1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a transformation that attaches !callees metadata to 11 // indirect call sites. For a given call site, the metadata, if present, 12 // indicates the set of functions the call site could possibly target at 13 // run-time. This metadata is added to indirect call sites when the set of 14 // possible targets can be determined by analysis and is known to be small. The 15 // analysis driving the transformation is similar to constant propagation and 16 // makes uses of the generic sparse propagation solver. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/CalledValuePropagation.h" 21 #include "llvm/Analysis/SparsePropagation.h" 22 #include "llvm/Analysis/ValueLatticeUtils.h" 23 #include "llvm/IR/InstVisitor.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/Transforms/IPO.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "called-value-propagation" 29 30 /// The maximum number of functions to track per lattice value. Once the number 31 /// of functions a call site can possibly target exceeds this threshold, it's 32 /// lattice value becomes overdefined. The number of possible lattice values is 33 /// bounded by Ch(F, M), where F is the number of functions in the module and M 34 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We 35 /// likely can't do anything useful for call sites with a large number of 36 /// possible targets, anyway. 37 static cl::opt<unsigned> MaxFunctionsPerValue( 38 "cvp-max-functions-per-value", cl::Hidden, cl::init(4), 39 cl::desc("The maximum number of functions to track per lattice value")); 40 41 namespace { 42 /// To enable interprocedural analysis, we assign LLVM values to the following 43 /// groups. The register group represents SSA registers, the return group 44 /// represents the return values of functions, and the memory group represents 45 /// in-memory values. An LLVM Value can technically be in more than one group. 46 /// It's necessary to distinguish these groups so we can, for example, track a 47 /// global variable separately from the value stored at its location. 48 enum class IPOGrouping { Register, Return, Memory }; 49 50 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. 51 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; 52 53 /// The lattice value type used by our custom lattice function. It holds the 54 /// lattice state, and a set of functions. 55 class CVPLatticeVal { 56 public: 57 /// The states of the lattice values. Only the FunctionSet state is 58 /// interesting. It indicates the set of functions to which an LLVM value may 59 /// refer. 60 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; 61 62 /// Comparator for sorting the functions set. We want to keep the order 63 /// deterministic for testing, etc. 64 struct Compare { 65 bool operator()(const Function *LHS, const Function *RHS) const { 66 return LHS->getName() < RHS->getName(); 67 } 68 }; 69 70 CVPLatticeVal() : LatticeState(Undefined) {} 71 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} 72 CVPLatticeVal(std::set<Function *, Compare> &&Functions) 73 : LatticeState(FunctionSet), Functions(Functions) {} 74 75 /// Get a reference to the functions held by this lattice value. The number 76 /// of functions will be zero for states other than FunctionSet. 77 const std::set<Function *, Compare> &getFunctions() const { 78 return Functions; 79 } 80 81 /// Returns true if the lattice value is in the FunctionSet state. 82 bool isFunctionSet() const { return LatticeState == FunctionSet; } 83 84 bool operator==(const CVPLatticeVal &RHS) const { 85 return LatticeState == RHS.LatticeState && Functions == RHS.Functions; 86 } 87 88 bool operator!=(const CVPLatticeVal &RHS) const { 89 return LatticeState != RHS.LatticeState || Functions != RHS.Functions; 90 } 91 92 private: 93 /// Holds the state this lattice value is in. 94 CVPLatticeStateTy LatticeState; 95 96 /// Holds functions indicating the possible targets of call sites. This set 97 /// is empty for lattice values in the undefined, overdefined, and untracked 98 /// states. The maximum size of the set is controlled by 99 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in 100 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be 101 /// small and efficiently copyable. 102 std::set<Function *, Compare> Functions; 103 }; 104 105 /// The custom lattice function used by the generic sparse propagation solver. 106 /// It handles merging lattice values and computing new lattice values for 107 /// constants, arguments, values returned from trackable functions, and values 108 /// located in trackable global variables. It also computes the lattice values 109 /// that change as a result of executing instructions. 110 class CVPLatticeFunc 111 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { 112 public: 113 CVPLatticeFunc() 114 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), 115 CVPLatticeVal(CVPLatticeVal::Overdefined), 116 CVPLatticeVal(CVPLatticeVal::Untracked)) {} 117 118 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. 119 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { 120 switch (Key.getInt()) { 121 case IPOGrouping::Register: 122 if (isa<Instruction>(Key.getPointer())) { 123 return getUndefVal(); 124 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { 125 if (canTrackArgumentsInterprocedurally(A->getParent())) 126 return getUndefVal(); 127 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { 128 return computeConstant(C); 129 } 130 return getOverdefinedVal(); 131 case IPOGrouping::Memory: 132 case IPOGrouping::Return: 133 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { 134 if (canTrackGlobalVariableInterprocedurally(GV)) 135 return computeConstant(GV->getInitializer()); 136 } else if (auto *F = cast<Function>(Key.getPointer())) 137 if (canTrackReturnsInterprocedurally(F)) 138 return getUndefVal(); 139 } 140 return getOverdefinedVal(); 141 } 142 143 /// Merge the two given lattice values. The interesting cases are merging two 144 /// FunctionSet values and a FunctionSet value with an Undefined value. For 145 /// these cases, we simply union the function sets. If the size of the union 146 /// is greater than the maximum functions we track, the merged value is 147 /// overdefined. 148 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { 149 if (X == getOverdefinedVal() || Y == getOverdefinedVal()) 150 return getOverdefinedVal(); 151 if (X == getUndefVal() && Y == getUndefVal()) 152 return getUndefVal(); 153 std::set<Function *, CVPLatticeVal::Compare> Union; 154 std::set_union(X.getFunctions().begin(), X.getFunctions().end(), 155 Y.getFunctions().begin(), Y.getFunctions().end(), 156 std::inserter(Union, Union.begin()), 157 CVPLatticeVal::Compare{}); 158 if (Union.size() > MaxFunctionsPerValue) 159 return getOverdefinedVal(); 160 return CVPLatticeVal(std::move(Union)); 161 } 162 163 /// Compute the lattice values that change as a result of executing the given 164 /// instruction. The changed values are stored in \p ChangedValues. We handle 165 /// just a few kinds of instructions since we're only propagating values that 166 /// can be called. 167 void ComputeInstructionState( 168 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 169 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { 170 switch (I.getOpcode()) { 171 case Instruction::Call: 172 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); 173 case Instruction::Invoke: 174 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); 175 case Instruction::Load: 176 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); 177 case Instruction::Ret: 178 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); 179 case Instruction::Select: 180 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); 181 case Instruction::Store: 182 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); 183 default: 184 return visitInst(I, ChangedValues, SS); 185 } 186 } 187 188 /// Print the given CVPLatticeVal to the specified stream. 189 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { 190 if (LV == getUndefVal()) 191 OS << "Undefined "; 192 else if (LV == getOverdefinedVal()) 193 OS << "Overdefined"; 194 else if (LV == getUntrackedVal()) 195 OS << "Untracked "; 196 else 197 OS << "FunctionSet"; 198 } 199 200 /// Print the given CVPLatticeKey to the specified stream. 201 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { 202 if (Key.getInt() == IPOGrouping::Register) 203 OS << "<reg> "; 204 else if (Key.getInt() == IPOGrouping::Memory) 205 OS << "<mem> "; 206 else if (Key.getInt() == IPOGrouping::Return) 207 OS << "<ret> "; 208 if (isa<Function>(Key.getPointer())) 209 OS << Key.getPointer()->getName(); 210 else 211 OS << *Key.getPointer(); 212 } 213 214 /// We collect a set of indirect calls when visiting call sites. This method 215 /// returns a reference to that set. 216 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } 217 218 private: 219 /// Holds the indirect calls we encounter during the analysis. We will attach 220 /// metadata to these calls after the analysis indicating the functions the 221 /// calls can possibly target. 222 SmallPtrSet<Instruction *, 32> IndirectCalls; 223 224 /// Compute a new lattice value for the given constant. The constant, after 225 /// stripping any pointer casts, should be a Function. We ignore null 226 /// pointers as an optimization, since calling these values is undefined 227 /// behavior. 228 CVPLatticeVal computeConstant(Constant *C) { 229 if (isa<ConstantPointerNull>(C)) 230 return CVPLatticeVal(CVPLatticeVal::FunctionSet); 231 if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) 232 return CVPLatticeVal({F}); 233 return getOverdefinedVal(); 234 } 235 236 /// Handle return instructions. The function's return state is the merge of 237 /// the returned value state and the function's return state. 238 void visitReturn(ReturnInst &I, 239 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 240 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 241 Function *F = I.getParent()->getParent(); 242 if (F->getReturnType()->isVoidTy()) 243 return; 244 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); 245 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 246 ChangedValues[RetF] = 247 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 248 } 249 250 /// Handle call sites. The state of a called function's formal arguments is 251 /// the merge of the argument state with the call sites corresponding actual 252 /// argument state. The call site state is the merge of the call site state 253 /// with the returned value state of the called function. 254 void visitCallSite(CallSite CS, 255 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 256 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 257 Function *F = CS.getCalledFunction(); 258 Instruction *I = CS.getInstruction(); 259 auto RegI = CVPLatticeKey(I, IPOGrouping::Register); 260 261 // If this is an indirect call, save it so we can quickly revisit it when 262 // attaching metadata. 263 if (!F) 264 IndirectCalls.insert(I); 265 266 // If we can't track the function's return values, there's nothing to do. 267 if (!F || !canTrackReturnsInterprocedurally(F)) { 268 ChangedValues[RegI] = getOverdefinedVal(); 269 return; 270 } 271 272 // Inform the solver that the called function is executable, and perform 273 // the merges for the arguments and return value. 274 SS.MarkBlockExecutable(&F->front()); 275 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 276 for (Argument &A : F->args()) { 277 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); 278 auto RegActual = 279 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); 280 ChangedValues[RegFormal] = 281 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); 282 } 283 ChangedValues[RegI] = 284 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 285 } 286 287 /// Handle select instructions. The select instruction state is the merge the 288 /// true and false value states. 289 void visitSelect(SelectInst &I, 290 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 291 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 292 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 293 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); 294 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); 295 ChangedValues[RegI] = 296 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); 297 } 298 299 /// Handle load instructions. If the pointer operand of the load is a global 300 /// variable, we attempt to track the value. The loaded value state is the 301 /// merge of the loaded value state with the global variable state. 302 void visitLoad(LoadInst &I, 303 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 304 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 305 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 306 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { 307 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 308 ChangedValues[RegI] = 309 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 310 } else { 311 ChangedValues[RegI] = getOverdefinedVal(); 312 } 313 } 314 315 /// Handle store instructions. If the pointer operand of the store is a 316 /// global variable, we attempt to track the value. The global variable state 317 /// is the merge of the stored value state with the global variable state. 318 void visitStore(StoreInst &I, 319 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 320 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 321 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); 322 if (!GV) 323 return; 324 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); 325 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 326 ChangedValues[MemGV] = 327 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 328 } 329 330 /// Handle all other instructions. All other instructions are marked 331 /// overdefined. 332 void visitInst(Instruction &I, 333 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 334 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 335 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 336 ChangedValues[RegI] = getOverdefinedVal(); 337 } 338 }; 339 } // namespace 340 341 namespace llvm { 342 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver 343 /// must translate between LatticeKeys and LLVM Values when adding Values to 344 /// its work list and inspecting the state of control-flow related values. 345 template <> struct LatticeKeyInfo<CVPLatticeKey> { 346 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { 347 return Key.getPointer(); 348 } 349 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { 350 return CVPLatticeKey(V, IPOGrouping::Register); 351 } 352 }; 353 } // namespace llvm 354 355 static bool runCVP(Module &M) { 356 // Our custom lattice function and generic sparse propagation solver. 357 CVPLatticeFunc Lattice; 358 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); 359 360 // For each function in the module, if we can't track its arguments, let the 361 // generic solver assume it is executable. 362 for (Function &F : M) 363 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) 364 Solver.MarkBlockExecutable(&F.front()); 365 366 // Solver our custom lattice. In doing so, we will also build a set of 367 // indirect call sites. 368 Solver.Solve(); 369 370 // Attach metadata to the indirect call sites that were collected indicating 371 // the set of functions they can possibly target. 372 bool Changed = false; 373 MDBuilder MDB(M.getContext()); 374 for (Instruction *C : Lattice.getIndirectCalls()) { 375 CallSite CS(C); 376 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); 377 CVPLatticeVal LV = Solver.getExistingValueState(RegI); 378 if (!LV.isFunctionSet() || LV.getFunctions().empty()) 379 continue; 380 MDNode *Callees = MDB.createCallees(SmallVector<Function *, 4>( 381 LV.getFunctions().begin(), LV.getFunctions().end())); 382 C->setMetadata(LLVMContext::MD_callees, Callees); 383 Changed = true; 384 } 385 386 return Changed; 387 } 388 389 PreservedAnalyses CalledValuePropagationPass::run(Module &M, 390 ModuleAnalysisManager &) { 391 runCVP(M); 392 return PreservedAnalyses::all(); 393 } 394 395 namespace { 396 class CalledValuePropagationLegacyPass : public ModulePass { 397 public: 398 static char ID; 399 400 void getAnalysisUsage(AnalysisUsage &AU) const override { 401 AU.setPreservesAll(); 402 } 403 404 CalledValuePropagationLegacyPass() : ModulePass(ID) { 405 initializeCalledValuePropagationLegacyPassPass( 406 *PassRegistry::getPassRegistry()); 407 } 408 409 bool runOnModule(Module &M) override { 410 if (skipModule(M)) 411 return false; 412 return runCVP(M); 413 } 414 }; 415 } // namespace 416 417 char CalledValuePropagationLegacyPass::ID = 0; 418 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", 419 "Called Value Propagation", false, false) 420 421 ModulePass *llvm::createCalledValuePropagationPass() { 422 return new CalledValuePropagationLegacyPass(); 423 } 424