1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass deletes dead arguments from internal functions. Dead argument 11 // elimination removes arguments which are directly dead, as well as arguments 12 // only passed into function calls as dead arguments of other functions. This 13 // pass also deletes dead return values in a similar way. 14 // 15 // This pass is often useful as a cleanup pass to run after aggressive 16 // interprocedural passes, which add possibly-dead arguments or return values. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/CallingConv.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include <map> 40 #include <set> 41 #include <tuple> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "deadargelim" 45 46 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 47 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 48 STATISTIC(NumArgumentsReplacedWithUndef, 49 "Number of unread args replaced with undef"); 50 namespace { 51 /// DAE - The dead argument elimination pass. 52 /// 53 class DAE : public ModulePass { 54 public: 55 56 /// Struct that represents (part of) either a return value or a function 57 /// argument. Used so that arguments and return values can be used 58 /// interchangeably. 59 struct RetOrArg { 60 RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), 61 IsArg(IsArg) {} 62 const Function *F; 63 unsigned Idx; 64 bool IsArg; 65 66 /// Make RetOrArg comparable, so we can put it into a map. 67 bool operator<(const RetOrArg &O) const { 68 return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg); 69 } 70 71 /// Make RetOrArg comparable, so we can easily iterate the multimap. 72 bool operator==(const RetOrArg &O) const { 73 return F == O.F && Idx == O.Idx && IsArg == O.IsArg; 74 } 75 76 std::string getDescription() const { 77 return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) + 78 " of function " + F->getName()).str(); 79 } 80 }; 81 82 /// Liveness enum - During our initial pass over the program, we determine 83 /// that things are either alive or maybe alive. We don't mark anything 84 /// explicitly dead (even if we know they are), since anything not alive 85 /// with no registered uses (in Uses) will never be marked alive and will 86 /// thus become dead in the end. 87 enum Liveness { Live, MaybeLive }; 88 89 /// Convenience wrapper 90 RetOrArg CreateRet(const Function *F, unsigned Idx) { 91 return RetOrArg(F, Idx, false); 92 } 93 /// Convenience wrapper 94 RetOrArg CreateArg(const Function *F, unsigned Idx) { 95 return RetOrArg(F, Idx, true); 96 } 97 98 typedef std::multimap<RetOrArg, RetOrArg> UseMap; 99 /// This maps a return value or argument to any MaybeLive return values or 100 /// arguments it uses. This allows the MaybeLive values to be marked live 101 /// when any of its users is marked live. 102 /// For example (indices are left out for clarity): 103 /// - Uses[ret F] = ret G 104 /// This means that F calls G, and F returns the value returned by G. 105 /// - Uses[arg F] = ret G 106 /// This means that some function calls G and passes its result as an 107 /// argument to F. 108 /// - Uses[ret F] = arg F 109 /// This means that F returns one of its own arguments. 110 /// - Uses[arg F] = arg G 111 /// This means that G calls F and passes one of its own (G's) arguments 112 /// directly to F. 113 UseMap Uses; 114 115 typedef std::set<RetOrArg> LiveSet; 116 typedef std::set<const Function*> LiveFuncSet; 117 118 /// This set contains all values that have been determined to be live. 119 LiveSet LiveValues; 120 /// This set contains all values that are cannot be changed in any way. 121 LiveFuncSet LiveFunctions; 122 123 typedef SmallVector<RetOrArg, 5> UseVector; 124 125 // Map each LLVM function to corresponding metadata with debug info. If 126 // the function is replaced with another one, we should patch the pointer 127 // to LLVM function in metadata. 128 // As the code generation for module is finished (and DIBuilder is 129 // finalized) we assume that subprogram descriptors won't be changed, and 130 // they are stored in map for short duration anyway. 131 DenseMap<const Function *, DISubprogram *> FunctionDIs; 132 133 protected: 134 // DAH uses this to specify a different ID. 135 explicit DAE(char &ID) : ModulePass(ID) {} 136 137 public: 138 static char ID; // Pass identification, replacement for typeid 139 DAE() : ModulePass(ID) { 140 initializeDAEPass(*PassRegistry::getPassRegistry()); 141 } 142 143 bool runOnModule(Module &M) override; 144 145 virtual bool ShouldHackArguments() const { return false; } 146 147 private: 148 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses); 149 Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses, 150 unsigned RetValNum = -1U); 151 Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses); 152 153 void SurveyFunction(const Function &F); 154 void MarkValue(const RetOrArg &RA, Liveness L, 155 const UseVector &MaybeLiveUses); 156 void MarkLive(const RetOrArg &RA); 157 void MarkLive(const Function &F); 158 void PropagateLiveness(const RetOrArg &RA); 159 bool RemoveDeadStuffFromFunction(Function *F); 160 bool DeleteDeadVarargs(Function &Fn); 161 bool RemoveDeadArgumentsFromCallers(Function &Fn); 162 }; 163 } 164 165 166 char DAE::ID = 0; 167 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 168 169 namespace { 170 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 171 /// deletes arguments to functions which are external. This is only for use 172 /// by bugpoint. 173 struct DAH : public DAE { 174 static char ID; 175 DAH() : DAE(ID) {} 176 177 bool ShouldHackArguments() const override { return true; } 178 }; 179 } 180 181 char DAH::ID = 0; 182 INITIALIZE_PASS(DAH, "deadarghaX0r", 183 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 184 false, false) 185 186 /// createDeadArgEliminationPass - This pass removes arguments from functions 187 /// which are not used by the body of the function. 188 /// 189 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 190 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 191 192 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 193 /// llvm.vastart is never called, the varargs list is dead for the function. 194 bool DAE::DeleteDeadVarargs(Function &Fn) { 195 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 196 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 197 198 // Ensure that the function is only directly called. 199 if (Fn.hasAddressTaken()) 200 return false; 201 202 // Don't touch naked functions. The assembly might be using an argument, or 203 // otherwise rely on the frame layout in a way that this analysis will not 204 // see. 205 if (Fn.hasFnAttribute(Attribute::Naked)) { 206 return false; 207 } 208 209 // Okay, we know we can transform this function if safe. Scan its body 210 // looking for calls marked musttail or calls to llvm.vastart. 211 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 212 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 213 CallInst *CI = dyn_cast<CallInst>(I); 214 if (!CI) 215 continue; 216 if (CI->isMustTailCall()) 217 return false; 218 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 219 if (II->getIntrinsicID() == Intrinsic::vastart) 220 return false; 221 } 222 } 223 } 224 225 // If we get here, there are no calls to llvm.vastart in the function body, 226 // remove the "..." and adjust all the calls. 227 228 // Start by computing a new prototype for the function, which is the same as 229 // the old function, but doesn't have isVarArg set. 230 FunctionType *FTy = Fn.getFunctionType(); 231 232 std::vector<Type*> Params(FTy->param_begin(), FTy->param_end()); 233 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 234 Params, false); 235 unsigned NumArgs = Params.size(); 236 237 // Create the new function body and insert it into the module... 238 Function *NF = Function::Create(NFTy, Fn.getLinkage()); 239 NF->copyAttributesFrom(&Fn); 240 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); 241 NF->takeName(&Fn); 242 243 // Loop over all of the callers of the function, transforming the call sites 244 // to pass in a smaller number of arguments into the new function. 245 // 246 std::vector<Value*> Args; 247 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { 248 CallSite CS(*I++); 249 if (!CS) 250 continue; 251 Instruction *Call = CS.getInstruction(); 252 253 // Pass all the same arguments. 254 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); 255 256 // Drop any attributes that were on the vararg arguments. 257 AttributeSet PAL = CS.getAttributes(); 258 if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) { 259 SmallVector<AttributeSet, 8> AttributesVec; 260 for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i) 261 AttributesVec.push_back(PAL.getSlotAttributes(i)); 262 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 263 AttributesVec.push_back(AttributeSet::get(Fn.getContext(), 264 PAL.getFnAttributes())); 265 PAL = AttributeSet::get(Fn.getContext(), AttributesVec); 266 } 267 268 Instruction *New; 269 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 270 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 271 Args, "", Call); 272 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 273 cast<InvokeInst>(New)->setAttributes(PAL); 274 } else { 275 New = CallInst::Create(NF, Args, "", Call); 276 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 277 cast<CallInst>(New)->setAttributes(PAL); 278 if (cast<CallInst>(Call)->isTailCall()) 279 cast<CallInst>(New)->setTailCall(); 280 } 281 New->setDebugLoc(Call->getDebugLoc()); 282 283 Args.clear(); 284 285 if (!Call->use_empty()) 286 Call->replaceAllUsesWith(New); 287 288 New->takeName(Call); 289 290 // Finally, remove the old call from the program, reducing the use-count of 291 // F. 292 Call->eraseFromParent(); 293 } 294 295 // Since we have now created the new function, splice the body of the old 296 // function right into the new function, leaving the old rotting hulk of the 297 // function empty. 298 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 299 300 // Loop over the argument list, transferring uses of the old arguments over to 301 // the new arguments, also transferring over the names as well. While we're at 302 // it, remove the dead arguments from the DeadArguments list. 303 // 304 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 305 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 306 // Move the name and users over to the new version. 307 I->replaceAllUsesWith(&*I2); 308 I2->takeName(&*I); 309 } 310 311 // Patch the pointer to LLVM function in debug info descriptor. 312 auto DI = FunctionDIs.find(&Fn); 313 if (DI != FunctionDIs.end()) { 314 DISubprogram *SP = DI->second; 315 SP->replaceFunction(NF); 316 // Ensure the map is updated so it can be reused on non-varargs argument 317 // eliminations of the same function. 318 FunctionDIs.erase(DI); 319 FunctionDIs[NF] = SP; 320 } 321 322 // Fix up any BlockAddresses that refer to the function. 323 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 324 // Delete the bitcast that we just created, so that NF does not 325 // appear to be address-taken. 326 NF->removeDeadConstantUsers(); 327 // Finally, nuke the old function. 328 Fn.eraseFromParent(); 329 return true; 330 } 331 332 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 333 /// arguments that are unused, and changes the caller parameters to be undefined 334 /// instead. 335 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn) 336 { 337 // We cannot change the arguments if this TU does not define the function or 338 // if the linker may choose a function body from another TU, even if the 339 // nominal linkage indicates that other copies of the function have the same 340 // semantics. In the below example, the dead load from %p may not have been 341 // eliminated from the linker-chosen copy of f, so replacing %p with undef 342 // in callers may introduce undefined behavior. 343 // 344 // define linkonce_odr void @f(i32* %p) { 345 // %v = load i32 %p 346 // ret void 347 // } 348 if (!Fn.isStrongDefinitionForLinker()) 349 return false; 350 351 // Functions with local linkage should already have been handled, except the 352 // fragile (variadic) ones which we can improve here. 353 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 354 return false; 355 356 // Don't touch naked functions. The assembly might be using an argument, or 357 // otherwise rely on the frame layout in a way that this analysis will not 358 // see. 359 if (Fn.hasFnAttribute(Attribute::Naked)) 360 return false; 361 362 if (Fn.use_empty()) 363 return false; 364 365 SmallVector<unsigned, 8> UnusedArgs; 366 for (Argument &Arg : Fn.args()) { 367 if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) 368 UnusedArgs.push_back(Arg.getArgNo()); 369 } 370 371 if (UnusedArgs.empty()) 372 return false; 373 374 bool Changed = false; 375 376 for (Use &U : Fn.uses()) { 377 CallSite CS(U.getUser()); 378 if (!CS || !CS.isCallee(&U)) 379 continue; 380 381 // Now go through all unused args and replace them with "undef". 382 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 383 unsigned ArgNo = UnusedArgs[I]; 384 385 Value *Arg = CS.getArgument(ArgNo); 386 CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); 387 ++NumArgumentsReplacedWithUndef; 388 Changed = true; 389 } 390 } 391 392 return Changed; 393 } 394 395 /// Convenience function that returns the number of return values. It returns 0 396 /// for void functions and 1 for functions not returning a struct. It returns 397 /// the number of struct elements for functions returning a struct. 398 static unsigned NumRetVals(const Function *F) { 399 Type *RetTy = F->getReturnType(); 400 if (RetTy->isVoidTy()) 401 return 0; 402 else if (StructType *STy = dyn_cast<StructType>(RetTy)) 403 return STy->getNumElements(); 404 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 405 return ATy->getNumElements(); 406 else 407 return 1; 408 } 409 410 /// Returns the sub-type a function will return at a given Idx. Should 411 /// correspond to the result type of an ExtractValue instruction executed with 412 /// just that one Idx (i.e. only top-level structure is considered). 413 static Type *getRetComponentType(const Function *F, unsigned Idx) { 414 Type *RetTy = F->getReturnType(); 415 assert(!RetTy->isVoidTy() && "void type has no subtype"); 416 417 if (StructType *STy = dyn_cast<StructType>(RetTy)) 418 return STy->getElementType(Idx); 419 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 420 return ATy->getElementType(); 421 else 422 return RetTy; 423 } 424 425 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 426 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 427 /// liveness of Use. 428 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { 429 // We're live if our use or its Function is already marked as live. 430 if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) 431 return Live; 432 433 // We're maybe live otherwise, but remember that we must become live if 434 // Use becomes live. 435 MaybeLiveUses.push_back(Use); 436 return MaybeLive; 437 } 438 439 440 /// SurveyUse - This looks at a single use of an argument or return value 441 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 442 /// if it causes the used value to become MaybeLive. 443 /// 444 /// RetValNum is the return value number to use when this use is used in a 445 /// return instruction. This is used in the recursion, you should always leave 446 /// it at 0. 447 DAE::Liveness DAE::SurveyUse(const Use *U, 448 UseVector &MaybeLiveUses, unsigned RetValNum) { 449 const User *V = U->getUser(); 450 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 451 // The value is returned from a function. It's only live when the 452 // function's return value is live. We use RetValNum here, for the case 453 // that U is really a use of an insertvalue instruction that uses the 454 // original Use. 455 const Function *F = RI->getParent()->getParent(); 456 if (RetValNum != -1U) { 457 RetOrArg Use = CreateRet(F, RetValNum); 458 // We might be live, depending on the liveness of Use. 459 return MarkIfNotLive(Use, MaybeLiveUses); 460 } else { 461 DAE::Liveness Result = MaybeLive; 462 for (unsigned i = 0; i < NumRetVals(F); ++i) { 463 RetOrArg Use = CreateRet(F, i); 464 // We might be live, depending on the liveness of Use. If any 465 // sub-value is live, then the entire value is considered live. This 466 // is a conservative choice, and better tracking is possible. 467 DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses); 468 if (Result != Live) 469 Result = SubResult; 470 } 471 return Result; 472 } 473 } 474 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 475 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 476 && IV->hasIndices()) 477 // The use we are examining is inserted into an aggregate. Our liveness 478 // depends on all uses of that aggregate, but if it is used as a return 479 // value, only index at which we were inserted counts. 480 RetValNum = *IV->idx_begin(); 481 482 // Note that if we are used as the aggregate operand to the insertvalue, 483 // we don't change RetValNum, but do survey all our uses. 484 485 Liveness Result = MaybeLive; 486 for (const Use &UU : IV->uses()) { 487 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 488 if (Result == Live) 489 break; 490 } 491 return Result; 492 } 493 494 if (auto CS = ImmutableCallSite(V)) { 495 const Function *F = CS.getCalledFunction(); 496 if (F) { 497 // Used in a direct call. 498 499 // Find the argument number. We know for sure that this use is an 500 // argument, since if it was the function argument this would be an 501 // indirect call and the we know can't be looking at a value of the 502 // label type (for the invoke instruction). 503 unsigned ArgNo = CS.getArgumentNo(U); 504 505 if (ArgNo >= F->getFunctionType()->getNumParams()) 506 // The value is passed in through a vararg! Must be live. 507 return Live; 508 509 assert(CS.getArgument(ArgNo) 510 == CS->getOperand(U->getOperandNo()) 511 && "Argument is not where we expected it"); 512 513 // Value passed to a normal call. It's only live when the corresponding 514 // argument to the called function turns out live. 515 RetOrArg Use = CreateArg(F, ArgNo); 516 return MarkIfNotLive(Use, MaybeLiveUses); 517 } 518 } 519 // Used in any other way? Value must be live. 520 return Live; 521 } 522 523 /// SurveyUses - This looks at all the uses of the given value 524 /// Returns the Liveness deduced from the uses of this value. 525 /// 526 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 527 /// the result is Live, MaybeLiveUses might be modified but its content should 528 /// be ignored (since it might not be complete). 529 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) { 530 // Assume it's dead (which will only hold if there are no uses at all..). 531 Liveness Result = MaybeLive; 532 // Check each use. 533 for (const Use &U : V->uses()) { 534 Result = SurveyUse(&U, MaybeLiveUses); 535 if (Result == Live) 536 break; 537 } 538 return Result; 539 } 540 541 // SurveyFunction - This performs the initial survey of the specified function, 542 // checking out whether or not it uses any of its incoming arguments or whether 543 // any callers use the return value. This fills in the LiveValues set and Uses 544 // map. 545 // 546 // We consider arguments of non-internal functions to be intrinsically alive as 547 // well as arguments to functions which have their "address taken". 548 // 549 void DAE::SurveyFunction(const Function &F) { 550 // Functions with inalloca parameters are expecting args in a particular 551 // register and memory layout. 552 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { 553 MarkLive(F); 554 return; 555 } 556 557 // Don't touch naked functions. The assembly might be using an argument, or 558 // otherwise rely on the frame layout in a way that this analysis will not 559 // see. 560 if (F.hasFnAttribute(Attribute::Naked)) { 561 MarkLive(F); 562 return; 563 } 564 565 unsigned RetCount = NumRetVals(&F); 566 // Assume all return values are dead 567 typedef SmallVector<Liveness, 5> RetVals; 568 RetVals RetValLiveness(RetCount, MaybeLive); 569 570 typedef SmallVector<UseVector, 5> RetUses; 571 // These vectors map each return value to the uses that make it MaybeLive, so 572 // we can add those to the Uses map if the return value really turns out to be 573 // MaybeLive. Initialized to a list of RetCount empty lists. 574 RetUses MaybeLiveRetUses(RetCount); 575 576 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 577 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 578 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 579 != F.getFunctionType()->getReturnType()) { 580 // We don't support old style multiple return values. 581 MarkLive(F); 582 return; 583 } 584 585 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) { 586 MarkLive(F); 587 return; 588 } 589 590 DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n"); 591 // Keep track of the number of live retvals, so we can skip checks once all 592 // of them turn out to be live. 593 unsigned NumLiveRetVals = 0; 594 // Loop all uses of the function. 595 for (const Use &U : F.uses()) { 596 // If the function is PASSED IN as an argument, its address has been 597 // taken. 598 ImmutableCallSite CS(U.getUser()); 599 if (!CS || !CS.isCallee(&U)) { 600 MarkLive(F); 601 return; 602 } 603 604 // If this use is anything other than a call site, the function is alive. 605 const Instruction *TheCall = CS.getInstruction(); 606 if (!TheCall) { // Not a direct call site? 607 MarkLive(F); 608 return; 609 } 610 611 // If we end up here, we are looking at a direct call to our function. 612 613 // Now, check how our return value(s) is/are used in this caller. Don't 614 // bother checking return values if all of them are live already. 615 if (NumLiveRetVals == RetCount) 616 continue; 617 618 // Check all uses of the return value. 619 for (const Use &U : TheCall->uses()) { 620 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { 621 // This use uses a part of our return value, survey the uses of 622 // that part and store the results for this index only. 623 unsigned Idx = *Ext->idx_begin(); 624 if (RetValLiveness[Idx] != Live) { 625 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 626 if (RetValLiveness[Idx] == Live) 627 NumLiveRetVals++; 628 } 629 } else { 630 // Used by something else than extractvalue. Survey, but assume that the 631 // result applies to all sub-values. 632 UseVector MaybeLiveAggregateUses; 633 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { 634 NumLiveRetVals = RetCount; 635 RetValLiveness.assign(RetCount, Live); 636 break; 637 } else { 638 for (unsigned i = 0; i != RetCount; ++i) { 639 if (RetValLiveness[i] != Live) 640 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(), 641 MaybeLiveAggregateUses.end()); 642 } 643 } 644 } 645 } 646 } 647 648 // Now we've inspected all callers, record the liveness of our return values. 649 for (unsigned i = 0; i != RetCount; ++i) 650 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); 651 652 DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n"); 653 654 // Now, check all of our arguments. 655 unsigned i = 0; 656 UseVector MaybeLiveArgUses; 657 for (Function::const_arg_iterator AI = F.arg_begin(), 658 E = F.arg_end(); AI != E; ++AI, ++i) { 659 Liveness Result; 660 if (F.getFunctionType()->isVarArg()) { 661 // Variadic functions will already have a va_arg function expanded inside 662 // them, making them potentially very sensitive to ABI changes resulting 663 // from removing arguments entirely, so don't. For example AArch64 handles 664 // register and stack HFAs very differently, and this is reflected in the 665 // IR which has already been generated. 666 Result = Live; 667 } else { 668 // See what the effect of this use is (recording any uses that cause 669 // MaybeLive in MaybeLiveArgUses). 670 Result = SurveyUses(&*AI, MaybeLiveArgUses); 671 } 672 673 // Mark the result. 674 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); 675 // Clear the vector again for the next iteration. 676 MaybeLiveArgUses.clear(); 677 } 678 } 679 680 /// MarkValue - This function marks the liveness of RA depending on L. If L is 681 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 682 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 683 /// live later on. 684 void DAE::MarkValue(const RetOrArg &RA, Liveness L, 685 const UseVector &MaybeLiveUses) { 686 switch (L) { 687 case Live: MarkLive(RA); break; 688 case MaybeLive: 689 { 690 // Note any uses of this value, so this return value can be 691 // marked live whenever one of the uses becomes live. 692 for (UseVector::const_iterator UI = MaybeLiveUses.begin(), 693 UE = MaybeLiveUses.end(); UI != UE; ++UI) 694 Uses.insert(std::make_pair(*UI, RA)); 695 break; 696 } 697 } 698 } 699 700 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 701 /// changed in any way. Additionally, 702 /// mark any values that are used as this function's parameters or by its return 703 /// values (according to Uses) live as well. 704 void DAE::MarkLive(const Function &F) { 705 DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n"); 706 // Mark the function as live. 707 LiveFunctions.insert(&F); 708 // Mark all arguments as live. 709 for (unsigned i = 0, e = F.arg_size(); i != e; ++i) 710 PropagateLiveness(CreateArg(&F, i)); 711 // Mark all return values as live. 712 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) 713 PropagateLiveness(CreateRet(&F, i)); 714 } 715 716 /// MarkLive - Mark the given return value or argument as live. Additionally, 717 /// mark any values that are used by this value (according to Uses) live as 718 /// well. 719 void DAE::MarkLive(const RetOrArg &RA) { 720 if (LiveFunctions.count(RA.F)) 721 return; // Function was already marked Live. 722 723 if (!LiveValues.insert(RA).second) 724 return; // We were already marked Live. 725 726 DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n"); 727 PropagateLiveness(RA); 728 } 729 730 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 731 /// to any other values it uses (according to Uses). 732 void DAE::PropagateLiveness(const RetOrArg &RA) { 733 // We don't use upper_bound (or equal_range) here, because our recursive call 734 // to ourselves is likely to cause the upper_bound (which is the first value 735 // not belonging to RA) to become erased and the iterator invalidated. 736 UseMap::iterator Begin = Uses.lower_bound(RA); 737 UseMap::iterator E = Uses.end(); 738 UseMap::iterator I; 739 for (I = Begin; I != E && I->first == RA; ++I) 740 MarkLive(I->second); 741 742 // Erase RA from the Uses map (from the lower bound to wherever we ended up 743 // after the loop). 744 Uses.erase(Begin, I); 745 } 746 747 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 748 // that are not in LiveValues. Transform the function and all of the callees of 749 // the function to not have these arguments and return values. 750 // 751 bool DAE::RemoveDeadStuffFromFunction(Function *F) { 752 // Don't modify fully live functions 753 if (LiveFunctions.count(F)) 754 return false; 755 756 // Start by computing a new prototype for the function, which is the same as 757 // the old function, but has fewer arguments and a different return type. 758 FunctionType *FTy = F->getFunctionType(); 759 std::vector<Type*> Params; 760 761 // Keep track of if we have a live 'returned' argument 762 bool HasLiveReturnedArg = false; 763 764 // Set up to build a new list of parameter attributes. 765 SmallVector<AttributeSet, 8> AttributesVec; 766 const AttributeSet &PAL = F->getAttributes(); 767 768 // Remember which arguments are still alive. 769 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 770 // Construct the new parameter list from non-dead arguments. Also construct 771 // a new set of parameter attributes to correspond. Skip the first parameter 772 // attribute, since that belongs to the return value. 773 unsigned i = 0; 774 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 775 I != E; ++I, ++i) { 776 RetOrArg Arg = CreateArg(F, i); 777 if (LiveValues.erase(Arg)) { 778 Params.push_back(I->getType()); 779 ArgAlive[i] = true; 780 781 // Get the original parameter attributes (skipping the first one, that is 782 // for the return value. 783 if (PAL.hasAttributes(i + 1)) { 784 AttrBuilder B(PAL, i + 1); 785 if (B.contains(Attribute::Returned)) 786 HasLiveReturnedArg = true; 787 AttributesVec. 788 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 789 } 790 } else { 791 ++NumArgumentsEliminated; 792 DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName() 793 << ") from " << F->getName() << "\n"); 794 } 795 } 796 797 // Find out the new return value. 798 Type *RetTy = FTy->getReturnType(); 799 Type *NRetTy = nullptr; 800 unsigned RetCount = NumRetVals(F); 801 802 // -1 means unused, other numbers are the new index 803 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 804 std::vector<Type*> RetTypes; 805 806 // If there is a function with a live 'returned' argument but a dead return 807 // value, then there are two possible actions: 808 // 1) Eliminate the return value and take off the 'returned' attribute on the 809 // argument. 810 // 2) Retain the 'returned' attribute and treat the return value (but not the 811 // entire function) as live so that it is not eliminated. 812 // 813 // It's not clear in the general case which option is more profitable because, 814 // even in the absence of explicit uses of the return value, code generation 815 // is free to use the 'returned' attribute to do things like eliding 816 // save/restores of registers across calls. Whether or not this happens is 817 // target and ABI-specific as well as depending on the amount of register 818 // pressure, so there's no good way for an IR-level pass to figure this out. 819 // 820 // Fortunately, the only places where 'returned' is currently generated by 821 // the FE are places where 'returned' is basically free and almost always a 822 // performance win, so the second option can just be used always for now. 823 // 824 // This should be revisited if 'returned' is ever applied more liberally. 825 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 826 NRetTy = RetTy; 827 } else { 828 // Look at each of the original return values individually. 829 for (unsigned i = 0; i != RetCount; ++i) { 830 RetOrArg Ret = CreateRet(F, i); 831 if (LiveValues.erase(Ret)) { 832 RetTypes.push_back(getRetComponentType(F, i)); 833 NewRetIdxs[i] = RetTypes.size() - 1; 834 } else { 835 ++NumRetValsEliminated; 836 DEBUG(dbgs() << "DAE - Removing return value " << i << " from " 837 << F->getName() << "\n"); 838 } 839 } 840 if (RetTypes.size() > 1) { 841 // More than one return type? Reduce it down to size. 842 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 843 // Make the new struct packed if we used to return a packed struct 844 // already. 845 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 846 } else { 847 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 848 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 849 } 850 } else if (RetTypes.size() == 1) 851 // One return type? Just a simple value then, but only if we didn't use to 852 // return a struct with that simple value before. 853 NRetTy = RetTypes.front(); 854 else if (RetTypes.size() == 0) 855 // No return types? Make it void, but only if we didn't use to return {}. 856 NRetTy = Type::getVoidTy(F->getContext()); 857 } 858 859 assert(NRetTy && "No new return type found?"); 860 861 // The existing function return attributes. 862 AttributeSet RAttrs = PAL.getRetAttributes(); 863 864 // Remove any incompatible attributes, but only if we removed all return 865 // values. Otherwise, ensure that we don't have any conflicting attributes 866 // here. Currently, this should not be possible, but special handling might be 867 // required when new return value attributes are added. 868 if (NRetTy->isVoidTy()) 869 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(), 870 AttributeSet::ReturnIndex, 871 AttributeFuncs::typeIncompatible(NRetTy)); 872 else 873 assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex). 874 overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && 875 "Return attributes no longer compatible?"); 876 877 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) 878 AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs)); 879 880 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 881 AttributesVec.push_back(AttributeSet::get(F->getContext(), 882 PAL.getFnAttributes())); 883 884 // Reconstruct the AttributesList based on the vector we constructed. 885 AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec); 886 887 // Create the new function type based on the recomputed parameters. 888 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 889 890 // No change? 891 if (NFTy == FTy) 892 return false; 893 894 // Create the new function body and insert it into the module... 895 Function *NF = Function::Create(NFTy, F->getLinkage()); 896 NF->copyAttributesFrom(F); 897 NF->setAttributes(NewPAL); 898 // Insert the new function before the old function, so we won't be processing 899 // it again. 900 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 901 NF->takeName(F); 902 903 // Loop over all of the callers of the function, transforming the call sites 904 // to pass in a smaller number of arguments into the new function. 905 // 906 std::vector<Value*> Args; 907 while (!F->use_empty()) { 908 CallSite CS(F->user_back()); 909 Instruction *Call = CS.getInstruction(); 910 911 AttributesVec.clear(); 912 const AttributeSet &CallPAL = CS.getAttributes(); 913 914 // The call return attributes. 915 AttributeSet RAttrs = CallPAL.getRetAttributes(); 916 917 // Adjust in case the function was changed to return void. 918 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(), 919 AttributeSet::ReturnIndex, 920 AttributeFuncs::typeIncompatible(NF->getReturnType())); 921 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) 922 AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs)); 923 924 // Declare these outside of the loops, so we can reuse them for the second 925 // loop, which loops the varargs. 926 CallSite::arg_iterator I = CS.arg_begin(); 927 unsigned i = 0; 928 // Loop over those operands, corresponding to the normal arguments to the 929 // original function, and add those that are still alive. 930 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) 931 if (ArgAlive[i]) { 932 Args.push_back(*I); 933 // Get original parameter attributes, but skip return attributes. 934 if (CallPAL.hasAttributes(i + 1)) { 935 AttrBuilder B(CallPAL, i + 1); 936 // If the return type has changed, then get rid of 'returned' on the 937 // call site. The alternative is to make all 'returned' attributes on 938 // call sites keep the return value alive just like 'returned' 939 // attributes on function declaration but it's less clearly a win 940 // and this is not an expected case anyway 941 if (NRetTy != RetTy && B.contains(Attribute::Returned)) 942 B.removeAttribute(Attribute::Returned); 943 AttributesVec. 944 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 945 } 946 } 947 948 // Push any varargs arguments on the list. Don't forget their attributes. 949 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { 950 Args.push_back(*I); 951 if (CallPAL.hasAttributes(i + 1)) { 952 AttrBuilder B(CallPAL, i + 1); 953 AttributesVec. 954 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 955 } 956 } 957 958 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 959 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 960 CallPAL.getFnAttributes())); 961 962 // Reconstruct the AttributesList based on the vector we constructed. 963 AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec); 964 965 Instruction *New; 966 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 967 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 968 Args, "", Call->getParent()); 969 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 970 cast<InvokeInst>(New)->setAttributes(NewCallPAL); 971 } else { 972 New = CallInst::Create(NF, Args, "", Call); 973 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 974 cast<CallInst>(New)->setAttributes(NewCallPAL); 975 if (cast<CallInst>(Call)->isTailCall()) 976 cast<CallInst>(New)->setTailCall(); 977 } 978 New->setDebugLoc(Call->getDebugLoc()); 979 980 Args.clear(); 981 982 if (!Call->use_empty()) { 983 if (New->getType() == Call->getType()) { 984 // Return type not changed? Just replace users then. 985 Call->replaceAllUsesWith(New); 986 New->takeName(Call); 987 } else if (New->getType()->isVoidTy()) { 988 // Our return value has uses, but they will get removed later on. 989 // Replace by null for now. 990 if (!Call->getType()->isX86_MMXTy()) 991 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); 992 } else { 993 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 994 "Return type changed, but not into a void. The old return type" 995 " must have been a struct or an array!"); 996 Instruction *InsertPt = Call; 997 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 998 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest()); 999 InsertPt = &*NewEdge->getFirstInsertionPt(); 1000 } 1001 1002 // We used to return a struct or array. Instead of doing smart stuff 1003 // with all the uses, we will just rebuild it using extract/insertvalue 1004 // chaining and let instcombine clean that up. 1005 // 1006 // Start out building up our return value from undef 1007 Value *RetVal = UndefValue::get(RetTy); 1008 for (unsigned i = 0; i != RetCount; ++i) 1009 if (NewRetIdxs[i] != -1) { 1010 Value *V; 1011 if (RetTypes.size() > 1) 1012 // We are still returning a struct, so extract the value from our 1013 // return value 1014 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", 1015 InsertPt); 1016 else 1017 // We are now returning a single element, so just insert that 1018 V = New; 1019 // Insert the value at the old position 1020 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); 1021 } 1022 // Now, replace all uses of the old call instruction with the return 1023 // struct we built 1024 Call->replaceAllUsesWith(RetVal); 1025 New->takeName(Call); 1026 } 1027 } 1028 1029 // Finally, remove the old call from the program, reducing the use-count of 1030 // F. 1031 Call->eraseFromParent(); 1032 } 1033 1034 // Since we have now created the new function, splice the body of the old 1035 // function right into the new function, leaving the old rotting hulk of the 1036 // function empty. 1037 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 1038 1039 // Loop over the argument list, transferring uses of the old arguments over to 1040 // the new arguments, also transferring over the names as well. 1041 i = 0; 1042 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1043 I2 = NF->arg_begin(); I != E; ++I, ++i) 1044 if (ArgAlive[i]) { 1045 // If this is a live argument, move the name and users over to the new 1046 // version. 1047 I->replaceAllUsesWith(&*I2); 1048 I2->takeName(&*I); 1049 ++I2; 1050 } else { 1051 // If this argument is dead, replace any uses of it with null constants 1052 // (these are guaranteed to become unused later on). 1053 if (!I->getType()->isX86_MMXTy()) 1054 I->replaceAllUsesWith(Constant::getNullValue(I->getType())); 1055 } 1056 1057 // If we change the return value of the function we must rewrite any return 1058 // instructions. Check this now. 1059 if (F->getReturnType() != NF->getReturnType()) 1060 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) 1061 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 1062 Value *RetVal; 1063 1064 if (NFTy->getReturnType()->isVoidTy()) { 1065 RetVal = nullptr; 1066 } else { 1067 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1068 // The original return value was a struct or array, insert 1069 // extractvalue/insertvalue chains to extract only the values we need 1070 // to return and insert them into our new result. 1071 // This does generate messy code, but we'll let it to instcombine to 1072 // clean that up. 1073 Value *OldRet = RI->getOperand(0); 1074 // Start out building up our return value from undef 1075 RetVal = UndefValue::get(NRetTy); 1076 for (unsigned i = 0; i != RetCount; ++i) 1077 if (NewRetIdxs[i] != -1) { 1078 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, 1079 "oldret", RI); 1080 if (RetTypes.size() > 1) { 1081 // We're still returning a struct, so reinsert the value into 1082 // our new return value at the new index 1083 1084 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], 1085 "newret", RI); 1086 } else { 1087 // We are now only returning a simple value, so just return the 1088 // extracted value. 1089 RetVal = EV; 1090 } 1091 } 1092 } 1093 // Replace the return instruction with one returning the new return 1094 // value (possibly 0 if we became void). 1095 ReturnInst::Create(F->getContext(), RetVal, RI); 1096 BB->getInstList().erase(RI); 1097 } 1098 1099 // Patch the pointer to LLVM function in debug info descriptor. 1100 auto DI = FunctionDIs.find(F); 1101 if (DI != FunctionDIs.end()) 1102 DI->second->replaceFunction(NF); 1103 1104 // Now that the old function is dead, delete it. 1105 F->eraseFromParent(); 1106 1107 return true; 1108 } 1109 1110 bool DAE::runOnModule(Module &M) { 1111 bool Changed = false; 1112 1113 // Collect debug info descriptors for functions. 1114 FunctionDIs = makeSubprogramMap(M); 1115 1116 // First pass: Do a simple check to see if any functions can have their "..." 1117 // removed. We can do this if they never call va_start. This loop cannot be 1118 // fused with the next loop, because deleting a function invalidates 1119 // information computed while surveying other functions. 1120 DEBUG(dbgs() << "DAE - Deleting dead varargs\n"); 1121 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1122 Function &F = *I++; 1123 if (F.getFunctionType()->isVarArg()) 1124 Changed |= DeleteDeadVarargs(F); 1125 } 1126 1127 // Second phase:loop through the module, determining which arguments are live. 1128 // We assume all arguments are dead unless proven otherwise (allowing us to 1129 // determine that dead arguments passed into recursive functions are dead). 1130 // 1131 DEBUG(dbgs() << "DAE - Determining liveness\n"); 1132 for (auto &F : M) 1133 SurveyFunction(F); 1134 1135 // Now, remove all dead arguments and return values from each function in 1136 // turn. 1137 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1138 // Increment now, because the function will probably get removed (ie. 1139 // replaced by a new one). 1140 Function *F = &*I++; 1141 Changed |= RemoveDeadStuffFromFunction(F); 1142 } 1143 1144 // Finally, look for any unused parameters in functions with non-local 1145 // linkage and replace the passed in parameters with undef. 1146 for (auto &F : M) 1147 Changed |= RemoveDeadArgumentsFromCallers(F); 1148 1149 return Changed; 1150 } 1151