instead adding it to the "Uses" list and
274 /// continuing with the analysis.
275 struct ArgumentUsesTracker : public CaptureTracker {
276   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
277       : Captured(false), SCCNodes(SCCNodes) {}
278 
279   void tooManyUses() override { Captured = true; }
280 
281   bool captured(const Use *U) override {
282     CallSite CS(U->getUser());
283     if (!CS.getInstruction()) {
284       Captured = true;
285       return true;
286     }
287 
288     Function *F = CS.getCalledFunction();
289     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
290       Captured = true;
291       return true;
292     }
293 
294     // Note: the callee and the two successor blocks *follow* the argument
295     // operands.  This means there is no need to adjust UseIndex to account for
296     // these.
297 
298     unsigned UseIndex =
299         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
300 
301     assert(UseIndex < CS.data_operands_size() &&
302            "Indirect function calls should have been filtered above!");
303 
304     if (UseIndex >= CS.getNumArgOperands()) {
305       // Data operand, but not a argument operand -- must be a bundle operand
306       assert(CS.hasOperandBundles() && "Must be!");
307 
308       // CaptureTracking told us that we're being captured by an operand bundle
309       // use.  In this case it does not matter if the callee is within our SCC
310       // or not -- we've been captured in some unknown way, and we have to be
311       // conservative.
312       Captured = true;
313       return true;
314     }
315 
316     if (UseIndex >= F->arg_size()) {
317       assert(F->isVarArg() && "More params than args in non-varargs call");
318       Captured = true;
319       return true;
320     }
321 
322     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
323     return false;
324   }
325 
326   bool Captured; // True only if certainly captured (used outside our SCC).
327   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
328 
329   const SCCNodeSet &SCCNodes;
330 };
331 }
332 
333 namespace llvm {
334 template <> struct GraphTraits<ArgumentGraphNode *> {
335   typedef ArgumentGraphNode *NodeRef;
336   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
337 
338   static NodeRef getEntryNode(NodeRef A) { return A; }
339   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
340   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
341 };
342 template <>
343 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
344   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
345   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
346     return AG->begin();
347   }
348   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
349 };
350 }
351 
352 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
353 static Attribute::AttrKind
354 determinePointerReadAttrs(Argument *A,
355                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
356 
357   SmallVector<Use *, 32> Worklist;
358   SmallSet<Use *, 32> Visited;
359 
360   // inalloca arguments are always clobbered by the call.
361   if (A->hasInAllocaAttr())
362     return Attribute::None;
363 
364   bool IsRead = false;
365   // We don't need to track IsWritten. If A is written to, return immediately.
366 
367   for (Use &U : A->uses()) {
368     Visited.insert(&U);
369     Worklist.push_back(&U);
370   }
371 
372   while (!Worklist.empty()) {
373     Use *U = Worklist.pop_back_val();
374     Instruction *I = cast<Instruction>(U->getUser());
375 
376     switch (I->getOpcode()) {
377     case Instruction::BitCast:
378     case Instruction::GetElementPtr:
379     case Instruction::PHI:
380     case Instruction::Select:
381     case Instruction::AddrSpaceCast:
382       // The original value is not read/written via this if the new value isn't.
383       for (Use &UU : I->uses())
384         if (Visited.insert(&UU).second)
385           Worklist.push_back(&UU);
386       break;
387 
388     case Instruction::Call:
389     case Instruction::Invoke: {
390       bool Captures = true;
391 
392       if (I->getType()->isVoidTy())
393         Captures = false;
394 
395       auto AddUsersToWorklistIfCapturing = [&] {
396         if (Captures)
397           for (Use &UU : I->uses())
398             if (Visited.insert(&UU).second)
399               Worklist.push_back(&UU);
400       };
401 
402       CallSite CS(I);
403       if (CS.doesNotAccessMemory()) {
404         AddUsersToWorklistIfCapturing();
405         continue;
406       }
407 
408       Function *F = CS.getCalledFunction();
409       if (!F) {
410         if (CS.onlyReadsMemory()) {
411           IsRead = true;
412           AddUsersToWorklistIfCapturing();
413           continue;
414         }
415         return Attribute::None;
416       }
417 
418       // Note: the callee and the two successor blocks *follow* the argument
419       // operands.  This means there is no need to adjust UseIndex to account
420       // for these.
421 
422       unsigned UseIndex = std::distance(CS.arg_begin(), U);
423 
424       // U cannot be the callee operand use: since we're exploring the
425       // transitive uses of an Argument, having such a use be a callee would
426       // imply the CallSite is an indirect call or invoke; and we'd take the
427       // early exit above.
428       assert(UseIndex < CS.data_operands_size() &&
429              "Data operand use expected!");
430 
431       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
432 
433       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
434         assert(F->isVarArg() && "More params than args in non-varargs call");
435         return Attribute::None;
436       }
437 
438       Captures &= !CS.doesNotCapture(UseIndex);
439 
440       // Since the optimizer (by design) cannot see the data flow corresponding
441       // to a operand bundle use, these cannot participate in the optimistic SCC
442       // analysis.  Instead, we model the operand bundle uses as arguments in
443       // call to a function external to the SCC.
444       if (IsOperandBundleUse ||
445           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
446 
447         // The accessors used on CallSite here do the right thing for calls and
448         // invokes with operand bundles.
449 
450         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
451           return Attribute::None;
452         if (!CS.doesNotAccessMemory(UseIndex))
453           IsRead = true;
454       }
455 
456       AddUsersToWorklistIfCapturing();
457       break;
458     }
459 
460     case Instruction::Load:
461       // A volatile load has side effects beyond what readonly can be relied
462       // upon.
463       if (cast<LoadInst>(I)->isVolatile())
464         return Attribute::None;
465 
466       IsRead = true;
467       break;
468 
469     case Instruction::ICmp:
470     case Instruction::Ret:
471       break;
472 
473     default:
474       return Attribute::None;
475     }
476   }
477 
478   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
479 }
480 
481 /// Deduce returned attributes for the SCC.
482 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
483   bool Changed = false;
484 
485   AttrBuilder B;
486   B.addAttribute(Attribute::Returned);
487 
488   // Check each function in turn, determining if an argument is always returned.
489   for (Function *F : SCCNodes) {
490     // We can infer and propagate function attributes only when we know that the
491     // definition we'll get at link time is *exactly* the definition we see now.
492     // For more details, see GlobalValue::mayBeDerefined.
493     if (!F->hasExactDefinition())
494       continue;
495 
496     if (F->getReturnType()->isVoidTy())
497       continue;
498 
499     // There is nothing to do if an argument is already marked as 'returned'.
500     if (any_of(F->args(),
501                [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
502       continue;
503 
504     auto FindRetArg = [&]() -> Value * {
505       Value *RetArg = nullptr;
506       for (BasicBlock &BB : *F)
507         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
508           // Note that stripPointerCasts should look through functions with
509           // returned arguments.
510           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
511           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
512             return nullptr;
513 
514           if (!RetArg)
515             RetArg = RetVal;
516           else if (RetArg != RetVal)
517             return nullptr;
518         }
519 
520       return RetArg;
521     };
522 
523     if (Value *RetArg = FindRetArg()) {
524       auto *A = cast<Argument>(RetArg);
525       A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
526       ++NumReturned;
527       Changed = true;
528     }
529   }
530 
531   return Changed;
532 }
533 
534 /// Deduce nocapture attributes for the SCC.
535 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
536   bool Changed = false;
537 
538   ArgumentGraph AG;
539 
540   AttrBuilder B;
541   B.addAttribute(Attribute::NoCapture);
542 
543   // Check each function in turn, determining which pointer arguments are not
544   // captured.
545   for (Function *F : SCCNodes) {
546     // We can infer and propagate function attributes only when we know that the
547     // definition we'll get at link time is *exactly* the definition we see now.
548     // For more details, see GlobalValue::mayBeDerefined.
549     if (!F->hasExactDefinition())
550       continue;
551 
552     // Functions that are readonly (or readnone) and nounwind and don't return
553     // a value can't capture arguments. Don't analyze them.
554     if (F->onlyReadsMemory() && F->doesNotThrow() &&
555         F->getReturnType()->isVoidTy()) {
556       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
557            ++A) {
558         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
559           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
560           ++NumNoCapture;
561           Changed = true;
562         }
563       }
564       continue;
565     }
566 
567     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
568          ++A) {
569       if (!A->getType()->isPointerTy())
570         continue;
571       bool HasNonLocalUses = false;
572       if (!A->hasNoCaptureAttr()) {
573         ArgumentUsesTracker Tracker(SCCNodes);
574         PointerMayBeCaptured(&*A, &Tracker);
575         if (!Tracker.Captured) {
576           if (Tracker.Uses.empty()) {
577             // If it's trivially not captured, mark it nocapture now.
578             A->addAttr(
579                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
580             ++NumNoCapture;
581             Changed = true;
582           } else {
583             // If it's not trivially captured and not trivially not captured,
584             // then it must be calling into another function in our SCC. Save
585             // its particulars for Argument-SCC analysis later.
586             ArgumentGraphNode *Node = AG[&*A];
587             for (Argument *Use : Tracker.Uses) {
588               Node->Uses.push_back(AG[Use]);
589               if (Use != &*A)
590                 HasNonLocalUses = true;
591             }
592           }
593         }
594         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
595       }
596       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
597         // Can we determine that it's readonly/readnone without doing an SCC?
598         // Note that we don't allow any calls at all here, or else our result
599         // will be dependent on the iteration order through the functions in the
600         // SCC.
601         SmallPtrSet<Argument *, 8> Self;
602         Self.insert(&*A);
603         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
604         if (R != Attribute::None) {
605           AttrBuilder B;
606           B.addAttribute(R);
607           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
608           Changed = true;
609           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
610         }
611       }
612     }
613   }
614 
615   // The graph we've collected is partial because we stopped scanning for
616   // argument uses once we solved the argument trivially. These partial nodes
617   // show up as ArgumentGraphNode objects with an empty Uses list, and for
618   // these nodes the final decision about whether they capture has already been
619   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
620   // captures.
621 
622   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
623     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
624     if (ArgumentSCC.size() == 1) {
625       if (!ArgumentSCC[0]->Definition)
626         continue; // synthetic root node
627 
628       // eg. "void f(int* x) { if (...) f(x); }"
629       if (ArgumentSCC[0]->Uses.size() == 1 &&
630           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
631         Argument *A = ArgumentSCC[0]->Definition;
632         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
633         ++NumNoCapture;
634         Changed = true;
635       }
636       continue;
637     }
638 
639     bool SCCCaptured = false;
640     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
641          I != E && !SCCCaptured; ++I) {
642       ArgumentGraphNode *Node = *I;
643       if (Node->Uses.empty()) {
644         if (!Node->Definition->hasNoCaptureAttr())
645           SCCCaptured = true;
646       }
647     }
648     if (SCCCaptured)
649       continue;
650 
651     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
652     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
653     // quickly looking up whether a given Argument is in this ArgumentSCC.
654     for (ArgumentGraphNode *I : ArgumentSCC) {
655       ArgumentSCCNodes.insert(I->Definition);
656     }
657 
658     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
659          I != E && !SCCCaptured; ++I) {
660       ArgumentGraphNode *N = *I;
661       for (ArgumentGraphNode *Use : N->Uses) {
662         Argument *A = Use->Definition;
663         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
664           continue;
665         SCCCaptured = true;
666         break;
667       }
668     }
669     if (SCCCaptured)
670       continue;
671 
672     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
673       Argument *A = ArgumentSCC[i]->Definition;
674       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
675       ++NumNoCapture;
676       Changed = true;
677     }
678 
679     // We also want to compute readonly/readnone. With a small number of false
680     // negatives, we can assume that any pointer which is captured isn't going
681     // to be provably readonly or readnone, since by definition we can't
682     // analyze all uses of a captured pointer.
683     //
684     // The false negatives happen when the pointer is captured by a function
685     // that promises readonly/readnone behaviour on the pointer, then the
686     // pointer's lifetime ends before anything that writes to arbitrary memory.
687     // Also, a readonly/readnone pointer may be returned, but returning a
688     // pointer is capturing it.
689 
690     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
691     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
692       Argument *A = ArgumentSCC[i]->Definition;
693       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
694       if (K == Attribute::ReadNone)
695         continue;
696       if (K == Attribute::ReadOnly) {
697         ReadAttr = Attribute::ReadOnly;
698         continue;
699       }
700       ReadAttr = K;
701       break;
702     }
703 
704     if (ReadAttr != Attribute::None) {
705       AttrBuilder B, R;
706       B.addAttribute(ReadAttr);
707       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
708       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
709         Argument *A = ArgumentSCC[i]->Definition;
710         // Clear out existing readonly/readnone attributes
711         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
712         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
713         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
714         Changed = true;
715       }
716     }
717   }
718 
719   return Changed;
720 }
721 
722 /// Tests whether a function is "malloc-like".
723 ///
724 /// A function is "malloc-like" if it returns either null or a pointer that
725 /// doesn't alias any other pointer visible to the caller.
726 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
727   SmallSetVector<Value *, 8> FlowsToReturn;
728   for (BasicBlock &BB : *F)
729     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
730       FlowsToReturn.insert(Ret->getReturnValue());
731 
732   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
733     Value *RetVal = FlowsToReturn[i];
734 
735     if (Constant *C = dyn_cast<Constant>(RetVal)) {
736       if (!C->isNullValue() && !isa<UndefValue>(C))
737         return false;
738 
739       continue;
740     }
741 
742     if (isa<Argument>(RetVal))
743       return false;
744 
745     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
746       switch (RVI->getOpcode()) {
747       // Extend the analysis by looking upwards.
748       case Instruction::BitCast:
749       case Instruction::GetElementPtr:
750       case Instruction::AddrSpaceCast:
751         FlowsToReturn.insert(RVI->getOperand(0));
752         continue;
753       case Instruction::Select: {
754         SelectInst *SI = cast<SelectInst>(RVI);
755         FlowsToReturn.insert(SI->getTrueValue());
756         FlowsToReturn.insert(SI->getFalseValue());
757         continue;
758       }
759       case Instruction::PHI: {
760         PHINode *PN = cast<PHINode>(RVI);
761         for (Value *IncValue : PN->incoming_values())
762           FlowsToReturn.insert(IncValue);
763         continue;
764       }
765 
766       // Check whether the pointer came from an allocation.
767       case Instruction::Alloca:
768         break;
769       case Instruction::Call:
770       case Instruction::Invoke: {
771         CallSite CS(RVI);
772         if (CS.paramHasAttr(0, Attribute::NoAlias))
773           break;
774         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
775           break;
776         LLVM_FALLTHROUGH;
777       }
778       default:
779         return false; // Did not come from an allocation.
780       }
781 
782     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
783       return false;
784   }
785 
786   return true;
787 }
788 
789 /// Deduce noalias attributes for the SCC.
790 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
791   // Check each function in turn, determining which functions return noalias
792   // pointers.
793   for (Function *F : SCCNodes) {
794     // Already noalias.
795     if (F->doesNotAlias(0))
796       continue;
797 
798     // We can infer and propagate function attributes only when we know that the
799     // definition we'll get at link time is *exactly* the definition we see now.
800     // For more details, see GlobalValue::mayBeDerefined.
801     if (!F->hasExactDefinition())
802       return false;
803 
804     // We annotate noalias return values, which are only applicable to
805     // pointer types.
806     if (!F->getReturnType()->isPointerTy())
807       continue;
808 
809     if (!isFunctionMallocLike(F, SCCNodes))
810       return false;
811   }
812 
813   bool MadeChange = false;
814   for (Function *F : SCCNodes) {
815     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
816       continue;
817 
818     F->setDoesNotAlias(0);
819     ++NumNoAlias;
820     MadeChange = true;
821   }
822 
823   return MadeChange;
824 }
825 
826 /// Tests whether this function is known to not return null.
827 ///
828 /// Requires that the function returns a pointer.
829 ///
830 /// Returns true if it believes the function will not return a null, and sets
831 /// \p Speculative based on whether the returned conclusion is a speculative
832 /// conclusion due to SCC calls.
833 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
834                             bool &Speculative) {
835   assert(F->getReturnType()->isPointerTy() &&
836          "nonnull only meaningful on pointer types");
837   Speculative = false;
838 
839   SmallSetVector<Value *, 8> FlowsToReturn;
840   for (BasicBlock &BB : *F)
841     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
842       FlowsToReturn.insert(Ret->getReturnValue());
843 
844   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
845     Value *RetVal = FlowsToReturn[i];
846 
847     // If this value is locally known to be non-null, we're good
848     if (isKnownNonNull(RetVal))
849       continue;
850 
851     // Otherwise, we need to look upwards since we can't make any local
852     // conclusions.
853     Instruction *RVI = dyn_cast<Instruction>(RetVal);
854     if (!RVI)
855       return false;
856     switch (RVI->getOpcode()) {
857     // Extend the analysis by looking upwards.
858     case Instruction::BitCast:
859     case Instruction::GetElementPtr:
860     case Instruction::AddrSpaceCast:
861       FlowsToReturn.insert(RVI->getOperand(0));
862       continue;
863     case Instruction::Select: {
864       SelectInst *SI = cast<SelectInst>(RVI);
865       FlowsToReturn.insert(SI->getTrueValue());
866       FlowsToReturn.insert(SI->getFalseValue());
867       continue;
868     }
869     case Instruction::PHI: {
870       PHINode *PN = cast<PHINode>(RVI);
871       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
872         FlowsToReturn.insert(PN->getIncomingValue(i));
873       continue;
874     }
875     case Instruction::Call:
876     case Instruction::Invoke: {
877       CallSite CS(RVI);
878       Function *Callee = CS.getCalledFunction();
879       // A call to a node within the SCC is assumed to return null until
880       // proven otherwise
881       if (Callee && SCCNodes.count(Callee)) {
882         Speculative = true;
883         continue;
884       }
885       return false;
886     }
887     default:
888       return false; // Unknown source, may be null
889     };
890     llvm_unreachable("should have either continued or returned");
891   }
892 
893   return true;
894 }
895 
896 /// Deduce nonnull attributes for the SCC.
897 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
898   // Speculative that all functions in the SCC return only nonnull
899   // pointers.  We may refute this as we analyze functions.
900   bool SCCReturnsNonNull = true;
901 
902   bool MadeChange = false;
903 
904   // Check each function in turn, determining which functions return nonnull
905   // pointers.
906   for (Function *F : SCCNodes) {
907     // Already nonnull.
908     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
909                                         Attribute::NonNull))
910       continue;
911 
912     // We can infer and propagate function attributes only when we know that the
913     // definition we'll get at link time is *exactly* the definition we see now.
914     // For more details, see GlobalValue::mayBeDerefined.
915     if (!F->hasExactDefinition())
916       return false;
917 
918     // We annotate nonnull return values, which are only applicable to
919     // pointer types.
920     if (!F->getReturnType()->isPointerTy())
921       continue;
922 
923     bool Speculative = false;
924     if (isReturnNonNull(F, SCCNodes, Speculative)) {
925       if (!Speculative) {
926         // Mark the function eagerly since we may discover a function
927         // which prevents us from speculating about the entire SCC
928         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
929         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
930         ++NumNonNullReturn;
931         MadeChange = true;
932       }
933       continue;
934     }
935     // At least one function returns something which could be null, can't
936     // speculate any more.
937     SCCReturnsNonNull = false;
938   }
939 
940   if (SCCReturnsNonNull) {
941     for (Function *F : SCCNodes) {
942       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
943                                           Attribute::NonNull) ||
944           !F->getReturnType()->isPointerTy())
945         continue;
946 
947       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
948       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
949       ++NumNonNullReturn;
950       MadeChange = true;
951     }
952   }
953 
954   return MadeChange;
955 }
956 
957 /// Remove the convergent attribute from all functions in the SCC if every
958 /// callsite within the SCC is not convergent (except for calls to functions
959 /// within the SCC).  Returns true if changes were made.
960 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
961   // For every function in SCC, ensure that either
962   //  * it is not convergent, or
963   //  * we can remove its convergent attribute.
964   bool HasConvergentFn = false;
965   for (Function *F : SCCNodes) {
966     if (!F->isConvergent()) continue;
967     HasConvergentFn = true;
968 
969     // Can't remove convergent from function declarations.
970     if (F->isDeclaration()) return false;
971 
972     // Can't remove convergent if any of our functions has a convergent call to a
973     // function not in the SCC.
974     for (Instruction &I : instructions(*F)) {
975       CallSite CS(&I);
976       // Bail if CS is a convergent call to a function not in the SCC.
977       if (CS && CS.isConvergent() &&
978           SCCNodes.count(CS.getCalledFunction()) == 0)
979         return false;
980     }
981   }
982 
983   // If the SCC doesn't have any convergent functions, we have nothing to do.
984   if (!HasConvergentFn) return false;
985 
986   // If we got here, all of the calls the SCC makes to functions not in the SCC
987   // are non-convergent.  Therefore all of the SCC's functions can also be made
988   // non-convergent.  We'll remove the attr from the callsites in
989   // InstCombineCalls.
990   for (Function *F : SCCNodes) {
991     if (!F->isConvergent()) continue;
992 
993     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
994                  << "\n");
995     F->setNotConvergent();
996   }
997   return true;
998 }
999 
1000 static bool setDoesNotRecurse(Function &F) {
1001   if (F.doesNotRecurse())
1002     return false;
1003   F.setDoesNotRecurse();
1004   ++NumNoRecurse;
1005   return true;
1006 }
1007 
1008 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1009   // Try and identify functions that do not recurse.
1010 
1011   // If the SCC contains multiple nodes we know for sure there is recursion.
1012   if (SCCNodes.size() != 1)
1013     return false;
1014 
1015   Function *F = *SCCNodes.begin();
1016   if (!F || F->isDeclaration() || F->doesNotRecurse())
1017     return false;
1018 
1019   // If all of the calls in F are identifiable and are to norecurse functions, F
1020   // is norecurse. This check also detects self-recursion as F is not currently
1021   // marked norecurse, so any called from F to F will not be marked norecurse.
1022   for (Instruction &I : instructions(*F))
1023     if (auto CS = CallSite(&I)) {
1024       Function *Callee = CS.getCalledFunction();
1025       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1026         // Function calls a potentially recursive function.
1027         return false;
1028     }
1029 
1030   // Every call was to a non-recursive function other than this function, and
1031   // we have no indirect recursion as the SCC size is one. This function cannot
1032   // recurse.
1033   return setDoesNotRecurse(*F);
1034 }
1035 
1036 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1037                                                   CGSCCAnalysisManager &AM,
1038                                                   LazyCallGraph &CG,
1039                                                   CGSCCUpdateResult &) {
1040   FunctionAnalysisManager &FAM =
1041       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1042 
1043   // We pass a lambda into functions to wire them up to the analysis manager
1044   // for getting function analyses.
1045   auto AARGetter = [&](Function &F) -> AAResults & {
1046     return FAM.getResult<AAManager>(F);
1047   };
1048 
1049   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1050   // any external or opt-none nodes that will prevent us from optimizing any
1051   // part of the SCC.
1052   SCCNodeSet SCCNodes;
1053   bool HasUnknownCall = false;
1054   for (LazyCallGraph::Node &N : C) {
1055     Function &F = N.getFunction();
1056     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1057       // Treat any function we're trying not to optimize as if it were an
1058       // indirect call and omit it from the node set used below.
1059       HasUnknownCall = true;
1060       continue;
1061     }
1062     // Track whether any functions in this SCC have an unknown call edge.
1063     // Note: if this is ever a performance hit, we can common it with
1064     // subsequent routines which also do scans over the instructions of the
1065     // function.
1066     if (!HasUnknownCall)
1067       for (Instruction &I : instructions(F))
1068         if (auto CS = CallSite(&I))
1069           if (!CS.getCalledFunction()) {
1070             HasUnknownCall = true;
1071             break;
1072           }
1073 
1074     SCCNodes.insert(&F);
1075   }
1076 
1077   bool Changed = false;
1078   Changed |= addArgumentReturnedAttrs(SCCNodes);
1079   Changed |= addReadAttrs(SCCNodes, AARGetter);
1080   Changed |= addArgumentAttrs(SCCNodes);
1081 
1082   // If we have no external nodes participating in the SCC, we can deduce some
1083   // more precise attributes as well.
1084   if (!HasUnknownCall) {
1085     Changed |= addNoAliasAttrs(SCCNodes);
1086     Changed |= addNonNullAttrs(SCCNodes);
1087     Changed |= removeConvergentAttrs(SCCNodes);
1088     Changed |= addNoRecurseAttrs(SCCNodes);
1089   }
1090 
1091   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1092 }
1093 
1094 namespace {
1095 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1096   static char ID; // Pass identification, replacement for typeid
1097   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1098     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1099   }
1100 
1101   bool runOnSCC(CallGraphSCC &SCC) override;
1102 
1103   void getAnalysisUsage(AnalysisUsage &AU) const override {
1104     AU.setPreservesCFG();
1105     AU.addRequired<AssumptionCacheTracker>();
1106     getAAResultsAnalysisUsage(AU);
1107     CallGraphSCCPass::getAnalysisUsage(AU);
1108   }
1109 };
1110 }
1111 
1112 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1113 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1114                       "Deduce function attributes", false, false)
1115 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1116 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1117 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1118                     "Deduce function attributes", false, false)
1119 
1120 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1121 
1122 template <typename AARGetterT>
1123 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1124   bool Changed = false;
1125 
1126   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1127   // whether a given CallGraphNode is in this SCC. Also track whether there are
1128   // any external or opt-none nodes that will prevent us from optimizing any
1129   // part of the SCC.
1130   SCCNodeSet SCCNodes;
1131   bool ExternalNode = false;
1132   for (CallGraphNode *I : SCC) {
1133     Function *F = I->getFunction();
1134     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1135       // External node or function we're trying not to optimize - we both avoid
1136       // transform them and avoid leveraging information they provide.
1137       ExternalNode = true;
1138       continue;
1139     }
1140 
1141     SCCNodes.insert(F);
1142   }
1143 
1144   Changed |= addArgumentReturnedAttrs(SCCNodes);
1145   Changed |= addReadAttrs(SCCNodes, AARGetter);
1146   Changed |= addArgumentAttrs(SCCNodes);
1147 
1148   // If we have no external nodes participating in the SCC, we can deduce some
1149   // more precise attributes as well.
1150   if (!ExternalNode) {
1151     Changed |= addNoAliasAttrs(SCCNodes);
1152     Changed |= addNonNullAttrs(SCCNodes);
1153     Changed |= removeConvergentAttrs(SCCNodes);
1154     Changed |= addNoRecurseAttrs(SCCNodes);
1155   }
1156 
1157   return Changed;
1158 }
1159 
1160 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1161   if (skipSCC(SCC))
1162     return false;
1163 
1164   // We compute dedicated AA results for each function in the SCC as needed. We
1165   // use a lambda referencing external objects so that they live long enough to
1166   // be queried, but we re-use them each time.
1167   Optional<BasicAAResult> BAR;
1168   Optional<AAResults> AAR;
1169   auto AARGetter = [&](Function &F) -> AAResults & {
1170     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1171     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1172     return *AAR;
1173   };
1174 
1175   return runImpl(SCC, AARGetter);
1176 }
1177 
1178 namespace {
1179 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1180   static char ID; // Pass identification, replacement for typeid
1181   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1182     initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1183   }
1184 
1185   bool runOnModule(Module &M) override;
1186 
1187   void getAnalysisUsage(AnalysisUsage &AU) const override {
1188     AU.setPreservesCFG();
1189     AU.addRequired<CallGraphWrapperPass>();
1190     AU.addPreserved<CallGraphWrapperPass>();
1191   }
1192 };
1193 }
1194 
1195 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1196 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1197                       "Deduce function attributes in RPO", false, false)
1198 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1199 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1200                     "Deduce function attributes in RPO", false, false)
1201 
1202 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1203   return new ReversePostOrderFunctionAttrsLegacyPass();
1204 }
1205 
1206 static bool addNoRecurseAttrsTopDown(Function &F) {
1207   // We check the preconditions for the function prior to calling this to avoid
1208   // the cost of building up a reversible post-order list. We assert them here
1209   // to make sure none of the invariants this relies on were violated.
1210   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1211   assert(!F.doesNotRecurse() &&
1212          "This function has already been deduced as norecurs!");
1213   assert(F.hasInternalLinkage() &&
1214          "Can only do top-down deduction for internal linkage functions!");
1215 
1216   // If F is internal and all of its uses are calls from a non-recursive
1217   // functions, then none of its calls could in fact recurse without going
1218   // through a function marked norecurse, and so we can mark this function too
1219   // as norecurse. Note that the uses must actually be calls -- otherwise
1220   // a pointer to this function could be returned from a norecurse function but
1221   // this function could be recursively (indirectly) called. Note that this
1222   // also detects if F is directly recursive as F is not yet marked as
1223   // a norecurse function.
1224   for (auto *U : F.users()) {
1225     auto *I = dyn_cast<Instruction>(U);
1226     if (!I)
1227       return false;
1228     CallSite CS(I);
1229     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1230       return false;
1231   }
1232   return setDoesNotRecurse(F);
1233 }
1234 
1235 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1236   // We only have a post-order SCC traversal (because SCCs are inherently
1237   // discovered in post-order), so we accumulate them in a vector and then walk
1238   // it in reverse. This is simpler than using the RPO iterator infrastructure
1239   // because we need to combine SCC detection and the PO walk of the call
1240   // graph. We can also cheat egregiously because we're primarily interested in
1241   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1242   // with multiple functions in them will clearly be recursive.
1243   SmallVector<Function *, 16> Worklist;
1244   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1245     if (I->size() != 1)
1246       continue;
1247 
1248     Function *F = I->front()->getFunction();
1249     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1250         F->hasInternalLinkage())
1251       Worklist.push_back(F);
1252   }
1253 
1254   bool Changed = false;
1255   for (auto *F : reverse(Worklist))
1256     Changed |= addNoRecurseAttrsTopDown(*F);
1257 
1258   return Changed;
1259 }
1260 
1261 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1262   if (skipModule(M))
1263     return false;
1264 
1265   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1266 
1267   return deduceFunctionAttributeInRPO(M, CG);
1268 }
1269 
1270 PreservedAnalyses
1271 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1272   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1273 
1274   bool Changed = deduceFunctionAttributeInRPO(M, CG);
1275 
1276   // CallGraphAnalysis holds AssertingVH and must be invalidated eagerly so
1277   // that other passes don't delete stuff from under it.
1278   // FIXME: We need to invalidate this to avoid PR28400. Is there a better
1279   // solution?
1280   AM.invalidate<CallGraphAnalysis>(M);
1281 
1282   if (!Changed)
1283     return PreservedAnalyses::all();
1284   PreservedAnalyses PA;
1285   PA.preserve<CallGraphAnalysis>();
1286   return PA;
1287 }
1288