1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions.  Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions.  This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "deadargelim"
54 
55 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
56 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
57 STATISTIC(NumArgumentsReplacedWithPoison,
58           "Number of unread args replaced with poison");
59 
60 namespace {
61 
62   /// DAE - The dead argument elimination pass.
63   class DAE : public ModulePass {
64   protected:
65     // DAH uses this to specify a different ID.
66     explicit DAE(char &ID) : ModulePass(ID) {}
67 
68   public:
69     static char ID; // Pass identification, replacement for typeid
70 
71     DAE() : ModulePass(ID) {
72       initializeDAEPass(*PassRegistry::getPassRegistry());
73     }
74 
75     bool runOnModule(Module &M) override {
76       if (skipModule(M))
77         return false;
78       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
79       ModuleAnalysisManager DummyMAM;
80       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
81       return !PA.areAllPreserved();
82     }
83 
84     virtual bool ShouldHackArguments() const { return false; }
85   };
86 
87 } // end anonymous namespace
88 
89 char DAE::ID = 0;
90 
91 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
92 
93 namespace {
94 
95   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
96   /// deletes arguments to functions which are external.  This is only for use
97   /// by bugpoint.
98   struct DAH : public DAE {
99     static char ID;
100 
101     DAH() : DAE(ID) {}
102 
103     bool ShouldHackArguments() const override { return true; }
104   };
105 
106 } // end anonymous namespace
107 
108 char DAH::ID = 0;
109 
110 INITIALIZE_PASS(DAH, "deadarghaX0r",
111                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
112                 false, false)
113 
114 /// createDeadArgEliminationPass - This pass removes arguments from functions
115 /// which are not used by the body of the function.
116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
117 
118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
119 
120 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121 /// llvm.vastart is never called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
123   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
124   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
125 
126   // Ensure that the function is only directly called.
127   if (Fn.hasAddressTaken())
128     return false;
129 
130   // Don't touch naked functions. The assembly might be using an argument, or
131   // otherwise rely on the frame layout in a way that this analysis will not
132   // see.
133   if (Fn.hasFnAttribute(Attribute::Naked)) {
134     return false;
135   }
136 
137   // Okay, we know we can transform this function if safe.  Scan its body
138   // looking for calls marked musttail or calls to llvm.vastart.
139   for (BasicBlock &BB : Fn) {
140     for (Instruction &I : BB) {
141       CallInst *CI = dyn_cast<CallInst>(&I);
142       if (!CI)
143         continue;
144       if (CI->isMustTailCall())
145         return false;
146       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
147         if (II->getIntrinsicID() == Intrinsic::vastart)
148           return false;
149       }
150     }
151   }
152 
153   // If we get here, there are no calls to llvm.vastart in the function body,
154   // remove the "..." and adjust all the calls.
155 
156   // Start by computing a new prototype for the function, which is the same as
157   // the old function, but doesn't have isVarArg set.
158   FunctionType *FTy = Fn.getFunctionType();
159 
160   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
161   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
162                                                 Params, false);
163   unsigned NumArgs = Params.size();
164 
165   // Create the new function body and insert it into the module...
166   Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
167   NF->copyAttributesFrom(&Fn);
168   NF->setComdat(Fn.getComdat());
169   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
170   NF->takeName(&Fn);
171 
172   // Loop over all of the callers of the function, transforming the call sites
173   // to pass in a smaller number of arguments into the new function.
174   //
175   std::vector<Value *> Args;
176   for (User *U : llvm::make_early_inc_range(Fn.users())) {
177     CallBase *CB = dyn_cast<CallBase>(U);
178     if (!CB)
179       continue;
180 
181     // Pass all the same arguments.
182     Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
183 
184     // Drop any attributes that were on the vararg arguments.
185     AttributeList PAL = CB->getAttributes();
186     if (!PAL.isEmpty()) {
187       SmallVector<AttributeSet, 8> ArgAttrs;
188       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
189         ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
190       PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttrs(),
191                                PAL.getRetAttrs(), ArgAttrs);
192     }
193 
194     SmallVector<OperandBundleDef, 1> OpBundles;
195     CB->getOperandBundlesAsDefs(OpBundles);
196 
197     CallBase *NewCB = nullptr;
198     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
199       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
200                                  Args, OpBundles, "", CB);
201     } else {
202       NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
203       cast<CallInst>(NewCB)->setTailCallKind(
204           cast<CallInst>(CB)->getTailCallKind());
205     }
206     NewCB->setCallingConv(CB->getCallingConv());
207     NewCB->setAttributes(PAL);
208     NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
209 
210     Args.clear();
211 
212     if (!CB->use_empty())
213       CB->replaceAllUsesWith(NewCB);
214 
215     NewCB->takeName(CB);
216 
217     // Finally, remove the old call from the program, reducing the use-count of
218     // F.
219     CB->eraseFromParent();
220   }
221 
222   // Since we have now created the new function, splice the body of the old
223   // function right into the new function, leaving the old rotting hulk of the
224   // function empty.
225   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
226 
227   // Loop over the argument list, transferring uses of the old arguments over to
228   // the new arguments, also transferring over the names as well.  While we're at
229   // it, remove the dead arguments from the DeadArguments list.
230   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
231        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
232     // Move the name and users over to the new version.
233     I->replaceAllUsesWith(&*I2);
234     I2->takeName(&*I);
235   }
236 
237   // Clone metadatas from the old function, including debug info descriptor.
238   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
239   Fn.getAllMetadata(MDs);
240   for (auto MD : MDs)
241     NF->addMetadata(MD.first, *MD.second);
242 
243   // Fix up any BlockAddresses that refer to the function.
244   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
245   // Delete the bitcast that we just created, so that NF does not
246   // appear to be address-taken.
247   NF->removeDeadConstantUsers();
248   // Finally, nuke the old function.
249   Fn.eraseFromParent();
250   return true;
251 }
252 
253 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
254 /// arguments that are unused, and changes the caller parameters to be poison
255 /// instead.
256 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
257   // We cannot change the arguments if this TU does not define the function or
258   // if the linker may choose a function body from another TU, even if the
259   // nominal linkage indicates that other copies of the function have the same
260   // semantics. In the below example, the dead load from %p may not have been
261   // eliminated from the linker-chosen copy of f, so replacing %p with poison
262   // in callers may introduce undefined behavior.
263   //
264   // define linkonce_odr void @f(i32* %p) {
265   //   %v = load i32 %p
266   //   ret void
267   // }
268   if (!Fn.hasExactDefinition())
269     return false;
270 
271   // Functions with local linkage should already have been handled, except if
272   // they are fully alive (e.g., called indirectly) and except for the fragile
273   // (variadic) ones. In these cases, we may still be able to improve their
274   // statically known call sites.
275   if ((Fn.hasLocalLinkage() && !LiveFunctions.count(&Fn)) &&
276       !Fn.getFunctionType()->isVarArg())
277     return false;
278 
279   // Don't touch naked functions. The assembly might be using an argument, or
280   // otherwise rely on the frame layout in a way that this analysis will not
281   // see.
282   if (Fn.hasFnAttribute(Attribute::Naked))
283     return false;
284 
285   if (Fn.use_empty())
286     return false;
287 
288   SmallVector<unsigned, 8> UnusedArgs;
289   bool Changed = false;
290 
291   AttributeMask UBImplyingAttributes =
292       AttributeFuncs::getUBImplyingAttributes();
293   for (Argument &Arg : Fn.args()) {
294     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
295         !Arg.hasPassPointeeByValueCopyAttr()) {
296       if (Arg.isUsedByMetadata()) {
297         Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
298         Changed = true;
299       }
300       UnusedArgs.push_back(Arg.getArgNo());
301       Fn.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
302     }
303   }
304 
305   if (UnusedArgs.empty())
306     return false;
307 
308   for (Use &U : Fn.uses()) {
309     CallBase *CB = dyn_cast<CallBase>(U.getUser());
310     if (!CB || !CB->isCallee(&U) ||
311         CB->getFunctionType() != Fn.getFunctionType())
312       continue;
313 
314     // Now go through all unused args and replace them with poison.
315     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
316       unsigned ArgNo = UnusedArgs[I];
317 
318       Value *Arg = CB->getArgOperand(ArgNo);
319       CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
320       CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
321 
322       ++NumArgumentsReplacedWithPoison;
323       Changed = true;
324     }
325   }
326 
327   return Changed;
328 }
329 
330 /// Convenience function that returns the number of return values. It returns 0
331 /// for void functions and 1 for functions not returning a struct. It returns
332 /// the number of struct elements for functions returning a struct.
333 static unsigned NumRetVals(const Function *F) {
334   Type *RetTy = F->getReturnType();
335   if (RetTy->isVoidTy())
336     return 0;
337   else if (StructType *STy = dyn_cast<StructType>(RetTy))
338     return STy->getNumElements();
339   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
340     return ATy->getNumElements();
341   else
342     return 1;
343 }
344 
345 /// Returns the sub-type a function will return at a given Idx. Should
346 /// correspond to the result type of an ExtractValue instruction executed with
347 /// just that one Idx (i.e. only top-level structure is considered).
348 static Type *getRetComponentType(const Function *F, unsigned Idx) {
349   Type *RetTy = F->getReturnType();
350   assert(!RetTy->isVoidTy() && "void type has no subtype");
351 
352   if (StructType *STy = dyn_cast<StructType>(RetTy))
353     return STy->getElementType(Idx);
354   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
355     return ATy->getElementType();
356   else
357     return RetTy;
358 }
359 
360 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
361 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
362 /// liveness of Use.
363 DeadArgumentEliminationPass::Liveness
364 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
365                                            UseVector &MaybeLiveUses) {
366   // We're live if our use or its Function is already marked as live.
367   if (IsLive(Use))
368     return Live;
369 
370   // We're maybe live otherwise, but remember that we must become live if
371   // Use becomes live.
372   MaybeLiveUses.push_back(Use);
373   return MaybeLive;
374 }
375 
376 /// SurveyUse - This looks at a single use of an argument or return value
377 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
378 /// if it causes the used value to become MaybeLive.
379 ///
380 /// RetValNum is the return value number to use when this use is used in a
381 /// return instruction. This is used in the recursion, you should always leave
382 /// it at 0.
383 DeadArgumentEliminationPass::Liveness
384 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
385                                        unsigned RetValNum) {
386     const User *V = U->getUser();
387     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
388       // The value is returned from a function. It's only live when the
389       // function's return value is live. We use RetValNum here, for the case
390       // that U is really a use of an insertvalue instruction that uses the
391       // original Use.
392       const Function *F = RI->getParent()->getParent();
393       if (RetValNum != -1U) {
394         RetOrArg Use = CreateRet(F, RetValNum);
395         // We might be live, depending on the liveness of Use.
396         return MarkIfNotLive(Use, MaybeLiveUses);
397       } else {
398         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
399         for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
400           RetOrArg Use = CreateRet(F, Ri);
401           // We might be live, depending on the liveness of Use. If any
402           // sub-value is live, then the entire value is considered live. This
403           // is a conservative choice, and better tracking is possible.
404           DeadArgumentEliminationPass::Liveness SubResult =
405               MarkIfNotLive(Use, MaybeLiveUses);
406           if (Result != Live)
407             Result = SubResult;
408         }
409         return Result;
410       }
411     }
412     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
413       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
414           && IV->hasIndices())
415         // The use we are examining is inserted into an aggregate. Our liveness
416         // depends on all uses of that aggregate, but if it is used as a return
417         // value, only index at which we were inserted counts.
418         RetValNum = *IV->idx_begin();
419 
420       // Note that if we are used as the aggregate operand to the insertvalue,
421       // we don't change RetValNum, but do survey all our uses.
422 
423       Liveness Result = MaybeLive;
424       for (const Use &UU : IV->uses()) {
425         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
426         if (Result == Live)
427           break;
428       }
429       return Result;
430     }
431 
432     if (const auto *CB = dyn_cast<CallBase>(V)) {
433       const Function *F = CB->getCalledFunction();
434       if (F) {
435         // Used in a direct call.
436 
437         // The function argument is live if it is used as a bundle operand.
438         if (CB->isBundleOperand(U))
439           return Live;
440 
441         // Find the argument number. We know for sure that this use is an
442         // argument, since if it was the function argument this would be an
443         // indirect call and the we know can't be looking at a value of the
444         // label type (for the invoke instruction).
445         unsigned ArgNo = CB->getArgOperandNo(U);
446 
447         if (ArgNo >= F->getFunctionType()->getNumParams())
448           // The value is passed in through a vararg! Must be live.
449           return Live;
450 
451         assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
452                "Argument is not where we expected it");
453 
454         // Value passed to a normal call. It's only live when the corresponding
455         // argument to the called function turns out live.
456         RetOrArg Use = CreateArg(F, ArgNo);
457         return MarkIfNotLive(Use, MaybeLiveUses);
458       }
459     }
460     // Used in any other way? Value must be live.
461     return Live;
462 }
463 
464 /// SurveyUses - This looks at all the uses of the given value
465 /// Returns the Liveness deduced from the uses of this value.
466 ///
467 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
468 /// the result is Live, MaybeLiveUses might be modified but its content should
469 /// be ignored (since it might not be complete).
470 DeadArgumentEliminationPass::Liveness
471 DeadArgumentEliminationPass::SurveyUses(const Value *V,
472                                         UseVector &MaybeLiveUses) {
473   // Assume it's dead (which will only hold if there are no uses at all..).
474   Liveness Result = MaybeLive;
475   // Check each use.
476   for (const Use &U : V->uses()) {
477     Result = SurveyUse(&U, MaybeLiveUses);
478     if (Result == Live)
479       break;
480   }
481   return Result;
482 }
483 
484 // SurveyFunction - This performs the initial survey of the specified function,
485 // checking out whether or not it uses any of its incoming arguments or whether
486 // any callers use the return value.  This fills in the LiveValues set and Uses
487 // map.
488 //
489 // We consider arguments of non-internal functions to be intrinsically alive as
490 // well as arguments to functions which have their "address taken".
491 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
492   // Functions with inalloca/preallocated parameters are expecting args in a
493   // particular register and memory layout.
494   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
495       F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
496     MarkLive(F);
497     return;
498   }
499 
500   // Don't touch naked functions. The assembly might be using an argument, or
501   // otherwise rely on the frame layout in a way that this analysis will not
502   // see.
503   if (F.hasFnAttribute(Attribute::Naked)) {
504     MarkLive(F);
505     return;
506   }
507 
508   unsigned RetCount = NumRetVals(&F);
509 
510   // Assume all return values are dead
511   using RetVals = SmallVector<Liveness, 5>;
512 
513   RetVals RetValLiveness(RetCount, MaybeLive);
514 
515   using RetUses = SmallVector<UseVector, 5>;
516 
517   // These vectors map each return value to the uses that make it MaybeLive, so
518   // we can add those to the Uses map if the return value really turns out to be
519   // MaybeLive. Initialized to a list of RetCount empty lists.
520   RetUses MaybeLiveRetUses(RetCount);
521 
522   bool HasMustTailCalls = false;
523   for (const BasicBlock &BB : F) {
524     // If we have any returns of `musttail` results - the signature can't
525     // change
526     if (BB.getTerminatingMustTailCall() != nullptr)
527       HasMustTailCalls = true;
528   }
529 
530   if (HasMustTailCalls) {
531     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
532                       << " has musttail calls\n");
533   }
534 
535   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
536     MarkLive(F);
537     return;
538   }
539 
540   LLVM_DEBUG(
541       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
542              << F.getName() << "\n");
543   // Keep track of the number of live retvals, so we can skip checks once all
544   // of them turn out to be live.
545   unsigned NumLiveRetVals = 0;
546 
547   bool HasMustTailCallers = false;
548 
549   // Loop all uses of the function.
550   for (const Use &U : F.uses()) {
551     // If the function is PASSED IN as an argument, its address has been
552     // taken.
553     const auto *CB = dyn_cast<CallBase>(U.getUser());
554     if (!CB || !CB->isCallee(&U) ||
555         CB->getFunctionType() != F.getFunctionType()) {
556       MarkLive(F);
557       return;
558     }
559 
560     // The number of arguments for `musttail` call must match the number of
561     // arguments of the caller
562     if (CB->isMustTailCall())
563       HasMustTailCallers = true;
564 
565     // If we end up here, we are looking at a direct call to our function.
566 
567     // Now, check how our return value(s) is/are used in this caller. Don't
568     // bother checking return values if all of them are live already.
569     if (NumLiveRetVals == RetCount)
570       continue;
571 
572     // Check all uses of the return value.
573     for (const Use &U : CB->uses()) {
574       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
575         // This use uses a part of our return value, survey the uses of
576         // that part and store the results for this index only.
577         unsigned Idx = *Ext->idx_begin();
578         if (RetValLiveness[Idx] != Live) {
579           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
580           if (RetValLiveness[Idx] == Live)
581             NumLiveRetVals++;
582         }
583       } else {
584         // Used by something else than extractvalue. Survey, but assume that the
585         // result applies to all sub-values.
586         UseVector MaybeLiveAggregateUses;
587         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
588           NumLiveRetVals = RetCount;
589           RetValLiveness.assign(RetCount, Live);
590           break;
591         } else {
592           for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
593             if (RetValLiveness[Ri] != Live)
594               MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
595                                           MaybeLiveAggregateUses.end());
596           }
597         }
598       }
599     }
600   }
601 
602   if (HasMustTailCallers) {
603     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
604                       << " has musttail callers\n");
605   }
606 
607   // Now we've inspected all callers, record the liveness of our return values.
608   for (unsigned Ri = 0; Ri != RetCount; ++Ri)
609     MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
610 
611   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
612                     << F.getName() << "\n");
613 
614   // Now, check all of our arguments.
615   unsigned ArgI = 0;
616   UseVector MaybeLiveArgUses;
617   for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
618        AI != E; ++AI, ++ArgI) {
619     Liveness Result;
620     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
621         HasMustTailCalls) {
622       // Variadic functions will already have a va_arg function expanded inside
623       // them, making them potentially very sensitive to ABI changes resulting
624       // from removing arguments entirely, so don't. For example AArch64 handles
625       // register and stack HFAs very differently, and this is reflected in the
626       // IR which has already been generated.
627       //
628       // `musttail` calls to this function restrict argument removal attempts.
629       // The signature of the caller must match the signature of the function.
630       //
631       // `musttail` calls in this function prevents us from changing its
632       // signature
633       Result = Live;
634     } else {
635       // See what the effect of this use is (recording any uses that cause
636       // MaybeLive in MaybeLiveArgUses).
637       Result = SurveyUses(&*AI, MaybeLiveArgUses);
638     }
639 
640     // Mark the result.
641     MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
642     // Clear the vector again for the next iteration.
643     MaybeLiveArgUses.clear();
644   }
645 }
646 
647 /// MarkValue - This function marks the liveness of RA depending on L. If L is
648 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
649 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
650 /// live later on.
651 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
652                                             const UseVector &MaybeLiveUses) {
653   switch (L) {
654     case Live:
655       MarkLive(RA);
656       break;
657     case MaybeLive:
658       assert(!IsLive(RA) && "Use is already live!");
659       for (const auto &MaybeLiveUse : MaybeLiveUses) {
660         if (IsLive(MaybeLiveUse)) {
661           // A use is live, so this value is live.
662           MarkLive(RA);
663           break;
664         } else {
665           // Note any uses of this value, so this value can be
666           // marked live whenever one of the uses becomes live.
667           Uses.insert(std::make_pair(MaybeLiveUse, RA));
668         }
669       }
670       break;
671   }
672 }
673 
674 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
675 /// changed in any way. Additionally,
676 /// mark any values that are used as this function's parameters or by its return
677 /// values (according to Uses) live as well.
678 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
679   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
680                     << F.getName() << "\n");
681   // Mark the function as live.
682   LiveFunctions.insert(&F);
683   // Mark all arguments as live.
684   for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
685     PropagateLiveness(CreateArg(&F, ArgI));
686   // Mark all return values as live.
687   for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
688     PropagateLiveness(CreateRet(&F, Ri));
689 }
690 
691 /// MarkLive - Mark the given return value or argument as live. Additionally,
692 /// mark any values that are used by this value (according to Uses) live as
693 /// well.
694 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
695   if (IsLive(RA))
696     return; // Already marked Live.
697 
698   LiveValues.insert(RA);
699 
700   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
701                     << RA.getDescription() << " live\n");
702   PropagateLiveness(RA);
703 }
704 
705 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
706   return LiveFunctions.count(RA.F) || LiveValues.count(RA);
707 }
708 
709 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
710 /// to any other values it uses (according to Uses).
711 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
712   // We don't use upper_bound (or equal_range) here, because our recursive call
713   // to ourselves is likely to cause the upper_bound (which is the first value
714   // not belonging to RA) to become erased and the iterator invalidated.
715   UseMap::iterator Begin = Uses.lower_bound(RA);
716   UseMap::iterator E = Uses.end();
717   UseMap::iterator I;
718   for (I = Begin; I != E && I->first == RA; ++I)
719     MarkLive(I->second);
720 
721   // Erase RA from the Uses map (from the lower bound to wherever we ended up
722   // after the loop).
723   Uses.erase(Begin, I);
724 }
725 
726 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
727 // that are not in LiveValues. Transform the function and all of the callees of
728 // the function to not have these arguments and return values.
729 //
730 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
731   // Don't modify fully live functions
732   if (LiveFunctions.count(F))
733     return false;
734 
735   // Start by computing a new prototype for the function, which is the same as
736   // the old function, but has fewer arguments and a different return type.
737   FunctionType *FTy = F->getFunctionType();
738   std::vector<Type*> Params;
739 
740   // Keep track of if we have a live 'returned' argument
741   bool HasLiveReturnedArg = false;
742 
743   // Set up to build a new list of parameter attributes.
744   SmallVector<AttributeSet, 8> ArgAttrVec;
745   const AttributeList &PAL = F->getAttributes();
746 
747   // Remember which arguments are still alive.
748   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
749   // Construct the new parameter list from non-dead arguments. Also construct
750   // a new set of parameter attributes to correspond. Skip the first parameter
751   // attribute, since that belongs to the return value.
752   unsigned ArgI = 0;
753   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
754        ++I, ++ArgI) {
755     RetOrArg Arg = CreateArg(F, ArgI);
756     if (LiveValues.erase(Arg)) {
757       Params.push_back(I->getType());
758       ArgAlive[ArgI] = true;
759       ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
760       HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
761     } else {
762       ++NumArgumentsEliminated;
763       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
764                         << ArgI << " (" << I->getName() << ") from "
765                         << F->getName() << "\n");
766     }
767   }
768 
769   // Find out the new return value.
770   Type *RetTy = FTy->getReturnType();
771   Type *NRetTy = nullptr;
772   unsigned RetCount = NumRetVals(F);
773 
774   // -1 means unused, other numbers are the new index
775   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
776   std::vector<Type*> RetTypes;
777 
778   // If there is a function with a live 'returned' argument but a dead return
779   // value, then there are two possible actions:
780   // 1) Eliminate the return value and take off the 'returned' attribute on the
781   //    argument.
782   // 2) Retain the 'returned' attribute and treat the return value (but not the
783   //    entire function) as live so that it is not eliminated.
784   //
785   // It's not clear in the general case which option is more profitable because,
786   // even in the absence of explicit uses of the return value, code generation
787   // is free to use the 'returned' attribute to do things like eliding
788   // save/restores of registers across calls. Whether or not this happens is
789   // target and ABI-specific as well as depending on the amount of register
790   // pressure, so there's no good way for an IR-level pass to figure this out.
791   //
792   // Fortunately, the only places where 'returned' is currently generated by
793   // the FE are places where 'returned' is basically free and almost always a
794   // performance win, so the second option can just be used always for now.
795   //
796   // This should be revisited if 'returned' is ever applied more liberally.
797   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
798     NRetTy = RetTy;
799   } else {
800     // Look at each of the original return values individually.
801     for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
802       RetOrArg Ret = CreateRet(F, Ri);
803       if (LiveValues.erase(Ret)) {
804         RetTypes.push_back(getRetComponentType(F, Ri));
805         NewRetIdxs[Ri] = RetTypes.size() - 1;
806       } else {
807         ++NumRetValsEliminated;
808         LLVM_DEBUG(
809             dbgs() << "DeadArgumentEliminationPass - Removing return value "
810                    << Ri << " from " << F->getName() << "\n");
811       }
812     }
813     if (RetTypes.size() > 1) {
814       // More than one return type? Reduce it down to size.
815       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
816         // Make the new struct packed if we used to return a packed struct
817         // already.
818         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
819       } else {
820         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
821         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
822       }
823     } else if (RetTypes.size() == 1)
824       // One return type? Just a simple value then, but only if we didn't use to
825       // return a struct with that simple value before.
826       NRetTy = RetTypes.front();
827     else if (RetTypes.empty())
828       // No return types? Make it void, but only if we didn't use to return {}.
829       NRetTy = Type::getVoidTy(F->getContext());
830   }
831 
832   assert(NRetTy && "No new return type found?");
833 
834   // The existing function return attributes.
835   AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
836 
837   // Remove any incompatible attributes, but only if we removed all return
838   // values. Otherwise, ensure that we don't have any conflicting attributes
839   // here. Currently, this should not be possible, but special handling might be
840   // required when new return value attributes are added.
841   if (NRetTy->isVoidTy())
842     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
843   else
844     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
845            "Return attributes no longer compatible?");
846 
847   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
848 
849   // Strip allocsize attributes. They might refer to the deleted arguments.
850   AttributeSet FnAttrs =
851       PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
852 
853   // Reconstruct the AttributesList based on the vector we constructed.
854   assert(ArgAttrVec.size() == Params.size());
855   AttributeList NewPAL =
856       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
857 
858   // Create the new function type based on the recomputed parameters.
859   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
860 
861   // No change?
862   if (NFTy == FTy)
863     return false;
864 
865   // Create the new function body and insert it into the module...
866   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
867   NF->copyAttributesFrom(F);
868   NF->setComdat(F->getComdat());
869   NF->setAttributes(NewPAL);
870   // Insert the new function before the old function, so we won't be processing
871   // it again.
872   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
873   NF->takeName(F);
874 
875   // Loop over all of the callers of the function, transforming the call sites
876   // to pass in a smaller number of arguments into the new function.
877   std::vector<Value*> Args;
878   while (!F->use_empty()) {
879     CallBase &CB = cast<CallBase>(*F->user_back());
880 
881     ArgAttrVec.clear();
882     const AttributeList &CallPAL = CB.getAttributes();
883 
884     // Adjust the call return attributes in case the function was changed to
885     // return void.
886     AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
887     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
888     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
889 
890     // Declare these outside of the loops, so we can reuse them for the second
891     // loop, which loops the varargs.
892     auto I = CB.arg_begin();
893     unsigned Pi = 0;
894     // Loop over those operands, corresponding to the normal arguments to the
895     // original function, and add those that are still alive.
896     for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
897       if (ArgAlive[Pi]) {
898         Args.push_back(*I);
899         // Get original parameter attributes, but skip return attributes.
900         AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
901         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
902           // If the return type has changed, then get rid of 'returned' on the
903           // call site. The alternative is to make all 'returned' attributes on
904           // call sites keep the return value alive just like 'returned'
905           // attributes on function declaration but it's less clearly a win and
906           // this is not an expected case anyway
907           ArgAttrVec.push_back(AttributeSet::get(
908               F->getContext(),
909               AttrBuilder(F->getContext(), Attrs).removeAttribute(Attribute::Returned)));
910         } else {
911           // Otherwise, use the original attributes.
912           ArgAttrVec.push_back(Attrs);
913         }
914       }
915 
916     // Push any varargs arguments on the list. Don't forget their attributes.
917     for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
918       Args.push_back(*I);
919       ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
920     }
921 
922     // Reconstruct the AttributesList based on the vector we constructed.
923     assert(ArgAttrVec.size() == Args.size());
924 
925     // Again, be sure to remove any allocsize attributes, since their indices
926     // may now be incorrect.
927     AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
928         F->getContext(), Attribute::AllocSize);
929 
930     AttributeList NewCallPAL = AttributeList::get(
931         F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
932 
933     SmallVector<OperandBundleDef, 1> OpBundles;
934     CB.getOperandBundlesAsDefs(OpBundles);
935 
936     CallBase *NewCB = nullptr;
937     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
938       NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
939                                  Args, OpBundles, "", CB.getParent());
940     } else {
941       NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
942       cast<CallInst>(NewCB)->setTailCallKind(
943           cast<CallInst>(&CB)->getTailCallKind());
944     }
945     NewCB->setCallingConv(CB.getCallingConv());
946     NewCB->setAttributes(NewCallPAL);
947     NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
948     Args.clear();
949     ArgAttrVec.clear();
950 
951     if (!CB.use_empty() || CB.isUsedByMetadata()) {
952       if (NewCB->getType() == CB.getType()) {
953         // Return type not changed? Just replace users then.
954         CB.replaceAllUsesWith(NewCB);
955         NewCB->takeName(&CB);
956       } else if (NewCB->getType()->isVoidTy()) {
957         // If the return value is dead, replace any uses of it with poison
958         // (any non-debug value uses will get removed later on).
959         if (!CB.getType()->isX86_MMXTy())
960           CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
961       } else {
962         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
963                "Return type changed, but not into a void. The old return type"
964                " must have been a struct or an array!");
965         Instruction *InsertPt = &CB;
966         if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
967           BasicBlock *NewEdge =
968               SplitEdge(NewCB->getParent(), II->getNormalDest());
969           InsertPt = &*NewEdge->getFirstInsertionPt();
970         }
971 
972         // We used to return a struct or array. Instead of doing smart stuff
973         // with all the uses, we will just rebuild it using extract/insertvalue
974         // chaining and let instcombine clean that up.
975         //
976         // Start out building up our return value from poison
977         Value *RetVal = PoisonValue::get(RetTy);
978         for (unsigned Ri = 0; Ri != RetCount; ++Ri)
979           if (NewRetIdxs[Ri] != -1) {
980             Value *V;
981             IRBuilder<NoFolder> IRB(InsertPt);
982             if (RetTypes.size() > 1)
983               // We are still returning a struct, so extract the value from our
984               // return value
985               V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
986             else
987               // We are now returning a single element, so just insert that
988               V = NewCB;
989             // Insert the value at the old position
990             RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
991           }
992         // Now, replace all uses of the old call instruction with the return
993         // struct we built
994         CB.replaceAllUsesWith(RetVal);
995         NewCB->takeName(&CB);
996       }
997     }
998 
999     // Finally, remove the old call from the program, reducing the use-count of
1000     // F.
1001     CB.eraseFromParent();
1002   }
1003 
1004   // Since we have now created the new function, splice the body of the old
1005   // function right into the new function, leaving the old rotting hulk of the
1006   // function empty.
1007   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1008 
1009   // Loop over the argument list, transferring uses of the old arguments over to
1010   // the new arguments, also transferring over the names as well.
1011   ArgI = 0;
1012   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1013                               I2 = NF->arg_begin();
1014        I != E; ++I, ++ArgI)
1015     if (ArgAlive[ArgI]) {
1016       // If this is a live argument, move the name and users over to the new
1017       // version.
1018       I->replaceAllUsesWith(&*I2);
1019       I2->takeName(&*I);
1020       ++I2;
1021     } else {
1022       // If this argument is dead, replace any uses of it with poison
1023       // (any non-debug value uses will get removed later on).
1024       if (!I->getType()->isX86_MMXTy())
1025         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1026     }
1027 
1028   // If we change the return value of the function we must rewrite any return
1029   // instructions.  Check this now.
1030   if (F->getReturnType() != NF->getReturnType())
1031     for (BasicBlock &BB : *NF)
1032       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1033         IRBuilder<NoFolder> IRB(RI);
1034         Value *RetVal = nullptr;
1035 
1036         if (!NFTy->getReturnType()->isVoidTy()) {
1037           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1038           // The original return value was a struct or array, insert
1039           // extractvalue/insertvalue chains to extract only the values we need
1040           // to return and insert them into our new result.
1041           // This does generate messy code, but we'll let it to instcombine to
1042           // clean that up.
1043           Value *OldRet = RI->getOperand(0);
1044           // Start out building up our return value from poison
1045           RetVal = PoisonValue::get(NRetTy);
1046           for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1047             if (NewRetIdxs[RetI] != -1) {
1048               Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1049 
1050               if (RetTypes.size() > 1) {
1051                 // We're still returning a struct, so reinsert the value into
1052                 // our new return value at the new index
1053 
1054                 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1055                                                "newret");
1056               } else {
1057                 // We are now only returning a simple value, so just return the
1058                 // extracted value.
1059                 RetVal = EV;
1060               }
1061             }
1062         }
1063         // Replace the return instruction with one returning the new return
1064         // value (possibly 0 if we became void).
1065         auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1066         NewRet->setDebugLoc(RI->getDebugLoc());
1067         BB.getInstList().erase(RI);
1068       }
1069 
1070   // Clone metadatas from the old function, including debug info descriptor.
1071   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1072   F->getAllMetadata(MDs);
1073   for (auto MD : MDs)
1074     NF->addMetadata(MD.first, *MD.second);
1075 
1076   // Now that the old function is dead, delete it.
1077   F->eraseFromParent();
1078 
1079   return true;
1080 }
1081 
1082 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1083                                                    ModuleAnalysisManager &) {
1084   bool Changed = false;
1085 
1086   // First pass: Do a simple check to see if any functions can have their "..."
1087   // removed.  We can do this if they never call va_start.  This loop cannot be
1088   // fused with the next loop, because deleting a function invalidates
1089   // information computed while surveying other functions.
1090   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1091   for (Function &F : llvm::make_early_inc_range(M))
1092     if (F.getFunctionType()->isVarArg())
1093       Changed |= DeleteDeadVarargs(F);
1094 
1095   // Second phase:loop through the module, determining which arguments are live.
1096   // We assume all arguments are dead unless proven otherwise (allowing us to
1097   // determine that dead arguments passed into recursive functions are dead).
1098   //
1099   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1100   for (auto &F : M)
1101     SurveyFunction(F);
1102 
1103   // Now, remove all dead arguments and return values from each function in
1104   // turn.  We use make_early_inc_range here because functions will probably get
1105   // removed (i.e. replaced by new ones).
1106   for (Function &F : llvm::make_early_inc_range(M))
1107     Changed |= RemoveDeadStuffFromFunction(&F);
1108 
1109   // Finally, look for any unused parameters in functions with non-local
1110   // linkage and replace the passed in parameters with poison.
1111   for (auto &F : M)
1112     Changed |= RemoveDeadArgumentsFromCallers(F);
1113 
1114   if (!Changed)
1115     return PreservedAnalyses::all();
1116   return PreservedAnalyses::none();
1117 }
1118