1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 // Note: the callee and the two successor blocks *follow* the argument 585 // operands. This means there is no need to adjust UseIndex to account for 586 // these. 587 588 unsigned UseIndex = 589 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 590 591 assert(UseIndex < CB->data_operands_size() && 592 "Indirect function calls should have been filtered above!"); 593 594 if (UseIndex >= CB->arg_size()) { 595 // Data operand, but not a argument operand -- must be a bundle operand 596 assert(CB->hasOperandBundles() && "Must be!"); 597 598 // CaptureTracking told us that we're being captured by an operand bundle 599 // use. In this case it does not matter if the callee is within our SCC 600 // or not -- we've been captured in some unknown way, and we have to be 601 // conservative. 602 Captured = true; 603 return true; 604 } 605 606 if (UseIndex >= F->arg_size()) { 607 assert(F->isVarArg() && "More params than args in non-varargs call"); 608 Captured = true; 609 return true; 610 } 611 612 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 613 return false; 614 } 615 616 // True only if certainly captured (used outside our SCC). 617 bool Captured = false; 618 619 // Uses within our SCC. 620 SmallVector<Argument *, 4> Uses; 621 622 const SCCNodeSet &SCCNodes; 623 }; 624 625 } // end anonymous namespace 626 627 namespace llvm { 628 629 template <> struct GraphTraits<ArgumentGraphNode *> { 630 using NodeRef = ArgumentGraphNode *; 631 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 632 633 static NodeRef getEntryNode(NodeRef A) { return A; } 634 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 635 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 636 }; 637 638 template <> 639 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 640 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 641 642 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 643 return AG->begin(); 644 } 645 646 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 647 }; 648 649 } // end namespace llvm 650 651 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 652 static Attribute::AttrKind 653 determinePointerAccessAttrs(Argument *A, 654 const SmallPtrSet<Argument *, 8> &SCCNodes) { 655 SmallVector<Use *, 32> Worklist; 656 SmallPtrSet<Use *, 32> Visited; 657 658 // inalloca arguments are always clobbered by the call. 659 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 660 return Attribute::None; 661 662 bool IsRead = false; 663 bool IsWrite = false; 664 665 for (Use &U : A->uses()) { 666 Visited.insert(&U); 667 Worklist.push_back(&U); 668 } 669 670 while (!Worklist.empty()) { 671 if (IsWrite && IsRead) 672 // No point in searching further.. 673 return Attribute::None; 674 675 Use *U = Worklist.pop_back_val(); 676 Instruction *I = cast<Instruction>(U->getUser()); 677 678 switch (I->getOpcode()) { 679 case Instruction::BitCast: 680 case Instruction::GetElementPtr: 681 case Instruction::PHI: 682 case Instruction::Select: 683 case Instruction::AddrSpaceCast: 684 // The original value is not read/written via this if the new value isn't. 685 for (Use &UU : I->uses()) 686 if (Visited.insert(&UU).second) 687 Worklist.push_back(&UU); 688 break; 689 690 case Instruction::Call: 691 case Instruction::Invoke: { 692 bool Captures = true; 693 694 if (I->getType()->isVoidTy()) 695 Captures = false; 696 697 auto AddUsersToWorklistIfCapturing = [&] { 698 if (Captures) 699 for (Use &UU : I->uses()) 700 if (Visited.insert(&UU).second) 701 Worklist.push_back(&UU); 702 }; 703 704 CallBase &CB = cast<CallBase>(*I); 705 if (CB.isCallee(U)) { 706 IsRead = true; 707 Captures = false; // See comment in CaptureTracking for context 708 continue; 709 } 710 if (CB.doesNotAccessMemory()) { 711 AddUsersToWorklistIfCapturing(); 712 continue; 713 } 714 715 Function *F = CB.getCalledFunction(); 716 if (!F) { 717 if (CB.onlyReadsMemory()) { 718 IsRead = true; 719 AddUsersToWorklistIfCapturing(); 720 continue; 721 } 722 return Attribute::None; 723 } 724 725 // Note: the callee and the two successor blocks *follow* the argument 726 // operands. This means there is no need to adjust UseIndex to account 727 // for these. 728 729 unsigned UseIndex = std::distance(CB.arg_begin(), U); 730 731 // U cannot be the callee operand use: since we're exploring the 732 // transitive uses of an Argument, having such a use be a callee would 733 // imply the call site is an indirect call or invoke; and we'd take the 734 // early exit above. 735 assert(UseIndex < CB.data_operands_size() && 736 "Data operand use expected!"); 737 738 bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 739 740 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 741 assert(F->isVarArg() && "More params than args in non-varargs call"); 742 return Attribute::None; 743 } 744 745 Captures &= !CB.doesNotCapture(UseIndex); 746 747 // Since the optimizer (by design) cannot see the data flow corresponding 748 // to a operand bundle use, these cannot participate in the optimistic SCC 749 // analysis. Instead, we model the operand bundle uses as arguments in 750 // call to a function external to the SCC. 751 if (IsOperandBundleUse || 752 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 753 754 // The accessors used on call site here do the right thing for calls and 755 // invokes with operand bundles. 756 757 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 758 return Attribute::None; 759 if (!CB.doesNotAccessMemory(UseIndex)) 760 IsRead = true; 761 } 762 763 AddUsersToWorklistIfCapturing(); 764 break; 765 } 766 767 case Instruction::Load: 768 // A volatile load has side effects beyond what readonly can be relied 769 // upon. 770 if (cast<LoadInst>(I)->isVolatile()) 771 return Attribute::None; 772 773 IsRead = true; 774 break; 775 776 case Instruction::Store: 777 if (cast<StoreInst>(I)->getValueOperand() == *U) 778 // untrackable capture 779 return Attribute::None; 780 781 // A volatile store has side effects beyond what writeonly can be relied 782 // upon. 783 if (cast<StoreInst>(I)->isVolatile()) 784 return Attribute::None; 785 786 IsWrite = true; 787 break; 788 789 case Instruction::ICmp: 790 case Instruction::Ret: 791 break; 792 793 default: 794 return Attribute::None; 795 } 796 } 797 798 if (IsWrite && IsRead) 799 return Attribute::None; 800 else if (IsRead) 801 return Attribute::ReadOnly; 802 else if (IsWrite) 803 return Attribute::WriteOnly; 804 else 805 return Attribute::ReadNone; 806 } 807 808 /// Deduce returned attributes for the SCC. 809 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 810 SmallSet<Function *, 8> &Changed) { 811 // Check each function in turn, determining if an argument is always returned. 812 for (Function *F : SCCNodes) { 813 // We can infer and propagate function attributes only when we know that the 814 // definition we'll get at link time is *exactly* the definition we see now. 815 // For more details, see GlobalValue::mayBeDerefined. 816 if (!F->hasExactDefinition()) 817 continue; 818 819 if (F->getReturnType()->isVoidTy()) 820 continue; 821 822 // There is nothing to do if an argument is already marked as 'returned'. 823 if (llvm::any_of(F->args(), 824 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 825 continue; 826 827 auto FindRetArg = [&]() -> Value * { 828 Value *RetArg = nullptr; 829 for (BasicBlock &BB : *F) 830 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 831 // Note that stripPointerCasts should look through functions with 832 // returned arguments. 833 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 834 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 835 return nullptr; 836 837 if (!RetArg) 838 RetArg = RetVal; 839 else if (RetArg != RetVal) 840 return nullptr; 841 } 842 843 return RetArg; 844 }; 845 846 if (Value *RetArg = FindRetArg()) { 847 auto *A = cast<Argument>(RetArg); 848 A->addAttr(Attribute::Returned); 849 ++NumReturned; 850 Changed.insert(F); 851 } 852 } 853 } 854 855 /// If a callsite has arguments that are also arguments to the parent function, 856 /// try to propagate attributes from the callsite's arguments to the parent's 857 /// arguments. This may be important because inlining can cause information loss 858 /// when attribute knowledge disappears with the inlined call. 859 static bool addArgumentAttrsFromCallsites(Function &F) { 860 if (!EnableNonnullArgPropagation) 861 return false; 862 863 bool Changed = false; 864 865 // For an argument attribute to transfer from a callsite to the parent, the 866 // call must be guaranteed to execute every time the parent is called. 867 // Conservatively, just check for calls in the entry block that are guaranteed 868 // to execute. 869 // TODO: This could be enhanced by testing if the callsite post-dominates the 870 // entry block or by doing simple forward walks or backward walks to the 871 // callsite. 872 BasicBlock &Entry = F.getEntryBlock(); 873 for (Instruction &I : Entry) { 874 if (auto *CB = dyn_cast<CallBase>(&I)) { 875 if (auto *CalledFunc = CB->getCalledFunction()) { 876 for (auto &CSArg : CalledFunc->args()) { 877 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 878 continue; 879 880 // If the non-null callsite argument operand is an argument to 'F' 881 // (the caller) and the call is guaranteed to execute, then the value 882 // must be non-null throughout 'F'. 883 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 884 if (FArg && !FArg->hasNonNullAttr()) { 885 FArg->addAttr(Attribute::NonNull); 886 Changed = true; 887 } 888 } 889 } 890 } 891 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 892 break; 893 } 894 895 return Changed; 896 } 897 898 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 899 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 900 R == Attribute::WriteOnly) 901 && "Must be an access attribute."); 902 assert(A && "Argument must not be null."); 903 904 // If the argument already has the attribute, nothing needs to be done. 905 if (A->hasAttribute(R)) 906 return false; 907 908 // Otherwise, remove potentially conflicting attribute, add the new one, 909 // and update statistics. 910 A->removeAttr(Attribute::WriteOnly); 911 A->removeAttr(Attribute::ReadOnly); 912 A->removeAttr(Attribute::ReadNone); 913 A->addAttr(R); 914 if (R == Attribute::ReadOnly) 915 ++NumReadOnlyArg; 916 else if (R == Attribute::WriteOnly) 917 ++NumWriteOnlyArg; 918 else 919 ++NumReadNoneArg; 920 return true; 921 } 922 923 /// Deduce nocapture attributes for the SCC. 924 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 925 SmallSet<Function *, 8> &Changed) { 926 ArgumentGraph AG; 927 928 // Check each function in turn, determining which pointer arguments are not 929 // captured. 930 for (Function *F : SCCNodes) { 931 // We can infer and propagate function attributes only when we know that the 932 // definition we'll get at link time is *exactly* the definition we see now. 933 // For more details, see GlobalValue::mayBeDerefined. 934 if (!F->hasExactDefinition()) 935 continue; 936 937 if (addArgumentAttrsFromCallsites(*F)) 938 Changed.insert(F); 939 940 // Functions that are readonly (or readnone) and nounwind and don't return 941 // a value can't capture arguments. Don't analyze them. 942 if (F->onlyReadsMemory() && F->doesNotThrow() && 943 F->getReturnType()->isVoidTy()) { 944 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 945 ++A) { 946 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 947 A->addAttr(Attribute::NoCapture); 948 ++NumNoCapture; 949 Changed.insert(F); 950 } 951 } 952 continue; 953 } 954 955 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 956 ++A) { 957 if (!A->getType()->isPointerTy()) 958 continue; 959 bool HasNonLocalUses = false; 960 if (!A->hasNoCaptureAttr()) { 961 ArgumentUsesTracker Tracker(SCCNodes); 962 PointerMayBeCaptured(&*A, &Tracker); 963 if (!Tracker.Captured) { 964 if (Tracker.Uses.empty()) { 965 // If it's trivially not captured, mark it nocapture now. 966 A->addAttr(Attribute::NoCapture); 967 ++NumNoCapture; 968 Changed.insert(F); 969 } else { 970 // If it's not trivially captured and not trivially not captured, 971 // then it must be calling into another function in our SCC. Save 972 // its particulars for Argument-SCC analysis later. 973 ArgumentGraphNode *Node = AG[&*A]; 974 for (Argument *Use : Tracker.Uses) { 975 Node->Uses.push_back(AG[Use]); 976 if (Use != &*A) 977 HasNonLocalUses = true; 978 } 979 } 980 } 981 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 982 } 983 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 984 // Can we determine that it's readonly/readnone/writeonly without doing 985 // an SCC? Note that we don't allow any calls at all here, or else our 986 // result will be dependent on the iteration order through the 987 // functions in the SCC. 988 SmallPtrSet<Argument *, 8> Self; 989 Self.insert(&*A); 990 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 991 if (R != Attribute::None) 992 if (addAccessAttr(A, R)) 993 Changed.insert(F); 994 } 995 } 996 } 997 998 // The graph we've collected is partial because we stopped scanning for 999 // argument uses once we solved the argument trivially. These partial nodes 1000 // show up as ArgumentGraphNode objects with an empty Uses list, and for 1001 // these nodes the final decision about whether they capture has already been 1002 // made. If the definition doesn't have a 'nocapture' attribute by now, it 1003 // captures. 1004 1005 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 1006 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 1007 if (ArgumentSCC.size() == 1) { 1008 if (!ArgumentSCC[0]->Definition) 1009 continue; // synthetic root node 1010 1011 // eg. "void f(int* x) { if (...) f(x); }" 1012 if (ArgumentSCC[0]->Uses.size() == 1 && 1013 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 1014 Argument *A = ArgumentSCC[0]->Definition; 1015 A->addAttr(Attribute::NoCapture); 1016 ++NumNoCapture; 1017 Changed.insert(A->getParent()); 1018 } 1019 continue; 1020 } 1021 1022 bool SCCCaptured = false; 1023 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1024 I != E && !SCCCaptured; ++I) { 1025 ArgumentGraphNode *Node = *I; 1026 if (Node->Uses.empty()) { 1027 if (!Node->Definition->hasNoCaptureAttr()) 1028 SCCCaptured = true; 1029 } 1030 } 1031 if (SCCCaptured) 1032 continue; 1033 1034 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1035 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1036 // quickly looking up whether a given Argument is in this ArgumentSCC. 1037 for (ArgumentGraphNode *I : ArgumentSCC) { 1038 ArgumentSCCNodes.insert(I->Definition); 1039 } 1040 1041 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1042 I != E && !SCCCaptured; ++I) { 1043 ArgumentGraphNode *N = *I; 1044 for (ArgumentGraphNode *Use : N->Uses) { 1045 Argument *A = Use->Definition; 1046 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1047 continue; 1048 SCCCaptured = true; 1049 break; 1050 } 1051 } 1052 if (SCCCaptured) 1053 continue; 1054 1055 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1056 Argument *A = ArgumentSCC[i]->Definition; 1057 A->addAttr(Attribute::NoCapture); 1058 ++NumNoCapture; 1059 Changed.insert(A->getParent()); 1060 } 1061 1062 // We also want to compute readonly/readnone/writeonly. With a small number 1063 // of false negatives, we can assume that any pointer which is captured 1064 // isn't going to be provably readonly or readnone, since by definition 1065 // we can't analyze all uses of a captured pointer. 1066 // 1067 // The false negatives happen when the pointer is captured by a function 1068 // that promises readonly/readnone behaviour on the pointer, then the 1069 // pointer's lifetime ends before anything that writes to arbitrary memory. 1070 // Also, a readonly/readnone pointer may be returned, but returning a 1071 // pointer is capturing it. 1072 1073 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1074 if (A == B) 1075 return A; 1076 if (A == Attribute::ReadNone) 1077 return B; 1078 if (B == Attribute::ReadNone) 1079 return A; 1080 return Attribute::None; 1081 }; 1082 1083 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1084 for (unsigned i = 0, e = ArgumentSCC.size(); 1085 i != e && AccessAttr != Attribute::None; ++i) { 1086 Argument *A = ArgumentSCC[i]->Definition; 1087 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1088 AccessAttr = meetAccessAttr(AccessAttr, K); 1089 } 1090 1091 if (AccessAttr != Attribute::None) { 1092 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1093 Argument *A = ArgumentSCC[i]->Definition; 1094 if (addAccessAttr(A, AccessAttr)) 1095 Changed.insert(A->getParent()); 1096 } 1097 } 1098 } 1099 } 1100 1101 /// Tests whether a function is "malloc-like". 1102 /// 1103 /// A function is "malloc-like" if it returns either null or a pointer that 1104 /// doesn't alias any other pointer visible to the caller. 1105 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1106 SmallSetVector<Value *, 8> FlowsToReturn; 1107 for (BasicBlock &BB : *F) 1108 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1109 FlowsToReturn.insert(Ret->getReturnValue()); 1110 1111 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1112 Value *RetVal = FlowsToReturn[i]; 1113 1114 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1115 if (!C->isNullValue() && !isa<UndefValue>(C)) 1116 return false; 1117 1118 continue; 1119 } 1120 1121 if (isa<Argument>(RetVal)) 1122 return false; 1123 1124 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1125 switch (RVI->getOpcode()) { 1126 // Extend the analysis by looking upwards. 1127 case Instruction::BitCast: 1128 case Instruction::GetElementPtr: 1129 case Instruction::AddrSpaceCast: 1130 FlowsToReturn.insert(RVI->getOperand(0)); 1131 continue; 1132 case Instruction::Select: { 1133 SelectInst *SI = cast<SelectInst>(RVI); 1134 FlowsToReturn.insert(SI->getTrueValue()); 1135 FlowsToReturn.insert(SI->getFalseValue()); 1136 continue; 1137 } 1138 case Instruction::PHI: { 1139 PHINode *PN = cast<PHINode>(RVI); 1140 for (Value *IncValue : PN->incoming_values()) 1141 FlowsToReturn.insert(IncValue); 1142 continue; 1143 } 1144 1145 // Check whether the pointer came from an allocation. 1146 case Instruction::Alloca: 1147 break; 1148 case Instruction::Call: 1149 case Instruction::Invoke: { 1150 CallBase &CB = cast<CallBase>(*RVI); 1151 if (CB.hasRetAttr(Attribute::NoAlias)) 1152 break; 1153 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1154 break; 1155 LLVM_FALLTHROUGH; 1156 } 1157 default: 1158 return false; // Did not come from an allocation. 1159 } 1160 1161 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1162 return false; 1163 } 1164 1165 return true; 1166 } 1167 1168 /// Deduce noalias attributes for the SCC. 1169 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1170 SmallSet<Function *, 8> &Changed) { 1171 // Check each function in turn, determining which functions return noalias 1172 // pointers. 1173 for (Function *F : SCCNodes) { 1174 // Already noalias. 1175 if (F->returnDoesNotAlias()) 1176 continue; 1177 1178 // We can infer and propagate function attributes only when we know that the 1179 // definition we'll get at link time is *exactly* the definition we see now. 1180 // For more details, see GlobalValue::mayBeDerefined. 1181 if (!F->hasExactDefinition()) 1182 return; 1183 1184 // We annotate noalias return values, which are only applicable to 1185 // pointer types. 1186 if (!F->getReturnType()->isPointerTy()) 1187 continue; 1188 1189 if (!isFunctionMallocLike(F, SCCNodes)) 1190 return; 1191 } 1192 1193 for (Function *F : SCCNodes) { 1194 if (F->returnDoesNotAlias() || 1195 !F->getReturnType()->isPointerTy()) 1196 continue; 1197 1198 F->setReturnDoesNotAlias(); 1199 ++NumNoAlias; 1200 Changed.insert(F); 1201 } 1202 } 1203 1204 /// Tests whether this function is known to not return null. 1205 /// 1206 /// Requires that the function returns a pointer. 1207 /// 1208 /// Returns true if it believes the function will not return a null, and sets 1209 /// \p Speculative based on whether the returned conclusion is a speculative 1210 /// conclusion due to SCC calls. 1211 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1212 bool &Speculative) { 1213 assert(F->getReturnType()->isPointerTy() && 1214 "nonnull only meaningful on pointer types"); 1215 Speculative = false; 1216 1217 SmallSetVector<Value *, 8> FlowsToReturn; 1218 for (BasicBlock &BB : *F) 1219 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1220 FlowsToReturn.insert(Ret->getReturnValue()); 1221 1222 auto &DL = F->getParent()->getDataLayout(); 1223 1224 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1225 Value *RetVal = FlowsToReturn[i]; 1226 1227 // If this value is locally known to be non-null, we're good 1228 if (isKnownNonZero(RetVal, DL)) 1229 continue; 1230 1231 // Otherwise, we need to look upwards since we can't make any local 1232 // conclusions. 1233 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1234 if (!RVI) 1235 return false; 1236 switch (RVI->getOpcode()) { 1237 // Extend the analysis by looking upwards. 1238 case Instruction::BitCast: 1239 case Instruction::GetElementPtr: 1240 case Instruction::AddrSpaceCast: 1241 FlowsToReturn.insert(RVI->getOperand(0)); 1242 continue; 1243 case Instruction::Select: { 1244 SelectInst *SI = cast<SelectInst>(RVI); 1245 FlowsToReturn.insert(SI->getTrueValue()); 1246 FlowsToReturn.insert(SI->getFalseValue()); 1247 continue; 1248 } 1249 case Instruction::PHI: { 1250 PHINode *PN = cast<PHINode>(RVI); 1251 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1252 FlowsToReturn.insert(PN->getIncomingValue(i)); 1253 continue; 1254 } 1255 case Instruction::Call: 1256 case Instruction::Invoke: { 1257 CallBase &CB = cast<CallBase>(*RVI); 1258 Function *Callee = CB.getCalledFunction(); 1259 // A call to a node within the SCC is assumed to return null until 1260 // proven otherwise 1261 if (Callee && SCCNodes.count(Callee)) { 1262 Speculative = true; 1263 continue; 1264 } 1265 return false; 1266 } 1267 default: 1268 return false; // Unknown source, may be null 1269 }; 1270 llvm_unreachable("should have either continued or returned"); 1271 } 1272 1273 return true; 1274 } 1275 1276 /// Deduce nonnull attributes for the SCC. 1277 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1278 SmallSet<Function *, 8> &Changed) { 1279 // Speculative that all functions in the SCC return only nonnull 1280 // pointers. We may refute this as we analyze functions. 1281 bool SCCReturnsNonNull = true; 1282 1283 // Check each function in turn, determining which functions return nonnull 1284 // pointers. 1285 for (Function *F : SCCNodes) { 1286 // Already nonnull. 1287 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1288 continue; 1289 1290 // We can infer and propagate function attributes only when we know that the 1291 // definition we'll get at link time is *exactly* the definition we see now. 1292 // For more details, see GlobalValue::mayBeDerefined. 1293 if (!F->hasExactDefinition()) 1294 return; 1295 1296 // We annotate nonnull return values, which are only applicable to 1297 // pointer types. 1298 if (!F->getReturnType()->isPointerTy()) 1299 continue; 1300 1301 bool Speculative = false; 1302 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1303 if (!Speculative) { 1304 // Mark the function eagerly since we may discover a function 1305 // which prevents us from speculating about the entire SCC 1306 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1307 << " as nonnull\n"); 1308 F->addRetAttr(Attribute::NonNull); 1309 ++NumNonNullReturn; 1310 Changed.insert(F); 1311 } 1312 continue; 1313 } 1314 // At least one function returns something which could be null, can't 1315 // speculate any more. 1316 SCCReturnsNonNull = false; 1317 } 1318 1319 if (SCCReturnsNonNull) { 1320 for (Function *F : SCCNodes) { 1321 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1322 !F->getReturnType()->isPointerTy()) 1323 continue; 1324 1325 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1326 F->addRetAttr(Attribute::NonNull); 1327 ++NumNonNullReturn; 1328 Changed.insert(F); 1329 } 1330 } 1331 } 1332 1333 namespace { 1334 1335 /// Collects a set of attribute inference requests and performs them all in one 1336 /// go on a single SCC Node. Inference involves scanning function bodies 1337 /// looking for instructions that violate attribute assumptions. 1338 /// As soon as all the bodies are fine we are free to set the attribute. 1339 /// Customization of inference for individual attributes is performed by 1340 /// providing a handful of predicates for each attribute. 1341 class AttributeInferer { 1342 public: 1343 /// Describes a request for inference of a single attribute. 1344 struct InferenceDescriptor { 1345 1346 /// Returns true if this function does not have to be handled. 1347 /// General intent for this predicate is to provide an optimization 1348 /// for functions that do not need this attribute inference at all 1349 /// (say, for functions that already have the attribute). 1350 std::function<bool(const Function &)> SkipFunction; 1351 1352 /// Returns true if this instruction violates attribute assumptions. 1353 std::function<bool(Instruction &)> InstrBreaksAttribute; 1354 1355 /// Sets the inferred attribute for this function. 1356 std::function<void(Function &)> SetAttribute; 1357 1358 /// Attribute we derive. 1359 Attribute::AttrKind AKind; 1360 1361 /// If true, only "exact" definitions can be used to infer this attribute. 1362 /// See GlobalValue::isDefinitionExact. 1363 bool RequiresExactDefinition; 1364 1365 InferenceDescriptor(Attribute::AttrKind AK, 1366 std::function<bool(const Function &)> SkipFunc, 1367 std::function<bool(Instruction &)> InstrScan, 1368 std::function<void(Function &)> SetAttr, 1369 bool ReqExactDef) 1370 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1371 SetAttribute(SetAttr), AKind(AK), 1372 RequiresExactDefinition(ReqExactDef) {} 1373 }; 1374 1375 private: 1376 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1377 1378 public: 1379 void registerAttrInference(InferenceDescriptor AttrInference) { 1380 InferenceDescriptors.push_back(AttrInference); 1381 } 1382 1383 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1384 }; 1385 1386 /// Perform all the requested attribute inference actions according to the 1387 /// attribute predicates stored before. 1388 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1389 SmallSet<Function *, 8> &Changed) { 1390 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1391 // Go through all the functions in SCC and check corresponding attribute 1392 // assumptions for each of them. Attributes that are invalid for this SCC 1393 // will be removed from InferInSCC. 1394 for (Function *F : SCCNodes) { 1395 1396 // No attributes whose assumptions are still valid - done. 1397 if (InferInSCC.empty()) 1398 return; 1399 1400 // Check if our attributes ever need scanning/can be scanned. 1401 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1402 if (ID.SkipFunction(*F)) 1403 return false; 1404 1405 // Remove from further inference (invalidate) when visiting a function 1406 // that has no instructions to scan/has an unsuitable definition. 1407 return F->isDeclaration() || 1408 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1409 }); 1410 1411 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1412 // set up the F instructions scan to verify assumptions of the attribute. 1413 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1414 llvm::copy_if( 1415 InferInSCC, std::back_inserter(InferInThisFunc), 1416 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1417 1418 if (InferInThisFunc.empty()) 1419 continue; 1420 1421 // Start instruction scan. 1422 for (Instruction &I : instructions(*F)) { 1423 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1424 if (!ID.InstrBreaksAttribute(I)) 1425 return false; 1426 // Remove attribute from further inference on any other functions 1427 // because attribute assumptions have just been violated. 1428 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1429 return D.AKind == ID.AKind; 1430 }); 1431 // Remove attribute from the rest of current instruction scan. 1432 return true; 1433 }); 1434 1435 if (InferInThisFunc.empty()) 1436 break; 1437 } 1438 } 1439 1440 if (InferInSCC.empty()) 1441 return; 1442 1443 for (Function *F : SCCNodes) 1444 // At this point InferInSCC contains only functions that were either: 1445 // - explicitly skipped from scan/inference, or 1446 // - verified to have no instructions that break attribute assumptions. 1447 // Hence we just go and force the attribute for all non-skipped functions. 1448 for (auto &ID : InferInSCC) { 1449 if (ID.SkipFunction(*F)) 1450 continue; 1451 Changed.insert(F); 1452 ID.SetAttribute(*F); 1453 } 1454 } 1455 1456 struct SCCNodesResult { 1457 SCCNodeSet SCCNodes; 1458 bool HasUnknownCall; 1459 }; 1460 1461 } // end anonymous namespace 1462 1463 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1464 static bool InstrBreaksNonConvergent(Instruction &I, 1465 const SCCNodeSet &SCCNodes) { 1466 const CallBase *CB = dyn_cast<CallBase>(&I); 1467 // Breaks non-convergent assumption if CS is a convergent call to a function 1468 // not in the SCC. 1469 return CB && CB->isConvergent() && 1470 !SCCNodes.contains(CB->getCalledFunction()); 1471 } 1472 1473 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1474 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1475 if (!I.mayThrow()) 1476 return false; 1477 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1478 if (Function *Callee = CI->getCalledFunction()) { 1479 // I is a may-throw call to a function inside our SCC. This doesn't 1480 // invalidate our current working assumption that the SCC is no-throw; we 1481 // just have to scan that other function. 1482 if (SCCNodes.contains(Callee)) 1483 return false; 1484 } 1485 } 1486 return true; 1487 } 1488 1489 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1490 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1491 CallBase *CB = dyn_cast<CallBase>(&I); 1492 if (!CB) 1493 return false; 1494 1495 if (CB->hasFnAttr(Attribute::NoFree)) 1496 return false; 1497 1498 // Speculatively assume in SCC. 1499 if (Function *Callee = CB->getCalledFunction()) 1500 if (SCCNodes.contains(Callee)) 1501 return false; 1502 1503 return true; 1504 } 1505 1506 /// Attempt to remove convergent function attribute when possible. 1507 /// 1508 /// Returns true if any changes to function attributes were made. 1509 static void inferConvergent(const SCCNodeSet &SCCNodes, 1510 SmallSet<Function *, 8> &Changed) { 1511 AttributeInferer AI; 1512 1513 // Request to remove the convergent attribute from all functions in the SCC 1514 // if every callsite within the SCC is not convergent (except for calls 1515 // to functions within the SCC). 1516 // Note: Removal of the attr from the callsites will happen in 1517 // InstCombineCalls separately. 1518 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1519 Attribute::Convergent, 1520 // Skip non-convergent functions. 1521 [](const Function &F) { return !F.isConvergent(); }, 1522 // Instructions that break non-convergent assumption. 1523 [SCCNodes](Instruction &I) { 1524 return InstrBreaksNonConvergent(I, SCCNodes); 1525 }, 1526 [](Function &F) { 1527 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1528 << "\n"); 1529 F.setNotConvergent(); 1530 }, 1531 /* RequiresExactDefinition= */ false}); 1532 // Perform all the requested attribute inference actions. 1533 AI.run(SCCNodes, Changed); 1534 } 1535 1536 /// Infer attributes from all functions in the SCC by scanning every 1537 /// instruction for compliance to the attribute assumptions. Currently it 1538 /// does: 1539 /// - addition of NoUnwind attribute 1540 /// 1541 /// Returns true if any changes to function attributes were made. 1542 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1543 SmallSet<Function *, 8> &Changed) { 1544 AttributeInferer AI; 1545 1546 if (!DisableNoUnwindInference) 1547 // Request to infer nounwind attribute for all the functions in the SCC if 1548 // every callsite within the SCC is not throwing (except for calls to 1549 // functions within the SCC). Note that nounwind attribute suffers from 1550 // derefinement - results may change depending on how functions are 1551 // optimized. Thus it can be inferred only from exact definitions. 1552 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1553 Attribute::NoUnwind, 1554 // Skip non-throwing functions. 1555 [](const Function &F) { return F.doesNotThrow(); }, 1556 // Instructions that break non-throwing assumption. 1557 [&SCCNodes](Instruction &I) { 1558 return InstrBreaksNonThrowing(I, SCCNodes); 1559 }, 1560 [](Function &F) { 1561 LLVM_DEBUG(dbgs() 1562 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1563 F.setDoesNotThrow(); 1564 ++NumNoUnwind; 1565 }, 1566 /* RequiresExactDefinition= */ true}); 1567 1568 if (!DisableNoFreeInference) 1569 // Request to infer nofree attribute for all the functions in the SCC if 1570 // every callsite within the SCC does not directly or indirectly free 1571 // memory (except for calls to functions within the SCC). Note that nofree 1572 // attribute suffers from derefinement - results may change depending on 1573 // how functions are optimized. Thus it can be inferred only from exact 1574 // definitions. 1575 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1576 Attribute::NoFree, 1577 // Skip functions known not to free memory. 1578 [](const Function &F) { return F.doesNotFreeMemory(); }, 1579 // Instructions that break non-deallocating assumption. 1580 [&SCCNodes](Instruction &I) { 1581 return InstrBreaksNoFree(I, SCCNodes); 1582 }, 1583 [](Function &F) { 1584 LLVM_DEBUG(dbgs() 1585 << "Adding nofree attr to fn " << F.getName() << "\n"); 1586 F.setDoesNotFreeMemory(); 1587 ++NumNoFree; 1588 }, 1589 /* RequiresExactDefinition= */ true}); 1590 1591 // Perform all the requested attribute inference actions. 1592 AI.run(SCCNodes, Changed); 1593 } 1594 1595 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1596 SmallSet<Function *, 8> &Changed) { 1597 // Try and identify functions that do not recurse. 1598 1599 // If the SCC contains multiple nodes we know for sure there is recursion. 1600 if (SCCNodes.size() != 1) 1601 return; 1602 1603 Function *F = *SCCNodes.begin(); 1604 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1605 return; 1606 1607 // If all of the calls in F are identifiable and are to norecurse functions, F 1608 // is norecurse. This check also detects self-recursion as F is not currently 1609 // marked norecurse, so any called from F to F will not be marked norecurse. 1610 for (auto &BB : *F) 1611 for (auto &I : BB.instructionsWithoutDebug()) 1612 if (auto *CB = dyn_cast<CallBase>(&I)) { 1613 Function *Callee = CB->getCalledFunction(); 1614 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1615 // Function calls a potentially recursive function. 1616 return; 1617 } 1618 1619 // Every call was to a non-recursive function other than this function, and 1620 // we have no indirect recursion as the SCC size is one. This function cannot 1621 // recurse. 1622 F->setDoesNotRecurse(); 1623 ++NumNoRecurse; 1624 Changed.insert(F); 1625 } 1626 1627 static bool instructionDoesNotReturn(Instruction &I) { 1628 if (auto *CB = dyn_cast<CallBase>(&I)) 1629 return CB->hasFnAttr(Attribute::NoReturn); 1630 return false; 1631 } 1632 1633 // A basic block can only return if it terminates with a ReturnInst and does not 1634 // contain calls to noreturn functions. 1635 static bool basicBlockCanReturn(BasicBlock &BB) { 1636 if (!isa<ReturnInst>(BB.getTerminator())) 1637 return false; 1638 return none_of(BB, instructionDoesNotReturn); 1639 } 1640 1641 // Set the noreturn function attribute if possible. 1642 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1643 SmallSet<Function *, 8> &Changed) { 1644 for (Function *F : SCCNodes) { 1645 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1646 F->doesNotReturn()) 1647 continue; 1648 1649 // The function can return if any basic blocks can return. 1650 // FIXME: this doesn't handle recursion or unreachable blocks. 1651 if (none_of(*F, basicBlockCanReturn)) { 1652 F->setDoesNotReturn(); 1653 Changed.insert(F); 1654 } 1655 } 1656 } 1657 1658 static bool functionWillReturn(const Function &F) { 1659 // We can infer and propagate function attributes only when we know that the 1660 // definition we'll get at link time is *exactly* the definition we see now. 1661 // For more details, see GlobalValue::mayBeDerefined. 1662 if (!F.hasExactDefinition()) 1663 return false; 1664 1665 // Must-progress function without side-effects must return. 1666 if (F.mustProgress() && F.onlyReadsMemory()) 1667 return true; 1668 1669 // Can only analyze functions with a definition. 1670 if (F.isDeclaration()) 1671 return false; 1672 1673 // Functions with loops require more sophisticated analysis, as the loop 1674 // may be infinite. For now, don't try to handle them. 1675 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1676 FindFunctionBackedges(F, Backedges); 1677 if (!Backedges.empty()) 1678 return false; 1679 1680 // If there are no loops, then the function is willreturn if all calls in 1681 // it are willreturn. 1682 return all_of(instructions(F), [](const Instruction &I) { 1683 return I.willReturn(); 1684 }); 1685 } 1686 1687 // Set the willreturn function attribute if possible. 1688 static void addWillReturn(const SCCNodeSet &SCCNodes, 1689 SmallSet<Function *, 8> &Changed) { 1690 for (Function *F : SCCNodes) { 1691 if (!F || F->willReturn() || !functionWillReturn(*F)) 1692 continue; 1693 1694 F->setWillReturn(); 1695 NumWillReturn++; 1696 Changed.insert(F); 1697 } 1698 } 1699 1700 // Return true if this is an atomic which has an ordering stronger than 1701 // unordered. Note that this is different than the predicate we use in 1702 // Attributor. Here we chose to be conservative and consider monotonic 1703 // operations potentially synchronizing. We generally don't do much with 1704 // monotonic operations, so this is simply risk reduction. 1705 static bool isOrderedAtomic(Instruction *I) { 1706 if (!I->isAtomic()) 1707 return false; 1708 1709 if (auto *FI = dyn_cast<FenceInst>(I)) 1710 // All legal orderings for fence are stronger than monotonic. 1711 return FI->getSyncScopeID() != SyncScope::SingleThread; 1712 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1713 return true; 1714 else if (auto *SI = dyn_cast<StoreInst>(I)) 1715 return !SI->isUnordered(); 1716 else if (auto *LI = dyn_cast<LoadInst>(I)) 1717 return !LI->isUnordered(); 1718 else { 1719 llvm_unreachable("unknown atomic instruction?"); 1720 } 1721 } 1722 1723 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1724 // Volatile may synchronize 1725 if (I.isVolatile()) 1726 return true; 1727 1728 // An ordered atomic may synchronize. (See comment about on monotonic.) 1729 if (isOrderedAtomic(&I)) 1730 return true; 1731 1732 auto *CB = dyn_cast<CallBase>(&I); 1733 if (!CB) 1734 // Non call site cases covered by the two checks above 1735 return false; 1736 1737 if (CB->hasFnAttr(Attribute::NoSync)) 1738 return false; 1739 1740 // Non volatile memset/memcpy/memmoves are nosync 1741 // NOTE: Only intrinsics with volatile flags should be handled here. All 1742 // others should be marked in Intrinsics.td. 1743 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1744 if (!MI->isVolatile()) 1745 return false; 1746 1747 // Speculatively assume in SCC. 1748 if (Function *Callee = CB->getCalledFunction()) 1749 if (SCCNodes.contains(Callee)) 1750 return false; 1751 1752 return true; 1753 } 1754 1755 // Infer the nosync attribute. 1756 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1757 SmallSet<Function *, 8> &Changed) { 1758 AttributeInferer AI; 1759 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1760 Attribute::NoSync, 1761 // Skip already marked functions. 1762 [](const Function &F) { return F.hasNoSync(); }, 1763 // Instructions that break nosync assumption. 1764 [&SCCNodes](Instruction &I) { 1765 return InstrBreaksNoSync(I, SCCNodes); 1766 }, 1767 [](Function &F) { 1768 LLVM_DEBUG(dbgs() 1769 << "Adding nosync attr to fn " << F.getName() << "\n"); 1770 F.setNoSync(); 1771 ++NumNoSync; 1772 }, 1773 /* RequiresExactDefinition= */ true}); 1774 AI.run(SCCNodes, Changed); 1775 } 1776 1777 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1778 SCCNodesResult Res; 1779 Res.HasUnknownCall = false; 1780 for (Function *F : Functions) { 1781 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1782 F->isPresplitCoroutine()) { 1783 // Treat any function we're trying not to optimize as if it were an 1784 // indirect call and omit it from the node set used below. 1785 Res.HasUnknownCall = true; 1786 continue; 1787 } 1788 // Track whether any functions in this SCC have an unknown call edge. 1789 // Note: if this is ever a performance hit, we can common it with 1790 // subsequent routines which also do scans over the instructions of the 1791 // function. 1792 if (!Res.HasUnknownCall) { 1793 for (Instruction &I : instructions(*F)) { 1794 if (auto *CB = dyn_cast<CallBase>(&I)) { 1795 if (!CB->getCalledFunction()) { 1796 Res.HasUnknownCall = true; 1797 break; 1798 } 1799 } 1800 } 1801 } 1802 Res.SCCNodes.insert(F); 1803 } 1804 return Res; 1805 } 1806 1807 template <typename AARGetterT> 1808 static SmallSet<Function *, 8> 1809 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1810 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1811 1812 // Bail if the SCC only contains optnone functions. 1813 if (Nodes.SCCNodes.empty()) 1814 return {}; 1815 1816 SmallSet<Function *, 8> Changed; 1817 1818 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1819 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1820 addArgumentAttrs(Nodes.SCCNodes, Changed); 1821 inferConvergent(Nodes.SCCNodes, Changed); 1822 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1823 addWillReturn(Nodes.SCCNodes, Changed); 1824 1825 // If we have no external nodes participating in the SCC, we can deduce some 1826 // more precise attributes as well. 1827 if (!Nodes.HasUnknownCall) { 1828 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1829 addNonNullAttrs(Nodes.SCCNodes, Changed); 1830 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1831 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1832 } 1833 1834 addNoSyncAttr(Nodes.SCCNodes, Changed); 1835 1836 // Finally, infer the maximal set of attributes from the ones we've inferred 1837 // above. This is handling the cases where one attribute on a signature 1838 // implies another, but for implementation reasons the inference rule for 1839 // the later is missing (or simply less sophisticated). 1840 for (Function *F : Nodes.SCCNodes) 1841 if (F) 1842 if (inferAttributesFromOthers(*F)) 1843 Changed.insert(F); 1844 1845 return Changed; 1846 } 1847 1848 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1849 CGSCCAnalysisManager &AM, 1850 LazyCallGraph &CG, 1851 CGSCCUpdateResult &) { 1852 FunctionAnalysisManager &FAM = 1853 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1854 1855 // We pass a lambda into functions to wire them up to the analysis manager 1856 // for getting function analyses. 1857 auto AARGetter = [&](Function &F) -> AAResults & { 1858 return FAM.getResult<AAManager>(F); 1859 }; 1860 1861 SmallVector<Function *, 8> Functions; 1862 for (LazyCallGraph::Node &N : C) { 1863 Functions.push_back(&N.getFunction()); 1864 } 1865 1866 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1867 if (ChangedFunctions.empty()) 1868 return PreservedAnalyses::all(); 1869 1870 // Invalidate analyses for modified functions so that we don't have to 1871 // invalidate all analyses for all functions in this SCC. 1872 PreservedAnalyses FuncPA; 1873 // We haven't changed the CFG for modified functions. 1874 FuncPA.preserveSet<CFGAnalyses>(); 1875 for (Function *Changed : ChangedFunctions) { 1876 FAM.invalidate(*Changed, FuncPA); 1877 // Also invalidate any direct callers of changed functions since analyses 1878 // may care about attributes of direct callees. For example, MemorySSA cares 1879 // about whether or not a call's callee modifies memory and queries that 1880 // through function attributes. 1881 for (auto *U : Changed->users()) { 1882 if (auto *Call = dyn_cast<CallBase>(U)) { 1883 if (Call->getCalledFunction() == Changed) 1884 FAM.invalidate(*Call->getFunction(), FuncPA); 1885 } 1886 } 1887 } 1888 1889 PreservedAnalyses PA; 1890 // We have not added or removed functions. 1891 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1892 // We already invalidated all relevant function analyses above. 1893 PA.preserveSet<AllAnalysesOn<Function>>(); 1894 return PA; 1895 } 1896 1897 namespace { 1898 1899 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1900 // Pass identification, replacement for typeid 1901 static char ID; 1902 1903 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1904 initializePostOrderFunctionAttrsLegacyPassPass( 1905 *PassRegistry::getPassRegistry()); 1906 } 1907 1908 bool runOnSCC(CallGraphSCC &SCC) override; 1909 1910 void getAnalysisUsage(AnalysisUsage &AU) const override { 1911 AU.setPreservesCFG(); 1912 AU.addRequired<AssumptionCacheTracker>(); 1913 getAAResultsAnalysisUsage(AU); 1914 CallGraphSCCPass::getAnalysisUsage(AU); 1915 } 1916 }; 1917 1918 } // end anonymous namespace 1919 1920 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1921 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1922 "Deduce function attributes", false, false) 1923 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1924 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1925 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1926 "Deduce function attributes", false, false) 1927 1928 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1929 return new PostOrderFunctionAttrsLegacyPass(); 1930 } 1931 1932 template <typename AARGetterT> 1933 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1934 SmallVector<Function *, 8> Functions; 1935 for (CallGraphNode *I : SCC) { 1936 Functions.push_back(I->getFunction()); 1937 } 1938 1939 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1940 } 1941 1942 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1943 if (skipSCC(SCC)) 1944 return false; 1945 return runImpl(SCC, LegacyAARGetter(*this)); 1946 } 1947 1948 namespace { 1949 1950 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1951 // Pass identification, replacement for typeid 1952 static char ID; 1953 1954 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1955 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1956 *PassRegistry::getPassRegistry()); 1957 } 1958 1959 bool runOnModule(Module &M) override; 1960 1961 void getAnalysisUsage(AnalysisUsage &AU) const override { 1962 AU.setPreservesCFG(); 1963 AU.addRequired<CallGraphWrapperPass>(); 1964 AU.addPreserved<CallGraphWrapperPass>(); 1965 } 1966 }; 1967 1968 } // end anonymous namespace 1969 1970 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1971 1972 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1973 "rpo-function-attrs", "Deduce function attributes in RPO", 1974 false, false) 1975 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1976 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1977 "rpo-function-attrs", "Deduce function attributes in RPO", 1978 false, false) 1979 1980 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1981 return new ReversePostOrderFunctionAttrsLegacyPass(); 1982 } 1983 1984 static bool addNoRecurseAttrsTopDown(Function &F) { 1985 // We check the preconditions for the function prior to calling this to avoid 1986 // the cost of building up a reversible post-order list. We assert them here 1987 // to make sure none of the invariants this relies on were violated. 1988 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1989 assert(!F.doesNotRecurse() && 1990 "This function has already been deduced as norecurs!"); 1991 assert(F.hasInternalLinkage() && 1992 "Can only do top-down deduction for internal linkage functions!"); 1993 1994 // If F is internal and all of its uses are calls from a non-recursive 1995 // functions, then none of its calls could in fact recurse without going 1996 // through a function marked norecurse, and so we can mark this function too 1997 // as norecurse. Note that the uses must actually be calls -- otherwise 1998 // a pointer to this function could be returned from a norecurse function but 1999 // this function could be recursively (indirectly) called. Note that this 2000 // also detects if F is directly recursive as F is not yet marked as 2001 // a norecurse function. 2002 for (auto *U : F.users()) { 2003 auto *I = dyn_cast<Instruction>(U); 2004 if (!I) 2005 return false; 2006 CallBase *CB = dyn_cast<CallBase>(I); 2007 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 2008 return false; 2009 } 2010 F.setDoesNotRecurse(); 2011 ++NumNoRecurse; 2012 return true; 2013 } 2014 2015 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 2016 // We only have a post-order SCC traversal (because SCCs are inherently 2017 // discovered in post-order), so we accumulate them in a vector and then walk 2018 // it in reverse. This is simpler than using the RPO iterator infrastructure 2019 // because we need to combine SCC detection and the PO walk of the call 2020 // graph. We can also cheat egregiously because we're primarily interested in 2021 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2022 // with multiple functions in them will clearly be recursive. 2023 SmallVector<Function *, 16> Worklist; 2024 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2025 if (I->size() != 1) 2026 continue; 2027 2028 Function *F = I->front()->getFunction(); 2029 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2030 F->hasInternalLinkage()) 2031 Worklist.push_back(F); 2032 } 2033 2034 bool Changed = false; 2035 for (auto *F : llvm::reverse(Worklist)) 2036 Changed |= addNoRecurseAttrsTopDown(*F); 2037 2038 return Changed; 2039 } 2040 2041 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2042 if (skipModule(M)) 2043 return false; 2044 2045 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2046 2047 return deduceFunctionAttributeInRPO(M, CG); 2048 } 2049 2050 PreservedAnalyses 2051 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2052 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2053 2054 if (!deduceFunctionAttributeInRPO(M, CG)) 2055 return PreservedAnalyses::all(); 2056 2057 PreservedAnalyses PA; 2058 PA.preserve<CallGraphAnalysis>(); 2059 return PA; 2060 } 2061