1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static FunctionModRefBehavior 125 checkFunctionMemoryAccess(Function &F, bool ThisBody, AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MRB; 131 132 if (!ThisBody) 133 return MRB; 134 135 // Scan the function body for instructions that may read or write memory. 136 bool ReadsMemory = false; 137 bool WritesMemory = false; 138 for (Instruction &I : instructions(F)) { 139 // Some instructions can be ignored even if they read or write memory. 140 // Detect these now, skipping to the next instruction if one is found. 141 if (auto *Call = dyn_cast<CallBase>(&I)) { 142 // Ignore calls to functions in the same SCC, as long as the call sites 143 // don't have operand bundles. Calls with operand bundles are allowed to 144 // have memory effects not described by the memory effects of the call 145 // target. 146 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 147 SCCNodes.count(Call->getCalledFunction())) 148 continue; 149 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 150 ModRefInfo MRI = createModRefInfo(MRB); 151 152 // If the call doesn't access memory, we're done. 153 if (isNoModRef(MRI)) 154 continue; 155 156 // A pseudo probe call shouldn't change any function attribute since it 157 // doesn't translate to a real instruction. It comes with a memory access 158 // tag to prevent itself being removed by optimizations and not block 159 // other instructions being optimized. 160 if (isa<PseudoProbeInst>(I)) 161 continue; 162 163 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 164 // The call could access any memory. If that includes writes, note it. 165 if (isModSet(MRI)) 166 WritesMemory = true; 167 // If it reads, note it. 168 if (isRefSet(MRI)) 169 ReadsMemory = true; 170 continue; 171 } 172 173 // Check whether all pointer arguments point to local memory, and 174 // ignore calls that only access local memory. 175 for (const Use &U : Call->args()) { 176 const Value *Arg = U; 177 if (!Arg->getType()->isPtrOrPtrVectorTy()) 178 continue; 179 180 MemoryLocation Loc = 181 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 182 183 // Skip accesses to local or constant memory as they don't impact the 184 // externally visible mod/ref behavior. 185 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 186 continue; 187 188 if (isModSet(MRI)) 189 // Writes non-local memory. 190 WritesMemory = true; 191 if (isRefSet(MRI)) 192 // Ok, it reads non-local memory. 193 ReadsMemory = true; 194 } 195 continue; 196 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 197 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 198 if (!LI->isVolatile()) { 199 MemoryLocation Loc = MemoryLocation::get(LI); 200 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 201 continue; 202 } 203 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 204 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 205 if (!SI->isVolatile()) { 206 MemoryLocation Loc = MemoryLocation::get(SI); 207 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 208 continue; 209 } 210 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 211 // Ignore vaargs on local memory. 212 MemoryLocation Loc = MemoryLocation::get(VI); 213 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 214 continue; 215 } 216 217 // Any remaining instructions need to be taken seriously! Check if they 218 // read or write memory. 219 // 220 // Writes memory, remember that. 221 WritesMemory |= I.mayWriteToMemory(); 222 223 // If this instruction may read memory, remember that. 224 ReadsMemory |= I.mayReadFromMemory(); 225 } 226 227 if (WritesMemory) { 228 if (!ReadsMemory) 229 return FMRB_OnlyWritesMemory; 230 else 231 return FMRB_UnknownModRefBehavior; 232 } 233 234 return ReadsMemory ? FMRB_OnlyReadsMemory : FMRB_DoesNotAccessMemory; 235 } 236 237 FunctionModRefBehavior llvm::computeFunctionBodyMemoryAccess(Function &F, 238 AAResults &AAR) { 239 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 240 } 241 242 /// Deduce readonly/readnone/writeonly attributes for the SCC. 243 template <typename AARGetterT> 244 static void addMemoryAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 245 SmallSet<Function *, 8> &Changed) { 246 // Check if any of the functions in the SCC read or write memory. If they 247 // write memory then they can't be marked readnone or readonly. 248 bool ReadsMemory = false; 249 bool WritesMemory = false; 250 for (Function *F : SCCNodes) { 251 // Call the callable parameter to look up AA results for this function. 252 AAResults &AAR = AARGetter(*F); 253 254 // Non-exact function definitions may not be selected at link time, and an 255 // alternative version that writes to memory may be selected. See the 256 // comment on GlobalValue::isDefinitionExact for more details. 257 FunctionModRefBehavior FMRB = 258 checkFunctionMemoryAccess(*F, F->hasExactDefinition(), AAR, SCCNodes); 259 if (isModAndRefSet(createModRefInfo(FMRB))) 260 return; 261 if (FMRB == FMRB_DoesNotAccessMemory) 262 continue; 263 ReadsMemory |= AliasAnalysis::onlyReadsMemory(FMRB); 264 WritesMemory |= AliasAnalysis::onlyWritesMemory(FMRB); 265 } 266 267 // If the SCC contains both functions that read and functions that write, then 268 // we cannot add readonly attributes. 269 if (ReadsMemory && WritesMemory) 270 return; 271 272 // Success! Functions in this SCC do not access memory, or only read memory. 273 // Give them the appropriate attribute. 274 275 for (Function *F : SCCNodes) { 276 if (F->doesNotAccessMemory()) 277 // Already perfect! 278 continue; 279 280 if (F->onlyReadsMemory() && ReadsMemory) 281 // No change. 282 continue; 283 284 if (F->onlyWritesMemory() && WritesMemory) 285 continue; 286 287 Changed.insert(F); 288 289 // Clear out any existing attributes. 290 AttributeMask AttrsToRemove; 291 AttrsToRemove.addAttribute(Attribute::ReadOnly); 292 AttrsToRemove.addAttribute(Attribute::ReadNone); 293 AttrsToRemove.addAttribute(Attribute::WriteOnly); 294 295 if (!WritesMemory && !ReadsMemory) { 296 // Clear out any "access range attributes" if readnone was deduced. 297 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 298 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 299 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 300 } 301 F->removeFnAttrs(AttrsToRemove); 302 303 // Add in the new attribute. 304 if (WritesMemory && !ReadsMemory) 305 F->addFnAttr(Attribute::WriteOnly); 306 else 307 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 308 309 if (WritesMemory && !ReadsMemory) 310 ++NumWriteOnly; 311 else if (ReadsMemory) 312 ++NumReadOnly; 313 else 314 ++NumReadNone; 315 } 316 } 317 318 // Compute definitive function attributes for a function taking into account 319 // prevailing definitions and linkage types 320 static FunctionSummary *calculatePrevailingSummary( 321 ValueInfo VI, 322 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 323 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 324 IsPrevailing) { 325 326 if (CachedPrevailingSummary.count(VI)) 327 return CachedPrevailingSummary[VI]; 328 329 /// At this point, prevailing symbols have been resolved. The following leads 330 /// to returning a conservative result: 331 /// - Multiple instances with local linkage. Normally local linkage would be 332 /// unique per module 333 /// as the GUID includes the module path. We could have a guid alias if 334 /// there wasn't any distinguishing path when each file was compiled, but 335 /// that should be rare so we'll punt on those. 336 337 /// These next 2 cases should not happen and will assert: 338 /// - Multiple instances with external linkage. This should be caught in 339 /// symbol resolution 340 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 341 /// knowledge meaning we have to go conservative. 342 343 /// Otherwise, we calculate attributes for a function as: 344 /// 1. If we have a local linkage, take its attributes. If there's somehow 345 /// multiple, bail and go conservative. 346 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 347 /// prevailing, take its attributes. 348 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 349 /// differences. However, if the prevailing copy is known it will be used 350 /// so take its attributes. If the prevailing copy is in a native file 351 /// all IR copies will be dead and propagation will go conservative. 352 /// 4. AvailableExternally summaries without a prevailing copy are known to 353 /// occur in a couple of circumstances: 354 /// a. An internal function gets imported due to its caller getting 355 /// imported, it becomes AvailableExternally but no prevailing 356 /// definition exists. Because it has to get imported along with its 357 /// caller the attributes will be captured by propagating on its 358 /// caller. 359 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 360 /// definitions of explicitly instanced template declarations 361 /// for inlining which are ultimately dropped from the TU. Since this 362 /// is localized to the TU the attributes will have already made it to 363 /// the callers. 364 /// These are edge cases and already captured by their callers so we 365 /// ignore these for now. If they become relevant to optimize in the 366 /// future this can be revisited. 367 /// 5. Otherwise, go conservative. 368 369 CachedPrevailingSummary[VI] = nullptr; 370 FunctionSummary *Local = nullptr; 371 FunctionSummary *Prevailing = nullptr; 372 373 for (const auto &GVS : VI.getSummaryList()) { 374 if (!GVS->isLive()) 375 continue; 376 377 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 378 // Virtual and Unknown (e.g. indirect) calls require going conservative 379 if (!FS || FS->fflags().HasUnknownCall) 380 return nullptr; 381 382 const auto &Linkage = GVS->linkage(); 383 if (GlobalValue::isLocalLinkage(Linkage)) { 384 if (Local) { 385 LLVM_DEBUG( 386 dbgs() 387 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 388 "function " 389 << VI.name() << " from " << FS->modulePath() << ". Previous module " 390 << Local->modulePath() << "\n"); 391 return nullptr; 392 } 393 Local = FS; 394 } else if (GlobalValue::isExternalLinkage(Linkage)) { 395 assert(IsPrevailing(VI.getGUID(), GVS.get())); 396 Prevailing = FS; 397 break; 398 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 399 GlobalValue::isLinkOnceODRLinkage(Linkage) || 400 GlobalValue::isWeakAnyLinkage(Linkage) || 401 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 402 if (IsPrevailing(VI.getGUID(), GVS.get())) { 403 Prevailing = FS; 404 break; 405 } 406 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 407 // TODO: Handle these cases if they become meaningful 408 continue; 409 } 410 } 411 412 if (Local) { 413 assert(!Prevailing); 414 CachedPrevailingSummary[VI] = Local; 415 } else if (Prevailing) { 416 assert(!Local); 417 CachedPrevailingSummary[VI] = Prevailing; 418 } 419 420 return CachedPrevailingSummary[VI]; 421 } 422 423 bool llvm::thinLTOPropagateFunctionAttrs( 424 ModuleSummaryIndex &Index, 425 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 426 IsPrevailing) { 427 // TODO: implement addNoAliasAttrs once 428 // there's more information about the return type in the summary 429 if (DisableThinLTOPropagation) 430 return false; 431 432 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 433 bool Changed = false; 434 435 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 436 // Assume we can propagate unless we discover otherwise 437 FunctionSummary::FFlags InferredFlags; 438 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 439 InferredFlags.NoUnwind = true; 440 441 for (auto &V : SCCNodes) { 442 FunctionSummary *CallerSummary = 443 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 444 445 // Function summaries can fail to contain information such as declarations 446 if (!CallerSummary) 447 return; 448 449 if (CallerSummary->fflags().MayThrow) 450 InferredFlags.NoUnwind = false; 451 452 for (const auto &Callee : CallerSummary->calls()) { 453 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 454 Callee.first, CachedPrevailingSummary, IsPrevailing); 455 456 if (!CalleeSummary) 457 return; 458 459 if (!CalleeSummary->fflags().NoRecurse) 460 InferredFlags.NoRecurse = false; 461 462 if (!CalleeSummary->fflags().NoUnwind) 463 InferredFlags.NoUnwind = false; 464 465 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 466 break; 467 } 468 } 469 470 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 471 Changed = true; 472 for (auto &V : SCCNodes) { 473 if (InferredFlags.NoRecurse) { 474 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 475 << V.name() << "\n"); 476 ++NumThinLinkNoRecurse; 477 } 478 479 if (InferredFlags.NoUnwind) { 480 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 481 << V.name() << "\n"); 482 ++NumThinLinkNoUnwind; 483 } 484 485 for (auto &S : V.getSummaryList()) { 486 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 487 if (InferredFlags.NoRecurse) 488 FS->setNoRecurse(); 489 490 if (InferredFlags.NoUnwind) 491 FS->setNoUnwind(); 492 } 493 } 494 } 495 } 496 }; 497 498 // Call propagation functions on each SCC in the Index 499 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 500 ++I) { 501 std::vector<ValueInfo> Nodes(*I); 502 PropagateAttributes(Nodes); 503 } 504 return Changed; 505 } 506 507 namespace { 508 509 /// For a given pointer Argument, this retains a list of Arguments of functions 510 /// in the same SCC that the pointer data flows into. We use this to build an 511 /// SCC of the arguments. 512 struct ArgumentGraphNode { 513 Argument *Definition; 514 SmallVector<ArgumentGraphNode *, 4> Uses; 515 }; 516 517 class ArgumentGraph { 518 // We store pointers to ArgumentGraphNode objects, so it's important that 519 // that they not move around upon insert. 520 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 521 522 ArgumentMapTy ArgumentMap; 523 524 // There is no root node for the argument graph, in fact: 525 // void f(int *x, int *y) { if (...) f(x, y); } 526 // is an example where the graph is disconnected. The SCCIterator requires a 527 // single entry point, so we maintain a fake ("synthetic") root node that 528 // uses every node. Because the graph is directed and nothing points into 529 // the root, it will not participate in any SCCs (except for its own). 530 ArgumentGraphNode SyntheticRoot; 531 532 public: 533 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 534 535 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 536 537 iterator begin() { return SyntheticRoot.Uses.begin(); } 538 iterator end() { return SyntheticRoot.Uses.end(); } 539 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 540 541 ArgumentGraphNode *operator[](Argument *A) { 542 ArgumentGraphNode &Node = ArgumentMap[A]; 543 Node.Definition = A; 544 SyntheticRoot.Uses.push_back(&Node); 545 return &Node; 546 } 547 }; 548 549 /// This tracker checks whether callees are in the SCC, and if so it does not 550 /// consider that a capture, instead adding it to the "Uses" list and 551 /// continuing with the analysis. 552 struct ArgumentUsesTracker : public CaptureTracker { 553 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 554 555 void tooManyUses() override { Captured = true; } 556 557 bool captured(const Use *U) override { 558 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 559 if (!CB) { 560 Captured = true; 561 return true; 562 } 563 564 Function *F = CB->getCalledFunction(); 565 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 566 Captured = true; 567 return true; 568 } 569 570 assert(!CB->isCallee(U) && "callee operand reported captured?"); 571 const unsigned UseIndex = CB->getDataOperandNo(U); 572 if (UseIndex >= CB->arg_size()) { 573 // Data operand, but not a argument operand -- must be a bundle operand 574 assert(CB->hasOperandBundles() && "Must be!"); 575 576 // CaptureTracking told us that we're being captured by an operand bundle 577 // use. In this case it does not matter if the callee is within our SCC 578 // or not -- we've been captured in some unknown way, and we have to be 579 // conservative. 580 Captured = true; 581 return true; 582 } 583 584 if (UseIndex >= F->arg_size()) { 585 assert(F->isVarArg() && "More params than args in non-varargs call"); 586 Captured = true; 587 return true; 588 } 589 590 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 591 return false; 592 } 593 594 // True only if certainly captured (used outside our SCC). 595 bool Captured = false; 596 597 // Uses within our SCC. 598 SmallVector<Argument *, 4> Uses; 599 600 const SCCNodeSet &SCCNodes; 601 }; 602 603 } // end anonymous namespace 604 605 namespace llvm { 606 607 template <> struct GraphTraits<ArgumentGraphNode *> { 608 using NodeRef = ArgumentGraphNode *; 609 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 610 611 static NodeRef getEntryNode(NodeRef A) { return A; } 612 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 613 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 614 }; 615 616 template <> 617 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 618 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 619 620 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 621 return AG->begin(); 622 } 623 624 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 625 }; 626 627 } // end namespace llvm 628 629 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 630 static Attribute::AttrKind 631 determinePointerAccessAttrs(Argument *A, 632 const SmallPtrSet<Argument *, 8> &SCCNodes) { 633 SmallVector<Use *, 32> Worklist; 634 SmallPtrSet<Use *, 32> Visited; 635 636 // inalloca arguments are always clobbered by the call. 637 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 638 return Attribute::None; 639 640 bool IsRead = false; 641 bool IsWrite = false; 642 643 for (Use &U : A->uses()) { 644 Visited.insert(&U); 645 Worklist.push_back(&U); 646 } 647 648 while (!Worklist.empty()) { 649 if (IsWrite && IsRead) 650 // No point in searching further.. 651 return Attribute::None; 652 653 Use *U = Worklist.pop_back_val(); 654 Instruction *I = cast<Instruction>(U->getUser()); 655 656 switch (I->getOpcode()) { 657 case Instruction::BitCast: 658 case Instruction::GetElementPtr: 659 case Instruction::PHI: 660 case Instruction::Select: 661 case Instruction::AddrSpaceCast: 662 // The original value is not read/written via this if the new value isn't. 663 for (Use &UU : I->uses()) 664 if (Visited.insert(&UU).second) 665 Worklist.push_back(&UU); 666 break; 667 668 case Instruction::Call: 669 case Instruction::Invoke: { 670 CallBase &CB = cast<CallBase>(*I); 671 if (CB.isCallee(U)) { 672 IsRead = true; 673 // Note that indirect calls do not capture, see comment in 674 // CaptureTracking for context 675 continue; 676 } 677 678 // Given we've explictily handled the callee operand above, what's left 679 // must be a data operand (e.g. argument or operand bundle) 680 const unsigned UseIndex = CB.getDataOperandNo(U); 681 682 if (!CB.doesNotCapture(UseIndex)) { 683 if (!CB.onlyReadsMemory()) 684 // If the callee can save a copy into other memory, then simply 685 // scanning uses of the call is insufficient. We have no way 686 // of tracking copies of the pointer through memory to see 687 // if a reloaded copy is written to, thus we must give up. 688 return Attribute::None; 689 // Push users for processing once we finish this one 690 if (!I->getType()->isVoidTy()) 691 for (Use &UU : I->uses()) 692 if (Visited.insert(&UU).second) 693 Worklist.push_back(&UU); 694 } 695 696 if (CB.doesNotAccessMemory()) 697 continue; 698 699 if (Function *F = CB.getCalledFunction()) 700 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 701 SCCNodes.count(F->getArg(UseIndex))) 702 // This is an argument which is part of the speculative SCC. Note 703 // that only operands corresponding to formal arguments of the callee 704 // can participate in the speculation. 705 break; 706 707 // The accessors used on call site here do the right thing for calls and 708 // invokes with operand bundles. 709 if (CB.doesNotAccessMemory(UseIndex)) { 710 /* nop */ 711 } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { 712 IsRead = true; 713 } else if (CB.hasFnAttr(Attribute::WriteOnly) || 714 CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { 715 IsWrite = true; 716 } else { 717 return Attribute::None; 718 } 719 break; 720 } 721 722 case Instruction::Load: 723 // A volatile load has side effects beyond what readonly can be relied 724 // upon. 725 if (cast<LoadInst>(I)->isVolatile()) 726 return Attribute::None; 727 728 IsRead = true; 729 break; 730 731 case Instruction::Store: 732 if (cast<StoreInst>(I)->getValueOperand() == *U) 733 // untrackable capture 734 return Attribute::None; 735 736 // A volatile store has side effects beyond what writeonly can be relied 737 // upon. 738 if (cast<StoreInst>(I)->isVolatile()) 739 return Attribute::None; 740 741 IsWrite = true; 742 break; 743 744 case Instruction::ICmp: 745 case Instruction::Ret: 746 break; 747 748 default: 749 return Attribute::None; 750 } 751 } 752 753 if (IsWrite && IsRead) 754 return Attribute::None; 755 else if (IsRead) 756 return Attribute::ReadOnly; 757 else if (IsWrite) 758 return Attribute::WriteOnly; 759 else 760 return Attribute::ReadNone; 761 } 762 763 /// Deduce returned attributes for the SCC. 764 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 765 SmallSet<Function *, 8> &Changed) { 766 // Check each function in turn, determining if an argument is always returned. 767 for (Function *F : SCCNodes) { 768 // We can infer and propagate function attributes only when we know that the 769 // definition we'll get at link time is *exactly* the definition we see now. 770 // For more details, see GlobalValue::mayBeDerefined. 771 if (!F->hasExactDefinition()) 772 continue; 773 774 if (F->getReturnType()->isVoidTy()) 775 continue; 776 777 // There is nothing to do if an argument is already marked as 'returned'. 778 if (llvm::any_of(F->args(), 779 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 780 continue; 781 782 auto FindRetArg = [&]() -> Value * { 783 Value *RetArg = nullptr; 784 for (BasicBlock &BB : *F) 785 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 786 // Note that stripPointerCasts should look through functions with 787 // returned arguments. 788 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 789 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 790 return nullptr; 791 792 if (!RetArg) 793 RetArg = RetVal; 794 else if (RetArg != RetVal) 795 return nullptr; 796 } 797 798 return RetArg; 799 }; 800 801 if (Value *RetArg = FindRetArg()) { 802 auto *A = cast<Argument>(RetArg); 803 A->addAttr(Attribute::Returned); 804 ++NumReturned; 805 Changed.insert(F); 806 } 807 } 808 } 809 810 /// If a callsite has arguments that are also arguments to the parent function, 811 /// try to propagate attributes from the callsite's arguments to the parent's 812 /// arguments. This may be important because inlining can cause information loss 813 /// when attribute knowledge disappears with the inlined call. 814 static bool addArgumentAttrsFromCallsites(Function &F) { 815 if (!EnableNonnullArgPropagation) 816 return false; 817 818 bool Changed = false; 819 820 // For an argument attribute to transfer from a callsite to the parent, the 821 // call must be guaranteed to execute every time the parent is called. 822 // Conservatively, just check for calls in the entry block that are guaranteed 823 // to execute. 824 // TODO: This could be enhanced by testing if the callsite post-dominates the 825 // entry block or by doing simple forward walks or backward walks to the 826 // callsite. 827 BasicBlock &Entry = F.getEntryBlock(); 828 for (Instruction &I : Entry) { 829 if (auto *CB = dyn_cast<CallBase>(&I)) { 830 if (auto *CalledFunc = CB->getCalledFunction()) { 831 for (auto &CSArg : CalledFunc->args()) { 832 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 833 continue; 834 835 // If the non-null callsite argument operand is an argument to 'F' 836 // (the caller) and the call is guaranteed to execute, then the value 837 // must be non-null throughout 'F'. 838 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 839 if (FArg && !FArg->hasNonNullAttr()) { 840 FArg->addAttr(Attribute::NonNull); 841 Changed = true; 842 } 843 } 844 } 845 } 846 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 847 break; 848 } 849 850 return Changed; 851 } 852 853 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 854 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 855 R == Attribute::WriteOnly) 856 && "Must be an access attribute."); 857 assert(A && "Argument must not be null."); 858 859 // If the argument already has the attribute, nothing needs to be done. 860 if (A->hasAttribute(R)) 861 return false; 862 863 // Otherwise, remove potentially conflicting attribute, add the new one, 864 // and update statistics. 865 A->removeAttr(Attribute::WriteOnly); 866 A->removeAttr(Attribute::ReadOnly); 867 A->removeAttr(Attribute::ReadNone); 868 A->addAttr(R); 869 if (R == Attribute::ReadOnly) 870 ++NumReadOnlyArg; 871 else if (R == Attribute::WriteOnly) 872 ++NumWriteOnlyArg; 873 else 874 ++NumReadNoneArg; 875 return true; 876 } 877 878 /// Deduce nocapture attributes for the SCC. 879 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 880 SmallSet<Function *, 8> &Changed) { 881 ArgumentGraph AG; 882 883 // Check each function in turn, determining which pointer arguments are not 884 // captured. 885 for (Function *F : SCCNodes) { 886 // We can infer and propagate function attributes only when we know that the 887 // definition we'll get at link time is *exactly* the definition we see now. 888 // For more details, see GlobalValue::mayBeDerefined. 889 if (!F->hasExactDefinition()) 890 continue; 891 892 if (addArgumentAttrsFromCallsites(*F)) 893 Changed.insert(F); 894 895 // Functions that are readonly (or readnone) and nounwind and don't return 896 // a value can't capture arguments. Don't analyze them. 897 if (F->onlyReadsMemory() && F->doesNotThrow() && 898 F->getReturnType()->isVoidTy()) { 899 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 900 ++A) { 901 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 902 A->addAttr(Attribute::NoCapture); 903 ++NumNoCapture; 904 Changed.insert(F); 905 } 906 } 907 continue; 908 } 909 910 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 911 ++A) { 912 if (!A->getType()->isPointerTy()) 913 continue; 914 bool HasNonLocalUses = false; 915 if (!A->hasNoCaptureAttr()) { 916 ArgumentUsesTracker Tracker(SCCNodes); 917 PointerMayBeCaptured(&*A, &Tracker); 918 if (!Tracker.Captured) { 919 if (Tracker.Uses.empty()) { 920 // If it's trivially not captured, mark it nocapture now. 921 A->addAttr(Attribute::NoCapture); 922 ++NumNoCapture; 923 Changed.insert(F); 924 } else { 925 // If it's not trivially captured and not trivially not captured, 926 // then it must be calling into another function in our SCC. Save 927 // its particulars for Argument-SCC analysis later. 928 ArgumentGraphNode *Node = AG[&*A]; 929 for (Argument *Use : Tracker.Uses) { 930 Node->Uses.push_back(AG[Use]); 931 if (Use != &*A) 932 HasNonLocalUses = true; 933 } 934 } 935 } 936 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 937 } 938 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 939 // Can we determine that it's readonly/readnone/writeonly without doing 940 // an SCC? Note that we don't allow any calls at all here, or else our 941 // result will be dependent on the iteration order through the 942 // functions in the SCC. 943 SmallPtrSet<Argument *, 8> Self; 944 Self.insert(&*A); 945 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 946 if (R != Attribute::None) 947 if (addAccessAttr(A, R)) 948 Changed.insert(F); 949 } 950 } 951 } 952 953 // The graph we've collected is partial because we stopped scanning for 954 // argument uses once we solved the argument trivially. These partial nodes 955 // show up as ArgumentGraphNode objects with an empty Uses list, and for 956 // these nodes the final decision about whether they capture has already been 957 // made. If the definition doesn't have a 'nocapture' attribute by now, it 958 // captures. 959 960 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 961 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 962 if (ArgumentSCC.size() == 1) { 963 if (!ArgumentSCC[0]->Definition) 964 continue; // synthetic root node 965 966 // eg. "void f(int* x) { if (...) f(x); }" 967 if (ArgumentSCC[0]->Uses.size() == 1 && 968 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 969 Argument *A = ArgumentSCC[0]->Definition; 970 A->addAttr(Attribute::NoCapture); 971 ++NumNoCapture; 972 Changed.insert(A->getParent()); 973 974 // Infer the access attributes given the new nocapture one 975 SmallPtrSet<Argument *, 8> Self; 976 Self.insert(&*A); 977 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 978 if (R != Attribute::None) 979 addAccessAttr(A, R); 980 } 981 continue; 982 } 983 984 bool SCCCaptured = false; 985 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 986 I != E && !SCCCaptured; ++I) { 987 ArgumentGraphNode *Node = *I; 988 if (Node->Uses.empty()) { 989 if (!Node->Definition->hasNoCaptureAttr()) 990 SCCCaptured = true; 991 } 992 } 993 if (SCCCaptured) 994 continue; 995 996 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 997 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 998 // quickly looking up whether a given Argument is in this ArgumentSCC. 999 for (ArgumentGraphNode *I : ArgumentSCC) { 1000 ArgumentSCCNodes.insert(I->Definition); 1001 } 1002 1003 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1004 I != E && !SCCCaptured; ++I) { 1005 ArgumentGraphNode *N = *I; 1006 for (ArgumentGraphNode *Use : N->Uses) { 1007 Argument *A = Use->Definition; 1008 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1009 continue; 1010 SCCCaptured = true; 1011 break; 1012 } 1013 } 1014 if (SCCCaptured) 1015 continue; 1016 1017 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1018 Argument *A = ArgumentSCC[i]->Definition; 1019 A->addAttr(Attribute::NoCapture); 1020 ++NumNoCapture; 1021 Changed.insert(A->getParent()); 1022 } 1023 1024 // We also want to compute readonly/readnone/writeonly. With a small number 1025 // of false negatives, we can assume that any pointer which is captured 1026 // isn't going to be provably readonly or readnone, since by definition 1027 // we can't analyze all uses of a captured pointer. 1028 // 1029 // The false negatives happen when the pointer is captured by a function 1030 // that promises readonly/readnone behaviour on the pointer, then the 1031 // pointer's lifetime ends before anything that writes to arbitrary memory. 1032 // Also, a readonly/readnone pointer may be returned, but returning a 1033 // pointer is capturing it. 1034 1035 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1036 if (A == B) 1037 return A; 1038 if (A == Attribute::ReadNone) 1039 return B; 1040 if (B == Attribute::ReadNone) 1041 return A; 1042 return Attribute::None; 1043 }; 1044 1045 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1046 for (unsigned i = 0, e = ArgumentSCC.size(); 1047 i != e && AccessAttr != Attribute::None; ++i) { 1048 Argument *A = ArgumentSCC[i]->Definition; 1049 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1050 AccessAttr = meetAccessAttr(AccessAttr, K); 1051 } 1052 1053 if (AccessAttr != Attribute::None) { 1054 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1055 Argument *A = ArgumentSCC[i]->Definition; 1056 if (addAccessAttr(A, AccessAttr)) 1057 Changed.insert(A->getParent()); 1058 } 1059 } 1060 } 1061 } 1062 1063 /// Tests whether a function is "malloc-like". 1064 /// 1065 /// A function is "malloc-like" if it returns either null or a pointer that 1066 /// doesn't alias any other pointer visible to the caller. 1067 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1068 SmallSetVector<Value *, 8> FlowsToReturn; 1069 for (BasicBlock &BB : *F) 1070 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1071 FlowsToReturn.insert(Ret->getReturnValue()); 1072 1073 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1074 Value *RetVal = FlowsToReturn[i]; 1075 1076 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1077 if (!C->isNullValue() && !isa<UndefValue>(C)) 1078 return false; 1079 1080 continue; 1081 } 1082 1083 if (isa<Argument>(RetVal)) 1084 return false; 1085 1086 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1087 switch (RVI->getOpcode()) { 1088 // Extend the analysis by looking upwards. 1089 case Instruction::BitCast: 1090 case Instruction::GetElementPtr: 1091 case Instruction::AddrSpaceCast: 1092 FlowsToReturn.insert(RVI->getOperand(0)); 1093 continue; 1094 case Instruction::Select: { 1095 SelectInst *SI = cast<SelectInst>(RVI); 1096 FlowsToReturn.insert(SI->getTrueValue()); 1097 FlowsToReturn.insert(SI->getFalseValue()); 1098 continue; 1099 } 1100 case Instruction::PHI: { 1101 PHINode *PN = cast<PHINode>(RVI); 1102 for (Value *IncValue : PN->incoming_values()) 1103 FlowsToReturn.insert(IncValue); 1104 continue; 1105 } 1106 1107 // Check whether the pointer came from an allocation. 1108 case Instruction::Alloca: 1109 break; 1110 case Instruction::Call: 1111 case Instruction::Invoke: { 1112 CallBase &CB = cast<CallBase>(*RVI); 1113 if (CB.hasRetAttr(Attribute::NoAlias)) 1114 break; 1115 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1116 break; 1117 LLVM_FALLTHROUGH; 1118 } 1119 default: 1120 return false; // Did not come from an allocation. 1121 } 1122 1123 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1124 return false; 1125 } 1126 1127 return true; 1128 } 1129 1130 /// Deduce noalias attributes for the SCC. 1131 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1132 SmallSet<Function *, 8> &Changed) { 1133 // Check each function in turn, determining which functions return noalias 1134 // pointers. 1135 for (Function *F : SCCNodes) { 1136 // Already noalias. 1137 if (F->returnDoesNotAlias()) 1138 continue; 1139 1140 // We can infer and propagate function attributes only when we know that the 1141 // definition we'll get at link time is *exactly* the definition we see now. 1142 // For more details, see GlobalValue::mayBeDerefined. 1143 if (!F->hasExactDefinition()) 1144 return; 1145 1146 // We annotate noalias return values, which are only applicable to 1147 // pointer types. 1148 if (!F->getReturnType()->isPointerTy()) 1149 continue; 1150 1151 if (!isFunctionMallocLike(F, SCCNodes)) 1152 return; 1153 } 1154 1155 for (Function *F : SCCNodes) { 1156 if (F->returnDoesNotAlias() || 1157 !F->getReturnType()->isPointerTy()) 1158 continue; 1159 1160 F->setReturnDoesNotAlias(); 1161 ++NumNoAlias; 1162 Changed.insert(F); 1163 } 1164 } 1165 1166 /// Tests whether this function is known to not return null. 1167 /// 1168 /// Requires that the function returns a pointer. 1169 /// 1170 /// Returns true if it believes the function will not return a null, and sets 1171 /// \p Speculative based on whether the returned conclusion is a speculative 1172 /// conclusion due to SCC calls. 1173 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1174 bool &Speculative) { 1175 assert(F->getReturnType()->isPointerTy() && 1176 "nonnull only meaningful on pointer types"); 1177 Speculative = false; 1178 1179 SmallSetVector<Value *, 8> FlowsToReturn; 1180 for (BasicBlock &BB : *F) 1181 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1182 FlowsToReturn.insert(Ret->getReturnValue()); 1183 1184 auto &DL = F->getParent()->getDataLayout(); 1185 1186 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1187 Value *RetVal = FlowsToReturn[i]; 1188 1189 // If this value is locally known to be non-null, we're good 1190 if (isKnownNonZero(RetVal, DL)) 1191 continue; 1192 1193 // Otherwise, we need to look upwards since we can't make any local 1194 // conclusions. 1195 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1196 if (!RVI) 1197 return false; 1198 switch (RVI->getOpcode()) { 1199 // Extend the analysis by looking upwards. 1200 case Instruction::BitCast: 1201 case Instruction::GetElementPtr: 1202 case Instruction::AddrSpaceCast: 1203 FlowsToReturn.insert(RVI->getOperand(0)); 1204 continue; 1205 case Instruction::Select: { 1206 SelectInst *SI = cast<SelectInst>(RVI); 1207 FlowsToReturn.insert(SI->getTrueValue()); 1208 FlowsToReturn.insert(SI->getFalseValue()); 1209 continue; 1210 } 1211 case Instruction::PHI: { 1212 PHINode *PN = cast<PHINode>(RVI); 1213 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1214 FlowsToReturn.insert(PN->getIncomingValue(i)); 1215 continue; 1216 } 1217 case Instruction::Call: 1218 case Instruction::Invoke: { 1219 CallBase &CB = cast<CallBase>(*RVI); 1220 Function *Callee = CB.getCalledFunction(); 1221 // A call to a node within the SCC is assumed to return null until 1222 // proven otherwise 1223 if (Callee && SCCNodes.count(Callee)) { 1224 Speculative = true; 1225 continue; 1226 } 1227 return false; 1228 } 1229 default: 1230 return false; // Unknown source, may be null 1231 }; 1232 llvm_unreachable("should have either continued or returned"); 1233 } 1234 1235 return true; 1236 } 1237 1238 /// Deduce nonnull attributes for the SCC. 1239 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1240 SmallSet<Function *, 8> &Changed) { 1241 // Speculative that all functions in the SCC return only nonnull 1242 // pointers. We may refute this as we analyze functions. 1243 bool SCCReturnsNonNull = true; 1244 1245 // Check each function in turn, determining which functions return nonnull 1246 // pointers. 1247 for (Function *F : SCCNodes) { 1248 // Already nonnull. 1249 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1250 continue; 1251 1252 // We can infer and propagate function attributes only when we know that the 1253 // definition we'll get at link time is *exactly* the definition we see now. 1254 // For more details, see GlobalValue::mayBeDerefined. 1255 if (!F->hasExactDefinition()) 1256 return; 1257 1258 // We annotate nonnull return values, which are only applicable to 1259 // pointer types. 1260 if (!F->getReturnType()->isPointerTy()) 1261 continue; 1262 1263 bool Speculative = false; 1264 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1265 if (!Speculative) { 1266 // Mark the function eagerly since we may discover a function 1267 // which prevents us from speculating about the entire SCC 1268 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1269 << " as nonnull\n"); 1270 F->addRetAttr(Attribute::NonNull); 1271 ++NumNonNullReturn; 1272 Changed.insert(F); 1273 } 1274 continue; 1275 } 1276 // At least one function returns something which could be null, can't 1277 // speculate any more. 1278 SCCReturnsNonNull = false; 1279 } 1280 1281 if (SCCReturnsNonNull) { 1282 for (Function *F : SCCNodes) { 1283 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1284 !F->getReturnType()->isPointerTy()) 1285 continue; 1286 1287 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1288 F->addRetAttr(Attribute::NonNull); 1289 ++NumNonNullReturn; 1290 Changed.insert(F); 1291 } 1292 } 1293 } 1294 1295 namespace { 1296 1297 /// Collects a set of attribute inference requests and performs them all in one 1298 /// go on a single SCC Node. Inference involves scanning function bodies 1299 /// looking for instructions that violate attribute assumptions. 1300 /// As soon as all the bodies are fine we are free to set the attribute. 1301 /// Customization of inference for individual attributes is performed by 1302 /// providing a handful of predicates for each attribute. 1303 class AttributeInferer { 1304 public: 1305 /// Describes a request for inference of a single attribute. 1306 struct InferenceDescriptor { 1307 1308 /// Returns true if this function does not have to be handled. 1309 /// General intent for this predicate is to provide an optimization 1310 /// for functions that do not need this attribute inference at all 1311 /// (say, for functions that already have the attribute). 1312 std::function<bool(const Function &)> SkipFunction; 1313 1314 /// Returns true if this instruction violates attribute assumptions. 1315 std::function<bool(Instruction &)> InstrBreaksAttribute; 1316 1317 /// Sets the inferred attribute for this function. 1318 std::function<void(Function &)> SetAttribute; 1319 1320 /// Attribute we derive. 1321 Attribute::AttrKind AKind; 1322 1323 /// If true, only "exact" definitions can be used to infer this attribute. 1324 /// See GlobalValue::isDefinitionExact. 1325 bool RequiresExactDefinition; 1326 1327 InferenceDescriptor(Attribute::AttrKind AK, 1328 std::function<bool(const Function &)> SkipFunc, 1329 std::function<bool(Instruction &)> InstrScan, 1330 std::function<void(Function &)> SetAttr, 1331 bool ReqExactDef) 1332 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1333 SetAttribute(SetAttr), AKind(AK), 1334 RequiresExactDefinition(ReqExactDef) {} 1335 }; 1336 1337 private: 1338 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1339 1340 public: 1341 void registerAttrInference(InferenceDescriptor AttrInference) { 1342 InferenceDescriptors.push_back(AttrInference); 1343 } 1344 1345 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1346 }; 1347 1348 /// Perform all the requested attribute inference actions according to the 1349 /// attribute predicates stored before. 1350 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1351 SmallSet<Function *, 8> &Changed) { 1352 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1353 // Go through all the functions in SCC and check corresponding attribute 1354 // assumptions for each of them. Attributes that are invalid for this SCC 1355 // will be removed from InferInSCC. 1356 for (Function *F : SCCNodes) { 1357 1358 // No attributes whose assumptions are still valid - done. 1359 if (InferInSCC.empty()) 1360 return; 1361 1362 // Check if our attributes ever need scanning/can be scanned. 1363 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1364 if (ID.SkipFunction(*F)) 1365 return false; 1366 1367 // Remove from further inference (invalidate) when visiting a function 1368 // that has no instructions to scan/has an unsuitable definition. 1369 return F->isDeclaration() || 1370 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1371 }); 1372 1373 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1374 // set up the F instructions scan to verify assumptions of the attribute. 1375 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1376 llvm::copy_if( 1377 InferInSCC, std::back_inserter(InferInThisFunc), 1378 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1379 1380 if (InferInThisFunc.empty()) 1381 continue; 1382 1383 // Start instruction scan. 1384 for (Instruction &I : instructions(*F)) { 1385 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1386 if (!ID.InstrBreaksAttribute(I)) 1387 return false; 1388 // Remove attribute from further inference on any other functions 1389 // because attribute assumptions have just been violated. 1390 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1391 return D.AKind == ID.AKind; 1392 }); 1393 // Remove attribute from the rest of current instruction scan. 1394 return true; 1395 }); 1396 1397 if (InferInThisFunc.empty()) 1398 break; 1399 } 1400 } 1401 1402 if (InferInSCC.empty()) 1403 return; 1404 1405 for (Function *F : SCCNodes) 1406 // At this point InferInSCC contains only functions that were either: 1407 // - explicitly skipped from scan/inference, or 1408 // - verified to have no instructions that break attribute assumptions. 1409 // Hence we just go and force the attribute for all non-skipped functions. 1410 for (auto &ID : InferInSCC) { 1411 if (ID.SkipFunction(*F)) 1412 continue; 1413 Changed.insert(F); 1414 ID.SetAttribute(*F); 1415 } 1416 } 1417 1418 struct SCCNodesResult { 1419 SCCNodeSet SCCNodes; 1420 bool HasUnknownCall; 1421 }; 1422 1423 } // end anonymous namespace 1424 1425 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1426 static bool InstrBreaksNonConvergent(Instruction &I, 1427 const SCCNodeSet &SCCNodes) { 1428 const CallBase *CB = dyn_cast<CallBase>(&I); 1429 // Breaks non-convergent assumption if CS is a convergent call to a function 1430 // not in the SCC. 1431 return CB && CB->isConvergent() && 1432 !SCCNodes.contains(CB->getCalledFunction()); 1433 } 1434 1435 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1436 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1437 if (!I.mayThrow()) 1438 return false; 1439 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1440 if (Function *Callee = CI->getCalledFunction()) { 1441 // I is a may-throw call to a function inside our SCC. This doesn't 1442 // invalidate our current working assumption that the SCC is no-throw; we 1443 // just have to scan that other function. 1444 if (SCCNodes.contains(Callee)) 1445 return false; 1446 } 1447 } 1448 return true; 1449 } 1450 1451 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1452 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1453 CallBase *CB = dyn_cast<CallBase>(&I); 1454 if (!CB) 1455 return false; 1456 1457 if (CB->hasFnAttr(Attribute::NoFree)) 1458 return false; 1459 1460 // Speculatively assume in SCC. 1461 if (Function *Callee = CB->getCalledFunction()) 1462 if (SCCNodes.contains(Callee)) 1463 return false; 1464 1465 return true; 1466 } 1467 1468 /// Attempt to remove convergent function attribute when possible. 1469 /// 1470 /// Returns true if any changes to function attributes were made. 1471 static void inferConvergent(const SCCNodeSet &SCCNodes, 1472 SmallSet<Function *, 8> &Changed) { 1473 AttributeInferer AI; 1474 1475 // Request to remove the convergent attribute from all functions in the SCC 1476 // if every callsite within the SCC is not convergent (except for calls 1477 // to functions within the SCC). 1478 // Note: Removal of the attr from the callsites will happen in 1479 // InstCombineCalls separately. 1480 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1481 Attribute::Convergent, 1482 // Skip non-convergent functions. 1483 [](const Function &F) { return !F.isConvergent(); }, 1484 // Instructions that break non-convergent assumption. 1485 [SCCNodes](Instruction &I) { 1486 return InstrBreaksNonConvergent(I, SCCNodes); 1487 }, 1488 [](Function &F) { 1489 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1490 << "\n"); 1491 F.setNotConvergent(); 1492 }, 1493 /* RequiresExactDefinition= */ false}); 1494 // Perform all the requested attribute inference actions. 1495 AI.run(SCCNodes, Changed); 1496 } 1497 1498 /// Infer attributes from all functions in the SCC by scanning every 1499 /// instruction for compliance to the attribute assumptions. Currently it 1500 /// does: 1501 /// - addition of NoUnwind attribute 1502 /// 1503 /// Returns true if any changes to function attributes were made. 1504 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1505 SmallSet<Function *, 8> &Changed) { 1506 AttributeInferer AI; 1507 1508 if (!DisableNoUnwindInference) 1509 // Request to infer nounwind attribute for all the functions in the SCC if 1510 // every callsite within the SCC is not throwing (except for calls to 1511 // functions within the SCC). Note that nounwind attribute suffers from 1512 // derefinement - results may change depending on how functions are 1513 // optimized. Thus it can be inferred only from exact definitions. 1514 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1515 Attribute::NoUnwind, 1516 // Skip non-throwing functions. 1517 [](const Function &F) { return F.doesNotThrow(); }, 1518 // Instructions that break non-throwing assumption. 1519 [&SCCNodes](Instruction &I) { 1520 return InstrBreaksNonThrowing(I, SCCNodes); 1521 }, 1522 [](Function &F) { 1523 LLVM_DEBUG(dbgs() 1524 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1525 F.setDoesNotThrow(); 1526 ++NumNoUnwind; 1527 }, 1528 /* RequiresExactDefinition= */ true}); 1529 1530 if (!DisableNoFreeInference) 1531 // Request to infer nofree attribute for all the functions in the SCC if 1532 // every callsite within the SCC does not directly or indirectly free 1533 // memory (except for calls to functions within the SCC). Note that nofree 1534 // attribute suffers from derefinement - results may change depending on 1535 // how functions are optimized. Thus it can be inferred only from exact 1536 // definitions. 1537 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1538 Attribute::NoFree, 1539 // Skip functions known not to free memory. 1540 [](const Function &F) { return F.doesNotFreeMemory(); }, 1541 // Instructions that break non-deallocating assumption. 1542 [&SCCNodes](Instruction &I) { 1543 return InstrBreaksNoFree(I, SCCNodes); 1544 }, 1545 [](Function &F) { 1546 LLVM_DEBUG(dbgs() 1547 << "Adding nofree attr to fn " << F.getName() << "\n"); 1548 F.setDoesNotFreeMemory(); 1549 ++NumNoFree; 1550 }, 1551 /* RequiresExactDefinition= */ true}); 1552 1553 // Perform all the requested attribute inference actions. 1554 AI.run(SCCNodes, Changed); 1555 } 1556 1557 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1558 SmallSet<Function *, 8> &Changed) { 1559 // Try and identify functions that do not recurse. 1560 1561 // If the SCC contains multiple nodes we know for sure there is recursion. 1562 if (SCCNodes.size() != 1) 1563 return; 1564 1565 Function *F = *SCCNodes.begin(); 1566 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1567 return; 1568 1569 // If all of the calls in F are identifiable and are to norecurse functions, F 1570 // is norecurse. This check also detects self-recursion as F is not currently 1571 // marked norecurse, so any called from F to F will not be marked norecurse. 1572 for (auto &BB : *F) 1573 for (auto &I : BB.instructionsWithoutDebug()) 1574 if (auto *CB = dyn_cast<CallBase>(&I)) { 1575 Function *Callee = CB->getCalledFunction(); 1576 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1577 // Function calls a potentially recursive function. 1578 return; 1579 } 1580 1581 // Every call was to a non-recursive function other than this function, and 1582 // we have no indirect recursion as the SCC size is one. This function cannot 1583 // recurse. 1584 F->setDoesNotRecurse(); 1585 ++NumNoRecurse; 1586 Changed.insert(F); 1587 } 1588 1589 static bool instructionDoesNotReturn(Instruction &I) { 1590 if (auto *CB = dyn_cast<CallBase>(&I)) 1591 return CB->hasFnAttr(Attribute::NoReturn); 1592 return false; 1593 } 1594 1595 // A basic block can only return if it terminates with a ReturnInst and does not 1596 // contain calls to noreturn functions. 1597 static bool basicBlockCanReturn(BasicBlock &BB) { 1598 if (!isa<ReturnInst>(BB.getTerminator())) 1599 return false; 1600 return none_of(BB, instructionDoesNotReturn); 1601 } 1602 1603 // FIXME: this doesn't handle recursion. 1604 static bool canReturn(Function &F) { 1605 SmallVector<BasicBlock *, 16> Worklist; 1606 SmallPtrSet<BasicBlock *, 16> Visited; 1607 1608 Visited.insert(&F.front()); 1609 Worklist.push_back(&F.front()); 1610 1611 do { 1612 BasicBlock *BB = Worklist.pop_back_val(); 1613 if (basicBlockCanReturn(*BB)) 1614 return true; 1615 for (BasicBlock *Succ : successors(BB)) 1616 if (Visited.insert(Succ).second) 1617 Worklist.push_back(Succ); 1618 } while (!Worklist.empty()); 1619 1620 return false; 1621 } 1622 1623 // Set the noreturn function attribute if possible. 1624 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1625 SmallSet<Function *, 8> &Changed) { 1626 for (Function *F : SCCNodes) { 1627 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1628 F->doesNotReturn()) 1629 continue; 1630 1631 if (!canReturn(*F)) { 1632 F->setDoesNotReturn(); 1633 Changed.insert(F); 1634 } 1635 } 1636 } 1637 1638 static bool functionWillReturn(const Function &F) { 1639 // We can infer and propagate function attributes only when we know that the 1640 // definition we'll get at link time is *exactly* the definition we see now. 1641 // For more details, see GlobalValue::mayBeDerefined. 1642 if (!F.hasExactDefinition()) 1643 return false; 1644 1645 // Must-progress function without side-effects must return. 1646 if (F.mustProgress() && F.onlyReadsMemory()) 1647 return true; 1648 1649 // Can only analyze functions with a definition. 1650 if (F.isDeclaration()) 1651 return false; 1652 1653 // Functions with loops require more sophisticated analysis, as the loop 1654 // may be infinite. For now, don't try to handle them. 1655 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1656 FindFunctionBackedges(F, Backedges); 1657 if (!Backedges.empty()) 1658 return false; 1659 1660 // If there are no loops, then the function is willreturn if all calls in 1661 // it are willreturn. 1662 return all_of(instructions(F), [](const Instruction &I) { 1663 return I.willReturn(); 1664 }); 1665 } 1666 1667 // Set the willreturn function attribute if possible. 1668 static void addWillReturn(const SCCNodeSet &SCCNodes, 1669 SmallSet<Function *, 8> &Changed) { 1670 for (Function *F : SCCNodes) { 1671 if (!F || F->willReturn() || !functionWillReturn(*F)) 1672 continue; 1673 1674 F->setWillReturn(); 1675 NumWillReturn++; 1676 Changed.insert(F); 1677 } 1678 } 1679 1680 // Return true if this is an atomic which has an ordering stronger than 1681 // unordered. Note that this is different than the predicate we use in 1682 // Attributor. Here we chose to be conservative and consider monotonic 1683 // operations potentially synchronizing. We generally don't do much with 1684 // monotonic operations, so this is simply risk reduction. 1685 static bool isOrderedAtomic(Instruction *I) { 1686 if (!I->isAtomic()) 1687 return false; 1688 1689 if (auto *FI = dyn_cast<FenceInst>(I)) 1690 // All legal orderings for fence are stronger than monotonic. 1691 return FI->getSyncScopeID() != SyncScope::SingleThread; 1692 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1693 return true; 1694 else if (auto *SI = dyn_cast<StoreInst>(I)) 1695 return !SI->isUnordered(); 1696 else if (auto *LI = dyn_cast<LoadInst>(I)) 1697 return !LI->isUnordered(); 1698 else { 1699 llvm_unreachable("unknown atomic instruction?"); 1700 } 1701 } 1702 1703 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1704 // Volatile may synchronize 1705 if (I.isVolatile()) 1706 return true; 1707 1708 // An ordered atomic may synchronize. (See comment about on monotonic.) 1709 if (isOrderedAtomic(&I)) 1710 return true; 1711 1712 auto *CB = dyn_cast<CallBase>(&I); 1713 if (!CB) 1714 // Non call site cases covered by the two checks above 1715 return false; 1716 1717 if (CB->hasFnAttr(Attribute::NoSync)) 1718 return false; 1719 1720 // Non volatile memset/memcpy/memmoves are nosync 1721 // NOTE: Only intrinsics with volatile flags should be handled here. All 1722 // others should be marked in Intrinsics.td. 1723 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1724 if (!MI->isVolatile()) 1725 return false; 1726 1727 // Speculatively assume in SCC. 1728 if (Function *Callee = CB->getCalledFunction()) 1729 if (SCCNodes.contains(Callee)) 1730 return false; 1731 1732 return true; 1733 } 1734 1735 // Infer the nosync attribute. 1736 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1737 SmallSet<Function *, 8> &Changed) { 1738 AttributeInferer AI; 1739 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1740 Attribute::NoSync, 1741 // Skip already marked functions. 1742 [](const Function &F) { return F.hasNoSync(); }, 1743 // Instructions that break nosync assumption. 1744 [&SCCNodes](Instruction &I) { 1745 return InstrBreaksNoSync(I, SCCNodes); 1746 }, 1747 [](Function &F) { 1748 LLVM_DEBUG(dbgs() 1749 << "Adding nosync attr to fn " << F.getName() << "\n"); 1750 F.setNoSync(); 1751 ++NumNoSync; 1752 }, 1753 /* RequiresExactDefinition= */ true}); 1754 AI.run(SCCNodes, Changed); 1755 } 1756 1757 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1758 SCCNodesResult Res; 1759 Res.HasUnknownCall = false; 1760 for (Function *F : Functions) { 1761 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1762 F->isPresplitCoroutine()) { 1763 // Treat any function we're trying not to optimize as if it were an 1764 // indirect call and omit it from the node set used below. 1765 Res.HasUnknownCall = true; 1766 continue; 1767 } 1768 // Track whether any functions in this SCC have an unknown call edge. 1769 // Note: if this is ever a performance hit, we can common it with 1770 // subsequent routines which also do scans over the instructions of the 1771 // function. 1772 if (!Res.HasUnknownCall) { 1773 for (Instruction &I : instructions(*F)) { 1774 if (auto *CB = dyn_cast<CallBase>(&I)) { 1775 if (!CB->getCalledFunction()) { 1776 Res.HasUnknownCall = true; 1777 break; 1778 } 1779 } 1780 } 1781 } 1782 Res.SCCNodes.insert(F); 1783 } 1784 return Res; 1785 } 1786 1787 template <typename AARGetterT> 1788 static SmallSet<Function *, 8> 1789 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1790 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1791 1792 // Bail if the SCC only contains optnone functions. 1793 if (Nodes.SCCNodes.empty()) 1794 return {}; 1795 1796 SmallSet<Function *, 8> Changed; 1797 1798 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1799 addMemoryAttrs(Nodes.SCCNodes, AARGetter, Changed); 1800 addArgumentAttrs(Nodes.SCCNodes, Changed); 1801 inferConvergent(Nodes.SCCNodes, Changed); 1802 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1803 addWillReturn(Nodes.SCCNodes, Changed); 1804 1805 // If we have no external nodes participating in the SCC, we can deduce some 1806 // more precise attributes as well. 1807 if (!Nodes.HasUnknownCall) { 1808 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1809 addNonNullAttrs(Nodes.SCCNodes, Changed); 1810 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1811 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1812 } 1813 1814 addNoSyncAttr(Nodes.SCCNodes, Changed); 1815 1816 // Finally, infer the maximal set of attributes from the ones we've inferred 1817 // above. This is handling the cases where one attribute on a signature 1818 // implies another, but for implementation reasons the inference rule for 1819 // the later is missing (or simply less sophisticated). 1820 for (Function *F : Nodes.SCCNodes) 1821 if (F) 1822 if (inferAttributesFromOthers(*F)) 1823 Changed.insert(F); 1824 1825 return Changed; 1826 } 1827 1828 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1829 CGSCCAnalysisManager &AM, 1830 LazyCallGraph &CG, 1831 CGSCCUpdateResult &) { 1832 FunctionAnalysisManager &FAM = 1833 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1834 1835 // We pass a lambda into functions to wire them up to the analysis manager 1836 // for getting function analyses. 1837 auto AARGetter = [&](Function &F) -> AAResults & { 1838 return FAM.getResult<AAManager>(F); 1839 }; 1840 1841 SmallVector<Function *, 8> Functions; 1842 for (LazyCallGraph::Node &N : C) { 1843 Functions.push_back(&N.getFunction()); 1844 } 1845 1846 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1847 if (ChangedFunctions.empty()) 1848 return PreservedAnalyses::all(); 1849 1850 // Invalidate analyses for modified functions so that we don't have to 1851 // invalidate all analyses for all functions in this SCC. 1852 PreservedAnalyses FuncPA; 1853 // We haven't changed the CFG for modified functions. 1854 FuncPA.preserveSet<CFGAnalyses>(); 1855 for (Function *Changed : ChangedFunctions) { 1856 FAM.invalidate(*Changed, FuncPA); 1857 // Also invalidate any direct callers of changed functions since analyses 1858 // may care about attributes of direct callees. For example, MemorySSA cares 1859 // about whether or not a call's callee modifies memory and queries that 1860 // through function attributes. 1861 for (auto *U : Changed->users()) { 1862 if (auto *Call = dyn_cast<CallBase>(U)) { 1863 if (Call->getCalledFunction() == Changed) 1864 FAM.invalidate(*Call->getFunction(), FuncPA); 1865 } 1866 } 1867 } 1868 1869 PreservedAnalyses PA; 1870 // We have not added or removed functions. 1871 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1872 // We already invalidated all relevant function analyses above. 1873 PA.preserveSet<AllAnalysesOn<Function>>(); 1874 return PA; 1875 } 1876 1877 namespace { 1878 1879 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1880 // Pass identification, replacement for typeid 1881 static char ID; 1882 1883 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1884 initializePostOrderFunctionAttrsLegacyPassPass( 1885 *PassRegistry::getPassRegistry()); 1886 } 1887 1888 bool runOnSCC(CallGraphSCC &SCC) override; 1889 1890 void getAnalysisUsage(AnalysisUsage &AU) const override { 1891 AU.setPreservesCFG(); 1892 AU.addRequired<AssumptionCacheTracker>(); 1893 getAAResultsAnalysisUsage(AU); 1894 CallGraphSCCPass::getAnalysisUsage(AU); 1895 } 1896 }; 1897 1898 } // end anonymous namespace 1899 1900 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1901 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1902 "Deduce function attributes", false, false) 1903 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1904 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1905 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1906 "Deduce function attributes", false, false) 1907 1908 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1909 return new PostOrderFunctionAttrsLegacyPass(); 1910 } 1911 1912 template <typename AARGetterT> 1913 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1914 SmallVector<Function *, 8> Functions; 1915 for (CallGraphNode *I : SCC) { 1916 Functions.push_back(I->getFunction()); 1917 } 1918 1919 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1920 } 1921 1922 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1923 if (skipSCC(SCC)) 1924 return false; 1925 return runImpl(SCC, LegacyAARGetter(*this)); 1926 } 1927 1928 namespace { 1929 1930 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1931 // Pass identification, replacement for typeid 1932 static char ID; 1933 1934 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1935 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1936 *PassRegistry::getPassRegistry()); 1937 } 1938 1939 bool runOnModule(Module &M) override; 1940 1941 void getAnalysisUsage(AnalysisUsage &AU) const override { 1942 AU.setPreservesCFG(); 1943 AU.addRequired<CallGraphWrapperPass>(); 1944 AU.addPreserved<CallGraphWrapperPass>(); 1945 } 1946 }; 1947 1948 } // end anonymous namespace 1949 1950 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1951 1952 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1953 "rpo-function-attrs", "Deduce function attributes in RPO", 1954 false, false) 1955 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1956 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1957 "rpo-function-attrs", "Deduce function attributes in RPO", 1958 false, false) 1959 1960 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1961 return new ReversePostOrderFunctionAttrsLegacyPass(); 1962 } 1963 1964 static bool addNoRecurseAttrsTopDown(Function &F) { 1965 // We check the preconditions for the function prior to calling this to avoid 1966 // the cost of building up a reversible post-order list. We assert them here 1967 // to make sure none of the invariants this relies on were violated. 1968 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1969 assert(!F.doesNotRecurse() && 1970 "This function has already been deduced as norecurs!"); 1971 assert(F.hasInternalLinkage() && 1972 "Can only do top-down deduction for internal linkage functions!"); 1973 1974 // If F is internal and all of its uses are calls from a non-recursive 1975 // functions, then none of its calls could in fact recurse without going 1976 // through a function marked norecurse, and so we can mark this function too 1977 // as norecurse. Note that the uses must actually be calls -- otherwise 1978 // a pointer to this function could be returned from a norecurse function but 1979 // this function could be recursively (indirectly) called. Note that this 1980 // also detects if F is directly recursive as F is not yet marked as 1981 // a norecurse function. 1982 for (auto *U : F.users()) { 1983 auto *I = dyn_cast<Instruction>(U); 1984 if (!I) 1985 return false; 1986 CallBase *CB = dyn_cast<CallBase>(I); 1987 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1988 return false; 1989 } 1990 F.setDoesNotRecurse(); 1991 ++NumNoRecurse; 1992 return true; 1993 } 1994 1995 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1996 // We only have a post-order SCC traversal (because SCCs are inherently 1997 // discovered in post-order), so we accumulate them in a vector and then walk 1998 // it in reverse. This is simpler than using the RPO iterator infrastructure 1999 // because we need to combine SCC detection and the PO walk of the call 2000 // graph. We can also cheat egregiously because we're primarily interested in 2001 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2002 // with multiple functions in them will clearly be recursive. 2003 SmallVector<Function *, 16> Worklist; 2004 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2005 if (I->size() != 1) 2006 continue; 2007 2008 Function *F = I->front()->getFunction(); 2009 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2010 F->hasInternalLinkage()) 2011 Worklist.push_back(F); 2012 } 2013 2014 bool Changed = false; 2015 for (auto *F : llvm::reverse(Worklist)) 2016 Changed |= addNoRecurseAttrsTopDown(*F); 2017 2018 return Changed; 2019 } 2020 2021 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2022 if (skipModule(M)) 2023 return false; 2024 2025 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2026 2027 return deduceFunctionAttributeInRPO(M, CG); 2028 } 2029 2030 PreservedAnalyses 2031 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2032 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2033 2034 if (!deduceFunctionAttributeInRPO(M, CG)) 2035 return PreservedAnalyses::all(); 2036 2037 PreservedAnalyses PA; 2038 PA.preserve<CallGraphAnalysis>(); 2039 return PA; 2040 } 2041