1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "functionattrs"
41 
42 STATISTIC(NumReadNone, "Number of functions marked readnone");
43 STATISTIC(NumReadOnly, "Number of functions marked readonly");
44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45 STATISTIC(NumReturned, "Number of arguments marked returned");
46 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
47 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
48 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
49 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
50 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
51 
52 namespace {
53 typedef SmallSetVector<Function *, 8> SCCNodeSet;
54 }
55 
56 namespace {
57 /// The three kinds of memory access relevant to 'readonly' and
58 /// 'readnone' attributes.
59 enum MemoryAccessKind {
60   MAK_ReadNone = 0,
61   MAK_ReadOnly = 1,
62   MAK_MayWrite = 2
63 };
64 }
65 
66 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
67                                                   const SCCNodeSet &SCCNodes) {
68   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
69   if (MRB == FMRB_DoesNotAccessMemory)
70     // Already perfect!
71     return MAK_ReadNone;
72 
73   // Non-exact function definitions may not be selected at link time, and an
74   // alternative version that writes to memory may be selected.  See the comment
75   // on GlobalValue::isDefinitionExact for more details.
76   if (!F.hasExactDefinition()) {
77     if (AliasAnalysis::onlyReadsMemory(MRB))
78       return MAK_ReadOnly;
79 
80     // Conservatively assume it writes to memory.
81     return MAK_MayWrite;
82   }
83 
84   // Scan the function body for instructions that may read or write memory.
85   bool ReadsMemory = false;
86   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
87     Instruction *I = &*II;
88 
89     // Some instructions can be ignored even if they read or write memory.
90     // Detect these now, skipping to the next instruction if one is found.
91     CallSite CS(cast<Value>(I));
92     if (CS) {
93       // Ignore calls to functions in the same SCC, as long as the call sites
94       // don't have operand bundles.  Calls with operand bundles are allowed to
95       // have memory effects not described by the memory effects of the call
96       // target.
97       if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
98           SCCNodes.count(CS.getCalledFunction()))
99         continue;
100       FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
101 
102       // If the call doesn't access memory, we're done.
103       if (!(MRB & MRI_ModRef))
104         continue;
105 
106       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
107         // The call could access any memory. If that includes writes, give up.
108         if (MRB & MRI_Mod)
109           return MAK_MayWrite;
110         // If it reads, note it.
111         if (MRB & MRI_Ref)
112           ReadsMemory = true;
113         continue;
114       }
115 
116       // Check whether all pointer arguments point to local memory, and
117       // ignore calls that only access local memory.
118       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
119            CI != CE; ++CI) {
120         Value *Arg = *CI;
121         if (!Arg->getType()->isPtrOrPtrVectorTy())
122           continue;
123 
124         AAMDNodes AAInfo;
125         I->getAAMetadata(AAInfo);
126         MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
127 
128         // Skip accesses to local or constant memory as they don't impact the
129         // externally visible mod/ref behavior.
130         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
131           continue;
132 
133         if (MRB & MRI_Mod)
134           // Writes non-local memory.  Give up.
135           return MAK_MayWrite;
136         if (MRB & MRI_Ref)
137           // Ok, it reads non-local memory.
138           ReadsMemory = true;
139       }
140       continue;
141     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
142       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
143       if (!LI->isVolatile()) {
144         MemoryLocation Loc = MemoryLocation::get(LI);
145         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
146           continue;
147       }
148     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
149       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
150       if (!SI->isVolatile()) {
151         MemoryLocation Loc = MemoryLocation::get(SI);
152         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
153           continue;
154       }
155     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
156       // Ignore vaargs on local memory.
157       MemoryLocation Loc = MemoryLocation::get(VI);
158       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
159         continue;
160     }
161 
162     // Any remaining instructions need to be taken seriously!  Check if they
163     // read or write memory.
164     if (I->mayWriteToMemory())
165       // Writes memory.  Just give up.
166       return MAK_MayWrite;
167 
168     // If this instruction may read memory, remember that.
169     ReadsMemory |= I->mayReadFromMemory();
170   }
171 
172   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
173 }
174 
175 /// Deduce readonly/readnone attributes for the SCC.
176 template <typename AARGetterT>
177 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
178   // Check if any of the functions in the SCC read or write memory.  If they
179   // write memory then they can't be marked readnone or readonly.
180   bool ReadsMemory = false;
181   for (Function *F : SCCNodes) {
182     // Call the callable parameter to look up AA results for this function.
183     AAResults &AAR = AARGetter(*F);
184 
185     switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
186     case MAK_MayWrite:
187       return false;
188     case MAK_ReadOnly:
189       ReadsMemory = true;
190       break;
191     case MAK_ReadNone:
192       // Nothing to do!
193       break;
194     }
195   }
196 
197   // Success!  Functions in this SCC do not access memory, or only read memory.
198   // Give them the appropriate attribute.
199   bool MadeChange = false;
200   for (Function *F : SCCNodes) {
201     if (F->doesNotAccessMemory())
202       // Already perfect!
203       continue;
204 
205     if (F->onlyReadsMemory() && ReadsMemory)
206       // No change.
207       continue;
208 
209     MadeChange = true;
210 
211     // Clear out any existing attributes.
212     AttrBuilder B;
213     B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
214     F->removeAttributes(
215         AttributeSet::FunctionIndex,
216         AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
217 
218     // Add in the new attribute.
219     F->addAttribute(AttributeSet::FunctionIndex,
220                     ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
221 
222     if (ReadsMemory)
223       ++NumReadOnly;
224     else
225       ++NumReadNone;
226   }
227 
228   return MadeChange;
229 }
230 
231 namespace {
232 /// For a given pointer Argument, this retains a list of Arguments of functions
233 /// in the same SCC that the pointer data flows into. We use this to build an
234 /// SCC of the arguments.
235 struct ArgumentGraphNode {
236   Argument *Definition;
237   SmallVector<ArgumentGraphNode *, 4> Uses;
238 };
239 
240 class ArgumentGraph {
241   // We store pointers to ArgumentGraphNode objects, so it's important that
242   // that they not move around upon insert.
243   typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
244 
245   ArgumentMapTy ArgumentMap;
246 
247   // There is no root node for the argument graph, in fact:
248   //   void f(int *x, int *y) { if (...) f(x, y); }
249   // is an example where the graph is disconnected. The SCCIterator requires a
250   // single entry point, so we maintain a fake ("synthetic") root node that
251   // uses every node. Because the graph is directed and nothing points into
252   // the root, it will not participate in any SCCs (except for its own).
253   ArgumentGraphNode SyntheticRoot;
254 
255 public:
256   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
257 
258   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
259 
260   iterator begin() { return SyntheticRoot.Uses.begin(); }
261   iterator end() { return SyntheticRoot.Uses.end(); }
262   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
263 
264   ArgumentGraphNode *operator[](Argument *A) {
265     ArgumentGraphNode &Node = ArgumentMap[A];
266     Node.Definition = A;
267     SyntheticRoot.Uses.push_back(&Node);
268     return &Node;
269   }
270 };
271 
272 /// This tracker checks whether callees are in the SCC, and if so it does not
273 /// consider that a capture, instead adding it to the "Uses" list and
274 /// continuing with the analysis.
275 struct ArgumentUsesTracker : public CaptureTracker {
276   ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
277       : Captured(false), SCCNodes(SCCNodes) {}
278 
279   void tooManyUses() override { Captured = true; }
280 
281   bool captured(const Use *U) override {
282     CallSite CS(U->getUser());
283     if (!CS.getInstruction()) {
284       Captured = true;
285       return true;
286     }
287 
288     Function *F = CS.getCalledFunction();
289     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
290       Captured = true;
291       return true;
292     }
293 
294     // Note: the callee and the two successor blocks *follow* the argument
295     // operands.  This means there is no need to adjust UseIndex to account for
296     // these.
297 
298     unsigned UseIndex =
299         std::distance(const_cast<const Use *>(CS.arg_begin()), U);
300 
301     assert(UseIndex < CS.data_operands_size() &&
302            "Indirect function calls should have been filtered above!");
303 
304     if (UseIndex >= CS.getNumArgOperands()) {
305       // Data operand, but not a argument operand -- must be a bundle operand
306       assert(CS.hasOperandBundles() && "Must be!");
307 
308       // CaptureTracking told us that we're being captured by an operand bundle
309       // use.  In this case it does not matter if the callee is within our SCC
310       // or not -- we've been captured in some unknown way, and we have to be
311       // conservative.
312       Captured = true;
313       return true;
314     }
315 
316     if (UseIndex >= F->arg_size()) {
317       assert(F->isVarArg() && "More params than args in non-varargs call");
318       Captured = true;
319       return true;
320     }
321 
322     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
323     return false;
324   }
325 
326   bool Captured; // True only if certainly captured (used outside our SCC).
327   SmallVector<Argument *, 4> Uses; // Uses within our SCC.
328 
329   const SCCNodeSet &SCCNodes;
330 };
331 }
332 
333 namespace llvm {
334 template <> struct GraphTraits<ArgumentGraphNode *> {
335   typedef ArgumentGraphNode *NodeRef;
336   typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
337 
338   static inline NodeRef getEntryNode(NodeRef A) { return A; }
339   static inline ChildIteratorType child_begin(NodeRef N) {
340     return N->Uses.begin();
341   }
342   static inline ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
343 };
344 template <>
345 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
346   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
347   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
348     return AG->begin();
349   }
350   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
351 };
352 }
353 
354 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
355 static Attribute::AttrKind
356 determinePointerReadAttrs(Argument *A,
357                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
358 
359   SmallVector<Use *, 32> Worklist;
360   SmallSet<Use *, 32> Visited;
361 
362   // inalloca arguments are always clobbered by the call.
363   if (A->hasInAllocaAttr())
364     return Attribute::None;
365 
366   bool IsRead = false;
367   // We don't need to track IsWritten. If A is written to, return immediately.
368 
369   for (Use &U : A->uses()) {
370     Visited.insert(&U);
371     Worklist.push_back(&U);
372   }
373 
374   while (!Worklist.empty()) {
375     Use *U = Worklist.pop_back_val();
376     Instruction *I = cast<Instruction>(U->getUser());
377 
378     switch (I->getOpcode()) {
379     case Instruction::BitCast:
380     case Instruction::GetElementPtr:
381     case Instruction::PHI:
382     case Instruction::Select:
383     case Instruction::AddrSpaceCast:
384       // The original value is not read/written via this if the new value isn't.
385       for (Use &UU : I->uses())
386         if (Visited.insert(&UU).second)
387           Worklist.push_back(&UU);
388       break;
389 
390     case Instruction::Call:
391     case Instruction::Invoke: {
392       bool Captures = true;
393 
394       if (I->getType()->isVoidTy())
395         Captures = false;
396 
397       auto AddUsersToWorklistIfCapturing = [&] {
398         if (Captures)
399           for (Use &UU : I->uses())
400             if (Visited.insert(&UU).second)
401               Worklist.push_back(&UU);
402       };
403 
404       CallSite CS(I);
405       if (CS.doesNotAccessMemory()) {
406         AddUsersToWorklistIfCapturing();
407         continue;
408       }
409 
410       Function *F = CS.getCalledFunction();
411       if (!F) {
412         if (CS.onlyReadsMemory()) {
413           IsRead = true;
414           AddUsersToWorklistIfCapturing();
415           continue;
416         }
417         return Attribute::None;
418       }
419 
420       // Note: the callee and the two successor blocks *follow* the argument
421       // operands.  This means there is no need to adjust UseIndex to account
422       // for these.
423 
424       unsigned UseIndex = std::distance(CS.arg_begin(), U);
425 
426       // U cannot be the callee operand use: since we're exploring the
427       // transitive uses of an Argument, having such a use be a callee would
428       // imply the CallSite is an indirect call or invoke; and we'd take the
429       // early exit above.
430       assert(UseIndex < CS.data_operands_size() &&
431              "Data operand use expected!");
432 
433       bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
434 
435       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
436         assert(F->isVarArg() && "More params than args in non-varargs call");
437         return Attribute::None;
438       }
439 
440       Captures &= !CS.doesNotCapture(UseIndex);
441 
442       // Since the optimizer (by design) cannot see the data flow corresponding
443       // to a operand bundle use, these cannot participate in the optimistic SCC
444       // analysis.  Instead, we model the operand bundle uses as arguments in
445       // call to a function external to the SCC.
446       if (IsOperandBundleUse ||
447           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
448 
449         // The accessors used on CallSite here do the right thing for calls and
450         // invokes with operand bundles.
451 
452         if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
453           return Attribute::None;
454         if (!CS.doesNotAccessMemory(UseIndex))
455           IsRead = true;
456       }
457 
458       AddUsersToWorklistIfCapturing();
459       break;
460     }
461 
462     case Instruction::Load:
463       // A volatile load has side effects beyond what readonly can be relied
464       // upon.
465       if (cast<LoadInst>(I)->isVolatile())
466         return Attribute::None;
467 
468       IsRead = true;
469       break;
470 
471     case Instruction::ICmp:
472     case Instruction::Ret:
473       break;
474 
475     default:
476       return Attribute::None;
477     }
478   }
479 
480   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
481 }
482 
483 /// Deduce returned attributes for the SCC.
484 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
485   bool Changed = false;
486 
487   AttrBuilder B;
488   B.addAttribute(Attribute::Returned);
489 
490   // Check each function in turn, determining if an argument is always returned.
491   for (Function *F : SCCNodes) {
492     // We can infer and propagate function attributes only when we know that the
493     // definition we'll get at link time is *exactly* the definition we see now.
494     // For more details, see GlobalValue::mayBeDerefined.
495     if (!F->hasExactDefinition())
496       continue;
497 
498     if (F->getReturnType()->isVoidTy())
499       continue;
500 
501     auto FindRetArg = [&]() -> Value * {
502       Value *RetArg = nullptr;
503       for (BasicBlock &BB : *F)
504         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
505           // Note that stripPointerCasts should look through functions with
506           // returned arguments.
507           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
508           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
509             return nullptr;
510 
511           if (!RetArg)
512             RetArg = RetVal;
513           else if (RetArg != RetVal)
514             return nullptr;
515         }
516 
517       return RetArg;
518     };
519 
520     if (Value *RetArg = FindRetArg()) {
521       auto *A = cast<Argument>(RetArg);
522       A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
523       ++NumReturned;
524       Changed = true;
525     }
526   }
527 
528   return Changed;
529 }
530 
531 /// Deduce nocapture attributes for the SCC.
532 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
533   bool Changed = false;
534 
535   ArgumentGraph AG;
536 
537   AttrBuilder B;
538   B.addAttribute(Attribute::NoCapture);
539 
540   // Check each function in turn, determining which pointer arguments are not
541   // captured.
542   for (Function *F : SCCNodes) {
543     // We can infer and propagate function attributes only when we know that the
544     // definition we'll get at link time is *exactly* the definition we see now.
545     // For more details, see GlobalValue::mayBeDerefined.
546     if (!F->hasExactDefinition())
547       continue;
548 
549     // Functions that are readonly (or readnone) and nounwind and don't return
550     // a value can't capture arguments. Don't analyze them.
551     if (F->onlyReadsMemory() && F->doesNotThrow() &&
552         F->getReturnType()->isVoidTy()) {
553       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
554            ++A) {
555         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
556           A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
557           ++NumNoCapture;
558           Changed = true;
559         }
560       }
561       continue;
562     }
563 
564     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
565          ++A) {
566       if (!A->getType()->isPointerTy())
567         continue;
568       bool HasNonLocalUses = false;
569       if (!A->hasNoCaptureAttr()) {
570         ArgumentUsesTracker Tracker(SCCNodes);
571         PointerMayBeCaptured(&*A, &Tracker);
572         if (!Tracker.Captured) {
573           if (Tracker.Uses.empty()) {
574             // If it's trivially not captured, mark it nocapture now.
575             A->addAttr(
576                 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
577             ++NumNoCapture;
578             Changed = true;
579           } else {
580             // If it's not trivially captured and not trivially not captured,
581             // then it must be calling into another function in our SCC. Save
582             // its particulars for Argument-SCC analysis later.
583             ArgumentGraphNode *Node = AG[&*A];
584             for (Argument *Use : Tracker.Uses) {
585               Node->Uses.push_back(AG[Use]);
586               if (Use != &*A)
587                 HasNonLocalUses = true;
588             }
589           }
590         }
591         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
592       }
593       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
594         // Can we determine that it's readonly/readnone without doing an SCC?
595         // Note that we don't allow any calls at all here, or else our result
596         // will be dependent on the iteration order through the functions in the
597         // SCC.
598         SmallPtrSet<Argument *, 8> Self;
599         Self.insert(&*A);
600         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
601         if (R != Attribute::None) {
602           AttrBuilder B;
603           B.addAttribute(R);
604           A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
605           Changed = true;
606           R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
607         }
608       }
609     }
610   }
611 
612   // The graph we've collected is partial because we stopped scanning for
613   // argument uses once we solved the argument trivially. These partial nodes
614   // show up as ArgumentGraphNode objects with an empty Uses list, and for
615   // these nodes the final decision about whether they capture has already been
616   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
617   // captures.
618 
619   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
620     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
621     if (ArgumentSCC.size() == 1) {
622       if (!ArgumentSCC[0]->Definition)
623         continue; // synthetic root node
624 
625       // eg. "void f(int* x) { if (...) f(x); }"
626       if (ArgumentSCC[0]->Uses.size() == 1 &&
627           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
628         Argument *A = ArgumentSCC[0]->Definition;
629         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
630         ++NumNoCapture;
631         Changed = true;
632       }
633       continue;
634     }
635 
636     bool SCCCaptured = false;
637     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
638          I != E && !SCCCaptured; ++I) {
639       ArgumentGraphNode *Node = *I;
640       if (Node->Uses.empty()) {
641         if (!Node->Definition->hasNoCaptureAttr())
642           SCCCaptured = true;
643       }
644     }
645     if (SCCCaptured)
646       continue;
647 
648     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
649     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
650     // quickly looking up whether a given Argument is in this ArgumentSCC.
651     for (ArgumentGraphNode *I : ArgumentSCC) {
652       ArgumentSCCNodes.insert(I->Definition);
653     }
654 
655     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
656          I != E && !SCCCaptured; ++I) {
657       ArgumentGraphNode *N = *I;
658       for (ArgumentGraphNode *Use : N->Uses) {
659         Argument *A = Use->Definition;
660         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
661           continue;
662         SCCCaptured = true;
663         break;
664       }
665     }
666     if (SCCCaptured)
667       continue;
668 
669     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
670       Argument *A = ArgumentSCC[i]->Definition;
671       A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
672       ++NumNoCapture;
673       Changed = true;
674     }
675 
676     // We also want to compute readonly/readnone. With a small number of false
677     // negatives, we can assume that any pointer which is captured isn't going
678     // to be provably readonly or readnone, since by definition we can't
679     // analyze all uses of a captured pointer.
680     //
681     // The false negatives happen when the pointer is captured by a function
682     // that promises readonly/readnone behaviour on the pointer, then the
683     // pointer's lifetime ends before anything that writes to arbitrary memory.
684     // Also, a readonly/readnone pointer may be returned, but returning a
685     // pointer is capturing it.
686 
687     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
688     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
689       Argument *A = ArgumentSCC[i]->Definition;
690       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
691       if (K == Attribute::ReadNone)
692         continue;
693       if (K == Attribute::ReadOnly) {
694         ReadAttr = Attribute::ReadOnly;
695         continue;
696       }
697       ReadAttr = K;
698       break;
699     }
700 
701     if (ReadAttr != Attribute::None) {
702       AttrBuilder B, R;
703       B.addAttribute(ReadAttr);
704       R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
705       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
706         Argument *A = ArgumentSCC[i]->Definition;
707         // Clear out existing readonly/readnone attributes
708         A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
709         A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
710         ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
711         Changed = true;
712       }
713     }
714   }
715 
716   return Changed;
717 }
718 
719 /// Tests whether a function is "malloc-like".
720 ///
721 /// A function is "malloc-like" if it returns either null or a pointer that
722 /// doesn't alias any other pointer visible to the caller.
723 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
724   SmallSetVector<Value *, 8> FlowsToReturn;
725   for (BasicBlock &BB : *F)
726     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
727       FlowsToReturn.insert(Ret->getReturnValue());
728 
729   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
730     Value *RetVal = FlowsToReturn[i];
731 
732     if (Constant *C = dyn_cast<Constant>(RetVal)) {
733       if (!C->isNullValue() && !isa<UndefValue>(C))
734         return false;
735 
736       continue;
737     }
738 
739     if (isa<Argument>(RetVal))
740       return false;
741 
742     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
743       switch (RVI->getOpcode()) {
744       // Extend the analysis by looking upwards.
745       case Instruction::BitCast:
746       case Instruction::GetElementPtr:
747       case Instruction::AddrSpaceCast:
748         FlowsToReturn.insert(RVI->getOperand(0));
749         continue;
750       case Instruction::Select: {
751         SelectInst *SI = cast<SelectInst>(RVI);
752         FlowsToReturn.insert(SI->getTrueValue());
753         FlowsToReturn.insert(SI->getFalseValue());
754         continue;
755       }
756       case Instruction::PHI: {
757         PHINode *PN = cast<PHINode>(RVI);
758         for (Value *IncValue : PN->incoming_values())
759           FlowsToReturn.insert(IncValue);
760         continue;
761       }
762 
763       // Check whether the pointer came from an allocation.
764       case Instruction::Alloca:
765         break;
766       case Instruction::Call:
767       case Instruction::Invoke: {
768         CallSite CS(RVI);
769         if (CS.paramHasAttr(0, Attribute::NoAlias))
770           break;
771         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
772           break;
773         LLVM_FALLTHROUGH;
774       }
775       default:
776         return false; // Did not come from an allocation.
777       }
778 
779     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
780       return false;
781   }
782 
783   return true;
784 }
785 
786 /// Deduce noalias attributes for the SCC.
787 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
788   // Check each function in turn, determining which functions return noalias
789   // pointers.
790   for (Function *F : SCCNodes) {
791     // Already noalias.
792     if (F->doesNotAlias(0))
793       continue;
794 
795     // We can infer and propagate function attributes only when we know that the
796     // definition we'll get at link time is *exactly* the definition we see now.
797     // For more details, see GlobalValue::mayBeDerefined.
798     if (!F->hasExactDefinition())
799       return false;
800 
801     // We annotate noalias return values, which are only applicable to
802     // pointer types.
803     if (!F->getReturnType()->isPointerTy())
804       continue;
805 
806     if (!isFunctionMallocLike(F, SCCNodes))
807       return false;
808   }
809 
810   bool MadeChange = false;
811   for (Function *F : SCCNodes) {
812     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
813       continue;
814 
815     F->setDoesNotAlias(0);
816     ++NumNoAlias;
817     MadeChange = true;
818   }
819 
820   return MadeChange;
821 }
822 
823 /// Tests whether this function is known to not return null.
824 ///
825 /// Requires that the function returns a pointer.
826 ///
827 /// Returns true if it believes the function will not return a null, and sets
828 /// \p Speculative based on whether the returned conclusion is a speculative
829 /// conclusion due to SCC calls.
830 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
831                             bool &Speculative) {
832   assert(F->getReturnType()->isPointerTy() &&
833          "nonnull only meaningful on pointer types");
834   Speculative = false;
835 
836   SmallSetVector<Value *, 8> FlowsToReturn;
837   for (BasicBlock &BB : *F)
838     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
839       FlowsToReturn.insert(Ret->getReturnValue());
840 
841   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
842     Value *RetVal = FlowsToReturn[i];
843 
844     // If this value is locally known to be non-null, we're good
845     if (isKnownNonNull(RetVal))
846       continue;
847 
848     // Otherwise, we need to look upwards since we can't make any local
849     // conclusions.
850     Instruction *RVI = dyn_cast<Instruction>(RetVal);
851     if (!RVI)
852       return false;
853     switch (RVI->getOpcode()) {
854     // Extend the analysis by looking upwards.
855     case Instruction::BitCast:
856     case Instruction::GetElementPtr:
857     case Instruction::AddrSpaceCast:
858       FlowsToReturn.insert(RVI->getOperand(0));
859       continue;
860     case Instruction::Select: {
861       SelectInst *SI = cast<SelectInst>(RVI);
862       FlowsToReturn.insert(SI->getTrueValue());
863       FlowsToReturn.insert(SI->getFalseValue());
864       continue;
865     }
866     case Instruction::PHI: {
867       PHINode *PN = cast<PHINode>(RVI);
868       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
869         FlowsToReturn.insert(PN->getIncomingValue(i));
870       continue;
871     }
872     case Instruction::Call:
873     case Instruction::Invoke: {
874       CallSite CS(RVI);
875       Function *Callee = CS.getCalledFunction();
876       // A call to a node within the SCC is assumed to return null until
877       // proven otherwise
878       if (Callee && SCCNodes.count(Callee)) {
879         Speculative = true;
880         continue;
881       }
882       return false;
883     }
884     default:
885       return false; // Unknown source, may be null
886     };
887     llvm_unreachable("should have either continued or returned");
888   }
889 
890   return true;
891 }
892 
893 /// Deduce nonnull attributes for the SCC.
894 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
895   // Speculative that all functions in the SCC return only nonnull
896   // pointers.  We may refute this as we analyze functions.
897   bool SCCReturnsNonNull = true;
898 
899   bool MadeChange = false;
900 
901   // Check each function in turn, determining which functions return nonnull
902   // pointers.
903   for (Function *F : SCCNodes) {
904     // Already nonnull.
905     if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
906                                         Attribute::NonNull))
907       continue;
908 
909     // We can infer and propagate function attributes only when we know that the
910     // definition we'll get at link time is *exactly* the definition we see now.
911     // For more details, see GlobalValue::mayBeDerefined.
912     if (!F->hasExactDefinition())
913       return false;
914 
915     // We annotate nonnull return values, which are only applicable to
916     // pointer types.
917     if (!F->getReturnType()->isPointerTy())
918       continue;
919 
920     bool Speculative = false;
921     if (isReturnNonNull(F, SCCNodes, Speculative)) {
922       if (!Speculative) {
923         // Mark the function eagerly since we may discover a function
924         // which prevents us from speculating about the entire SCC
925         DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
926         F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
927         ++NumNonNullReturn;
928         MadeChange = true;
929       }
930       continue;
931     }
932     // At least one function returns something which could be null, can't
933     // speculate any more.
934     SCCReturnsNonNull = false;
935   }
936 
937   if (SCCReturnsNonNull) {
938     for (Function *F : SCCNodes) {
939       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
940                                           Attribute::NonNull) ||
941           !F->getReturnType()->isPointerTy())
942         continue;
943 
944       DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
945       F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
946       ++NumNonNullReturn;
947       MadeChange = true;
948     }
949   }
950 
951   return MadeChange;
952 }
953 
954 /// Remove the convergent attribute from all functions in the SCC if every
955 /// callsite within the SCC is not convergent (except for calls to functions
956 /// within the SCC).  Returns true if changes were made.
957 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
958   // For every function in SCC, ensure that either
959   //  * it is not convergent, or
960   //  * we can remove its convergent attribute.
961   bool HasConvergentFn = false;
962   for (Function *F : SCCNodes) {
963     if (!F->isConvergent()) continue;
964     HasConvergentFn = true;
965 
966     // Can't remove convergent from function declarations.
967     if (F->isDeclaration()) return false;
968 
969     // Can't remove convergent if any of our functions has a convergent call to a
970     // function not in the SCC.
971     for (Instruction &I : instructions(*F)) {
972       CallSite CS(&I);
973       // Bail if CS is a convergent call to a function not in the SCC.
974       if (CS && CS.isConvergent() &&
975           SCCNodes.count(CS.getCalledFunction()) == 0)
976         return false;
977     }
978   }
979 
980   // If the SCC doesn't have any convergent functions, we have nothing to do.
981   if (!HasConvergentFn) return false;
982 
983   // If we got here, all of the calls the SCC makes to functions not in the SCC
984   // are non-convergent.  Therefore all of the SCC's functions can also be made
985   // non-convergent.  We'll remove the attr from the callsites in
986   // InstCombineCalls.
987   for (Function *F : SCCNodes) {
988     if (!F->isConvergent()) continue;
989 
990     DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
991                  << "\n");
992     F->setNotConvergent();
993   }
994   return true;
995 }
996 
997 static bool setDoesNotRecurse(Function &F) {
998   if (F.doesNotRecurse())
999     return false;
1000   F.setDoesNotRecurse();
1001   ++NumNoRecurse;
1002   return true;
1003 }
1004 
1005 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1006   // Try and identify functions that do not recurse.
1007 
1008   // If the SCC contains multiple nodes we know for sure there is recursion.
1009   if (SCCNodes.size() != 1)
1010     return false;
1011 
1012   Function *F = *SCCNodes.begin();
1013   if (!F || F->isDeclaration() || F->doesNotRecurse())
1014     return false;
1015 
1016   // If all of the calls in F are identifiable and are to norecurse functions, F
1017   // is norecurse. This check also detects self-recursion as F is not currently
1018   // marked norecurse, so any called from F to F will not be marked norecurse.
1019   for (Instruction &I : instructions(*F))
1020     if (auto CS = CallSite(&I)) {
1021       Function *Callee = CS.getCalledFunction();
1022       if (!Callee || Callee == F || !Callee->doesNotRecurse())
1023         // Function calls a potentially recursive function.
1024         return false;
1025     }
1026 
1027   // Every call was to a non-recursive function other than this function, and
1028   // we have no indirect recursion as the SCC size is one. This function cannot
1029   // recurse.
1030   return setDoesNotRecurse(*F);
1031 }
1032 
1033 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1034                                                   CGSCCAnalysisManager &AM,
1035                                                   LazyCallGraph &CG,
1036                                                   CGSCCUpdateResult &) {
1037   FunctionAnalysisManager &FAM =
1038       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1039 
1040   // We pass a lambda into functions to wire them up to the analysis manager
1041   // for getting function analyses.
1042   auto AARGetter = [&](Function &F) -> AAResults & {
1043     return FAM.getResult<AAManager>(F);
1044   };
1045 
1046   // Fill SCCNodes with the elements of the SCC. Also track whether there are
1047   // any external or opt-none nodes that will prevent us from optimizing any
1048   // part of the SCC.
1049   SCCNodeSet SCCNodes;
1050   bool HasUnknownCall = false;
1051   for (LazyCallGraph::Node &N : C) {
1052     Function &F = N.getFunction();
1053     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1054       // Treat any function we're trying not to optimize as if it were an
1055       // indirect call and omit it from the node set used below.
1056       HasUnknownCall = true;
1057       continue;
1058     }
1059     // Track whether any functions in this SCC have an unknown call edge.
1060     // Note: if this is ever a performance hit, we can common it with
1061     // subsequent routines which also do scans over the instructions of the
1062     // function.
1063     if (!HasUnknownCall)
1064       for (Instruction &I : instructions(F))
1065         if (auto CS = CallSite(&I))
1066           if (!CS.getCalledFunction()) {
1067             HasUnknownCall = true;
1068             break;
1069           }
1070 
1071     SCCNodes.insert(&F);
1072   }
1073 
1074   bool Changed = false;
1075   Changed |= addArgumentReturnedAttrs(SCCNodes);
1076   Changed |= addReadAttrs(SCCNodes, AARGetter);
1077   Changed |= addArgumentAttrs(SCCNodes);
1078 
1079   // If we have no external nodes participating in the SCC, we can deduce some
1080   // more precise attributes as well.
1081   if (!HasUnknownCall) {
1082     Changed |= addNoAliasAttrs(SCCNodes);
1083     Changed |= addNonNullAttrs(SCCNodes);
1084     Changed |= removeConvergentAttrs(SCCNodes);
1085     Changed |= addNoRecurseAttrs(SCCNodes);
1086   }
1087 
1088   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1089 }
1090 
1091 namespace {
1092 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1093   static char ID; // Pass identification, replacement for typeid
1094   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1095     initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1096   }
1097 
1098   bool runOnSCC(CallGraphSCC &SCC) override;
1099 
1100   void getAnalysisUsage(AnalysisUsage &AU) const override {
1101     AU.setPreservesCFG();
1102     AU.addRequired<AssumptionCacheTracker>();
1103     getAAResultsAnalysisUsage(AU);
1104     CallGraphSCCPass::getAnalysisUsage(AU);
1105   }
1106 };
1107 }
1108 
1109 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1110 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1111                       "Deduce function attributes", false, false)
1112 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1113 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1114 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1115                     "Deduce function attributes", false, false)
1116 
1117 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1118 
1119 template <typename AARGetterT>
1120 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1121   bool Changed = false;
1122 
1123   // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1124   // whether a given CallGraphNode is in this SCC. Also track whether there are
1125   // any external or opt-none nodes that will prevent us from optimizing any
1126   // part of the SCC.
1127   SCCNodeSet SCCNodes;
1128   bool ExternalNode = false;
1129   for (CallGraphNode *I : SCC) {
1130     Function *F = I->getFunction();
1131     if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1132       // External node or function we're trying not to optimize - we both avoid
1133       // transform them and avoid leveraging information they provide.
1134       ExternalNode = true;
1135       continue;
1136     }
1137 
1138     SCCNodes.insert(F);
1139   }
1140 
1141   Changed |= addArgumentReturnedAttrs(SCCNodes);
1142   Changed |= addReadAttrs(SCCNodes, AARGetter);
1143   Changed |= addArgumentAttrs(SCCNodes);
1144 
1145   // If we have no external nodes participating in the SCC, we can deduce some
1146   // more precise attributes as well.
1147   if (!ExternalNode) {
1148     Changed |= addNoAliasAttrs(SCCNodes);
1149     Changed |= addNonNullAttrs(SCCNodes);
1150     Changed |= removeConvergentAttrs(SCCNodes);
1151     Changed |= addNoRecurseAttrs(SCCNodes);
1152   }
1153 
1154   return Changed;
1155 }
1156 
1157 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1158   if (skipSCC(SCC))
1159     return false;
1160 
1161   // We compute dedicated AA results for each function in the SCC as needed. We
1162   // use a lambda referencing external objects so that they live long enough to
1163   // be queried, but we re-use them each time.
1164   Optional<BasicAAResult> BAR;
1165   Optional<AAResults> AAR;
1166   auto AARGetter = [&](Function &F) -> AAResults & {
1167     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1168     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1169     return *AAR;
1170   };
1171 
1172   return runImpl(SCC, AARGetter);
1173 }
1174 
1175 namespace {
1176 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1177   static char ID; // Pass identification, replacement for typeid
1178   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1179     initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1180   }
1181 
1182   bool runOnModule(Module &M) override;
1183 
1184   void getAnalysisUsage(AnalysisUsage &AU) const override {
1185     AU.setPreservesCFG();
1186     AU.addRequired<CallGraphWrapperPass>();
1187     AU.addPreserved<CallGraphWrapperPass>();
1188   }
1189 };
1190 }
1191 
1192 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1193 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1194                       "Deduce function attributes in RPO", false, false)
1195 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1196 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1197                     "Deduce function attributes in RPO", false, false)
1198 
1199 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1200   return new ReversePostOrderFunctionAttrsLegacyPass();
1201 }
1202 
1203 static bool addNoRecurseAttrsTopDown(Function &F) {
1204   // We check the preconditions for the function prior to calling this to avoid
1205   // the cost of building up a reversible post-order list. We assert them here
1206   // to make sure none of the invariants this relies on were violated.
1207   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1208   assert(!F.doesNotRecurse() &&
1209          "This function has already been deduced as norecurs!");
1210   assert(F.hasInternalLinkage() &&
1211          "Can only do top-down deduction for internal linkage functions!");
1212 
1213   // If F is internal and all of its uses are calls from a non-recursive
1214   // functions, then none of its calls could in fact recurse without going
1215   // through a function marked norecurse, and so we can mark this function too
1216   // as norecurse. Note that the uses must actually be calls -- otherwise
1217   // a pointer to this function could be returned from a norecurse function but
1218   // this function could be recursively (indirectly) called. Note that this
1219   // also detects if F is directly recursive as F is not yet marked as
1220   // a norecurse function.
1221   for (auto *U : F.users()) {
1222     auto *I = dyn_cast<Instruction>(U);
1223     if (!I)
1224       return false;
1225     CallSite CS(I);
1226     if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1227       return false;
1228   }
1229   return setDoesNotRecurse(F);
1230 }
1231 
1232 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1233   // We only have a post-order SCC traversal (because SCCs are inherently
1234   // discovered in post-order), so we accumulate them in a vector and then walk
1235   // it in reverse. This is simpler than using the RPO iterator infrastructure
1236   // because we need to combine SCC detection and the PO walk of the call
1237   // graph. We can also cheat egregiously because we're primarily interested in
1238   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1239   // with multiple functions in them will clearly be recursive.
1240   SmallVector<Function *, 16> Worklist;
1241   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1242     if (I->size() != 1)
1243       continue;
1244 
1245     Function *F = I->front()->getFunction();
1246     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1247         F->hasInternalLinkage())
1248       Worklist.push_back(F);
1249   }
1250 
1251   bool Changed = false;
1252   for (auto *F : reverse(Worklist))
1253     Changed |= addNoRecurseAttrsTopDown(*F);
1254 
1255   return Changed;
1256 }
1257 
1258 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1259   if (skipModule(M))
1260     return false;
1261 
1262   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1263 
1264   return deduceFunctionAttributeInRPO(M, CG);
1265 }
1266 
1267 PreservedAnalyses
1268 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1269   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1270 
1271   bool Changed = deduceFunctionAttributeInRPO(M, CG);
1272 
1273   // CallGraphAnalysis holds AssertingVH and must be invalidated eagerly so
1274   // that other passes don't delete stuff from under it.
1275   // FIXME: We need to invalidate this to avoid PR28400. Is there a better
1276   // solution?
1277   AM.invalidate<CallGraphAnalysis>(M);
1278 
1279   if (!Changed)
1280     return PreservedAnalyses::all();
1281   PreservedAnalyses PA;
1282   PA.preserve<CallGraphAnalysis>();
1283   return PA;
1284 }
1285