1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
46 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
47 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
48 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
49 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
50 
51 namespace {
52 typedef SmallSetVector<Function *, 8> SCCNodeSet;
53 }
54 
55 namespace {
56 /// The three kinds of memory access relevant to 'readonly' and
57 /// 'readnone' attributes.
58 enum MemoryAccessKind {
59   MAK_ReadNone = 0,
60   MAK_ReadOnly = 1,
61   MAK_MayWrite = 2
62 };
63 }
64 
65 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
66                                                   const SCCNodeSet &SCCNodes) {
67   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
68   if (MRB == FMRB_DoesNotAccessMemory)
69     // Already perfect!
70     return MAK_ReadNone;
71 
72   // Non-exact function definitions may not be selected at link time, and an
73   // alternative version that writes to memory may be selected.  See the comment
74   // on GlobalValue::isDefinitionExact for more details.
75   if (!F.hasExactDefinition()) {
76     if (AliasAnalysis::onlyReadsMemory(MRB))
77       return MAK_ReadOnly;
78 
79     // Conservatively assume it writes to memory.
80     return MAK_MayWrite;
81   }
82 
83   // Scan the function body for instructions that may read or write memory.
84   bool ReadsMemory = false;
85   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
86     Instruction *I = &*II;
87 
88     // Some instructions can be ignored even if they read or write memory.
89     // Detect these now, skipping to the next instruction if one is found.
90     CallSite CS(cast<Value>(I));
91     if (CS) {
92       // Ignore calls to functions in the same SCC, as long as the call sites
93       // don't have operand bundles.  Calls with operand bundles are allowed to
94       // have memory effects not described by the memory effects of the call
95       // target.
96       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
97           SCCNodes.count(CS.getCalledFunction()))
98         continue;
99       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
100 
101       // If the call doesn't access memory, we're done.
102       if (!(MRB & MRI_ModRef))
103         continue;
104 
105       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
106         // The call could access any memory. If that includes writes, give up.
107         if (MRB & MRI_Mod)
108           return MAK_MayWrite;
109         // If it reads, note it.
110         if (MRB & MRI_Ref)
111           ReadsMemory = true;
112         continue;
113       }
114 
115       // Check whether all pointer arguments point to local memory, and
116       // ignore calls that only access local memory.
117       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
118            CI != CE; ++CI) {
119         Value *Arg = *CI;
120         if (!Arg->getType()->isPtrOrPtrVectorTy())
121           continue;
122 
123         AAMDNodes AAInfo;
124         I->getAAMetadata(AAInfo);
125         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
126 
127         // Skip accesses to local or constant memory as they don't impact the
128         // externally visible mod/ref behavior.
129         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
130           continue;
131 
132         if (MRB & MRI_Mod)
133           // Writes non-local memory.  Give up.
134           return MAK_MayWrite;
135         if (MRB & MRI_Ref)
136           // Ok, it reads non-local memory.
137           ReadsMemory = true;
138       }
139       continue;
140     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
141       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
142       if (!LI->isVolatile()) {
143         MemoryLocation Loc = MemoryLocation::get(LI);
144         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
145           continue;
146       }
147     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
148       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
149       if (!SI->isVolatile()) {
150         MemoryLocation Loc = MemoryLocation::get(SI);
151         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
152           continue;
153       }
154     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
155       // Ignore vaargs on local memory.
156       MemoryLocation Loc = MemoryLocation::get(VI);
157       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
158         continue;
159     }
160 
161     // Any remaining instructions need to be taken seriously!  Check if they
162     // read or write memory.
163     if (I->mayWriteToMemory())
164       // Writes memory.  Just give up.
165       return MAK_MayWrite;
166 
167     // If this instruction may read memory, remember that.
168     ReadsMemory |= I->mayReadFromMemory();
169   }
170 
171   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
172 }
173 
174 /// Deduce readonly/readnone attributes for the SCC.
175 template <typename AARGetterT>
176 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
177   // Check if any of the functions in the SCC read or write memory.  If they
178   // write memory then they can't be marked readnone or readonly.
179   bool ReadsMemory = false;
180   for (Function *F : SCCNodes) {
181     // Call the callable parameter to look up AA results for this function.
182     AAResults &AAR = AARGetter(*F);
183 
184     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
185     case MAK_MayWrite:
186       return false;
187     case MAK_ReadOnly:
188       ReadsMemory = true;
189       break;
190     case MAK_ReadNone:
191       // Nothing to do!
192       break;
193     }
194   }
195 
196   // Success!  Functions in this SCC do not access memory, or only read memory.
197   // Give them the appropriate attribute.
198   bool MadeChange = false;
199   for (Function *F : SCCNodes) {
200     if (F->doesNotAccessMemory())
201       // Already perfect!
202       continue;
203 
204     if (F->onlyReadsMemory() && ReadsMemory)
205       // No change.
206       continue;
207 
208     MadeChange = true;
209 
210     // Clear out any existing attributes.
211     AttrBuilder B;
212     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
213     F->removeAttributes(
214         AttributeSet::FunctionIndex,
215         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
216 
217     // Add in the new attribute.
218     F->addAttribute(AttributeSet::FunctionIndex,
219                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
220 
221     if (ReadsMemory)
222       ++NumReadOnly;
223     else
224       ++NumReadNone;
225   }
226 
227   return MadeChange;
228 }
229 
230 namespace {
231 /// For a given pointer Argument, this retains a list of Arguments of functions
232 /// in the same SCC that the pointer data flows into. We use this to build an
233 /// SCC of the arguments.
234 struct ArgumentGraphNode {
235   Argument *Definition;
236   SmallVector<ArgumentGraphNode *, 4> Uses;
237 };
238 
239 class ArgumentGraph {
240   // We store pointers to ArgumentGraphNode objects, so it's important that
241   // that they not move around upon insert.
242   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
243 
244   ArgumentMapTy ArgumentMap;
245 
246   // There is no root node for the argument graph, in fact:
247   //   void f(int *x, int *y) { if (...) f(x, y); }
248   // is an example where the graph is disconnected. The SCCIterator requires a
249   // single entry point, so we maintain a fake ("synthetic") root node that
250   // uses every node. Because the graph is directed and nothing points into
251   // the root, it will not participate in any SCCs (except for its own).
252   ArgumentGraphNode SyntheticRoot;
253 
254 public:
255   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
256 
257   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
258 
259   iterator begin() { return SyntheticRoot.Uses.begin(); }
260   iterator end() { return SyntheticRoot.Uses.end(); }
261   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
262 
263   ArgumentGraphNode *operator[](Argument *A) {
264     ArgumentGraphNode &Node = ArgumentMap[A];
265     Node.Definition = A;
266     SyntheticRoot.Uses.push_back(&Node);
267     return &Node;
268   }
269 };
270 
271 /// This tracker checks whether callees are in the SCC, and if so it does not
272 /// consider that a capture, instead adding it to the "Uses" list and
273 /// continuing with the analysis.
274 struct ArgumentUsesTracker : public CaptureTracker {
275   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
276       : Captured(false), SCCNodes(SCCNodes) {}
277 
278   void tooManyUses() override { Captured = true; }
279 
280   bool captured(const Use *U) override {
281     CallSite CS(U->getUser());
282     if (!CS.getInstruction()) {
283       Captured = true;
284       return true;
285     }
286 
287     Function *F = CS.getCalledFunction();
288     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
289       Captured = true;
290       return true;
291     }
292 
293     // Note: the callee and the two successor blocks *follow* the argument
294     // operands.  This means there is no need to adjust UseIndex to account for
295     // these.
296 
297     unsigned UseIndex =
298         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
299 
300     assert(UseIndex < CS.data_operands_size() &&
301            "Indirect function calls should have been filtered above!");
302 
303     if (UseIndex >= CS.getNumArgOperands()) {
304       // Data operand, but not a argument operand -- must be a bundle operand
305       assert(CS.hasOperandBundles() && "Must be!");
306 
307       // CaptureTracking told us that we're being captured by an operand bundle
308       // use.  In this case it does not matter if the callee is within our SCC
309       // or not -- we've been captured in some unknown way, and we have to be
310       // conservative.
311       Captured = true;
312       return true;
313     }
314 
315     if (UseIndex >= F->arg_size()) {
316       assert(F->isVarArg() && "More params than args in non-varargs call");
317       Captured = true;
318       return true;
319     }
320 
321     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
322     return false;
323   }
324 
325   bool Captured; // True only if certainly captured (used outside our SCC).
326   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
327 
328   const SCCNodeSet &SCCNodes;
329 };
330 }
331 
332 namespace llvm {
333 template <> struct GraphTraits<ArgumentGraphNode *> {
334   typedef ArgumentGraphNode NodeType;
335   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
336 
337   static inline NodeType *getEntryNode(NodeType *A) { return A; }
338   static inline ChildIteratorType child_begin(NodeType *N) {
339     return N->Uses.begin();
340   }
341   static inline ChildIteratorType child_end(NodeType *N) {
342     return N->Uses.end();
343   }
344 };
345 template <>
346 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
347   static NodeType *getEntryNode(ArgumentGraph *AG) {
348     return AG->getEntryNode();
349   }
350   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
351     return AG->begin();
352   }
353   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
354 };
355 }
356 
357 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
358 static Attribute::AttrKind
359 determinePointerReadAttrs(Argument *A,
360                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
361 
362   SmallVector<Use *, 32> Worklist;
363   SmallSet<Use *, 32> Visited;
364 
365   // inalloca arguments are always clobbered by the call.
366   if (A->hasInAllocaAttr())
367     return Attribute::None;
368 
369   bool IsRead = false;
370   // We don't need to track IsWritten. If A is written to, return immediately.
371 
372   for (Use &U : A->uses()) {
373     Visited.insert(&U);
374     Worklist.push_back(&U);
375   }
376 
377   while (!Worklist.empty()) {
378     Use *U = Worklist.pop_back_val();
379     Instruction *I = cast<Instruction>(U->getUser());
380 
381     switch (I->getOpcode()) {
382     case Instruction::BitCast:
383     case Instruction::GetElementPtr:
384     case Instruction::PHI:
385     case Instruction::Select:
386     case Instruction::AddrSpaceCast:
387       // The original value is not read/written via this if the new value isn't.
388       for (Use &UU : I->uses())
389         if (Visited.insert(&UU).second)
390           Worklist.push_back(&UU);
391       break;
392 
393     case Instruction::Call:
394     case Instruction::Invoke: {
395       bool Captures = true;
396 
397       if (I->getType()->isVoidTy())
398         Captures = false;
399 
400       auto AddUsersToWorklistIfCapturing = [&] {
401         if (Captures)
402           for (Use &UU : I->uses())
403             if (Visited.insert(&UU).second)
404               Worklist.push_back(&UU);
405       };
406 
407       CallSite CS(I);
408       if (CS.doesNotAccessMemory()) {
409         AddUsersToWorklistIfCapturing();
410         continue;
411       }
412 
413       Function *F = CS.getCalledFunction();
414       if (!F) {
415         if (CS.onlyReadsMemory()) {
416           IsRead = true;
417           AddUsersToWorklistIfCapturing();
418           continue;
419         }
420         return Attribute::None;
421       }
422 
423       // Note: the callee and the two successor blocks *follow* the argument
424       // operands.  This means there is no need to adjust UseIndex to account
425       // for these.
426 
427       unsigned UseIndex = std::distance(CS.arg_begin(), U);
428 
429       // U cannot be the callee operand use: since we're exploring the
430       // transitive uses of an Argument, having such a use be a callee would
431       // imply the CallSite is an indirect call or invoke; and we'd take the
432       // early exit above.
433       assert(UseIndex < CS.data_operands_size() &&
434              "Data operand use expected!");
435 
436       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
437 
438       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
439         assert(F->isVarArg() && "More params than args in non-varargs call");
440         return Attribute::None;
441       }
442 
443       Captures &= !CS.doesNotCapture(UseIndex);
444 
445       // Since the optimizer (by design) cannot see the data flow corresponding
446       // to a operand bundle use, these cannot participate in the optimistic SCC
447       // analysis.  Instead, we model the operand bundle uses as arguments in
448       // call to a function external to the SCC.
449       if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
450           IsOperandBundleUse) {
451 
452         // The accessors used on CallSite here do the right thing for calls and
453         // invokes with operand bundles.
454 
455         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
456           return Attribute::None;
457         if (!CS.doesNotAccessMemory(UseIndex))
458           IsRead = true;
459       }
460 
461       AddUsersToWorklistIfCapturing();
462       break;
463     }
464 
465     case Instruction::Load:
466       // A volatile load has side effects beyond what readonly can be relied
467       // upon.
468       if (cast<LoadInst>(I)->isVolatile())
469         return Attribute::None;
470 
471       IsRead = true;
472       break;
473 
474     case Instruction::ICmp:
475     case Instruction::Ret:
476       break;
477 
478     default:
479       return Attribute::None;
480     }
481   }
482 
483   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
484 }
485 
486 /// Deduce nocapture attributes for the SCC.
487 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
488   bool Changed = false;
489 
490   ArgumentGraph AG;
491 
492   AttrBuilder B;
493   B.addAttribute(Attribute::NoCapture);
494 
495   // Check each function in turn, determining which pointer arguments are not
496   // captured.
497   for (Function *F : SCCNodes) {
498     // We can infer and propagate function attributes only when we know that the
499     // definition we'll get at link time is *exactly* the definition we see now.
500     // For more details, see GlobalValue::mayBeDerefined.
501     if (!F->hasExactDefinition())
502       continue;
503 
504     // Functions that are readonly (or readnone) and nounwind and don't return
505     // a value can't capture arguments. Don't analyze them.
506     if (F->onlyReadsMemory() && F->doesNotThrow() &&
507         F->getReturnType()->isVoidTy()) {
508       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
509            ++A) {
510         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
511           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
512           ++NumNoCapture;
513           Changed = true;
514         }
515       }
516       continue;
517     }
518 
519     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
520          ++A) {
521       if (!A->getType()->isPointerTy())
522         continue;
523       bool HasNonLocalUses = false;
524       if (!A->hasNoCaptureAttr()) {
525         ArgumentUsesTracker Tracker(SCCNodes);
526         PointerMayBeCaptured(&*A, &Tracker);
527         if (!Tracker.Captured) {
528           if (Tracker.Uses.empty()) {
529             // If it's trivially not captured, mark it nocapture now.
530             A->addAttr(
531                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
532             ++NumNoCapture;
533             Changed = true;
534           } else {
535             // If it's not trivially captured and not trivially not captured,
536             // then it must be calling into another function in our SCC. Save
537             // its particulars for Argument-SCC analysis later.
538             ArgumentGraphNode *Node = AG[&*A];
539             for (SmallVectorImpl<Argument *>::iterator
540                      UI = Tracker.Uses.begin(),
541                      UE = Tracker.Uses.end();
542                  UI != UE; ++UI) {
543               Node->Uses.push_back(AG[*UI]);
544               if (*UI != &*A)
545                 HasNonLocalUses = true;
546             }
547           }
548         }
549         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
550       }
551       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
552         // Can we determine that it's readonly/readnone without doing an SCC?
553         // Note that we don't allow any calls at all here, or else our result
554         // will be dependent on the iteration order through the functions in the
555         // SCC.
556         SmallPtrSet<Argument *, 8> Self;
557         Self.insert(&*A);
558         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
559         if (R != Attribute::None) {
560           AttrBuilder B;
561           B.addAttribute(R);
562           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
563           Changed = true;
564           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
565         }
566       }
567     }
568   }
569 
570   // The graph we've collected is partial because we stopped scanning for
571   // argument uses once we solved the argument trivially. These partial nodes
572   // show up as ArgumentGraphNode objects with an empty Uses list, and for
573   // these nodes the final decision about whether they capture has already been
574   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
575   // captures.
576 
577   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
578     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
579     if (ArgumentSCC.size() == 1) {
580       if (!ArgumentSCC[0]->Definition)
581         continue; // synthetic root node
582 
583       // eg. "void f(int* x) { if (...) f(x); }"
584       if (ArgumentSCC[0]->Uses.size() == 1 &&
585           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
586         Argument *A = ArgumentSCC[0]->Definition;
587         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
588         ++NumNoCapture;
589         Changed = true;
590       }
591       continue;
592     }
593 
594     bool SCCCaptured = false;
595     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
596          I != E && !SCCCaptured; ++I) {
597       ArgumentGraphNode *Node = *I;
598       if (Node->Uses.empty()) {
599         if (!Node->Definition->hasNoCaptureAttr())
600           SCCCaptured = true;
601       }
602     }
603     if (SCCCaptured)
604       continue;
605 
606     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
607     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
608     // quickly looking up whether a given Argument is in this ArgumentSCC.
609     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); I != E; ++I) {
610       ArgumentSCCNodes.insert((*I)->Definition);
611     }
612 
613     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
614          I != E && !SCCCaptured; ++I) {
615       ArgumentGraphNode *N = *I;
616       for (SmallVectorImpl<ArgumentGraphNode *>::iterator UI = N->Uses.begin(),
617                                                           UE = N->Uses.end();
618            UI != UE; ++UI) {
619         Argument *A = (*UI)->Definition;
620         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
621           continue;
622         SCCCaptured = true;
623         break;
624       }
625     }
626     if (SCCCaptured)
627       continue;
628 
629     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
630       Argument *A = ArgumentSCC[i]->Definition;
631       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
632       ++NumNoCapture;
633       Changed = true;
634     }
635 
636     // We also want to compute readonly/readnone. With a small number of false
637     // negatives, we can assume that any pointer which is captured isn't going
638     // to be provably readonly or readnone, since by definition we can't
639     // analyze all uses of a captured pointer.
640     //
641     // The false negatives happen when the pointer is captured by a function
642     // that promises readonly/readnone behaviour on the pointer, then the
643     // pointer's lifetime ends before anything that writes to arbitrary memory.
644     // Also, a readonly/readnone pointer may be returned, but returning a
645     // pointer is capturing it.
646 
647     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
648     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
649       Argument *A = ArgumentSCC[i]->Definition;
650       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
651       if (K == Attribute::ReadNone)
652         continue;
653       if (K == Attribute::ReadOnly) {
654         ReadAttr = Attribute::ReadOnly;
655         continue;
656       }
657       ReadAttr = K;
658       break;
659     }
660 
661     if (ReadAttr != Attribute::None) {
662       AttrBuilder B, R;
663       B.addAttribute(ReadAttr);
664       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
665       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
666         Argument *A = ArgumentSCC[i]->Definition;
667         // Clear out existing readonly/readnone attributes
668         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
669         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
670         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
671         Changed = true;
672       }
673     }
674   }
675 
676   return Changed;
677 }
678 
679 /// Tests whether a function is "malloc-like".
680 ///
681 /// A function is "malloc-like" if it returns either null or a pointer that
682 /// doesn't alias any other pointer visible to the caller.
683 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
684   SmallSetVector<Value *, 8> FlowsToReturn;
685   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
686     if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
687       FlowsToReturn.insert(Ret->getReturnValue());
688 
689   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
690     Value *RetVal = FlowsToReturn[i];
691 
692     if (Constant *C = dyn_cast<Constant>(RetVal)) {
693       if (!C->isNullValue() && !isa<UndefValue>(C))
694         return false;
695 
696       continue;
697     }
698 
699     if (isa<Argument>(RetVal))
700       return false;
701 
702     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
703       switch (RVI->getOpcode()) {
704       // Extend the analysis by looking upwards.
705       case Instruction::BitCast:
706       case Instruction::GetElementPtr:
707       case Instruction::AddrSpaceCast:
708         FlowsToReturn.insert(RVI->getOperand(0));
709         continue;
710       case Instruction::Select: {
711         SelectInst *SI = cast<SelectInst>(RVI);
712         FlowsToReturn.insert(SI->getTrueValue());
713         FlowsToReturn.insert(SI->getFalseValue());
714         continue;
715       }
716       case Instruction::PHI: {
717         PHINode *PN = cast<PHINode>(RVI);
718         for (Value *IncValue : PN->incoming_values())
719           FlowsToReturn.insert(IncValue);
720         continue;
721       }
722 
723       // Check whether the pointer came from an allocation.
724       case Instruction::Alloca:
725         break;
726       case Instruction::Call:
727       case Instruction::Invoke: {
728         CallSite CS(RVI);
729         if (CS.paramHasAttr(0, Attribute::NoAlias))
730           break;
731         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
732           break;
733       } // fall-through
734       default:
735         return false; // Did not come from an allocation.
736       }
737 
738     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
739       return false;
740   }
741 
742   return true;
743 }
744 
745 /// Deduce noalias attributes for the SCC.
746 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
747   // Check each function in turn, determining which functions return noalias
748   // pointers.
749   for (Function *F : SCCNodes) {
750     // Already noalias.
751     if (F->doesNotAlias(0))
752       continue;
753 
754     // We can infer and propagate function attributes only when we know that the
755     // definition we'll get at link time is *exactly* the definition we see now.
756     // For more details, see GlobalValue::mayBeDerefined.
757     if (!F->hasExactDefinition())
758       return false;
759 
760     // We annotate noalias return values, which are only applicable to
761     // pointer types.
762     if (!F->getReturnType()->isPointerTy())
763       continue;
764 
765     if (!isFunctionMallocLike(F, SCCNodes))
766       return false;
767   }
768 
769   bool MadeChange = false;
770   for (Function *F : SCCNodes) {
771     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
772       continue;
773 
774     F->setDoesNotAlias(0);
775     ++NumNoAlias;
776     MadeChange = true;
777   }
778 
779   return MadeChange;
780 }
781 
782 /// Tests whether this function is known to not return null.
783 ///
784 /// Requires that the function returns a pointer.
785 ///
786 /// Returns true if it believes the function will not return a null, and sets
787 /// \p Speculative based on whether the returned conclusion is a speculative
788 /// conclusion due to SCC calls.
789 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
790                             const TargetLibraryInfo &TLI, bool &Speculative) {
791   assert(F->getReturnType()->isPointerTy() &&
792          "nonnull only meaningful on pointer types");
793   Speculative = false;
794 
795   SmallSetVector<Value *, 8> FlowsToReturn;
796   for (BasicBlock &BB : *F)
797     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
798       FlowsToReturn.insert(Ret->getReturnValue());
799 
800   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
801     Value *RetVal = FlowsToReturn[i];
802 
803     // If this value is locally known to be non-null, we're good
804     if (isKnownNonNull(RetVal, &TLI))
805       continue;
806 
807     // Otherwise, we need to look upwards since we can't make any local
808     // conclusions.
809     Instruction *RVI = dyn_cast<Instruction>(RetVal);
810     if (!RVI)
811       return false;
812     switch (RVI->getOpcode()) {
813     // Extend the analysis by looking upwards.
814     case Instruction::BitCast:
815     case Instruction::GetElementPtr:
816     case Instruction::AddrSpaceCast:
817       FlowsToReturn.insert(RVI->getOperand(0));
818       continue;
819     case Instruction::Select: {
820       SelectInst *SI = cast<SelectInst>(RVI);
821       FlowsToReturn.insert(SI->getTrueValue());
822       FlowsToReturn.insert(SI->getFalseValue());
823       continue;
824     }
825     case Instruction::PHI: {
826       PHINode *PN = cast<PHINode>(RVI);
827       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
828         FlowsToReturn.insert(PN->getIncomingValue(i));
829       continue;
830     }
831     case Instruction::Call:
832     case Instruction::Invoke: {
833       CallSite CS(RVI);
834       Function *Callee = CS.getCalledFunction();
835       // A call to a node within the SCC is assumed to return null until
836       // proven otherwise
837       if (Callee && SCCNodes.count(Callee)) {
838         Speculative = true;
839         continue;
840       }
841       return false;
842     }
843     default:
844       return false; // Unknown source, may be null
845     };
846     llvm_unreachable("should have either continued or returned");
847   }
848 
849   return true;
850 }
851 
852 /// Deduce nonnull attributes for the SCC.
853 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes,
854                             const TargetLibraryInfo &TLI) {
855   // Speculative that all functions in the SCC return only nonnull
856   // pointers.  We may refute this as we analyze functions.
857   bool SCCReturnsNonNull = true;
858 
859   bool MadeChange = false;
860 
861   // Check each function in turn, determining which functions return nonnull
862   // pointers.
863   for (Function *F : SCCNodes) {
864     // Already nonnull.
865     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
866                                         Attribute::NonNull))
867       continue;
868 
869     // We can infer and propagate function attributes only when we know that the
870     // definition we'll get at link time is *exactly* the definition we see now.
871     // For more details, see GlobalValue::mayBeDerefined.
872     if (!F->hasExactDefinition())
873       return false;
874 
875     // We annotate nonnull return values, which are only applicable to
876     // pointer types.
877     if (!F->getReturnType()->isPointerTy())
878       continue;
879 
880     bool Speculative = false;
881     if (isReturnNonNull(F, SCCNodes, TLI, Speculative)) {
882       if (!Speculative) {
883         // Mark the function eagerly since we may discover a function
884         // which prevents us from speculating about the entire SCC
885         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
886         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
887         ++NumNonNullReturn;
888         MadeChange = true;
889       }
890       continue;
891     }
892     // At least one function returns something which could be null, can't
893     // speculate any more.
894     SCCReturnsNonNull = false;
895   }
896 
897   if (SCCReturnsNonNull) {
898     for (Function *F : SCCNodes) {
899       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
900                                           Attribute::NonNull) ||
901           !F->getReturnType()->isPointerTy())
902         continue;
903 
904       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
905       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
906       ++NumNonNullReturn;
907       MadeChange = true;
908     }
909   }
910 
911   return MadeChange;
912 }
913 
914 /// Remove the convergent attribute from all functions in the SCC if every
915 /// callsite within the SCC is not convergent (except for calls to functions
916 /// within the SCC).  Returns true if changes were made.
917 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
918   // For every function in SCC, ensure that either
919   //  * it is not convergent, or
920   //  * we can remove its convergent attribute.
921   bool HasConvergentFn = false;
922   for (Function *F : SCCNodes) {
923     if (!F->isConvergent()) continue;
924     HasConvergentFn = true;
925 
926     // Can't remove convergent from function declarations.
927     if (F->isDeclaration()) return false;
928 
929     // Can't remove convergent if any of our functions has a convergent call to a
930     // function not in the SCC.
931     for (Instruction &I : instructions(*F)) {
932       CallSite CS(&I);
933       // Bail if CS is a convergent call to a function not in the SCC.
934       if (CS && CS.isConvergent() &&
935           SCCNodes.count(CS.getCalledFunction()) == 0)
936         return false;
937     }
938   }
939 
940   // If the SCC doesn't have any convergent functions, we have nothing to do.
941   if (!HasConvergentFn) return false;
942 
943   // If we got here, all of the calls the SCC makes to functions not in the SCC
944   // are non-convergent.  Therefore all of the SCC's functions can also be made
945   // non-convergent.  We'll remove the attr from the callsites in
946   // InstCombineCalls.
947   for (Function *F : SCCNodes) {
948     if (!F->isConvergent()) continue;
949 
950     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
951                  << "\n");
952     F->setNotConvergent();
953   }
954   return true;
955 }
956 
957 static bool setDoesNotRecurse(Function &F) {
958   if (F.doesNotRecurse())
959     return false;
960   F.setDoesNotRecurse();
961   ++NumNoRecurse;
962   return true;
963 }
964 
965 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
966   // Try and identify functions that do not recurse.
967 
968   // If the SCC contains multiple nodes we know for sure there is recursion.
969   if (SCCNodes.size() != 1)
970     return false;
971 
972   Function *F = *SCCNodes.begin();
973   if (!F || F->isDeclaration() || F->doesNotRecurse())
974     return false;
975 
976   // If all of the calls in F are identifiable and are to norecurse functions, F
977   // is norecurse. This check also detects self-recursion as F is not currently
978   // marked norecurse, so any called from F to F will not be marked norecurse.
979   for (Instruction &I : instructions(*F))
980     if (auto CS = CallSite(&I)) {
981       Function *Callee = CS.getCalledFunction();
982       if (!Callee || Callee == F || !Callee->doesNotRecurse())
983         // Function calls a potentially recursive function.
984         return false;
985     }
986 
987   // Every call was to a non-recursive function other than this function, and
988   // we have no indirect recursion as the SCC size is one. This function cannot
989   // recurse.
990   return setDoesNotRecurse(*F);
991 }
992 
993 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
994                                                   CGSCCAnalysisManager &AM) {
995   Module &M = *C.begin()->getFunction().getParent();
996   const ModuleAnalysisManager &MAM =
997       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C).getManager();
998   FunctionAnalysisManager &FAM =
999       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
1000 
1001   // FIXME: Need some way to make it more reasonable to assume that this is
1002   // always cached.
1003   TargetLibraryInfo &TLI = *MAM.getCachedResult<TargetLibraryAnalysis>(M);
1004 
1005   // We pass a lambda into functions to wire them up to the analysis manager
1006   // for getting function analyses.
1007   auto AARGetter = [&](Function &F) -> AAResults & {
1008     return FAM.getResult<AAManager>(F);
1009   };
1010 
1011   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1012   // any external or opt-none nodes that will prevent us from optimizing any
1013   // part of the SCC.
1014   SCCNodeSet SCCNodes;
1015   bool HasUnknownCall = false;
1016   for (LazyCallGraph::Node &N : C) {
1017     Function &F = N.getFunction();
1018     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1019       // Treat any function we're trying not to optimize as if it were an
1020       // indirect call and omit it from the node set used below.
1021       HasUnknownCall = true;
1022       continue;
1023     }
1024     // Track whether any functions in this SCC have an unknown call edge.
1025     // Note: if this is ever a performance hit, we can common it with
1026     // subsequent routines which also do scans over the instructions of the
1027     // function.
1028     if (!HasUnknownCall)
1029       for (Instruction &I : instructions(F))
1030         if (auto CS = CallSite(&I))
1031           if (!CS.getCalledFunction()) {
1032             HasUnknownCall = true;
1033             break;
1034           }
1035 
1036     SCCNodes.insert(&F);
1037   }
1038 
1039   bool Changed = false;
1040   Changed |= addReadAttrs(SCCNodes, AARGetter);
1041   Changed |= addArgumentAttrs(SCCNodes);
1042 
1043   // If we have no external nodes participating in the SCC, we can deduce some
1044   // more precise attributes as well.
1045   if (!HasUnknownCall) {
1046     Changed |= addNoAliasAttrs(SCCNodes);
1047     Changed |= addNonNullAttrs(SCCNodes, TLI);
1048     Changed |= removeConvergentAttrs(SCCNodes);
1049     Changed |= addNoRecurseAttrs(SCCNodes);
1050   }
1051 
1052   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1053 }
1054 
1055 namespace {
1056 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1057   static char ID; // Pass identification, replacement for typeid
1058   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1059     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1060   }
1061 
1062   bool runOnSCC(CallGraphSCC &SCC) override;
1063 
1064   void getAnalysisUsage(AnalysisUsage &AU) const override {
1065     AU.setPreservesCFG();
1066     AU.addRequired<AssumptionCacheTracker>();
1067     AU.addRequired<TargetLibraryInfoWrapperPass>();
1068     getAAResultsAnalysisUsage(AU);
1069     CallGraphSCCPass::getAnalysisUsage(AU);
1070   }
1071 
1072 private:
1073   TargetLibraryInfo *TLI;
1074 };
1075 }
1076 
1077 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1078 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1079                       "Deduce function attributes", false, false)
1080 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1081 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1082 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1083 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1084                     "Deduce function attributes", false, false)
1085 
1086 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1087 
1088 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1089   if (skipSCC(SCC))
1090     return false;
1091 
1092   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1093   bool Changed = false;
1094 
1095   // We compute dedicated AA results for each function in the SCC as needed. We
1096   // use a lambda referencing external objects so that they live long enough to
1097   // be queried, but we re-use them each time.
1098   Optional<BasicAAResult> BAR;
1099   Optional<AAResults> AAR;
1100   auto AARGetter = [&](Function &F) -> AAResults & {
1101     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1102     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1103     return *AAR;
1104   };
1105 
1106   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1107   // whether a given CallGraphNode is in this SCC. Also track whether there are
1108   // any external or opt-none nodes that will prevent us from optimizing any
1109   // part of the SCC.
1110   SCCNodeSet SCCNodes;
1111   bool ExternalNode = false;
1112   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
1113     Function *F = (*I)->getFunction();
1114     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1115       // External node or function we're trying not to optimize - we both avoid
1116       // transform them and avoid leveraging information they provide.
1117       ExternalNode = true;
1118       continue;
1119     }
1120 
1121     SCCNodes.insert(F);
1122   }
1123 
1124   Changed |= addReadAttrs(SCCNodes, AARGetter);
1125   Changed |= addArgumentAttrs(SCCNodes);
1126 
1127   // If we have no external nodes participating in the SCC, we can deduce some
1128   // more precise attributes as well.
1129   if (!ExternalNode) {
1130     Changed |= addNoAliasAttrs(SCCNodes);
1131     Changed |= addNonNullAttrs(SCCNodes, *TLI);
1132     Changed |= removeConvergentAttrs(SCCNodes);
1133     Changed |= addNoRecurseAttrs(SCCNodes);
1134   }
1135 
1136   return Changed;
1137 }
1138 
1139 namespace {
1140 /// A pass to do RPO deduction and propagation of function attributes.
1141 ///
1142 /// This pass provides a general RPO or "top down" propagation of
1143 /// function attributes. For a few (rare) cases, we can deduce significantly
1144 /// more about function attributes by working in RPO, so this pass
1145 /// provides the compliment to the post-order pass above where the majority of
1146 /// deduction is performed.
1147 // FIXME: Currently there is no RPO CGSCC pass structure to slide into and so
1148 // this is a boring module pass, but eventually it should be an RPO CGSCC pass
1149 // when such infrastructure is available.
1150 struct ReversePostOrderFunctionAttrs : public ModulePass {
1151   static char ID; // Pass identification, replacement for typeid
1152   ReversePostOrderFunctionAttrs() : ModulePass(ID) {
1153     initializeReversePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry());
1154   }
1155 
1156   bool runOnModule(Module &M) override;
1157 
1158   void getAnalysisUsage(AnalysisUsage &AU) const override {
1159     AU.setPreservesCFG();
1160     AU.addRequired<CallGraphWrapperPass>();
1161     AU.addPreserved<CallGraphWrapperPass>();
1162   }
1163 };
1164 }
1165 
1166 char ReversePostOrderFunctionAttrs::ID = 0;
1167 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
1168                       "Deduce function attributes in RPO", false, false)
1169 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1170 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrs, "rpo-functionattrs",
1171                     "Deduce function attributes in RPO", false, false)
1172 
1173 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1174   return new ReversePostOrderFunctionAttrs();
1175 }
1176 
1177 static bool addNoRecurseAttrsTopDown(Function &F) {
1178   // We check the preconditions for the function prior to calling this to avoid
1179   // the cost of building up a reversible post-order list. We assert them here
1180   // to make sure none of the invariants this relies on were violated.
1181   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1182   assert(!F.doesNotRecurse() &&
1183          "This function has already been deduced as norecurs!");
1184   assert(F.hasInternalLinkage() &&
1185          "Can only do top-down deduction for internal linkage functions!");
1186 
1187   // If F is internal and all of its uses are calls from a non-recursive
1188   // functions, then none of its calls could in fact recurse without going
1189   // through a function marked norecurse, and so we can mark this function too
1190   // as norecurse. Note that the uses must actually be calls -- otherwise
1191   // a pointer to this function could be returned from a norecurse function but
1192   // this function could be recursively (indirectly) called. Note that this
1193   // also detects if F is directly recursive as F is not yet marked as
1194   // a norecurse function.
1195   for (auto *U : F.users()) {
1196     auto *I = dyn_cast<Instruction>(U);
1197     if (!I)
1198       return false;
1199     CallSite CS(I);
1200     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1201       return false;
1202   }
1203   return setDoesNotRecurse(F);
1204 }
1205 
1206 bool ReversePostOrderFunctionAttrs::runOnModule(Module &M) {
1207   if (skipModule(M))
1208     return false;
1209 
1210   // We only have a post-order SCC traversal (because SCCs are inherently
1211   // discovered in post-order), so we accumulate them in a vector and then walk
1212   // it in reverse. This is simpler than using the RPO iterator infrastructure
1213   // because we need to combine SCC detection and the PO walk of the call
1214   // graph. We can also cheat egregiously because we're primarily interested in
1215   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1216   // with multiple functions in them will clearly be recursive.
1217   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1218   SmallVector<Function *, 16> Worklist;
1219   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1220     if (I->size() != 1)
1221       continue;
1222 
1223     Function *F = I->front()->getFunction();
1224     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1225         F->hasInternalLinkage())
1226       Worklist.push_back(F);
1227   }
1228 
1229   bool Changed = false;
1230   for (auto *F : reverse(Worklist))
1231     Changed |= addNoRecurseAttrsTopDown(*F);
1232 
1233   return Changed;
1234 }
1235