1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 // Note: the callee and the two successor blocks *follow* the argument 585 // operands. This means there is no need to adjust UseIndex to account for 586 // these. 587 588 unsigned UseIndex = 589 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 590 591 assert(UseIndex < CB->data_operands_size() && 592 "Indirect function calls should have been filtered above!"); 593 594 if (UseIndex >= CB->arg_size()) { 595 // Data operand, but not a argument operand -- must be a bundle operand 596 assert(CB->hasOperandBundles() && "Must be!"); 597 598 // CaptureTracking told us that we're being captured by an operand bundle 599 // use. In this case it does not matter if the callee is within our SCC 600 // or not -- we've been captured in some unknown way, and we have to be 601 // conservative. 602 Captured = true; 603 return true; 604 } 605 606 if (UseIndex >= F->arg_size()) { 607 assert(F->isVarArg() && "More params than args in non-varargs call"); 608 Captured = true; 609 return true; 610 } 611 612 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 613 return false; 614 } 615 616 // True only if certainly captured (used outside our SCC). 617 bool Captured = false; 618 619 // Uses within our SCC. 620 SmallVector<Argument *, 4> Uses; 621 622 const SCCNodeSet &SCCNodes; 623 }; 624 625 } // end anonymous namespace 626 627 namespace llvm { 628 629 template <> struct GraphTraits<ArgumentGraphNode *> { 630 using NodeRef = ArgumentGraphNode *; 631 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 632 633 static NodeRef getEntryNode(NodeRef A) { return A; } 634 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 635 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 636 }; 637 638 template <> 639 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 640 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 641 642 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 643 return AG->begin(); 644 } 645 646 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 647 }; 648 649 } // end namespace llvm 650 651 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 652 static Attribute::AttrKind 653 determinePointerAccessAttrs(Argument *A, 654 const SmallPtrSet<Argument *, 8> &SCCNodes) { 655 SmallVector<Use *, 32> Worklist; 656 SmallPtrSet<Use *, 32> Visited; 657 658 // inalloca arguments are always clobbered by the call. 659 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 660 return Attribute::None; 661 662 bool IsRead = false; 663 bool IsWrite = false; 664 665 for (Use &U : A->uses()) { 666 Visited.insert(&U); 667 Worklist.push_back(&U); 668 } 669 670 while (!Worklist.empty()) { 671 if (IsWrite && IsRead) 672 // No point in searching further.. 673 return Attribute::None; 674 675 Use *U = Worklist.pop_back_val(); 676 Instruction *I = cast<Instruction>(U->getUser()); 677 678 switch (I->getOpcode()) { 679 case Instruction::BitCast: 680 case Instruction::GetElementPtr: 681 case Instruction::PHI: 682 case Instruction::Select: 683 case Instruction::AddrSpaceCast: 684 // The original value is not read/written via this if the new value isn't. 685 for (Use &UU : I->uses()) 686 if (Visited.insert(&UU).second) 687 Worklist.push_back(&UU); 688 break; 689 690 case Instruction::Call: 691 case Instruction::Invoke: { 692 bool Captures = true; 693 694 if (I->getType()->isVoidTy()) 695 Captures = false; 696 697 auto AddUsersToWorklistIfCapturing = [&] { 698 if (Captures) 699 for (Use &UU : I->uses()) 700 if (Visited.insert(&UU).second) 701 Worklist.push_back(&UU); 702 }; 703 704 CallBase &CB = cast<CallBase>(*I); 705 if (CB.doesNotAccessMemory()) { 706 AddUsersToWorklistIfCapturing(); 707 continue; 708 } 709 710 Function *F = CB.getCalledFunction(); 711 if (!F) { 712 if (CB.onlyReadsMemory()) { 713 IsRead = true; 714 AddUsersToWorklistIfCapturing(); 715 continue; 716 } 717 return Attribute::None; 718 } 719 720 // Note: the callee and the two successor blocks *follow* the argument 721 // operands. This means there is no need to adjust UseIndex to account 722 // for these. 723 724 unsigned UseIndex = std::distance(CB.arg_begin(), U); 725 726 // U cannot be the callee operand use: since we're exploring the 727 // transitive uses of an Argument, having such a use be a callee would 728 // imply the call site is an indirect call or invoke; and we'd take the 729 // early exit above. 730 assert(UseIndex < CB.data_operands_size() && 731 "Data operand use expected!"); 732 733 bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 734 735 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 736 assert(F->isVarArg() && "More params than args in non-varargs call"); 737 return Attribute::None; 738 } 739 740 Captures &= !CB.doesNotCapture(UseIndex); 741 742 // Since the optimizer (by design) cannot see the data flow corresponding 743 // to a operand bundle use, these cannot participate in the optimistic SCC 744 // analysis. Instead, we model the operand bundle uses as arguments in 745 // call to a function external to the SCC. 746 if (IsOperandBundleUse || 747 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 748 749 // The accessors used on call site here do the right thing for calls and 750 // invokes with operand bundles. 751 752 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 753 return Attribute::None; 754 if (!CB.doesNotAccessMemory(UseIndex)) 755 IsRead = true; 756 } 757 758 AddUsersToWorklistIfCapturing(); 759 break; 760 } 761 762 case Instruction::Load: 763 // A volatile load has side effects beyond what readonly can be relied 764 // upon. 765 if (cast<LoadInst>(I)->isVolatile()) 766 return Attribute::None; 767 768 IsRead = true; 769 break; 770 771 case Instruction::Store: 772 if (cast<StoreInst>(I)->getValueOperand() == *U) 773 // untrackable capture 774 return Attribute::None; 775 776 // A volatile store has side effects beyond what writeonly can be relied 777 // upon. 778 if (cast<StoreInst>(I)->isVolatile()) 779 return Attribute::None; 780 781 IsWrite = true; 782 break; 783 784 case Instruction::ICmp: 785 case Instruction::Ret: 786 break; 787 788 default: 789 return Attribute::None; 790 } 791 } 792 793 if (IsWrite && IsRead) 794 return Attribute::None; 795 else if (IsRead) 796 return Attribute::ReadOnly; 797 else if (IsWrite) 798 return Attribute::WriteOnly; 799 else 800 return Attribute::ReadNone; 801 } 802 803 /// Deduce returned attributes for the SCC. 804 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 805 SmallSet<Function *, 8> &Changed) { 806 // Check each function in turn, determining if an argument is always returned. 807 for (Function *F : SCCNodes) { 808 // We can infer and propagate function attributes only when we know that the 809 // definition we'll get at link time is *exactly* the definition we see now. 810 // For more details, see GlobalValue::mayBeDerefined. 811 if (!F->hasExactDefinition()) 812 continue; 813 814 if (F->getReturnType()->isVoidTy()) 815 continue; 816 817 // There is nothing to do if an argument is already marked as 'returned'. 818 if (llvm::any_of(F->args(), 819 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 820 continue; 821 822 auto FindRetArg = [&]() -> Value * { 823 Value *RetArg = nullptr; 824 for (BasicBlock &BB : *F) 825 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 826 // Note that stripPointerCasts should look through functions with 827 // returned arguments. 828 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 829 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 830 return nullptr; 831 832 if (!RetArg) 833 RetArg = RetVal; 834 else if (RetArg != RetVal) 835 return nullptr; 836 } 837 838 return RetArg; 839 }; 840 841 if (Value *RetArg = FindRetArg()) { 842 auto *A = cast<Argument>(RetArg); 843 A->addAttr(Attribute::Returned); 844 ++NumReturned; 845 Changed.insert(F); 846 } 847 } 848 } 849 850 /// If a callsite has arguments that are also arguments to the parent function, 851 /// try to propagate attributes from the callsite's arguments to the parent's 852 /// arguments. This may be important because inlining can cause information loss 853 /// when attribute knowledge disappears with the inlined call. 854 static bool addArgumentAttrsFromCallsites(Function &F) { 855 if (!EnableNonnullArgPropagation) 856 return false; 857 858 bool Changed = false; 859 860 // For an argument attribute to transfer from a callsite to the parent, the 861 // call must be guaranteed to execute every time the parent is called. 862 // Conservatively, just check for calls in the entry block that are guaranteed 863 // to execute. 864 // TODO: This could be enhanced by testing if the callsite post-dominates the 865 // entry block or by doing simple forward walks or backward walks to the 866 // callsite. 867 BasicBlock &Entry = F.getEntryBlock(); 868 for (Instruction &I : Entry) { 869 if (auto *CB = dyn_cast<CallBase>(&I)) { 870 if (auto *CalledFunc = CB->getCalledFunction()) { 871 for (auto &CSArg : CalledFunc->args()) { 872 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 873 continue; 874 875 // If the non-null callsite argument operand is an argument to 'F' 876 // (the caller) and the call is guaranteed to execute, then the value 877 // must be non-null throughout 'F'. 878 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 879 if (FArg && !FArg->hasNonNullAttr()) { 880 FArg->addAttr(Attribute::NonNull); 881 Changed = true; 882 } 883 } 884 } 885 } 886 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 887 break; 888 } 889 890 return Changed; 891 } 892 893 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 894 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 895 R == Attribute::WriteOnly) 896 && "Must be an access attribute."); 897 assert(A && "Argument must not be null."); 898 899 // If the argument already has the attribute, nothing needs to be done. 900 if (A->hasAttribute(R)) 901 return false; 902 903 // Otherwise, remove potentially conflicting attribute, add the new one, 904 // and update statistics. 905 A->removeAttr(Attribute::WriteOnly); 906 A->removeAttr(Attribute::ReadOnly); 907 A->removeAttr(Attribute::ReadNone); 908 A->addAttr(R); 909 if (R == Attribute::ReadOnly) 910 ++NumReadOnlyArg; 911 else if (R == Attribute::WriteOnly) 912 ++NumWriteOnlyArg; 913 else 914 ++NumReadNoneArg; 915 return true; 916 } 917 918 /// Deduce nocapture attributes for the SCC. 919 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 920 SmallSet<Function *, 8> &Changed) { 921 ArgumentGraph AG; 922 923 // Check each function in turn, determining which pointer arguments are not 924 // captured. 925 for (Function *F : SCCNodes) { 926 // We can infer and propagate function attributes only when we know that the 927 // definition we'll get at link time is *exactly* the definition we see now. 928 // For more details, see GlobalValue::mayBeDerefined. 929 if (!F->hasExactDefinition()) 930 continue; 931 932 if (addArgumentAttrsFromCallsites(*F)) 933 Changed.insert(F); 934 935 // Functions that are readonly (or readnone) and nounwind and don't return 936 // a value can't capture arguments. Don't analyze them. 937 if (F->onlyReadsMemory() && F->doesNotThrow() && 938 F->getReturnType()->isVoidTy()) { 939 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 940 ++A) { 941 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 942 A->addAttr(Attribute::NoCapture); 943 ++NumNoCapture; 944 Changed.insert(F); 945 } 946 } 947 continue; 948 } 949 950 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 951 ++A) { 952 if (!A->getType()->isPointerTy()) 953 continue; 954 bool HasNonLocalUses = false; 955 if (!A->hasNoCaptureAttr()) { 956 ArgumentUsesTracker Tracker(SCCNodes); 957 PointerMayBeCaptured(&*A, &Tracker); 958 if (!Tracker.Captured) { 959 if (Tracker.Uses.empty()) { 960 // If it's trivially not captured, mark it nocapture now. 961 A->addAttr(Attribute::NoCapture); 962 ++NumNoCapture; 963 Changed.insert(F); 964 } else { 965 // If it's not trivially captured and not trivially not captured, 966 // then it must be calling into another function in our SCC. Save 967 // its particulars for Argument-SCC analysis later. 968 ArgumentGraphNode *Node = AG[&*A]; 969 for (Argument *Use : Tracker.Uses) { 970 Node->Uses.push_back(AG[Use]); 971 if (Use != &*A) 972 HasNonLocalUses = true; 973 } 974 } 975 } 976 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 977 } 978 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 979 // Can we determine that it's readonly/readnone/writeonly without doing 980 // an SCC? Note that we don't allow any calls at all here, or else our 981 // result will be dependent on the iteration order through the 982 // functions in the SCC. 983 SmallPtrSet<Argument *, 8> Self; 984 Self.insert(&*A); 985 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 986 if (R != Attribute::None) 987 if (addAccessAttr(A, R)) 988 Changed.insert(F); 989 } 990 } 991 } 992 993 // The graph we've collected is partial because we stopped scanning for 994 // argument uses once we solved the argument trivially. These partial nodes 995 // show up as ArgumentGraphNode objects with an empty Uses list, and for 996 // these nodes the final decision about whether they capture has already been 997 // made. If the definition doesn't have a 'nocapture' attribute by now, it 998 // captures. 999 1000 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 1001 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 1002 if (ArgumentSCC.size() == 1) { 1003 if (!ArgumentSCC[0]->Definition) 1004 continue; // synthetic root node 1005 1006 // eg. "void f(int* x) { if (...) f(x); }" 1007 if (ArgumentSCC[0]->Uses.size() == 1 && 1008 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 1009 Argument *A = ArgumentSCC[0]->Definition; 1010 A->addAttr(Attribute::NoCapture); 1011 ++NumNoCapture; 1012 Changed.insert(A->getParent()); 1013 } 1014 continue; 1015 } 1016 1017 bool SCCCaptured = false; 1018 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1019 I != E && !SCCCaptured; ++I) { 1020 ArgumentGraphNode *Node = *I; 1021 if (Node->Uses.empty()) { 1022 if (!Node->Definition->hasNoCaptureAttr()) 1023 SCCCaptured = true; 1024 } 1025 } 1026 if (SCCCaptured) 1027 continue; 1028 1029 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1030 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1031 // quickly looking up whether a given Argument is in this ArgumentSCC. 1032 for (ArgumentGraphNode *I : ArgumentSCC) { 1033 ArgumentSCCNodes.insert(I->Definition); 1034 } 1035 1036 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1037 I != E && !SCCCaptured; ++I) { 1038 ArgumentGraphNode *N = *I; 1039 for (ArgumentGraphNode *Use : N->Uses) { 1040 Argument *A = Use->Definition; 1041 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1042 continue; 1043 SCCCaptured = true; 1044 break; 1045 } 1046 } 1047 if (SCCCaptured) 1048 continue; 1049 1050 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1051 Argument *A = ArgumentSCC[i]->Definition; 1052 A->addAttr(Attribute::NoCapture); 1053 ++NumNoCapture; 1054 Changed.insert(A->getParent()); 1055 } 1056 1057 // We also want to compute readonly/readnone/writeonly. With a small number 1058 // of false negatives, we can assume that any pointer which is captured 1059 // isn't going to be provably readonly or readnone, since by definition 1060 // we can't analyze all uses of a captured pointer. 1061 // 1062 // The false negatives happen when the pointer is captured by a function 1063 // that promises readonly/readnone behaviour on the pointer, then the 1064 // pointer's lifetime ends before anything that writes to arbitrary memory. 1065 // Also, a readonly/readnone pointer may be returned, but returning a 1066 // pointer is capturing it. 1067 1068 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1069 if (A == B) 1070 return A; 1071 if (A == Attribute::ReadNone) 1072 return B; 1073 if (B == Attribute::ReadNone) 1074 return A; 1075 return Attribute::None; 1076 }; 1077 1078 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1079 for (unsigned i = 0, e = ArgumentSCC.size(); 1080 i != e && AccessAttr != Attribute::None; ++i) { 1081 Argument *A = ArgumentSCC[i]->Definition; 1082 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1083 AccessAttr = meetAccessAttr(AccessAttr, K); 1084 } 1085 1086 if (AccessAttr != Attribute::None) { 1087 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1088 Argument *A = ArgumentSCC[i]->Definition; 1089 if (addAccessAttr(A, AccessAttr)) 1090 Changed.insert(A->getParent()); 1091 } 1092 } 1093 } 1094 } 1095 1096 /// Tests whether a function is "malloc-like". 1097 /// 1098 /// A function is "malloc-like" if it returns either null or a pointer that 1099 /// doesn't alias any other pointer visible to the caller. 1100 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1101 SmallSetVector<Value *, 8> FlowsToReturn; 1102 for (BasicBlock &BB : *F) 1103 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1104 FlowsToReturn.insert(Ret->getReturnValue()); 1105 1106 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1107 Value *RetVal = FlowsToReturn[i]; 1108 1109 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1110 if (!C->isNullValue() && !isa<UndefValue>(C)) 1111 return false; 1112 1113 continue; 1114 } 1115 1116 if (isa<Argument>(RetVal)) 1117 return false; 1118 1119 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1120 switch (RVI->getOpcode()) { 1121 // Extend the analysis by looking upwards. 1122 case Instruction::BitCast: 1123 case Instruction::GetElementPtr: 1124 case Instruction::AddrSpaceCast: 1125 FlowsToReturn.insert(RVI->getOperand(0)); 1126 continue; 1127 case Instruction::Select: { 1128 SelectInst *SI = cast<SelectInst>(RVI); 1129 FlowsToReturn.insert(SI->getTrueValue()); 1130 FlowsToReturn.insert(SI->getFalseValue()); 1131 continue; 1132 } 1133 case Instruction::PHI: { 1134 PHINode *PN = cast<PHINode>(RVI); 1135 for (Value *IncValue : PN->incoming_values()) 1136 FlowsToReturn.insert(IncValue); 1137 continue; 1138 } 1139 1140 // Check whether the pointer came from an allocation. 1141 case Instruction::Alloca: 1142 break; 1143 case Instruction::Call: 1144 case Instruction::Invoke: { 1145 CallBase &CB = cast<CallBase>(*RVI); 1146 if (CB.hasRetAttr(Attribute::NoAlias)) 1147 break; 1148 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1149 break; 1150 LLVM_FALLTHROUGH; 1151 } 1152 default: 1153 return false; // Did not come from an allocation. 1154 } 1155 1156 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1157 return false; 1158 } 1159 1160 return true; 1161 } 1162 1163 /// Deduce noalias attributes for the SCC. 1164 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1165 SmallSet<Function *, 8> &Changed) { 1166 // Check each function in turn, determining which functions return noalias 1167 // pointers. 1168 for (Function *F : SCCNodes) { 1169 // Already noalias. 1170 if (F->returnDoesNotAlias()) 1171 continue; 1172 1173 // We can infer and propagate function attributes only when we know that the 1174 // definition we'll get at link time is *exactly* the definition we see now. 1175 // For more details, see GlobalValue::mayBeDerefined. 1176 if (!F->hasExactDefinition()) 1177 return; 1178 1179 // We annotate noalias return values, which are only applicable to 1180 // pointer types. 1181 if (!F->getReturnType()->isPointerTy()) 1182 continue; 1183 1184 if (!isFunctionMallocLike(F, SCCNodes)) 1185 return; 1186 } 1187 1188 for (Function *F : SCCNodes) { 1189 if (F->returnDoesNotAlias() || 1190 !F->getReturnType()->isPointerTy()) 1191 continue; 1192 1193 F->setReturnDoesNotAlias(); 1194 ++NumNoAlias; 1195 Changed.insert(F); 1196 } 1197 } 1198 1199 /// Tests whether this function is known to not return null. 1200 /// 1201 /// Requires that the function returns a pointer. 1202 /// 1203 /// Returns true if it believes the function will not return a null, and sets 1204 /// \p Speculative based on whether the returned conclusion is a speculative 1205 /// conclusion due to SCC calls. 1206 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1207 bool &Speculative) { 1208 assert(F->getReturnType()->isPointerTy() && 1209 "nonnull only meaningful on pointer types"); 1210 Speculative = false; 1211 1212 SmallSetVector<Value *, 8> FlowsToReturn; 1213 for (BasicBlock &BB : *F) 1214 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1215 FlowsToReturn.insert(Ret->getReturnValue()); 1216 1217 auto &DL = F->getParent()->getDataLayout(); 1218 1219 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1220 Value *RetVal = FlowsToReturn[i]; 1221 1222 // If this value is locally known to be non-null, we're good 1223 if (isKnownNonZero(RetVal, DL)) 1224 continue; 1225 1226 // Otherwise, we need to look upwards since we can't make any local 1227 // conclusions. 1228 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1229 if (!RVI) 1230 return false; 1231 switch (RVI->getOpcode()) { 1232 // Extend the analysis by looking upwards. 1233 case Instruction::BitCast: 1234 case Instruction::GetElementPtr: 1235 case Instruction::AddrSpaceCast: 1236 FlowsToReturn.insert(RVI->getOperand(0)); 1237 continue; 1238 case Instruction::Select: { 1239 SelectInst *SI = cast<SelectInst>(RVI); 1240 FlowsToReturn.insert(SI->getTrueValue()); 1241 FlowsToReturn.insert(SI->getFalseValue()); 1242 continue; 1243 } 1244 case Instruction::PHI: { 1245 PHINode *PN = cast<PHINode>(RVI); 1246 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1247 FlowsToReturn.insert(PN->getIncomingValue(i)); 1248 continue; 1249 } 1250 case Instruction::Call: 1251 case Instruction::Invoke: { 1252 CallBase &CB = cast<CallBase>(*RVI); 1253 Function *Callee = CB.getCalledFunction(); 1254 // A call to a node within the SCC is assumed to return null until 1255 // proven otherwise 1256 if (Callee && SCCNodes.count(Callee)) { 1257 Speculative = true; 1258 continue; 1259 } 1260 return false; 1261 } 1262 default: 1263 return false; // Unknown source, may be null 1264 }; 1265 llvm_unreachable("should have either continued or returned"); 1266 } 1267 1268 return true; 1269 } 1270 1271 /// Deduce nonnull attributes for the SCC. 1272 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1273 SmallSet<Function *, 8> &Changed) { 1274 // Speculative that all functions in the SCC return only nonnull 1275 // pointers. We may refute this as we analyze functions. 1276 bool SCCReturnsNonNull = true; 1277 1278 // Check each function in turn, determining which functions return nonnull 1279 // pointers. 1280 for (Function *F : SCCNodes) { 1281 // Already nonnull. 1282 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1283 continue; 1284 1285 // We can infer and propagate function attributes only when we know that the 1286 // definition we'll get at link time is *exactly* the definition we see now. 1287 // For more details, see GlobalValue::mayBeDerefined. 1288 if (!F->hasExactDefinition()) 1289 return; 1290 1291 // We annotate nonnull return values, which are only applicable to 1292 // pointer types. 1293 if (!F->getReturnType()->isPointerTy()) 1294 continue; 1295 1296 bool Speculative = false; 1297 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1298 if (!Speculative) { 1299 // Mark the function eagerly since we may discover a function 1300 // which prevents us from speculating about the entire SCC 1301 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1302 << " as nonnull\n"); 1303 F->addRetAttr(Attribute::NonNull); 1304 ++NumNonNullReturn; 1305 Changed.insert(F); 1306 } 1307 continue; 1308 } 1309 // At least one function returns something which could be null, can't 1310 // speculate any more. 1311 SCCReturnsNonNull = false; 1312 } 1313 1314 if (SCCReturnsNonNull) { 1315 for (Function *F : SCCNodes) { 1316 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1317 !F->getReturnType()->isPointerTy()) 1318 continue; 1319 1320 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1321 F->addRetAttr(Attribute::NonNull); 1322 ++NumNonNullReturn; 1323 Changed.insert(F); 1324 } 1325 } 1326 } 1327 1328 namespace { 1329 1330 /// Collects a set of attribute inference requests and performs them all in one 1331 /// go on a single SCC Node. Inference involves scanning function bodies 1332 /// looking for instructions that violate attribute assumptions. 1333 /// As soon as all the bodies are fine we are free to set the attribute. 1334 /// Customization of inference for individual attributes is performed by 1335 /// providing a handful of predicates for each attribute. 1336 class AttributeInferer { 1337 public: 1338 /// Describes a request for inference of a single attribute. 1339 struct InferenceDescriptor { 1340 1341 /// Returns true if this function does not have to be handled. 1342 /// General intent for this predicate is to provide an optimization 1343 /// for functions that do not need this attribute inference at all 1344 /// (say, for functions that already have the attribute). 1345 std::function<bool(const Function &)> SkipFunction; 1346 1347 /// Returns true if this instruction violates attribute assumptions. 1348 std::function<bool(Instruction &)> InstrBreaksAttribute; 1349 1350 /// Sets the inferred attribute for this function. 1351 std::function<void(Function &)> SetAttribute; 1352 1353 /// Attribute we derive. 1354 Attribute::AttrKind AKind; 1355 1356 /// If true, only "exact" definitions can be used to infer this attribute. 1357 /// See GlobalValue::isDefinitionExact. 1358 bool RequiresExactDefinition; 1359 1360 InferenceDescriptor(Attribute::AttrKind AK, 1361 std::function<bool(const Function &)> SkipFunc, 1362 std::function<bool(Instruction &)> InstrScan, 1363 std::function<void(Function &)> SetAttr, 1364 bool ReqExactDef) 1365 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1366 SetAttribute(SetAttr), AKind(AK), 1367 RequiresExactDefinition(ReqExactDef) {} 1368 }; 1369 1370 private: 1371 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1372 1373 public: 1374 void registerAttrInference(InferenceDescriptor AttrInference) { 1375 InferenceDescriptors.push_back(AttrInference); 1376 } 1377 1378 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1379 }; 1380 1381 /// Perform all the requested attribute inference actions according to the 1382 /// attribute predicates stored before. 1383 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1384 SmallSet<Function *, 8> &Changed) { 1385 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1386 // Go through all the functions in SCC and check corresponding attribute 1387 // assumptions for each of them. Attributes that are invalid for this SCC 1388 // will be removed from InferInSCC. 1389 for (Function *F : SCCNodes) { 1390 1391 // No attributes whose assumptions are still valid - done. 1392 if (InferInSCC.empty()) 1393 return; 1394 1395 // Check if our attributes ever need scanning/can be scanned. 1396 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1397 if (ID.SkipFunction(*F)) 1398 return false; 1399 1400 // Remove from further inference (invalidate) when visiting a function 1401 // that has no instructions to scan/has an unsuitable definition. 1402 return F->isDeclaration() || 1403 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1404 }); 1405 1406 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1407 // set up the F instructions scan to verify assumptions of the attribute. 1408 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1409 llvm::copy_if( 1410 InferInSCC, std::back_inserter(InferInThisFunc), 1411 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1412 1413 if (InferInThisFunc.empty()) 1414 continue; 1415 1416 // Start instruction scan. 1417 for (Instruction &I : instructions(*F)) { 1418 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1419 if (!ID.InstrBreaksAttribute(I)) 1420 return false; 1421 // Remove attribute from further inference on any other functions 1422 // because attribute assumptions have just been violated. 1423 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1424 return D.AKind == ID.AKind; 1425 }); 1426 // Remove attribute from the rest of current instruction scan. 1427 return true; 1428 }); 1429 1430 if (InferInThisFunc.empty()) 1431 break; 1432 } 1433 } 1434 1435 if (InferInSCC.empty()) 1436 return; 1437 1438 for (Function *F : SCCNodes) 1439 // At this point InferInSCC contains only functions that were either: 1440 // - explicitly skipped from scan/inference, or 1441 // - verified to have no instructions that break attribute assumptions. 1442 // Hence we just go and force the attribute for all non-skipped functions. 1443 for (auto &ID : InferInSCC) { 1444 if (ID.SkipFunction(*F)) 1445 continue; 1446 Changed.insert(F); 1447 ID.SetAttribute(*F); 1448 } 1449 } 1450 1451 struct SCCNodesResult { 1452 SCCNodeSet SCCNodes; 1453 bool HasUnknownCall; 1454 }; 1455 1456 } // end anonymous namespace 1457 1458 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1459 static bool InstrBreaksNonConvergent(Instruction &I, 1460 const SCCNodeSet &SCCNodes) { 1461 const CallBase *CB = dyn_cast<CallBase>(&I); 1462 // Breaks non-convergent assumption if CS is a convergent call to a function 1463 // not in the SCC. 1464 return CB && CB->isConvergent() && 1465 !SCCNodes.contains(CB->getCalledFunction()); 1466 } 1467 1468 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1469 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1470 if (!I.mayThrow()) 1471 return false; 1472 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1473 if (Function *Callee = CI->getCalledFunction()) { 1474 // I is a may-throw call to a function inside our SCC. This doesn't 1475 // invalidate our current working assumption that the SCC is no-throw; we 1476 // just have to scan that other function. 1477 if (SCCNodes.contains(Callee)) 1478 return false; 1479 } 1480 } 1481 return true; 1482 } 1483 1484 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1485 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1486 CallBase *CB = dyn_cast<CallBase>(&I); 1487 if (!CB) 1488 return false; 1489 1490 if (CB->hasFnAttr(Attribute::NoFree)) 1491 return false; 1492 1493 // Speculatively assume in SCC. 1494 if (Function *Callee = CB->getCalledFunction()) 1495 if (SCCNodes.contains(Callee)) 1496 return false; 1497 1498 return true; 1499 } 1500 1501 /// Attempt to remove convergent function attribute when possible. 1502 /// 1503 /// Returns true if any changes to function attributes were made. 1504 static void inferConvergent(const SCCNodeSet &SCCNodes, 1505 SmallSet<Function *, 8> &Changed) { 1506 AttributeInferer AI; 1507 1508 // Request to remove the convergent attribute from all functions in the SCC 1509 // if every callsite within the SCC is not convergent (except for calls 1510 // to functions within the SCC). 1511 // Note: Removal of the attr from the callsites will happen in 1512 // InstCombineCalls separately. 1513 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1514 Attribute::Convergent, 1515 // Skip non-convergent functions. 1516 [](const Function &F) { return !F.isConvergent(); }, 1517 // Instructions that break non-convergent assumption. 1518 [SCCNodes](Instruction &I) { 1519 return InstrBreaksNonConvergent(I, SCCNodes); 1520 }, 1521 [](Function &F) { 1522 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1523 << "\n"); 1524 F.setNotConvergent(); 1525 }, 1526 /* RequiresExactDefinition= */ false}); 1527 // Perform all the requested attribute inference actions. 1528 AI.run(SCCNodes, Changed); 1529 } 1530 1531 /// Infer attributes from all functions in the SCC by scanning every 1532 /// instruction for compliance to the attribute assumptions. Currently it 1533 /// does: 1534 /// - addition of NoUnwind attribute 1535 /// 1536 /// Returns true if any changes to function attributes were made. 1537 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1538 SmallSet<Function *, 8> &Changed) { 1539 AttributeInferer AI; 1540 1541 if (!DisableNoUnwindInference) 1542 // Request to infer nounwind attribute for all the functions in the SCC if 1543 // every callsite within the SCC is not throwing (except for calls to 1544 // functions within the SCC). Note that nounwind attribute suffers from 1545 // derefinement - results may change depending on how functions are 1546 // optimized. Thus it can be inferred only from exact definitions. 1547 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1548 Attribute::NoUnwind, 1549 // Skip non-throwing functions. 1550 [](const Function &F) { return F.doesNotThrow(); }, 1551 // Instructions that break non-throwing assumption. 1552 [&SCCNodes](Instruction &I) { 1553 return InstrBreaksNonThrowing(I, SCCNodes); 1554 }, 1555 [](Function &F) { 1556 LLVM_DEBUG(dbgs() 1557 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1558 F.setDoesNotThrow(); 1559 ++NumNoUnwind; 1560 }, 1561 /* RequiresExactDefinition= */ true}); 1562 1563 if (!DisableNoFreeInference) 1564 // Request to infer nofree attribute for all the functions in the SCC if 1565 // every callsite within the SCC does not directly or indirectly free 1566 // memory (except for calls to functions within the SCC). Note that nofree 1567 // attribute suffers from derefinement - results may change depending on 1568 // how functions are optimized. Thus it can be inferred only from exact 1569 // definitions. 1570 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1571 Attribute::NoFree, 1572 // Skip functions known not to free memory. 1573 [](const Function &F) { return F.doesNotFreeMemory(); }, 1574 // Instructions that break non-deallocating assumption. 1575 [&SCCNodes](Instruction &I) { 1576 return InstrBreaksNoFree(I, SCCNodes); 1577 }, 1578 [](Function &F) { 1579 LLVM_DEBUG(dbgs() 1580 << "Adding nofree attr to fn " << F.getName() << "\n"); 1581 F.setDoesNotFreeMemory(); 1582 ++NumNoFree; 1583 }, 1584 /* RequiresExactDefinition= */ true}); 1585 1586 // Perform all the requested attribute inference actions. 1587 AI.run(SCCNodes, Changed); 1588 } 1589 1590 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1591 SmallSet<Function *, 8> &Changed) { 1592 // Try and identify functions that do not recurse. 1593 1594 // If the SCC contains multiple nodes we know for sure there is recursion. 1595 if (SCCNodes.size() != 1) 1596 return; 1597 1598 Function *F = *SCCNodes.begin(); 1599 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1600 return; 1601 1602 // If all of the calls in F are identifiable and are to norecurse functions, F 1603 // is norecurse. This check also detects self-recursion as F is not currently 1604 // marked norecurse, so any called from F to F will not be marked norecurse. 1605 for (auto &BB : *F) 1606 for (auto &I : BB.instructionsWithoutDebug()) 1607 if (auto *CB = dyn_cast<CallBase>(&I)) { 1608 Function *Callee = CB->getCalledFunction(); 1609 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1610 // Function calls a potentially recursive function. 1611 return; 1612 } 1613 1614 // Every call was to a non-recursive function other than this function, and 1615 // we have no indirect recursion as the SCC size is one. This function cannot 1616 // recurse. 1617 F->setDoesNotRecurse(); 1618 ++NumNoRecurse; 1619 Changed.insert(F); 1620 } 1621 1622 static bool instructionDoesNotReturn(Instruction &I) { 1623 if (auto *CB = dyn_cast<CallBase>(&I)) 1624 return CB->hasFnAttr(Attribute::NoReturn); 1625 return false; 1626 } 1627 1628 // A basic block can only return if it terminates with a ReturnInst and does not 1629 // contain calls to noreturn functions. 1630 static bool basicBlockCanReturn(BasicBlock &BB) { 1631 if (!isa<ReturnInst>(BB.getTerminator())) 1632 return false; 1633 return none_of(BB, instructionDoesNotReturn); 1634 } 1635 1636 // Set the noreturn function attribute if possible. 1637 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1638 SmallSet<Function *, 8> &Changed) { 1639 for (Function *F : SCCNodes) { 1640 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1641 F->doesNotReturn()) 1642 continue; 1643 1644 // The function can return if any basic blocks can return. 1645 // FIXME: this doesn't handle recursion or unreachable blocks. 1646 if (none_of(*F, basicBlockCanReturn)) { 1647 F->setDoesNotReturn(); 1648 Changed.insert(F); 1649 } 1650 } 1651 } 1652 1653 static bool functionWillReturn(const Function &F) { 1654 // We can infer and propagate function attributes only when we know that the 1655 // definition we'll get at link time is *exactly* the definition we see now. 1656 // For more details, see GlobalValue::mayBeDerefined. 1657 if (!F.hasExactDefinition()) 1658 return false; 1659 1660 // Must-progress function without side-effects must return. 1661 if (F.mustProgress() && F.onlyReadsMemory()) 1662 return true; 1663 1664 // Can only analyze functions with a definition. 1665 if (F.isDeclaration()) 1666 return false; 1667 1668 // Functions with loops require more sophisticated analysis, as the loop 1669 // may be infinite. For now, don't try to handle them. 1670 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1671 FindFunctionBackedges(F, Backedges); 1672 if (!Backedges.empty()) 1673 return false; 1674 1675 // If there are no loops, then the function is willreturn if all calls in 1676 // it are willreturn. 1677 return all_of(instructions(F), [](const Instruction &I) { 1678 return I.willReturn(); 1679 }); 1680 } 1681 1682 // Set the willreturn function attribute if possible. 1683 static void addWillReturn(const SCCNodeSet &SCCNodes, 1684 SmallSet<Function *, 8> &Changed) { 1685 for (Function *F : SCCNodes) { 1686 if (!F || F->willReturn() || !functionWillReturn(*F)) 1687 continue; 1688 1689 F->setWillReturn(); 1690 NumWillReturn++; 1691 Changed.insert(F); 1692 } 1693 } 1694 1695 // Return true if this is an atomic which has an ordering stronger than 1696 // unordered. Note that this is different than the predicate we use in 1697 // Attributor. Here we chose to be conservative and consider monotonic 1698 // operations potentially synchronizing. We generally don't do much with 1699 // monotonic operations, so this is simply risk reduction. 1700 static bool isOrderedAtomic(Instruction *I) { 1701 if (!I->isAtomic()) 1702 return false; 1703 1704 if (auto *FI = dyn_cast<FenceInst>(I)) 1705 // All legal orderings for fence are stronger than monotonic. 1706 return FI->getSyncScopeID() != SyncScope::SingleThread; 1707 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1708 return true; 1709 else if (auto *SI = dyn_cast<StoreInst>(I)) 1710 return !SI->isUnordered(); 1711 else if (auto *LI = dyn_cast<LoadInst>(I)) 1712 return !LI->isUnordered(); 1713 else { 1714 llvm_unreachable("unknown atomic instruction?"); 1715 } 1716 } 1717 1718 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1719 // Volatile may synchronize 1720 if (I.isVolatile()) 1721 return true; 1722 1723 // An ordered atomic may synchronize. (See comment about on monotonic.) 1724 if (isOrderedAtomic(&I)) 1725 return true; 1726 1727 auto *CB = dyn_cast<CallBase>(&I); 1728 if (!CB) 1729 // Non call site cases covered by the two checks above 1730 return false; 1731 1732 if (CB->hasFnAttr(Attribute::NoSync)) 1733 return false; 1734 1735 // Non volatile memset/memcpy/memmoves are nosync 1736 // NOTE: Only intrinsics with volatile flags should be handled here. All 1737 // others should be marked in Intrinsics.td. 1738 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1739 if (!MI->isVolatile()) 1740 return false; 1741 1742 // Speculatively assume in SCC. 1743 if (Function *Callee = CB->getCalledFunction()) 1744 if (SCCNodes.contains(Callee)) 1745 return false; 1746 1747 return true; 1748 } 1749 1750 // Infer the nosync attribute. 1751 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1752 SmallSet<Function *, 8> &Changed) { 1753 AttributeInferer AI; 1754 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1755 Attribute::NoSync, 1756 // Skip already marked functions. 1757 [](const Function &F) { return F.hasNoSync(); }, 1758 // Instructions that break nosync assumption. 1759 [&SCCNodes](Instruction &I) { 1760 return InstrBreaksNoSync(I, SCCNodes); 1761 }, 1762 [](Function &F) { 1763 LLVM_DEBUG(dbgs() 1764 << "Adding nosync attr to fn " << F.getName() << "\n"); 1765 F.setNoSync(); 1766 ++NumNoSync; 1767 }, 1768 /* RequiresExactDefinition= */ true}); 1769 AI.run(SCCNodes, Changed); 1770 } 1771 1772 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1773 SCCNodesResult Res; 1774 Res.HasUnknownCall = false; 1775 for (Function *F : Functions) { 1776 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1777 F->isPresplitCoroutine()) { 1778 // Treat any function we're trying not to optimize as if it were an 1779 // indirect call and omit it from the node set used below. 1780 Res.HasUnknownCall = true; 1781 continue; 1782 } 1783 // Track whether any functions in this SCC have an unknown call edge. 1784 // Note: if this is ever a performance hit, we can common it with 1785 // subsequent routines which also do scans over the instructions of the 1786 // function. 1787 if (!Res.HasUnknownCall) { 1788 for (Instruction &I : instructions(*F)) { 1789 if (auto *CB = dyn_cast<CallBase>(&I)) { 1790 if (!CB->getCalledFunction()) { 1791 Res.HasUnknownCall = true; 1792 break; 1793 } 1794 } 1795 } 1796 } 1797 Res.SCCNodes.insert(F); 1798 } 1799 return Res; 1800 } 1801 1802 template <typename AARGetterT> 1803 static SmallSet<Function *, 8> 1804 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1805 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1806 1807 // Bail if the SCC only contains optnone functions. 1808 if (Nodes.SCCNodes.empty()) 1809 return {}; 1810 1811 SmallSet<Function *, 8> Changed; 1812 1813 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1814 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1815 addArgumentAttrs(Nodes.SCCNodes, Changed); 1816 inferConvergent(Nodes.SCCNodes, Changed); 1817 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1818 addWillReturn(Nodes.SCCNodes, Changed); 1819 1820 // If we have no external nodes participating in the SCC, we can deduce some 1821 // more precise attributes as well. 1822 if (!Nodes.HasUnknownCall) { 1823 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1824 addNonNullAttrs(Nodes.SCCNodes, Changed); 1825 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1826 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1827 } 1828 1829 addNoSyncAttr(Nodes.SCCNodes, Changed); 1830 1831 // Finally, infer the maximal set of attributes from the ones we've inferred 1832 // above. This is handling the cases where one attribute on a signature 1833 // implies another, but for implementation reasons the inference rule for 1834 // the later is missing (or simply less sophisticated). 1835 for (Function *F : Nodes.SCCNodes) 1836 if (F) 1837 if (inferAttributesFromOthers(*F)) 1838 Changed.insert(F); 1839 1840 return Changed; 1841 } 1842 1843 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1844 CGSCCAnalysisManager &AM, 1845 LazyCallGraph &CG, 1846 CGSCCUpdateResult &) { 1847 FunctionAnalysisManager &FAM = 1848 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1849 1850 // We pass a lambda into functions to wire them up to the analysis manager 1851 // for getting function analyses. 1852 auto AARGetter = [&](Function &F) -> AAResults & { 1853 return FAM.getResult<AAManager>(F); 1854 }; 1855 1856 SmallVector<Function *, 8> Functions; 1857 for (LazyCallGraph::Node &N : C) { 1858 Functions.push_back(&N.getFunction()); 1859 } 1860 1861 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1862 if (ChangedFunctions.empty()) 1863 return PreservedAnalyses::all(); 1864 1865 // Invalidate analyses for modified functions so that we don't have to 1866 // invalidate all analyses for all functions in this SCC. 1867 PreservedAnalyses FuncPA; 1868 // We haven't changed the CFG for modified functions. 1869 FuncPA.preserveSet<CFGAnalyses>(); 1870 for (Function *Changed : ChangedFunctions) { 1871 FAM.invalidate(*Changed, FuncPA); 1872 // Also invalidate any direct callers of changed functions since analyses 1873 // may care about attributes of direct callees. For example, MemorySSA cares 1874 // about whether or not a call's callee modifies memory and queries that 1875 // through function attributes. 1876 for (auto *U : Changed->users()) { 1877 if (auto *Call = dyn_cast<CallBase>(U)) { 1878 if (Call->getCalledFunction() == Changed) 1879 FAM.invalidate(*Call->getFunction(), FuncPA); 1880 } 1881 } 1882 } 1883 1884 PreservedAnalyses PA; 1885 // We have not added or removed functions. 1886 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1887 // We already invalidated all relevant function analyses above. 1888 PA.preserveSet<AllAnalysesOn<Function>>(); 1889 return PA; 1890 } 1891 1892 namespace { 1893 1894 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1895 // Pass identification, replacement for typeid 1896 static char ID; 1897 1898 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1899 initializePostOrderFunctionAttrsLegacyPassPass( 1900 *PassRegistry::getPassRegistry()); 1901 } 1902 1903 bool runOnSCC(CallGraphSCC &SCC) override; 1904 1905 void getAnalysisUsage(AnalysisUsage &AU) const override { 1906 AU.setPreservesCFG(); 1907 AU.addRequired<AssumptionCacheTracker>(); 1908 getAAResultsAnalysisUsage(AU); 1909 CallGraphSCCPass::getAnalysisUsage(AU); 1910 } 1911 }; 1912 1913 } // end anonymous namespace 1914 1915 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1916 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1917 "Deduce function attributes", false, false) 1918 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1919 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1920 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1921 "Deduce function attributes", false, false) 1922 1923 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1924 return new PostOrderFunctionAttrsLegacyPass(); 1925 } 1926 1927 template <typename AARGetterT> 1928 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1929 SmallVector<Function *, 8> Functions; 1930 for (CallGraphNode *I : SCC) { 1931 Functions.push_back(I->getFunction()); 1932 } 1933 1934 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1935 } 1936 1937 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1938 if (skipSCC(SCC)) 1939 return false; 1940 return runImpl(SCC, LegacyAARGetter(*this)); 1941 } 1942 1943 namespace { 1944 1945 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1946 // Pass identification, replacement for typeid 1947 static char ID; 1948 1949 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1950 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1951 *PassRegistry::getPassRegistry()); 1952 } 1953 1954 bool runOnModule(Module &M) override; 1955 1956 void getAnalysisUsage(AnalysisUsage &AU) const override { 1957 AU.setPreservesCFG(); 1958 AU.addRequired<CallGraphWrapperPass>(); 1959 AU.addPreserved<CallGraphWrapperPass>(); 1960 } 1961 }; 1962 1963 } // end anonymous namespace 1964 1965 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1966 1967 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1968 "rpo-function-attrs", "Deduce function attributes in RPO", 1969 false, false) 1970 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1971 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1972 "rpo-function-attrs", "Deduce function attributes in RPO", 1973 false, false) 1974 1975 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1976 return new ReversePostOrderFunctionAttrsLegacyPass(); 1977 } 1978 1979 static bool addNoRecurseAttrsTopDown(Function &F) { 1980 // We check the preconditions for the function prior to calling this to avoid 1981 // the cost of building up a reversible post-order list. We assert them here 1982 // to make sure none of the invariants this relies on were violated. 1983 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1984 assert(!F.doesNotRecurse() && 1985 "This function has already been deduced as norecurs!"); 1986 assert(F.hasInternalLinkage() && 1987 "Can only do top-down deduction for internal linkage functions!"); 1988 1989 // If F is internal and all of its uses are calls from a non-recursive 1990 // functions, then none of its calls could in fact recurse without going 1991 // through a function marked norecurse, and so we can mark this function too 1992 // as norecurse. Note that the uses must actually be calls -- otherwise 1993 // a pointer to this function could be returned from a norecurse function but 1994 // this function could be recursively (indirectly) called. Note that this 1995 // also detects if F is directly recursive as F is not yet marked as 1996 // a norecurse function. 1997 for (auto *U : F.users()) { 1998 auto *I = dyn_cast<Instruction>(U); 1999 if (!I) 2000 return false; 2001 CallBase *CB = dyn_cast<CallBase>(I); 2002 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 2003 return false; 2004 } 2005 F.setDoesNotRecurse(); 2006 ++NumNoRecurse; 2007 return true; 2008 } 2009 2010 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 2011 // We only have a post-order SCC traversal (because SCCs are inherently 2012 // discovered in post-order), so we accumulate them in a vector and then walk 2013 // it in reverse. This is simpler than using the RPO iterator infrastructure 2014 // because we need to combine SCC detection and the PO walk of the call 2015 // graph. We can also cheat egregiously because we're primarily interested in 2016 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2017 // with multiple functions in them will clearly be recursive. 2018 SmallVector<Function *, 16> Worklist; 2019 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2020 if (I->size() != 1) 2021 continue; 2022 2023 Function *F = I->front()->getFunction(); 2024 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2025 F->hasInternalLinkage()) 2026 Worklist.push_back(F); 2027 } 2028 2029 bool Changed = false; 2030 for (auto *F : llvm::reverse(Worklist)) 2031 Changed |= addNoRecurseAttrsTopDown(*F); 2032 2033 return Changed; 2034 } 2035 2036 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2037 if (skipModule(M)) 2038 return false; 2039 2040 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2041 2042 return deduceFunctionAttributeInRPO(M, CG); 2043 } 2044 2045 PreservedAnalyses 2046 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2047 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2048 2049 if (!deduceFunctionAttributeInRPO(M, CG)) 2050 return PreservedAnalyses::all(); 2051 2052 PreservedAnalyses PA; 2053 PA.preserve<CallGraphAnalysis>(); 2054 return PA; 2055 } 2056