1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PassManager.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/IPO.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "deadargelim"
54 
55 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
56 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
57 STATISTIC(NumArgumentsReplacedWithUndef,
58           "Number of unread args replaced with undef");
59 
60 namespace {
61 
62   /// DAE - The dead argument elimination pass.
63   class DAE : public ModulePass {
64   protected:
65     // DAH uses this to specify a different ID.
66     explicit DAE(char &ID) : ModulePass(ID) {}
67 
68   public:
69     static char ID; // Pass identification, replacement for typeid
70 
71     DAE() : ModulePass(ID) {
72       initializeDAEPass(*PassRegistry::getPassRegistry());
73     }
74 
75     bool runOnModule(Module &M) override {
76       if (skipModule(M))
77         return false;
78       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
79       ModuleAnalysisManager DummyMAM;
80       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
81       return !PA.areAllPreserved();
82     }
83 
84     virtual bool ShouldHackArguments() const { return false; }
85   };
86 
87 } // end anonymous namespace
88 
89 char DAE::ID = 0;
90 
91 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
92 
93 namespace {
94 
95   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
96   /// deletes arguments to functions which are external.  This is only for use
97   /// by bugpoint.
98   struct DAH : public DAE {
99     static char ID;
100 
101     DAH() : DAE(ID) {}
102 
103     bool ShouldHackArguments() const override { return true; }
104   };
105 
106 } // end anonymous namespace
107 
108 char DAH::ID = 0;
109 
110 INITIALIZE_PASS(DAH, "deadarghaX0r",
111                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
112                 false, false)
113 
114 /// createDeadArgEliminationPass - This pass removes arguments from functions
115 /// which are not used by the body of the function.
116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
117 
118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
119 
120 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121 /// llvm.vastart is never called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
123   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
124   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
125 
126   // Ensure that the function is only directly called.
127   if (Fn.hasAddressTaken())
128     return false;
129 
130   // Don't touch naked functions. The assembly might be using an argument, or
131   // otherwise rely on the frame layout in a way that this analysis will not
132   // see.
133   if (Fn.hasFnAttribute(Attribute::Naked)) {
134     return false;
135   }
136 
137   // Okay, we know we can transform this function if safe.  Scan its body
138   // looking for calls marked musttail or calls to llvm.vastart.
139   for (BasicBlock &BB : Fn) {
140     for (Instruction &I : BB) {
141       CallInst *CI = dyn_cast<CallInst>(&I);
142       if (!CI)
143         continue;
144       if (CI->isMustTailCall())
145         return false;
146       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
147         if (II->getIntrinsicID() == Intrinsic::vastart)
148           return false;
149       }
150     }
151   }
152 
153   // If we get here, there are no calls to llvm.vastart in the function body,
154   // remove the "..." and adjust all the calls.
155 
156   // Start by computing a new prototype for the function, which is the same as
157   // the old function, but doesn't have isVarArg set.
158   FunctionType *FTy = Fn.getFunctionType();
159 
160   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
161   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
162                                                 Params, false);
163   unsigned NumArgs = Params.size();
164 
165   // Create the new function body and insert it into the module...
166   Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
167   NF->copyAttributesFrom(&Fn);
168   NF->setComdat(Fn.getComdat());
169   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
170   NF->takeName(&Fn);
171 
172   // Loop over all of the callers of the function, transforming the call sites
173   // to pass in a smaller number of arguments into the new function.
174   //
175   std::vector<Value *> Args;
176   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
177     CallBase *CB = dyn_cast<CallBase>(*I++);
178     if (!CB)
179       continue;
180 
181     // Pass all the same arguments.
182     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
183 
184     // Drop any attributes that were on the vararg arguments.
185     AttributeList PAL = CB->getAttributes();
186     if (!PAL.isEmpty()) {
187       SmallVector<AttributeSet, 8> ArgAttrs;
188       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
189         ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
190       PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
191                                PAL.getRetAttributes(), ArgAttrs);
192     }
193 
194     SmallVector<OperandBundleDef, 1> OpBundles;
195     CB->getOperandBundlesAsDefs(OpBundles);
196 
197     CallBase *NewCB = nullptr;
198     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
199       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
200                                  Args, OpBundles, "", CB);
201     } else {
202       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
203       cast<CallInst>(NewCB)->setTailCallKind(
204           cast<CallInst>(CB)->getTailCallKind());
205     }
206     NewCB->setCallingConv(CB->getCallingConv());
207     NewCB->setAttributes(PAL);
208     NewCB->setDebugLoc(CB->getDebugLoc());
209     uint64_t W;
210     if (CB->extractProfTotalWeight(W))
211       NewCB->setProfWeight(W);
212 
213     Args.clear();
214 
215     if (!CB->use_empty())
216       CB->replaceAllUsesWith(NewCB);
217 
218     NewCB->takeName(CB);
219 
220     // Finally, remove the old call from the program, reducing the use-count of
221     // F.
222     CB->eraseFromParent();
223   }
224 
225   // Since we have now created the new function, splice the body of the old
226   // function right into the new function, leaving the old rotting hulk of the
227   // function empty.
228   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
229 
230   // Loop over the argument list, transferring uses of the old arguments over to
231   // the new arguments, also transferring over the names as well.  While we're at
232   // it, remove the dead arguments from the DeadArguments list.
233   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
234        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
235     // Move the name and users over to the new version.
236     I->replaceAllUsesWith(&*I2);
237     I2->takeName(&*I);
238   }
239 
240   // Clone metadatas from the old function, including debug info descriptor.
241   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
242   Fn.getAllMetadata(MDs);
243   for (auto MD : MDs)
244     NF->addMetadata(MD.first, *MD.second);
245 
246   // Fix up any BlockAddresses that refer to the function.
247   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
248   // Delete the bitcast that we just created, so that NF does not
249   // appear to be address-taken.
250   NF->removeDeadConstantUsers();
251   // Finally, nuke the old function.
252   Fn.eraseFromParent();
253   return true;
254 }
255 
256 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
257 /// arguments that are unused, and changes the caller parameters to be undefined
258 /// instead.
259 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
260   // We cannot change the arguments if this TU does not define the function or
261   // if the linker may choose a function body from another TU, even if the
262   // nominal linkage indicates that other copies of the function have the same
263   // semantics. In the below example, the dead load from %p may not have been
264   // eliminated from the linker-chosen copy of f, so replacing %p with undef
265   // in callers may introduce undefined behavior.
266   //
267   // define linkonce_odr void @f(i32* %p) {
268   //   %v = load i32 %p
269   //   ret void
270   // }
271   if (!Fn.hasExactDefinition())
272     return false;
273 
274   // Functions with local linkage should already have been handled, except the
275   // fragile (variadic) ones which we can improve here.
276   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
277     return false;
278 
279   // Don't touch naked functions. The assembly might be using an argument, or
280   // otherwise rely on the frame layout in a way that this analysis will not
281   // see.
282   if (Fn.hasFnAttribute(Attribute::Naked))
283     return false;
284 
285   if (Fn.use_empty())
286     return false;
287 
288   SmallVector<unsigned, 8> UnusedArgs;
289   bool Changed = false;
290 
291   for (Argument &Arg : Fn.args()) {
292     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
293         !Arg.hasPassPointeeByValueAttr()) {
294       if (Arg.isUsedByMetadata()) {
295         Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
296         Changed = true;
297       }
298       UnusedArgs.push_back(Arg.getArgNo());
299     }
300   }
301 
302   if (UnusedArgs.empty())
303     return false;
304 
305   for (Use &U : Fn.uses()) {
306     CallBase *CB = dyn_cast<CallBase>(U.getUser());
307     if (!CB || !CB->isCallee(&U))
308       continue;
309 
310     // Now go through all unused args and replace them with "undef".
311     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
312       unsigned ArgNo = UnusedArgs[I];
313 
314       Value *Arg = CB->getArgOperand(ArgNo);
315       CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
316       ++NumArgumentsReplacedWithUndef;
317       Changed = true;
318     }
319   }
320 
321   return Changed;
322 }
323 
324 /// Convenience function that returns the number of return values. It returns 0
325 /// for void functions and 1 for functions not returning a struct. It returns
326 /// the number of struct elements for functions returning a struct.
327 static unsigned NumRetVals(const Function *F) {
328   Type *RetTy = F->getReturnType();
329   if (RetTy->isVoidTy())
330     return 0;
331   else if (StructType *STy = dyn_cast<StructType>(RetTy))
332     return STy->getNumElements();
333   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
334     return ATy->getNumElements();
335   else
336     return 1;
337 }
338 
339 /// Returns the sub-type a function will return at a given Idx. Should
340 /// correspond to the result type of an ExtractValue instruction executed with
341 /// just that one Idx (i.e. only top-level structure is considered).
342 static Type *getRetComponentType(const Function *F, unsigned Idx) {
343   Type *RetTy = F->getReturnType();
344   assert(!RetTy->isVoidTy() && "void type has no subtype");
345 
346   if (StructType *STy = dyn_cast<StructType>(RetTy))
347     return STy->getElementType(Idx);
348   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
349     return ATy->getElementType();
350   else
351     return RetTy;
352 }
353 
354 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
355 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
356 /// liveness of Use.
357 DeadArgumentEliminationPass::Liveness
358 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
359                                            UseVector &MaybeLiveUses) {
360   // We're live if our use or its Function is already marked as live.
361   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
362     return Live;
363 
364   // We're maybe live otherwise, but remember that we must become live if
365   // Use becomes live.
366   MaybeLiveUses.push_back(Use);
367   return MaybeLive;
368 }
369 
370 /// SurveyUse - This looks at a single use of an argument or return value
371 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
372 /// if it causes the used value to become MaybeLive.
373 ///
374 /// RetValNum is the return value number to use when this use is used in a
375 /// return instruction. This is used in the recursion, you should always leave
376 /// it at 0.
377 DeadArgumentEliminationPass::Liveness
378 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
379                                        unsigned RetValNum) {
380     const User *V = U->getUser();
381     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
382       // The value is returned from a function. It's only live when the
383       // function's return value is live. We use RetValNum here, for the case
384       // that U is really a use of an insertvalue instruction that uses the
385       // original Use.
386       const Function *F = RI->getParent()->getParent();
387       if (RetValNum != -1U) {
388         RetOrArg Use = CreateRet(F, RetValNum);
389         // We might be live, depending on the liveness of Use.
390         return MarkIfNotLive(Use, MaybeLiveUses);
391       } else {
392         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
393         for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
394           RetOrArg Use = CreateRet(F, Ri);
395           // We might be live, depending on the liveness of Use. If any
396           // sub-value is live, then the entire value is considered live. This
397           // is a conservative choice, and better tracking is possible.
398           DeadArgumentEliminationPass::Liveness SubResult =
399               MarkIfNotLive(Use, MaybeLiveUses);
400           if (Result != Live)
401             Result = SubResult;
402         }
403         return Result;
404       }
405     }
406     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
407       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
408           && IV->hasIndices())
409         // The use we are examining is inserted into an aggregate. Our liveness
410         // depends on all uses of that aggregate, but if it is used as a return
411         // value, only index at which we were inserted counts.
412         RetValNum = *IV->idx_begin();
413 
414       // Note that if we are used as the aggregate operand to the insertvalue,
415       // we don't change RetValNum, but do survey all our uses.
416 
417       Liveness Result = MaybeLive;
418       for (const Use &UU : IV->uses()) {
419         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
420         if (Result == Live)
421           break;
422       }
423       return Result;
424     }
425 
426     if (const auto *CB = dyn_cast<CallBase>(V)) {
427       const Function *F = CB->getCalledFunction();
428       if (F) {
429         // Used in a direct call.
430 
431         // The function argument is live if it is used as a bundle operand.
432         if (CB->isBundleOperand(U))
433           return Live;
434 
435         // Find the argument number. We know for sure that this use is an
436         // argument, since if it was the function argument this would be an
437         // indirect call and the we know can't be looking at a value of the
438         // label type (for the invoke instruction).
439         unsigned ArgNo = CB->getArgOperandNo(U);
440 
441         if (ArgNo >= F->getFunctionType()->getNumParams())
442           // The value is passed in through a vararg! Must be live.
443           return Live;
444 
445         assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
446                "Argument is not where we expected it");
447 
448         // Value passed to a normal call. It's only live when the corresponding
449         // argument to the called function turns out live.
450         RetOrArg Use = CreateArg(F, ArgNo);
451         return MarkIfNotLive(Use, MaybeLiveUses);
452       }
453     }
454     // Used in any other way? Value must be live.
455     return Live;
456 }
457 
458 /// SurveyUses - This looks at all the uses of the given value
459 /// Returns the Liveness deduced from the uses of this value.
460 ///
461 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
462 /// the result is Live, MaybeLiveUses might be modified but its content should
463 /// be ignored (since it might not be complete).
464 DeadArgumentEliminationPass::Liveness
465 DeadArgumentEliminationPass::SurveyUses(const Value *V,
466                                         UseVector &MaybeLiveUses) {
467   // Assume it's dead (which will only hold if there are no uses at all..).
468   Liveness Result = MaybeLive;
469   // Check each use.
470   for (const Use &U : V->uses()) {
471     Result = SurveyUse(&U, MaybeLiveUses);
472     if (Result == Live)
473       break;
474   }
475   return Result;
476 }
477 
478 // SurveyFunction - This performs the initial survey of the specified function,
479 // checking out whether or not it uses any of its incoming arguments or whether
480 // any callers use the return value.  This fills in the LiveValues set and Uses
481 // map.
482 //
483 // We consider arguments of non-internal functions to be intrinsically alive as
484 // well as arguments to functions which have their "address taken".
485 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
486   // Functions with inalloca/preallocated parameters are expecting args in a
487   // particular register and memory layout.
488   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
489       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
490     MarkLive(F);
491     return;
492   }
493 
494   // Don't touch naked functions. The assembly might be using an argument, or
495   // otherwise rely on the frame layout in a way that this analysis will not
496   // see.
497   if (F.hasFnAttribute(Attribute::Naked)) {
498     MarkLive(F);
499     return;
500   }
501 
502   unsigned RetCount = NumRetVals(&F);
503 
504   // Assume all return values are dead
505   using RetVals = SmallVector<Liveness, 5>;
506 
507   RetVals RetValLiveness(RetCount, MaybeLive);
508 
509   using RetUses = SmallVector<UseVector, 5>;
510 
511   // These vectors map each return value to the uses that make it MaybeLive, so
512   // we can add those to the Uses map if the return value really turns out to be
513   // MaybeLive. Initialized to a list of RetCount empty lists.
514   RetUses MaybeLiveRetUses(RetCount);
515 
516   bool HasMustTailCalls = false;
517 
518   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
519     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
520       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
521           != F.getFunctionType()->getReturnType()) {
522         // We don't support old style multiple return values.
523         MarkLive(F);
524         return;
525       }
526     }
527 
528     // If we have any returns of `musttail` results - the signature can't
529     // change
530     if (BB->getTerminatingMustTailCall() != nullptr)
531       HasMustTailCalls = true;
532   }
533 
534   if (HasMustTailCalls) {
535     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
536                       << " has musttail calls\n");
537   }
538 
539   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
540     MarkLive(F);
541     return;
542   }
543 
544   LLVM_DEBUG(
545       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
546              << F.getName() << "\n");
547   // Keep track of the number of live retvals, so we can skip checks once all
548   // of them turn out to be live.
549   unsigned NumLiveRetVals = 0;
550 
551   bool HasMustTailCallers = false;
552 
553   // Loop all uses of the function.
554   for (const Use &U : F.uses()) {
555     // If the function is PASSED IN as an argument, its address has been
556     // taken.
557     const auto *CB = dyn_cast<CallBase>(U.getUser());
558     if (!CB || !CB->isCallee(&U)) {
559       MarkLive(F);
560       return;
561     }
562 
563     // The number of arguments for `musttail` call must match the number of
564     // arguments of the caller
565     if (CB->isMustTailCall())
566       HasMustTailCallers = true;
567 
568     // If we end up here, we are looking at a direct call to our function.
569 
570     // Now, check how our return value(s) is/are used in this caller. Don't
571     // bother checking return values if all of them are live already.
572     if (NumLiveRetVals == RetCount)
573       continue;
574 
575     // Check all uses of the return value.
576     for (const Use &U : CB->uses()) {
577       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
578         // This use uses a part of our return value, survey the uses of
579         // that part and store the results for this index only.
580         unsigned Idx = *Ext->idx_begin();
581         if (RetValLiveness[Idx] != Live) {
582           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
583           if (RetValLiveness[Idx] == Live)
584             NumLiveRetVals++;
585         }
586       } else {
587         // Used by something else than extractvalue. Survey, but assume that the
588         // result applies to all sub-values.
589         UseVector MaybeLiveAggregateUses;
590         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
591           NumLiveRetVals = RetCount;
592           RetValLiveness.assign(RetCount, Live);
593           break;
594         } else {
595           for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
596             if (RetValLiveness[Ri] != Live)
597               MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
598                                           MaybeLiveAggregateUses.end());
599           }
600         }
601       }
602     }
603   }
604 
605   if (HasMustTailCallers) {
606     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
607                       << " has musttail callers\n");
608   }
609 
610   // Now we've inspected all callers, record the liveness of our return values.
611   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
612     MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
613 
614   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
615                     << F.getName() << "\n");
616 
617   // Now, check all of our arguments.
618   unsigned ArgI = 0;
619   UseVector MaybeLiveArgUses;
620   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
621        AI != E; ++AI, ++ArgI) {
622     Liveness Result;
623     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
624         HasMustTailCalls) {
625       // Variadic functions will already have a va_arg function expanded inside
626       // them, making them potentially very sensitive to ABI changes resulting
627       // from removing arguments entirely, so don't. For example AArch64 handles
628       // register and stack HFAs very differently, and this is reflected in the
629       // IR which has already been generated.
630       //
631       // `musttail` calls to this function restrict argument removal attempts.
632       // The signature of the caller must match the signature of the function.
633       //
634       // `musttail` calls in this function prevents us from changing its
635       // signature
636       Result = Live;
637     } else {
638       // See what the effect of this use is (recording any uses that cause
639       // MaybeLive in MaybeLiveArgUses).
640       Result = SurveyUses(&*AI, MaybeLiveArgUses);
641     }
642 
643     // Mark the result.
644     MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
645     // Clear the vector again for the next iteration.
646     MaybeLiveArgUses.clear();
647   }
648 }
649 
650 /// MarkValue - This function marks the liveness of RA depending on L. If L is
651 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
652 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
653 /// live later on.
654 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
655                                             const UseVector &MaybeLiveUses) {
656   switch (L) {
657     case Live:
658       MarkLive(RA);
659       break;
660     case MaybeLive:
661       // Note any uses of this value, so this return value can be
662       // marked live whenever one of the uses becomes live.
663       for (const auto &MaybeLiveUse : MaybeLiveUses)
664         Uses.insert(std::make_pair(MaybeLiveUse, RA));
665       break;
666   }
667 }
668 
669 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
670 /// changed in any way. Additionally,
671 /// mark any values that are used as this function's parameters or by its return
672 /// values (according to Uses) live as well.
673 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
674   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
675                     << F.getName() << "\n");
676   // Mark the function as live.
677   LiveFunctions.insert(&F);
678   // Mark all arguments as live.
679   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
680     PropagateLiveness(CreateArg(&F, ArgI));
681   // Mark all return values as live.
682   for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
683     PropagateLiveness(CreateRet(&F, Ri));
684 }
685 
686 /// MarkLive - Mark the given return value or argument as live. Additionally,
687 /// mark any values that are used by this value (according to Uses) live as
688 /// well.
689 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
690   if (LiveFunctions.count(RA.F))
691     return; // Function was already marked Live.
692 
693   if (!LiveValues.insert(RA).second)
694     return; // We were already marked Live.
695 
696   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
697                     << RA.getDescription() << " live\n");
698   PropagateLiveness(RA);
699 }
700 
701 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
702 /// to any other values it uses (according to Uses).
703 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
704   // We don't use upper_bound (or equal_range) here, because our recursive call
705   // to ourselves is likely to cause the upper_bound (which is the first value
706   // not belonging to RA) to become erased and the iterator invalidated.
707   UseMap::iterator Begin = Uses.lower_bound(RA);
708   UseMap::iterator E = Uses.end();
709   UseMap::iterator I;
710   for (I = Begin; I != E && I->first == RA; ++I)
711     MarkLive(I->second);
712 
713   // Erase RA from the Uses map (from the lower bound to wherever we ended up
714   // after the loop).
715   Uses.erase(Begin, I);
716 }
717 
718 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
719 // that are not in LiveValues. Transform the function and all of the callees of
720 // the function to not have these arguments and return values.
721 //
722 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
723   // Don't modify fully live functions
724   if (LiveFunctions.count(F))
725     return false;
726 
727   // Start by computing a new prototype for the function, which is the same as
728   // the old function, but has fewer arguments and a different return type.
729   FunctionType *FTy = F->getFunctionType();
730   std::vector<Type*> Params;
731 
732   // Keep track of if we have a live 'returned' argument
733   bool HasLiveReturnedArg = false;
734 
735   // Set up to build a new list of parameter attributes.
736   SmallVector<AttributeSet, 8> ArgAttrVec;
737   const AttributeList &PAL = F->getAttributes();
738 
739   // Remember which arguments are still alive.
740   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
741   // Construct the new parameter list from non-dead arguments. Also construct
742   // a new set of parameter attributes to correspond. Skip the first parameter
743   // attribute, since that belongs to the return value.
744   unsigned ArgI = 0;
745   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
746        ++I, ++ArgI) {
747     RetOrArg Arg = CreateArg(F, ArgI);
748     if (LiveValues.erase(Arg)) {
749       Params.push_back(I->getType());
750       ArgAlive[ArgI] = true;
751       ArgAttrVec.push_back(PAL.getParamAttributes(ArgI));
752       HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned);
753     } else {
754       ++NumArgumentsEliminated;
755       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
756                         << ArgI << " (" << I->getName() << ") from "
757                         << F->getName() << "\n");
758     }
759   }
760 
761   // Find out the new return value.
762   Type *RetTy = FTy->getReturnType();
763   Type *NRetTy = nullptr;
764   unsigned RetCount = NumRetVals(F);
765 
766   // -1 means unused, other numbers are the new index
767   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
768   std::vector<Type*> RetTypes;
769 
770   // If there is a function with a live 'returned' argument but a dead return
771   // value, then there are two possible actions:
772   // 1) Eliminate the return value and take off the 'returned' attribute on the
773   //    argument.
774   // 2) Retain the 'returned' attribute and treat the return value (but not the
775   //    entire function) as live so that it is not eliminated.
776   //
777   // It's not clear in the general case which option is more profitable because,
778   // even in the absence of explicit uses of the return value, code generation
779   // is free to use the 'returned' attribute to do things like eliding
780   // save/restores of registers across calls. Whether or not this happens is
781   // target and ABI-specific as well as depending on the amount of register
782   // pressure, so there's no good way for an IR-level pass to figure this out.
783   //
784   // Fortunately, the only places where 'returned' is currently generated by
785   // the FE are places where 'returned' is basically free and almost always a
786   // performance win, so the second option can just be used always for now.
787   //
788   // This should be revisited if 'returned' is ever applied more liberally.
789   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
790     NRetTy = RetTy;
791   } else {
792     // Look at each of the original return values individually.
793     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
794       RetOrArg Ret = CreateRet(F, Ri);
795       if (LiveValues.erase(Ret)) {
796         RetTypes.push_back(getRetComponentType(F, Ri));
797         NewRetIdxs[Ri] = RetTypes.size() - 1;
798       } else {
799         ++NumRetValsEliminated;
800         LLVM_DEBUG(
801             dbgs() << "DeadArgumentEliminationPass - Removing return value "
802                    << Ri << " from " << F->getName() << "\n");
803       }
804     }
805     if (RetTypes.size() > 1) {
806       // More than one return type? Reduce it down to size.
807       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
808         // Make the new struct packed if we used to return a packed struct
809         // already.
810         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
811       } else {
812         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
813         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
814       }
815     } else if (RetTypes.size() == 1)
816       // One return type? Just a simple value then, but only if we didn't use to
817       // return a struct with that simple value before.
818       NRetTy = RetTypes.front();
819     else if (RetTypes.empty())
820       // No return types? Make it void, but only if we didn't use to return {}.
821       NRetTy = Type::getVoidTy(F->getContext());
822   }
823 
824   assert(NRetTy && "No new return type found?");
825 
826   // The existing function return attributes.
827   AttrBuilder RAttrs(PAL.getRetAttributes());
828 
829   // Remove any incompatible attributes, but only if we removed all return
830   // values. Otherwise, ensure that we don't have any conflicting attributes
831   // here. Currently, this should not be possible, but special handling might be
832   // required when new return value attributes are added.
833   if (NRetTy->isVoidTy())
834     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
835   else
836     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
837            "Return attributes no longer compatible?");
838 
839   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
840 
841   // Strip allocsize attributes. They might refer to the deleted arguments.
842   AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
843       F->getContext(), Attribute::AllocSize);
844 
845   // Reconstruct the AttributesList based on the vector we constructed.
846   assert(ArgAttrVec.size() == Params.size());
847   AttributeList NewPAL =
848       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
849 
850   // Create the new function type based on the recomputed parameters.
851   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
852 
853   // No change?
854   if (NFTy == FTy)
855     return false;
856 
857   // Create the new function body and insert it into the module...
858   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
859   NF->copyAttributesFrom(F);
860   NF->setComdat(F->getComdat());
861   NF->setAttributes(NewPAL);
862   // Insert the new function before the old function, so we won't be processing
863   // it again.
864   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
865   NF->takeName(F);
866 
867   // Loop over all of the callers of the function, transforming the call sites
868   // to pass in a smaller number of arguments into the new function.
869   std::vector<Value*> Args;
870   while (!F->use_empty()) {
871     CallBase &CB = cast<CallBase>(*F->user_back());
872 
873     ArgAttrVec.clear();
874     const AttributeList &CallPAL = CB.getAttributes();
875 
876     // Adjust the call return attributes in case the function was changed to
877     // return void.
878     AttrBuilder RAttrs(CallPAL.getRetAttributes());
879     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
880     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
881 
882     // Declare these outside of the loops, so we can reuse them for the second
883     // loop, which loops the varargs.
884     auto I = CB.arg_begin();
885     unsigned Pi = 0;
886     // Loop over those operands, corresponding to the normal arguments to the
887     // original function, and add those that are still alive.
888     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
889       if (ArgAlive[Pi]) {
890         Args.push_back(*I);
891         // Get original parameter attributes, but skip return attributes.
892         AttributeSet Attrs = CallPAL.getParamAttributes(Pi);
893         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
894           // If the return type has changed, then get rid of 'returned' on the
895           // call site. The alternative is to make all 'returned' attributes on
896           // call sites keep the return value alive just like 'returned'
897           // attributes on function declaration but it's less clearly a win and
898           // this is not an expected case anyway
899           ArgAttrVec.push_back(AttributeSet::get(
900               F->getContext(),
901               AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
902         } else {
903           // Otherwise, use the original attributes.
904           ArgAttrVec.push_back(Attrs);
905         }
906       }
907 
908     // Push any varargs arguments on the list. Don't forget their attributes.
909     for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
910       Args.push_back(*I);
911       ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi));
912     }
913 
914     // Reconstruct the AttributesList based on the vector we constructed.
915     assert(ArgAttrVec.size() == Args.size());
916 
917     // Again, be sure to remove any allocsize attributes, since their indices
918     // may now be incorrect.
919     AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
920         F->getContext(), Attribute::AllocSize);
921 
922     AttributeList NewCallPAL = AttributeList::get(
923         F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
924 
925     SmallVector<OperandBundleDef, 1> OpBundles;
926     CB.getOperandBundlesAsDefs(OpBundles);
927 
928     CallBase *NewCB = nullptr;
929     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
930       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
931                                  Args, OpBundles, "", CB.getParent());
932     } else {
933       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
934       cast<CallInst>(NewCB)->setTailCallKind(
935           cast<CallInst>(&CB)->getTailCallKind());
936     }
937     NewCB->setCallingConv(CB.getCallingConv());
938     NewCB->setAttributes(NewCallPAL);
939     NewCB->setDebugLoc(CB.getDebugLoc());
940     uint64_t W;
941     if (CB.extractProfTotalWeight(W))
942       NewCB->setProfWeight(W);
943     Args.clear();
944     ArgAttrVec.clear();
945 
946     if (!CB.use_empty() || CB.isUsedByMetadata()) {
947       if (NewCB->getType() == CB.getType()) {
948         // Return type not changed? Just replace users then.
949         CB.replaceAllUsesWith(NewCB);
950         NewCB->takeName(&CB);
951       } else if (NewCB->getType()->isVoidTy()) {
952         // If the return value is dead, replace any uses of it with undef
953         // (any non-debug value uses will get removed later on).
954         if (!CB.getType()->isX86_MMXTy())
955           CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
956       } else {
957         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
958                "Return type changed, but not into a void. The old return type"
959                " must have been a struct or an array!");
960         Instruction *InsertPt = &CB;
961         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
962           BasicBlock *NewEdge =
963               SplitEdge(NewCB->getParent(), II->getNormalDest());
964           InsertPt = &*NewEdge->getFirstInsertionPt();
965         }
966 
967         // We used to return a struct or array. Instead of doing smart stuff
968         // with all the uses, we will just rebuild it using extract/insertvalue
969         // chaining and let instcombine clean that up.
970         //
971         // Start out building up our return value from undef
972         Value *RetVal = UndefValue::get(RetTy);
973         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
974           if (NewRetIdxs[Ri] != -1) {
975             Value *V;
976             if (RetTypes.size() > 1)
977               // We are still returning a struct, so extract the value from our
978               // return value
979               V = ExtractValueInst::Create(NewCB, NewRetIdxs[Ri], "newret",
980                                            InsertPt);
981             else
982               // We are now returning a single element, so just insert that
983               V = NewCB;
984             // Insert the value at the old position
985             RetVal = InsertValueInst::Create(RetVal, V, Ri, "oldret", InsertPt);
986           }
987         // Now, replace all uses of the old call instruction with the return
988         // struct we built
989         CB.replaceAllUsesWith(RetVal);
990         NewCB->takeName(&CB);
991       }
992     }
993 
994     // Finally, remove the old call from the program, reducing the use-count of
995     // F.
996     CB.eraseFromParent();
997   }
998 
999   // Since we have now created the new function, splice the body of the old
1000   // function right into the new function, leaving the old rotting hulk of the
1001   // function empty.
1002   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1003 
1004   // Loop over the argument list, transferring uses of the old arguments over to
1005   // the new arguments, also transferring over the names as well.
1006   ArgI = 0;
1007   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1008                               I2 = NF->arg_begin();
1009        I != E; ++I, ++ArgI)
1010     if (ArgAlive[ArgI]) {
1011       // If this is a live argument, move the name and users over to the new
1012       // version.
1013       I->replaceAllUsesWith(&*I2);
1014       I2->takeName(&*I);
1015       ++I2;
1016     } else {
1017       // If this argument is dead, replace any uses of it with undef
1018       // (any non-debug value uses will get removed later on).
1019       if (!I->getType()->isX86_MMXTy())
1020         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1021     }
1022 
1023   // If we change the return value of the function we must rewrite any return
1024   // instructions.  Check this now.
1025   if (F->getReturnType() != NF->getReturnType())
1026     for (BasicBlock &BB : *NF)
1027       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1028         Value *RetVal = nullptr;
1029 
1030         if (!NFTy->getReturnType()->isVoidTy()) {
1031           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1032           // The original return value was a struct or array, insert
1033           // extractvalue/insertvalue chains to extract only the values we need
1034           // to return and insert them into our new result.
1035           // This does generate messy code, but we'll let it to instcombine to
1036           // clean that up.
1037           Value *OldRet = RI->getOperand(0);
1038           // Start out building up our return value from undef
1039           RetVal = UndefValue::get(NRetTy);
1040           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1041             if (NewRetIdxs[RetI] != -1) {
1042               ExtractValueInst *EV =
1043                   ExtractValueInst::Create(OldRet, RetI, "oldret", RI);
1044               if (RetTypes.size() > 1) {
1045                 // We're still returning a struct, so reinsert the value into
1046                 // our new return value at the new index
1047 
1048                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[RetI],
1049                                                  "newret", RI);
1050               } else {
1051                 // We are now only returning a simple value, so just return the
1052                 // extracted value.
1053                 RetVal = EV;
1054               }
1055             }
1056         }
1057         // Replace the return instruction with one returning the new return
1058         // value (possibly 0 if we became void).
1059         auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1060         NewRet->setDebugLoc(RI->getDebugLoc());
1061         BB.getInstList().erase(RI);
1062       }
1063 
1064   // Clone metadatas from the old function, including debug info descriptor.
1065   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1066   F->getAllMetadata(MDs);
1067   for (auto MD : MDs)
1068     NF->addMetadata(MD.first, *MD.second);
1069 
1070   // Now that the old function is dead, delete it.
1071   F->eraseFromParent();
1072 
1073   return true;
1074 }
1075 
1076 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1077                                                    ModuleAnalysisManager &) {
1078   bool Changed = false;
1079 
1080   // First pass: Do a simple check to see if any functions can have their "..."
1081   // removed.  We can do this if they never call va_start.  This loop cannot be
1082   // fused with the next loop, because deleting a function invalidates
1083   // information computed while surveying other functions.
1084   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1085   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1086     Function &F = *I++;
1087     if (F.getFunctionType()->isVarArg())
1088       Changed |= DeleteDeadVarargs(F);
1089   }
1090 
1091   // Second phase:loop through the module, determining which arguments are live.
1092   // We assume all arguments are dead unless proven otherwise (allowing us to
1093   // determine that dead arguments passed into recursive functions are dead).
1094   //
1095   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1096   for (auto &F : M)
1097     SurveyFunction(F);
1098 
1099   // Now, remove all dead arguments and return values from each function in
1100   // turn.
1101   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1102     // Increment now, because the function will probably get removed (ie.
1103     // replaced by a new one).
1104     Function *F = &*I++;
1105     Changed |= RemoveDeadStuffFromFunction(F);
1106   }
1107 
1108   // Finally, look for any unused parameters in functions with non-local
1109   // linkage and replace the passed in parameters with undef.
1110   for (auto &F : M)
1111     Changed |= RemoveDeadArgumentsFromCallers(F);
1112 
1113   if (!Changed)
1114     return PreservedAnalyses::all();
1115   return PreservedAnalyses::none();
1116 }
1117