1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an inter procedural pass that deduces and/or propagating
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/CallGraphSCCPass.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/IR/NoFolder.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 
49 #include <cassert>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "attributor"
54 
55 STATISTIC(NumFnWithExactDefinition,
56           "Number of function with exact definitions");
57 STATISTIC(NumFnWithoutExactDefinition,
58           "Number of function without exact definitions");
59 STATISTIC(NumAttributesTimedOut,
60           "Number of abstract attributes timed out before fixpoint");
61 STATISTIC(NumAttributesValidFixpoint,
62           "Number of abstract attributes in a valid fixpoint state");
63 STATISTIC(NumAttributesManifested,
64           "Number of abstract attributes manifested in IR");
65 STATISTIC(NumAttributesFixedDueToRequiredDependences,
66           "Number of abstract attributes fixed due to required dependences");
67 
68 // Some helper macros to deal with statistics tracking.
69 //
70 // Usage:
71 // For simple IR attribute tracking overload trackStatistics in the abstract
72 // attribute and choose the right STATS_DECLTRACK_********* macro,
73 // e.g.,:
74 //  void trackStatistics() const override {
75 //    STATS_DECLTRACK_ARG_ATTR(returned)
76 //  }
77 // If there is a single "increment" side one can use the macro
78 // STATS_DECLTRACK with a custom message. If there are multiple increment
79 // sides, STATS_DECL and STATS_TRACK can also be used separatly.
80 //
81 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
82   ("Number of " #TYPE " marked '" #NAME "'")
83 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
84 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
85 #define STATS_DECL(NAME, TYPE, MSG)                                            \
86   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
87 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
88 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
89   {                                                                            \
90     STATS_DECL(NAME, TYPE, MSG)                                                \
91     STATS_TRACK(NAME, TYPE)                                                    \
92   }
93 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
94   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
95 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
96   STATS_DECLTRACK(NAME, CSArguments,                                           \
97                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
98 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
99   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
100 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
101   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
102 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
103   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
104                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
105 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
106   STATS_DECLTRACK(NAME, CSReturn,                                              \
107                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
108 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
109   STATS_DECLTRACK(NAME, Floating,                                              \
110                   ("Number of floating values known to be '" #NAME "'"))
111 
112 // Specialization of the operator<< for abstract attributes subclasses. This
113 // disambiguates situations where multiple operators are applicable.
114 namespace llvm {
115 #define PIPE_OPERATOR(CLASS)                                                   \
116   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
117     return OS << static_cast<const AbstractAttribute &>(AA);                   \
118   }
119 
120 PIPE_OPERATOR(AAIsDead)
121 PIPE_OPERATOR(AANoUnwind)
122 PIPE_OPERATOR(AANoSync)
123 PIPE_OPERATOR(AANoRecurse)
124 PIPE_OPERATOR(AAWillReturn)
125 PIPE_OPERATOR(AANoReturn)
126 PIPE_OPERATOR(AAReturnedValues)
127 PIPE_OPERATOR(AANonNull)
128 PIPE_OPERATOR(AANoAlias)
129 PIPE_OPERATOR(AADereferenceable)
130 PIPE_OPERATOR(AAAlign)
131 PIPE_OPERATOR(AANoCapture)
132 PIPE_OPERATOR(AAValueSimplify)
133 PIPE_OPERATOR(AANoFree)
134 PIPE_OPERATOR(AAHeapToStack)
135 PIPE_OPERATOR(AAReachability)
136 PIPE_OPERATOR(AAMemoryBehavior)
137 PIPE_OPERATOR(AAMemoryLocation)
138 PIPE_OPERATOR(AAValueConstantRange)
139 PIPE_OPERATOR(AAPrivatizablePtr)
140 
141 #undef PIPE_OPERATOR
142 } // namespace llvm
143 
144 // TODO: Determine a good default value.
145 //
146 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
147 // (when run with the first 5 abstract attributes). The results also indicate
148 // that we never reach 32 iterations but always find a fixpoint sooner.
149 //
150 // This will become more evolved once we perform two interleaved fixpoint
151 // iterations: bottom-up and top-down.
152 static cl::opt<unsigned>
153     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
154                           cl::desc("Maximal number of fixpoint iterations."),
155                           cl::init(32));
156 static cl::opt<bool> VerifyMaxFixpointIterations(
157     "attributor-max-iterations-verify", cl::Hidden,
158     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
159     cl::init(false));
160 
161 static cl::opt<bool> DisableAttributor(
162     "attributor-disable", cl::Hidden,
163     cl::desc("Disable the attributor inter-procedural deduction pass."),
164     cl::init(true));
165 
166 static cl::opt<bool> AnnotateDeclarationCallSites(
167     "attributor-annotate-decl-cs", cl::Hidden,
168     cl::desc("Annotate call sites of function declarations."), cl::init(false));
169 
170 static cl::opt<bool> ManifestInternal(
171     "attributor-manifest-internal", cl::Hidden,
172     cl::desc("Manifest Attributor internal string attributes."),
173     cl::init(false));
174 
175 static cl::opt<unsigned> DepRecInterval(
176     "attributor-dependence-recompute-interval", cl::Hidden,
177     cl::desc("Number of iterations until dependences are recomputed."),
178     cl::init(4));
179 
180 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
181                                        cl::init(true), cl::Hidden);
182 
183 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
184                                        cl::Hidden);
185 
186 /// Logic operators for the change status enum class.
187 ///
188 ///{
189 ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
190   return l == ChangeStatus::CHANGED ? l : r;
191 }
192 ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
193   return l == ChangeStatus::UNCHANGED ? l : r;
194 }
195 ///}
196 
197 Argument *IRPosition::getAssociatedArgument() const {
198   if (getPositionKind() == IRP_ARGUMENT)
199     return cast<Argument>(&getAnchorValue());
200 
201   // Not an Argument and no argument number means this is not a call site
202   // argument, thus we cannot find a callback argument to return.
203   int ArgNo = getArgNo();
204   if (ArgNo < 0)
205     return nullptr;
206 
207   // Use abstract call sites to make the connection between the call site
208   // values and the ones in callbacks. If a callback was found that makes use
209   // of the underlying call site operand, we want the corresponding callback
210   // callee argument and not the direct callee argument.
211   Optional<Argument *> CBCandidateArg;
212   SmallVector<const Use *, 4> CBUses;
213   ImmutableCallSite ICS(&getAnchorValue());
214   AbstractCallSite::getCallbackUses(ICS, CBUses);
215   for (const Use *U : CBUses) {
216     AbstractCallSite ACS(U);
217     assert(ACS && ACS.isCallbackCall());
218     if (!ACS.getCalledFunction())
219       continue;
220 
221     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
222 
223       // Test if the underlying call site operand is argument number u of the
224       // callback callee.
225       if (ACS.getCallArgOperandNo(u) != ArgNo)
226         continue;
227 
228       assert(ACS.getCalledFunction()->arg_size() > u &&
229              "ACS mapped into var-args arguments!");
230       if (CBCandidateArg.hasValue()) {
231         CBCandidateArg = nullptr;
232         break;
233       }
234       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
235     }
236   }
237 
238   // If we found a unique callback candidate argument, return it.
239   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
240     return CBCandidateArg.getValue();
241 
242   // If no callbacks were found, or none used the underlying call site operand
243   // exclusively, use the direct callee argument if available.
244   const Function *Callee = ICS.getCalledFunction();
245   if (Callee && Callee->arg_size() > unsigned(ArgNo))
246     return Callee->getArg(ArgNo);
247 
248   return nullptr;
249 }
250 
251 static Optional<Constant *> getAssumedConstant(Attributor &A, const Value &V,
252                                                const AbstractAttribute &AA,
253                                                bool &UsedAssumedInformation) {
254   const auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
255       AA, IRPosition::value(V), /* TrackDependence */ false);
256   Optional<Value *> SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(A);
257   bool IsKnown = ValueSimplifyAA.isKnown();
258   UsedAssumedInformation |= !IsKnown;
259   if (!SimplifiedV.hasValue()) {
260     A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
261     return llvm::None;
262   }
263   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
264     A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
265     return llvm::None;
266   }
267   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
268   if (CI && CI->getType() != V.getType()) {
269     // TODO: Check for a save conversion.
270     return nullptr;
271   }
272   if (CI)
273     A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
274   return CI;
275 }
276 
277 static Optional<ConstantInt *>
278 getAssumedConstantInt(Attributor &A, const Value &V,
279                       const AbstractAttribute &AA,
280                       bool &UsedAssumedInformation) {
281   Optional<Constant *> C = getAssumedConstant(A, V, AA, UsedAssumedInformation);
282   if (C.hasValue())
283     return dyn_cast_or_null<ConstantInt>(C.getValue());
284   return llvm::None;
285 }
286 
287 /// Get pointer operand of memory accessing instruction. If \p I is
288 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
289 /// is set to false and the instruction is volatile, return nullptr.
290 static const Value *getPointerOperand(const Instruction *I,
291                                       bool AllowVolatile) {
292   if (auto *LI = dyn_cast<LoadInst>(I)) {
293     if (!AllowVolatile && LI->isVolatile())
294       return nullptr;
295     return LI->getPointerOperand();
296   }
297 
298   if (auto *SI = dyn_cast<StoreInst>(I)) {
299     if (!AllowVolatile && SI->isVolatile())
300       return nullptr;
301     return SI->getPointerOperand();
302   }
303 
304   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
305     if (!AllowVolatile && CXI->isVolatile())
306       return nullptr;
307     return CXI->getPointerOperand();
308   }
309 
310   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
311     if (!AllowVolatile && RMWI->isVolatile())
312       return nullptr;
313     return RMWI->getPointerOperand();
314   }
315 
316   return nullptr;
317 }
318 
319 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
320 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
321 /// getelement pointer instructions that traverse the natural type of \p Ptr if
322 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
323 /// through a cast to i8*.
324 ///
325 /// TODO: This could probably live somewhere more prominantly if it doesn't
326 ///       already exist.
327 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
328                                IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
329   assert(Offset >= 0 && "Negative offset not supported yet!");
330   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
331                     << "-bytes as " << *ResTy << "\n");
332 
333   // The initial type we are trying to traverse to get nice GEPs.
334   Type *Ty = Ptr->getType();
335 
336   SmallVector<Value *, 4> Indices;
337   std::string GEPName = Ptr->getName().str();
338   while (Offset) {
339     uint64_t Idx, Rem;
340 
341     if (auto *STy = dyn_cast<StructType>(Ty)) {
342       const StructLayout *SL = DL.getStructLayout(STy);
343       if (int64_t(SL->getSizeInBytes()) < Offset)
344         break;
345       Idx = SL->getElementContainingOffset(Offset);
346       assert(Idx < STy->getNumElements() && "Offset calculation error!");
347       Rem = Offset - SL->getElementOffset(Idx);
348       Ty = STy->getElementType(Idx);
349     } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
350       Ty = PTy->getElementType();
351       if (!Ty->isSized())
352         break;
353       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
354       assert(ElementSize && "Expected type with size!");
355       Idx = Offset / ElementSize;
356       Rem = Offset % ElementSize;
357     } else {
358       // Non-aggregate type, we cast and make byte-wise progress now.
359       break;
360     }
361 
362     LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
363                       << " Idx: " << Idx << " Rem: " << Rem << "\n");
364 
365     GEPName += "." + std::to_string(Idx);
366     Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
367     Offset = Rem;
368   }
369 
370   // Create a GEP if we collected indices above.
371   if (Indices.size())
372     Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
373 
374   // If an offset is left we use byte-wise adjustment.
375   if (Offset) {
376     Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
377     Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
378                         GEPName + ".b" + Twine(Offset));
379   }
380 
381   // Ensure the result has the requested type.
382   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
383 
384   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
385   return Ptr;
386 }
387 
388 /// Recursively visit all values that might become \p IRP at some point. This
389 /// will be done by looking through cast instructions, selects, phis, and calls
390 /// with the "returned" attribute. Once we cannot look through the value any
391 /// further, the callback \p VisitValueCB is invoked and passed the current
392 /// value, the \p State, and a flag to indicate if we stripped anything.
393 /// Stripped means that we unpacked the value associated with \p IRP at least
394 /// once. Note that the value used for the callback may still be the value
395 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
396 /// we will never visit more values than specified by \p MaxValues.
397 template <typename AAType, typename StateTy>
398 static bool genericValueTraversal(
399     Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
400     const function_ref<bool(Value &, StateTy &, bool)> &VisitValueCB,
401     int MaxValues = 8, const function_ref<Value *(Value *)> StripCB = nullptr) {
402 
403   const AAIsDead *LivenessAA = nullptr;
404   if (IRP.getAnchorScope())
405     LivenessAA = &A.getAAFor<AAIsDead>(
406         QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
407         /* TrackDependence */ false);
408   bool AnyDead = false;
409 
410   // TODO: Use Positions here to allow context sensitivity in VisitValueCB
411   SmallPtrSet<Value *, 16> Visited;
412   SmallVector<Value *, 16> Worklist;
413   Worklist.push_back(&IRP.getAssociatedValue());
414 
415   int Iteration = 0;
416   do {
417     Value *V = Worklist.pop_back_val();
418     if (StripCB)
419       V = StripCB(V);
420 
421     // Check if we should process the current value. To prevent endless
422     // recursion keep a record of the values we followed!
423     if (!Visited.insert(V).second)
424       continue;
425 
426     // Make sure we limit the compile time for complex expressions.
427     if (Iteration++ >= MaxValues)
428       return false;
429 
430     // Explicitly look through calls with a "returned" attribute if we do
431     // not have a pointer as stripPointerCasts only works on them.
432     Value *NewV = nullptr;
433     if (V->getType()->isPointerTy()) {
434       NewV = V->stripPointerCasts();
435     } else {
436       CallSite CS(V);
437       if (CS && CS.getCalledFunction()) {
438         for (Argument &Arg : CS.getCalledFunction()->args())
439           if (Arg.hasReturnedAttr()) {
440             NewV = CS.getArgOperand(Arg.getArgNo());
441             break;
442           }
443       }
444     }
445     if (NewV && NewV != V) {
446       Worklist.push_back(NewV);
447       continue;
448     }
449 
450     // Look through select instructions, visit both potential values.
451     if (auto *SI = dyn_cast<SelectInst>(V)) {
452       Worklist.push_back(SI->getTrueValue());
453       Worklist.push_back(SI->getFalseValue());
454       continue;
455     }
456 
457     // Look through phi nodes, visit all live operands.
458     if (auto *PHI = dyn_cast<PHINode>(V)) {
459       assert(LivenessAA &&
460              "Expected liveness in the presence of instructions!");
461       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
462         const BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
463         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
464                             LivenessAA,
465                             /* CheckBBLivenessOnly */ true)) {
466           AnyDead = true;
467           continue;
468         }
469         Worklist.push_back(PHI->getIncomingValue(u));
470       }
471       continue;
472     }
473 
474     // Once a leaf is reached we inform the user through the callback.
475     if (!VisitValueCB(*V, State, Iteration > 1))
476       return false;
477   } while (!Worklist.empty());
478 
479   // If we actually used liveness information so we have to record a dependence.
480   if (AnyDead)
481     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
482 
483   // All values have been visited.
484   return true;
485 }
486 
487 /// Return true if \p New is equal or worse than \p Old.
488 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
489   if (!Old.isIntAttribute())
490     return true;
491 
492   return Old.getValueAsInt() >= New.getValueAsInt();
493 }
494 
495 /// Return true if the information provided by \p Attr was added to the
496 /// attribute list \p Attrs. This is only the case if it was not already present
497 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
498 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
499                              AttributeList &Attrs, int AttrIdx) {
500 
501   if (Attr.isEnumAttribute()) {
502     Attribute::AttrKind Kind = Attr.getKindAsEnum();
503     if (Attrs.hasAttribute(AttrIdx, Kind))
504       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
505         return false;
506     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
507     return true;
508   }
509   if (Attr.isStringAttribute()) {
510     StringRef Kind = Attr.getKindAsString();
511     if (Attrs.hasAttribute(AttrIdx, Kind))
512       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
513         return false;
514     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
515     return true;
516   }
517   if (Attr.isIntAttribute()) {
518     Attribute::AttrKind Kind = Attr.getKindAsEnum();
519     if (Attrs.hasAttribute(AttrIdx, Kind))
520       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
521         return false;
522     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
523     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
524     return true;
525   }
526 
527   llvm_unreachable("Expected enum or string attribute!");
528 }
529 
530 static const Value *
531 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
532                                      const DataLayout &DL,
533                                      bool AllowNonInbounds = false) {
534   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
535   if (!Ptr)
536     return nullptr;
537 
538   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
539                                           AllowNonInbounds);
540 }
541 
542 ChangeStatus AbstractAttribute::update(Attributor &A) {
543   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
544   if (getState().isAtFixpoint())
545     return HasChanged;
546 
547   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
548 
549   HasChanged = updateImpl(A);
550 
551   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
552                     << "\n");
553 
554   return HasChanged;
555 }
556 
557 ChangeStatus
558 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
559                                    const ArrayRef<Attribute> &DeducedAttrs) {
560   Function *ScopeFn = IRP.getAssociatedFunction();
561   IRPosition::Kind PK = IRP.getPositionKind();
562 
563   // In the following some generic code that will manifest attributes in
564   // DeducedAttrs if they improve the current IR. Due to the different
565   // annotation positions we use the underlying AttributeList interface.
566 
567   AttributeList Attrs;
568   switch (PK) {
569   case IRPosition::IRP_INVALID:
570   case IRPosition::IRP_FLOAT:
571     return ChangeStatus::UNCHANGED;
572   case IRPosition::IRP_ARGUMENT:
573   case IRPosition::IRP_FUNCTION:
574   case IRPosition::IRP_RETURNED:
575     Attrs = ScopeFn->getAttributes();
576     break;
577   case IRPosition::IRP_CALL_SITE:
578   case IRPosition::IRP_CALL_SITE_RETURNED:
579   case IRPosition::IRP_CALL_SITE_ARGUMENT:
580     Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes();
581     break;
582   }
583 
584   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
585   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
586   for (const Attribute &Attr : DeducedAttrs) {
587     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
588       continue;
589 
590     HasChanged = ChangeStatus::CHANGED;
591   }
592 
593   if (HasChanged == ChangeStatus::UNCHANGED)
594     return HasChanged;
595 
596   switch (PK) {
597   case IRPosition::IRP_ARGUMENT:
598   case IRPosition::IRP_FUNCTION:
599   case IRPosition::IRP_RETURNED:
600     ScopeFn->setAttributes(Attrs);
601     break;
602   case IRPosition::IRP_CALL_SITE:
603   case IRPosition::IRP_CALL_SITE_RETURNED:
604   case IRPosition::IRP_CALL_SITE_ARGUMENT:
605     CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
606     break;
607   case IRPosition::IRP_INVALID:
608   case IRPosition::IRP_FLOAT:
609     break;
610   }
611 
612   return HasChanged;
613 }
614 
615 const IRPosition IRPosition::EmptyKey(255);
616 const IRPosition IRPosition::TombstoneKey(256);
617 
618 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
619   IRPositions.emplace_back(IRP);
620 
621   ImmutableCallSite ICS(&IRP.getAnchorValue());
622   switch (IRP.getPositionKind()) {
623   case IRPosition::IRP_INVALID:
624   case IRPosition::IRP_FLOAT:
625   case IRPosition::IRP_FUNCTION:
626     return;
627   case IRPosition::IRP_ARGUMENT:
628   case IRPosition::IRP_RETURNED:
629     IRPositions.emplace_back(
630         IRPosition::function(*IRP.getAssociatedFunction()));
631     return;
632   case IRPosition::IRP_CALL_SITE:
633     assert(ICS && "Expected call site!");
634     // TODO: We need to look at the operand bundles similar to the redirection
635     //       in CallBase.
636     if (!ICS.hasOperandBundles())
637       if (const Function *Callee = ICS.getCalledFunction())
638         IRPositions.emplace_back(IRPosition::function(*Callee));
639     return;
640   case IRPosition::IRP_CALL_SITE_RETURNED:
641     assert(ICS && "Expected call site!");
642     // TODO: We need to look at the operand bundles similar to the redirection
643     //       in CallBase.
644     if (!ICS.hasOperandBundles()) {
645       if (const Function *Callee = ICS.getCalledFunction()) {
646         IRPositions.emplace_back(IRPosition::returned(*Callee));
647         IRPositions.emplace_back(IRPosition::function(*Callee));
648         for (const Argument &Arg : Callee->args())
649           if (Arg.hasReturnedAttr()) {
650             IRPositions.emplace_back(
651                 IRPosition::callsite_argument(ICS, Arg.getArgNo()));
652             IRPositions.emplace_back(
653                 IRPosition::value(*ICS.getArgOperand(Arg.getArgNo())));
654             IRPositions.emplace_back(IRPosition::argument(Arg));
655           }
656       }
657     }
658     IRPositions.emplace_back(
659         IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
660     return;
661   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
662     int ArgNo = IRP.getArgNo();
663     assert(ICS && ArgNo >= 0 && "Expected call site!");
664     // TODO: We need to look at the operand bundles similar to the redirection
665     //       in CallBase.
666     if (!ICS.hasOperandBundles()) {
667       const Function *Callee = ICS.getCalledFunction();
668       if (Callee && Callee->arg_size() > unsigned(ArgNo))
669         IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
670       if (Callee)
671         IRPositions.emplace_back(IRPosition::function(*Callee));
672     }
673     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
674     return;
675   }
676   }
677 }
678 
679 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
680                          bool IgnoreSubsumingPositions) const {
681   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
682     for (Attribute::AttrKind AK : AKs)
683       if (EquivIRP.getAttr(AK).getKindAsEnum() == AK)
684         return true;
685     // The first position returned by the SubsumingPositionIterator is
686     // always the position itself. If we ignore subsuming positions we
687     // are done after the first iteration.
688     if (IgnoreSubsumingPositions)
689       break;
690   }
691   return false;
692 }
693 
694 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
695                           SmallVectorImpl<Attribute> &Attrs,
696                           bool IgnoreSubsumingPositions) const {
697   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
698     for (Attribute::AttrKind AK : AKs) {
699       const Attribute &Attr = EquivIRP.getAttr(AK);
700       if (Attr.getKindAsEnum() == AK)
701         Attrs.push_back(Attr);
702     }
703     // The first position returned by the SubsumingPositionIterator is
704     // always the position itself. If we ignore subsuming positions we
705     // are done after the first iteration.
706     if (IgnoreSubsumingPositions)
707       break;
708   }
709 }
710 
711 void IRPosition::verify() {
712   switch (KindOrArgNo) {
713   default:
714     assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
715     assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
716            "Expected call base or argument for positive attribute index!");
717     if (isa<Argument>(AnchorVal)) {
718       assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) &&
719              "Argument number mismatch!");
720       assert(cast<Argument>(AnchorVal) == &getAssociatedValue() &&
721              "Associated value mismatch!");
722     } else {
723       assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) &&
724              "Call site argument number mismatch!");
725       assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) ==
726                  &getAssociatedValue() &&
727              "Associated value mismatch!");
728     }
729     break;
730   case IRP_INVALID:
731     assert(!AnchorVal && "Expected no value for an invalid position!");
732     break;
733   case IRP_FLOAT:
734     assert((!isa<CallBase>(&getAssociatedValue()) &&
735             !isa<Argument>(&getAssociatedValue())) &&
736            "Expected specialized kind for call base and argument values!");
737     break;
738   case IRP_RETURNED:
739     assert(isa<Function>(AnchorVal) &&
740            "Expected function for a 'returned' position!");
741     assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
742     break;
743   case IRP_CALL_SITE_RETURNED:
744     assert((isa<CallBase>(AnchorVal)) &&
745            "Expected call base for 'call site returned' position!");
746     assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
747     break;
748   case IRP_CALL_SITE:
749     assert((isa<CallBase>(AnchorVal)) &&
750            "Expected call base for 'call site function' position!");
751     assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
752     break;
753   case IRP_FUNCTION:
754     assert(isa<Function>(AnchorVal) &&
755            "Expected function for a 'function' position!");
756     assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
757     break;
758   }
759 }
760 
761 namespace {
762 
763 /// Helper function to clamp a state \p S of type \p StateType with the
764 /// information in \p R and indicate/return if \p S did change (as-in update is
765 /// required to be run again).
766 template <typename StateType>
767 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
768   auto Assumed = S.getAssumed();
769   S ^= R;
770   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
771                                    : ChangeStatus::CHANGED;
772 }
773 
774 /// Clamp the information known for all returned values of a function
775 /// (identified by \p QueryingAA) into \p S.
776 template <typename AAType, typename StateType = typename AAType::StateType>
777 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
778                                      StateType &S) {
779   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
780                     << QueryingAA << " into " << S << "\n");
781 
782   assert((QueryingAA.getIRPosition().getPositionKind() ==
783               IRPosition::IRP_RETURNED ||
784           QueryingAA.getIRPosition().getPositionKind() ==
785               IRPosition::IRP_CALL_SITE_RETURNED) &&
786          "Can only clamp returned value states for a function returned or call "
787          "site returned position!");
788 
789   // Use an optional state as there might not be any return values and we want
790   // to join (IntegerState::operator&) the state of all there are.
791   Optional<StateType> T;
792 
793   // Callback for each possibly returned value.
794   auto CheckReturnValue = [&](Value &RV) -> bool {
795     const IRPosition &RVPos = IRPosition::value(RV);
796     const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
797     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
798                       << " @ " << RVPos << "\n");
799     const StateType &AAS = static_cast<const StateType &>(AA.getState());
800     if (T.hasValue())
801       *T &= AAS;
802     else
803       T = AAS;
804     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
805                       << "\n");
806     return T->isValidState();
807   };
808 
809   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
810     S.indicatePessimisticFixpoint();
811   else if (T.hasValue())
812     S ^= *T;
813 }
814 
815 /// Helper class to compose two generic deduction
816 template <typename AAType, typename Base, typename StateType,
817           template <typename...> class F, template <typename...> class G>
818 struct AAComposeTwoGenericDeduction
819     : public F<AAType, G<AAType, Base, StateType>, StateType> {
820   AAComposeTwoGenericDeduction(const IRPosition &IRP)
821       : F<AAType, G<AAType, Base, StateType>, StateType>(IRP) {}
822 
823   /// See AbstractAttribute::updateImpl(...).
824   ChangeStatus updateImpl(Attributor &A) override {
825     ChangeStatus ChangedF =
826         F<AAType, G<AAType, Base, StateType>, StateType>::updateImpl(A);
827     ChangeStatus ChangedG = G<AAType, Base, StateType>::updateImpl(A);
828     return ChangedF | ChangedG;
829   }
830 };
831 
832 /// Helper class for generic deduction: return value -> returned position.
833 template <typename AAType, typename Base,
834           typename StateType = typename Base::StateType>
835 struct AAReturnedFromReturnedValues : public Base {
836   AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {}
837 
838   /// See AbstractAttribute::updateImpl(...).
839   ChangeStatus updateImpl(Attributor &A) override {
840     StateType S(StateType::getBestState(this->getState()));
841     clampReturnedValueStates<AAType, StateType>(A, *this, S);
842     // TODO: If we know we visited all returned values, thus no are assumed
843     // dead, we can take the known information from the state T.
844     return clampStateAndIndicateChange<StateType>(this->getState(), S);
845   }
846 };
847 
848 /// Clamp the information known at all call sites for a given argument
849 /// (identified by \p QueryingAA) into \p S.
850 template <typename AAType, typename StateType = typename AAType::StateType>
851 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
852                                         StateType &S) {
853   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
854                     << QueryingAA << " into " << S << "\n");
855 
856   assert(QueryingAA.getIRPosition().getPositionKind() ==
857              IRPosition::IRP_ARGUMENT &&
858          "Can only clamp call site argument states for an argument position!");
859 
860   // Use an optional state as there might not be any return values and we want
861   // to join (IntegerState::operator&) the state of all there are.
862   Optional<StateType> T;
863 
864   // The argument number which is also the call site argument number.
865   unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
866 
867   auto CallSiteCheck = [&](AbstractCallSite ACS) {
868     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
869     // Check if a coresponding argument was found or if it is on not associated
870     // (which can happen for callback calls).
871     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
872       return false;
873 
874     const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
875     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
876                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
877     const StateType &AAS = static_cast<const StateType &>(AA.getState());
878     if (T.hasValue())
879       *T &= AAS;
880     else
881       T = AAS;
882     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
883                       << "\n");
884     return T->isValidState();
885   };
886 
887   bool AllCallSitesKnown;
888   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
889                               AllCallSitesKnown))
890     S.indicatePessimisticFixpoint();
891   else if (T.hasValue())
892     S ^= *T;
893 }
894 
895 /// Helper class for generic deduction: call site argument -> argument position.
896 template <typename AAType, typename Base,
897           typename StateType = typename AAType::StateType>
898 struct AAArgumentFromCallSiteArguments : public Base {
899   AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {}
900 
901   /// See AbstractAttribute::updateImpl(...).
902   ChangeStatus updateImpl(Attributor &A) override {
903     StateType S(StateType::getBestState(this->getState()));
904     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
905     // TODO: If we know we visited all incoming values, thus no are assumed
906     // dead, we can take the known information from the state T.
907     return clampStateAndIndicateChange<StateType>(this->getState(), S);
908   }
909 };
910 
911 /// Helper class for generic replication: function returned -> cs returned.
912 template <typename AAType, typename Base,
913           typename StateType = typename Base::StateType>
914 struct AACallSiteReturnedFromReturned : public Base {
915   AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {}
916 
917   /// See AbstractAttribute::updateImpl(...).
918   ChangeStatus updateImpl(Attributor &A) override {
919     assert(this->getIRPosition().getPositionKind() ==
920                IRPosition::IRP_CALL_SITE_RETURNED &&
921            "Can only wrap function returned positions for call site returned "
922            "positions!");
923     auto &S = this->getState();
924 
925     const Function *AssociatedFunction =
926         this->getIRPosition().getAssociatedFunction();
927     if (!AssociatedFunction)
928       return S.indicatePessimisticFixpoint();
929 
930     IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
931     const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
932     return clampStateAndIndicateChange(
933         S, static_cast<const StateType &>(AA.getState()));
934   }
935 };
936 
937 /// Helper class for generic deduction using must-be-executed-context
938 /// Base class is required to have `followUse` method.
939 
940 /// bool followUse(Attributor &A, const Use *U, const Instruction *I)
941 /// U - Underlying use.
942 /// I - The user of the \p U.
943 /// `followUse` returns true if the value should be tracked transitively.
944 
945 template <typename AAType, typename Base,
946           typename StateType = typename AAType::StateType>
947 struct AAFromMustBeExecutedContext : public Base {
948   AAFromMustBeExecutedContext(const IRPosition &IRP) : Base(IRP) {}
949 
950   void initialize(Attributor &A) override {
951     Base::initialize(A);
952     const IRPosition &IRP = this->getIRPosition();
953     Instruction *CtxI = IRP.getCtxI();
954 
955     if (!CtxI)
956       return;
957 
958     for (const Use &U : IRP.getAssociatedValue().uses())
959       Uses.insert(&U);
960   }
961 
962   /// See AbstractAttribute::updateImpl(...).
963   ChangeStatus updateImpl(Attributor &A) override {
964     auto BeforeState = this->getState();
965     auto &S = this->getState();
966     Instruction *CtxI = this->getIRPosition().getCtxI();
967     if (!CtxI)
968       return ChangeStatus::UNCHANGED;
969 
970     MustBeExecutedContextExplorer &Explorer =
971         A.getInfoCache().getMustBeExecutedContextExplorer();
972 
973     auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
974     for (unsigned u = 0; u < Uses.size(); ++u) {
975       const Use *U = Uses[u];
976       if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
977         bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
978         if (Found && Base::followUse(A, U, UserI))
979           for (const Use &Us : UserI->uses())
980             Uses.insert(&Us);
981       }
982     }
983 
984     return BeforeState == S ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
985   }
986 
987 private:
988   /// Container for (transitive) uses of the associated value.
989   SetVector<const Use *> Uses;
990 };
991 
992 template <typename AAType, typename Base,
993           typename StateType = typename AAType::StateType>
994 using AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext =
995     AAComposeTwoGenericDeduction<AAType, Base, StateType,
996                                  AAFromMustBeExecutedContext,
997                                  AAArgumentFromCallSiteArguments>;
998 
999 template <typename AAType, typename Base,
1000           typename StateType = typename AAType::StateType>
1001 using AACallSiteReturnedFromReturnedAndMustBeExecutedContext =
1002     AAComposeTwoGenericDeduction<AAType, Base, StateType,
1003                                  AAFromMustBeExecutedContext,
1004                                  AACallSiteReturnedFromReturned>;
1005 
1006 /// -----------------------NoUnwind Function Attribute--------------------------
1007 
1008 struct AANoUnwindImpl : AANoUnwind {
1009   AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
1010 
1011   const std::string getAsStr() const override {
1012     return getAssumed() ? "nounwind" : "may-unwind";
1013   }
1014 
1015   /// See AbstractAttribute::updateImpl(...).
1016   ChangeStatus updateImpl(Attributor &A) override {
1017     auto Opcodes = {
1018         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1019         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1020         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1021 
1022     auto CheckForNoUnwind = [&](Instruction &I) {
1023       if (!I.mayThrow())
1024         return true;
1025 
1026       if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
1027         const auto &NoUnwindAA =
1028             A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS));
1029         return NoUnwindAA.isAssumedNoUnwind();
1030       }
1031       return false;
1032     };
1033 
1034     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
1035       return indicatePessimisticFixpoint();
1036 
1037     return ChangeStatus::UNCHANGED;
1038   }
1039 };
1040 
1041 struct AANoUnwindFunction final : public AANoUnwindImpl {
1042   AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
1043 
1044   /// See AbstractAttribute::trackStatistics()
1045   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1046 };
1047 
1048 /// NoUnwind attribute deduction for a call sites.
1049 struct AANoUnwindCallSite final : AANoUnwindImpl {
1050   AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
1051 
1052   /// See AbstractAttribute::initialize(...).
1053   void initialize(Attributor &A) override {
1054     AANoUnwindImpl::initialize(A);
1055     Function *F = getAssociatedFunction();
1056     if (!F)
1057       indicatePessimisticFixpoint();
1058   }
1059 
1060   /// See AbstractAttribute::updateImpl(...).
1061   ChangeStatus updateImpl(Attributor &A) override {
1062     // TODO: Once we have call site specific value information we can provide
1063     //       call site specific liveness information and then it makes
1064     //       sense to specialize attributes for call sites arguments instead of
1065     //       redirecting requests to the callee argument.
1066     Function *F = getAssociatedFunction();
1067     const IRPosition &FnPos = IRPosition::function(*F);
1068     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
1069     return clampStateAndIndicateChange(
1070         getState(),
1071         static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
1072   }
1073 
1074   /// See AbstractAttribute::trackStatistics()
1075   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1076 };
1077 
1078 /// --------------------- Function Return Values -------------------------------
1079 
1080 /// "Attribute" that collects all potential returned values and the return
1081 /// instructions that they arise from.
1082 ///
1083 /// If there is a unique returned value R, the manifest method will:
1084 ///   - mark R with the "returned" attribute, if R is an argument.
1085 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1086 
1087   /// Mapping of values potentially returned by the associated function to the
1088   /// return instructions that might return them.
1089   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1090 
1091   /// Mapping to remember the number of returned values for a call site such
1092   /// that we can avoid updates if nothing changed.
1093   DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
1094 
1095   /// Set of unresolved calls returned by the associated function.
1096   SmallSetVector<CallBase *, 4> UnresolvedCalls;
1097 
1098   /// State flags
1099   ///
1100   ///{
1101   bool IsFixed = false;
1102   bool IsValidState = true;
1103   ///}
1104 
1105 public:
1106   AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
1107 
1108   /// See AbstractAttribute::initialize(...).
1109   void initialize(Attributor &A) override {
1110     // Reset the state.
1111     IsFixed = false;
1112     IsValidState = true;
1113     ReturnedValues.clear();
1114 
1115     Function *F = getAssociatedFunction();
1116     if (!F) {
1117       indicatePessimisticFixpoint();
1118       return;
1119     }
1120     assert(!F->getReturnType()->isVoidTy() &&
1121            "Did not expect a void return type!");
1122 
1123     // The map from instruction opcodes to those instructions in the function.
1124     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1125 
1126     // Look through all arguments, if one is marked as returned we are done.
1127     for (Argument &Arg : F->args()) {
1128       if (Arg.hasReturnedAttr()) {
1129         auto &ReturnInstSet = ReturnedValues[&Arg];
1130         for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
1131           ReturnInstSet.insert(cast<ReturnInst>(RI));
1132 
1133         indicateOptimisticFixpoint();
1134         return;
1135       }
1136     }
1137 
1138     if (!F->hasExactDefinition())
1139       indicatePessimisticFixpoint();
1140   }
1141 
1142   /// See AbstractAttribute::manifest(...).
1143   ChangeStatus manifest(Attributor &A) override;
1144 
1145   /// See AbstractAttribute::getState(...).
1146   AbstractState &getState() override { return *this; }
1147 
1148   /// See AbstractAttribute::getState(...).
1149   const AbstractState &getState() const override { return *this; }
1150 
1151   /// See AbstractAttribute::updateImpl(Attributor &A).
1152   ChangeStatus updateImpl(Attributor &A) override;
1153 
1154   llvm::iterator_range<iterator> returned_values() override {
1155     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1156   }
1157 
1158   llvm::iterator_range<const_iterator> returned_values() const override {
1159     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1160   }
1161 
1162   const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
1163     return UnresolvedCalls;
1164   }
1165 
1166   /// Return the number of potential return values, -1 if unknown.
1167   size_t getNumReturnValues() const override {
1168     return isValidState() ? ReturnedValues.size() : -1;
1169   }
1170 
1171   /// Return an assumed unique return value if a single candidate is found. If
1172   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1173   /// Optional::NoneType.
1174   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1175 
1176   /// See AbstractState::checkForAllReturnedValues(...).
1177   bool checkForAllReturnedValuesAndReturnInsts(
1178       const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
1179           &Pred) const override;
1180 
1181   /// Pretty print the attribute similar to the IR representation.
1182   const std::string getAsStr() const override;
1183 
1184   /// See AbstractState::isAtFixpoint().
1185   bool isAtFixpoint() const override { return IsFixed; }
1186 
1187   /// See AbstractState::isValidState().
1188   bool isValidState() const override { return IsValidState; }
1189 
1190   /// See AbstractState::indicateOptimisticFixpoint(...).
1191   ChangeStatus indicateOptimisticFixpoint() override {
1192     IsFixed = true;
1193     return ChangeStatus::UNCHANGED;
1194   }
1195 
1196   ChangeStatus indicatePessimisticFixpoint() override {
1197     IsFixed = true;
1198     IsValidState = false;
1199     return ChangeStatus::CHANGED;
1200   }
1201 };
1202 
1203 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1204   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1205 
1206   // Bookkeeping.
1207   assert(isValidState());
1208   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1209                   "Number of function with known return values");
1210 
1211   // Check if we have an assumed unique return value that we could manifest.
1212   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1213 
1214   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1215     return Changed;
1216 
1217   // Bookkeeping.
1218   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1219                   "Number of function with unique return");
1220 
1221   // Callback to replace the uses of CB with the constant C.
1222   auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
1223     if (CB.getNumUses() == 0 || CB.isMustTailCall())
1224       return ChangeStatus::UNCHANGED;
1225     if (A.changeValueAfterManifest(CB, C))
1226       return ChangeStatus::CHANGED;
1227     return ChangeStatus::UNCHANGED;
1228   };
1229 
1230   // If the assumed unique return value is an argument, annotate it.
1231   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1232     // TODO: This should be handled differently!
1233     this->AnchorVal = UniqueRVArg;
1234     this->KindOrArgNo = UniqueRVArg->getArgNo();
1235     Changed = IRAttribute::manifest(A);
1236   } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
1237     // We can replace the returned value with the unique returned constant.
1238     Value &AnchorValue = getAnchorValue();
1239     if (Function *F = dyn_cast<Function>(&AnchorValue)) {
1240       for (const Use &U : F->uses())
1241         if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
1242           if (CB->isCallee(&U)) {
1243             Constant *RVCCast =
1244                 CB->getType() == RVC->getType()
1245                     ? RVC
1246                     : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
1247             Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
1248           }
1249     } else {
1250       assert(isa<CallBase>(AnchorValue) &&
1251              "Expcected a function or call base anchor!");
1252       Constant *RVCCast =
1253           AnchorValue.getType() == RVC->getType()
1254               ? RVC
1255               : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
1256       Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
1257     }
1258     if (Changed == ChangeStatus::CHANGED)
1259       STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
1260                       "Number of function returns replaced by constant return");
1261   }
1262 
1263   return Changed;
1264 }
1265 
1266 const std::string AAReturnedValuesImpl::getAsStr() const {
1267   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1268          (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
1269          ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
1270 }
1271 
1272 Optional<Value *>
1273 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1274   // If checkForAllReturnedValues provides a unique value, ignoring potential
1275   // undef values that can also be present, it is assumed to be the actual
1276   // return value and forwarded to the caller of this method. If there are
1277   // multiple, a nullptr is returned indicating there cannot be a unique
1278   // returned value.
1279   Optional<Value *> UniqueRV;
1280 
1281   auto Pred = [&](Value &RV) -> bool {
1282     // If we found a second returned value and neither the current nor the saved
1283     // one is an undef, there is no unique returned value. Undefs are special
1284     // since we can pretend they have any value.
1285     if (UniqueRV.hasValue() && UniqueRV != &RV &&
1286         !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
1287       UniqueRV = nullptr;
1288       return false;
1289     }
1290 
1291     // Do not overwrite a value with an undef.
1292     if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
1293       UniqueRV = &RV;
1294 
1295     return true;
1296   };
1297 
1298   if (!A.checkForAllReturnedValues(Pred, *this))
1299     UniqueRV = nullptr;
1300 
1301   return UniqueRV;
1302 }
1303 
1304 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1305     const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
1306         &Pred) const {
1307   if (!isValidState())
1308     return false;
1309 
1310   // Check all returned values but ignore call sites as long as we have not
1311   // encountered an overdefined one during an update.
1312   for (auto &It : ReturnedValues) {
1313     Value *RV = It.first;
1314 
1315     CallBase *CB = dyn_cast<CallBase>(RV);
1316     if (CB && !UnresolvedCalls.count(CB))
1317       continue;
1318 
1319     if (!Pred(*RV, It.second))
1320       return false;
1321   }
1322 
1323   return true;
1324 }
1325 
1326 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1327   size_t NumUnresolvedCalls = UnresolvedCalls.size();
1328   bool Changed = false;
1329 
1330   // State used in the value traversals starting in returned values.
1331   struct RVState {
1332     // The map in which we collect return values -> return instrs.
1333     decltype(ReturnedValues) &RetValsMap;
1334     // The flag to indicate a change.
1335     bool &Changed;
1336     // The return instrs we come from.
1337     SmallSetVector<ReturnInst *, 4> RetInsts;
1338   };
1339 
1340   // Callback for a leaf value returned by the associated function.
1341   auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool {
1342     auto Size = RVS.RetValsMap[&Val].size();
1343     RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1344     bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1345     RVS.Changed |= Inserted;
1346     LLVM_DEBUG({
1347       if (Inserted)
1348         dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1349                << " => " << RVS.RetInsts.size() << "\n";
1350     });
1351     return true;
1352   };
1353 
1354   // Helper method to invoke the generic value traversal.
1355   auto VisitReturnedValue = [&](Value &RV, RVState &RVS) {
1356     IRPosition RetValPos = IRPosition::value(RV);
1357     return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this,
1358                                                             RVS, VisitValueCB);
1359   };
1360 
1361   // Callback for all "return intructions" live in the associated function.
1362   auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1363     ReturnInst &Ret = cast<ReturnInst>(I);
1364     RVState RVS({ReturnedValues, Changed, {}});
1365     RVS.RetInsts.insert(&Ret);
1366     return VisitReturnedValue(*Ret.getReturnValue(), RVS);
1367   };
1368 
1369   // Start by discovering returned values from all live returned instructions in
1370   // the associated function.
1371   if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1372     return indicatePessimisticFixpoint();
1373 
1374   // Once returned values "directly" present in the code are handled we try to
1375   // resolve returned calls.
1376   decltype(ReturnedValues) NewRVsMap;
1377   for (auto &It : ReturnedValues) {
1378     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
1379                       << " by #" << It.second.size() << " RIs\n");
1380     CallBase *CB = dyn_cast<CallBase>(It.first);
1381     if (!CB || UnresolvedCalls.count(CB))
1382       continue;
1383 
1384     if (!CB->getCalledFunction()) {
1385       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1386                         << "\n");
1387       UnresolvedCalls.insert(CB);
1388       continue;
1389     }
1390 
1391     // TODO: use the function scope once we have call site AAReturnedValues.
1392     const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1393         *this, IRPosition::function(*CB->getCalledFunction()));
1394     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1395                       << RetValAA << "\n");
1396 
1397     // Skip dead ends, thus if we do not know anything about the returned
1398     // call we mark it as unresolved and it will stay that way.
1399     if (!RetValAA.getState().isValidState()) {
1400       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1401                         << "\n");
1402       UnresolvedCalls.insert(CB);
1403       continue;
1404     }
1405 
1406     // Do not try to learn partial information. If the callee has unresolved
1407     // return values we will treat the call as unresolved/opaque.
1408     auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1409     if (!RetValAAUnresolvedCalls.empty()) {
1410       UnresolvedCalls.insert(CB);
1411       continue;
1412     }
1413 
1414     // Now check if we can track transitively returned values. If possible, thus
1415     // if all return value can be represented in the current scope, do so.
1416     bool Unresolved = false;
1417     for (auto &RetValAAIt : RetValAA.returned_values()) {
1418       Value *RetVal = RetValAAIt.first;
1419       if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1420           isa<Constant>(RetVal))
1421         continue;
1422       // Anything that did not fit in the above categories cannot be resolved,
1423       // mark the call as unresolved.
1424       LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1425                            "cannot be translated: "
1426                         << *RetVal << "\n");
1427       UnresolvedCalls.insert(CB);
1428       Unresolved = true;
1429       break;
1430     }
1431 
1432     if (Unresolved)
1433       continue;
1434 
1435     // Now track transitively returned values.
1436     unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1437     if (NumRetAA == RetValAA.getNumReturnValues()) {
1438       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1439                            "changed since it was seen last\n");
1440       continue;
1441     }
1442     NumRetAA = RetValAA.getNumReturnValues();
1443 
1444     for (auto &RetValAAIt : RetValAA.returned_values()) {
1445       Value *RetVal = RetValAAIt.first;
1446       if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1447         // Arguments are mapped to call site operands and we begin the traversal
1448         // again.
1449         bool Unused = false;
1450         RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1451         VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS);
1452         continue;
1453       } else if (isa<CallBase>(RetVal)) {
1454         // Call sites are resolved by the callee attribute over time, no need to
1455         // do anything for us.
1456         continue;
1457       } else if (isa<Constant>(RetVal)) {
1458         // Constants are valid everywhere, we can simply take them.
1459         NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
1460         continue;
1461       }
1462     }
1463   }
1464 
1465   // To avoid modifications to the ReturnedValues map while we iterate over it
1466   // we kept record of potential new entries in a copy map, NewRVsMap.
1467   for (auto &It : NewRVsMap) {
1468     assert(!It.second.empty() && "Entry does not add anything.");
1469     auto &ReturnInsts = ReturnedValues[It.first];
1470     for (ReturnInst *RI : It.second)
1471       if (ReturnInsts.insert(RI)) {
1472         LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1473                           << *It.first << " => " << *RI << "\n");
1474         Changed = true;
1475       }
1476   }
1477 
1478   Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1479   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1480 }
1481 
1482 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1483   AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
1484 
1485   /// See AbstractAttribute::trackStatistics()
1486   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1487 };
1488 
1489 /// Returned values information for a call sites.
1490 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1491   AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
1492 
1493   /// See AbstractAttribute::initialize(...).
1494   void initialize(Attributor &A) override {
1495     // TODO: Once we have call site specific value information we can provide
1496     //       call site specific liveness information and then it makes
1497     //       sense to specialize attributes for call sites instead of
1498     //       redirecting requests to the callee.
1499     llvm_unreachable("Abstract attributes for returned values are not "
1500                      "supported for call sites yet!");
1501   }
1502 
1503   /// See AbstractAttribute::updateImpl(...).
1504   ChangeStatus updateImpl(Attributor &A) override {
1505     return indicatePessimisticFixpoint();
1506   }
1507 
1508   /// See AbstractAttribute::trackStatistics()
1509   void trackStatistics() const override {}
1510 };
1511 
1512 /// ------------------------ NoSync Function Attribute -------------------------
1513 
1514 struct AANoSyncImpl : AANoSync {
1515   AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
1516 
1517   const std::string getAsStr() const override {
1518     return getAssumed() ? "nosync" : "may-sync";
1519   }
1520 
1521   /// See AbstractAttribute::updateImpl(...).
1522   ChangeStatus updateImpl(Attributor &A) override;
1523 
1524   /// Helper function used to determine whether an instruction is non-relaxed
1525   /// atomic. In other words, if an atomic instruction does not have unordered
1526   /// or monotonic ordering
1527   static bool isNonRelaxedAtomic(Instruction *I);
1528 
1529   /// Helper function used to determine whether an instruction is volatile.
1530   static bool isVolatile(Instruction *I);
1531 
1532   /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1533   /// memset).
1534   static bool isNoSyncIntrinsic(Instruction *I);
1535 };
1536 
1537 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1538   if (!I->isAtomic())
1539     return false;
1540 
1541   AtomicOrdering Ordering;
1542   switch (I->getOpcode()) {
1543   case Instruction::AtomicRMW:
1544     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1545     break;
1546   case Instruction::Store:
1547     Ordering = cast<StoreInst>(I)->getOrdering();
1548     break;
1549   case Instruction::Load:
1550     Ordering = cast<LoadInst>(I)->getOrdering();
1551     break;
1552   case Instruction::Fence: {
1553     auto *FI = cast<FenceInst>(I);
1554     if (FI->getSyncScopeID() == SyncScope::SingleThread)
1555       return false;
1556     Ordering = FI->getOrdering();
1557     break;
1558   }
1559   case Instruction::AtomicCmpXchg: {
1560     AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1561     AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1562     // Only if both are relaxed, than it can be treated as relaxed.
1563     // Otherwise it is non-relaxed.
1564     if (Success != AtomicOrdering::Unordered &&
1565         Success != AtomicOrdering::Monotonic)
1566       return true;
1567     if (Failure != AtomicOrdering::Unordered &&
1568         Failure != AtomicOrdering::Monotonic)
1569       return true;
1570     return false;
1571   }
1572   default:
1573     llvm_unreachable(
1574         "New atomic operations need to be known in the attributor.");
1575   }
1576 
1577   // Relaxed.
1578   if (Ordering == AtomicOrdering::Unordered ||
1579       Ordering == AtomicOrdering::Monotonic)
1580     return false;
1581   return true;
1582 }
1583 
1584 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1585 /// FIXME: We should ipmrove the handling of intrinsics.
1586 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1587   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1588     switch (II->getIntrinsicID()) {
1589     /// Element wise atomic memory intrinsics are can only be unordered,
1590     /// therefore nosync.
1591     case Intrinsic::memset_element_unordered_atomic:
1592     case Intrinsic::memmove_element_unordered_atomic:
1593     case Intrinsic::memcpy_element_unordered_atomic:
1594       return true;
1595     case Intrinsic::memset:
1596     case Intrinsic::memmove:
1597     case Intrinsic::memcpy:
1598       if (!cast<MemIntrinsic>(II)->isVolatile())
1599         return true;
1600       return false;
1601     default:
1602       return false;
1603     }
1604   }
1605   return false;
1606 }
1607 
1608 bool AANoSyncImpl::isVolatile(Instruction *I) {
1609   assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
1610          "Calls should not be checked here");
1611 
1612   switch (I->getOpcode()) {
1613   case Instruction::AtomicRMW:
1614     return cast<AtomicRMWInst>(I)->isVolatile();
1615   case Instruction::Store:
1616     return cast<StoreInst>(I)->isVolatile();
1617   case Instruction::Load:
1618     return cast<LoadInst>(I)->isVolatile();
1619   case Instruction::AtomicCmpXchg:
1620     return cast<AtomicCmpXchgInst>(I)->isVolatile();
1621   default:
1622     return false;
1623   }
1624 }
1625 
1626 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1627 
1628   auto CheckRWInstForNoSync = [&](Instruction &I) {
1629     /// We are looking for volatile instructions or Non-Relaxed atomics.
1630     /// FIXME: We should improve the handling of intrinsics.
1631 
1632     if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1633       return true;
1634 
1635     if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
1636       if (ICS.hasFnAttr(Attribute::NoSync))
1637         return true;
1638 
1639       const auto &NoSyncAA =
1640           A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS));
1641       if (NoSyncAA.isAssumedNoSync())
1642         return true;
1643       return false;
1644     }
1645 
1646     if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1647       return true;
1648 
1649     return false;
1650   };
1651 
1652   auto CheckForNoSync = [&](Instruction &I) {
1653     // At this point we handled all read/write effects and they are all
1654     // nosync, so they can be skipped.
1655     if (I.mayReadOrWriteMemory())
1656       return true;
1657 
1658     // non-convergent and readnone imply nosync.
1659     return !ImmutableCallSite(&I).isConvergent();
1660   };
1661 
1662   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1663       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1664     return indicatePessimisticFixpoint();
1665 
1666   return ChangeStatus::UNCHANGED;
1667 }
1668 
1669 struct AANoSyncFunction final : public AANoSyncImpl {
1670   AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
1671 
1672   /// See AbstractAttribute::trackStatistics()
1673   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1674 };
1675 
1676 /// NoSync attribute deduction for a call sites.
1677 struct AANoSyncCallSite final : AANoSyncImpl {
1678   AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
1679 
1680   /// See AbstractAttribute::initialize(...).
1681   void initialize(Attributor &A) override {
1682     AANoSyncImpl::initialize(A);
1683     Function *F = getAssociatedFunction();
1684     if (!F)
1685       indicatePessimisticFixpoint();
1686   }
1687 
1688   /// See AbstractAttribute::updateImpl(...).
1689   ChangeStatus updateImpl(Attributor &A) override {
1690     // TODO: Once we have call site specific value information we can provide
1691     //       call site specific liveness information and then it makes
1692     //       sense to specialize attributes for call sites arguments instead of
1693     //       redirecting requests to the callee argument.
1694     Function *F = getAssociatedFunction();
1695     const IRPosition &FnPos = IRPosition::function(*F);
1696     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1697     return clampStateAndIndicateChange(
1698         getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
1699   }
1700 
1701   /// See AbstractAttribute::trackStatistics()
1702   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1703 };
1704 
1705 /// ------------------------ No-Free Attributes ----------------------------
1706 
1707 struct AANoFreeImpl : public AANoFree {
1708   AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
1709 
1710   /// See AbstractAttribute::updateImpl(...).
1711   ChangeStatus updateImpl(Attributor &A) override {
1712     auto CheckForNoFree = [&](Instruction &I) {
1713       ImmutableCallSite ICS(&I);
1714       if (ICS.hasFnAttr(Attribute::NoFree))
1715         return true;
1716 
1717       const auto &NoFreeAA =
1718           A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS));
1719       return NoFreeAA.isAssumedNoFree();
1720     };
1721 
1722     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1723       return indicatePessimisticFixpoint();
1724     return ChangeStatus::UNCHANGED;
1725   }
1726 
1727   /// See AbstractAttribute::getAsStr().
1728   const std::string getAsStr() const override {
1729     return getAssumed() ? "nofree" : "may-free";
1730   }
1731 };
1732 
1733 struct AANoFreeFunction final : public AANoFreeImpl {
1734   AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
1735 
1736   /// See AbstractAttribute::trackStatistics()
1737   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1738 };
1739 
1740 /// NoFree attribute deduction for a call sites.
1741 struct AANoFreeCallSite final : AANoFreeImpl {
1742   AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
1743 
1744   /// See AbstractAttribute::initialize(...).
1745   void initialize(Attributor &A) override {
1746     AANoFreeImpl::initialize(A);
1747     Function *F = getAssociatedFunction();
1748     if (!F)
1749       indicatePessimisticFixpoint();
1750   }
1751 
1752   /// See AbstractAttribute::updateImpl(...).
1753   ChangeStatus updateImpl(Attributor &A) override {
1754     // TODO: Once we have call site specific value information we can provide
1755     //       call site specific liveness information and then it makes
1756     //       sense to specialize attributes for call sites arguments instead of
1757     //       redirecting requests to the callee argument.
1758     Function *F = getAssociatedFunction();
1759     const IRPosition &FnPos = IRPosition::function(*F);
1760     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1761     return clampStateAndIndicateChange(
1762         getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
1763   }
1764 
1765   /// See AbstractAttribute::trackStatistics()
1766   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1767 };
1768 
1769 /// NoFree attribute for floating values.
1770 struct AANoFreeFloating : AANoFreeImpl {
1771   AANoFreeFloating(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
1772 
1773   /// See AbstractAttribute::trackStatistics()
1774   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1775 
1776   /// See Abstract Attribute::updateImpl(...).
1777   ChangeStatus updateImpl(Attributor &A) override {
1778     const IRPosition &IRP = getIRPosition();
1779 
1780     const auto &NoFreeAA =
1781         A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
1782     if (NoFreeAA.isAssumedNoFree())
1783       return ChangeStatus::UNCHANGED;
1784 
1785     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1786     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1787       Instruction *UserI = cast<Instruction>(U.getUser());
1788       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1789         if (CB->isBundleOperand(&U))
1790           return false;
1791         if (!CB->isArgOperand(&U))
1792           return true;
1793         unsigned ArgNo = CB->getArgOperandNo(&U);
1794 
1795         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1796             *this, IRPosition::callsite_argument(*CB, ArgNo));
1797         return NoFreeArg.isAssumedNoFree();
1798       }
1799 
1800       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1801           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1802         Follow = true;
1803         return true;
1804       }
1805       if (isa<ReturnInst>(UserI))
1806         return true;
1807 
1808       // Unknown user.
1809       return false;
1810     };
1811     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1812       return indicatePessimisticFixpoint();
1813 
1814     return ChangeStatus::UNCHANGED;
1815   }
1816 };
1817 
1818 /// NoFree attribute for a call site argument.
1819 struct AANoFreeArgument final : AANoFreeFloating {
1820   AANoFreeArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
1821 
1822   /// See AbstractAttribute::trackStatistics()
1823   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1824 };
1825 
1826 /// NoFree attribute for call site arguments.
1827 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1828   AANoFreeCallSiteArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
1829 
1830   /// See AbstractAttribute::updateImpl(...).
1831   ChangeStatus updateImpl(Attributor &A) override {
1832     // TODO: Once we have call site specific value information we can provide
1833     //       call site specific liveness information and then it makes
1834     //       sense to specialize attributes for call sites arguments instead of
1835     //       redirecting requests to the callee argument.
1836     Argument *Arg = getAssociatedArgument();
1837     if (!Arg)
1838       return indicatePessimisticFixpoint();
1839     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1840     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
1841     return clampStateAndIndicateChange(
1842         getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState()));
1843   }
1844 
1845   /// See AbstractAttribute::trackStatistics()
1846   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1847 };
1848 
1849 /// NoFree attribute for function return value.
1850 struct AANoFreeReturned final : AANoFreeFloating {
1851   AANoFreeReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {
1852     llvm_unreachable("NoFree is not applicable to function returns!");
1853   }
1854 
1855   /// See AbstractAttribute::initialize(...).
1856   void initialize(Attributor &A) override {
1857     llvm_unreachable("NoFree is not applicable to function returns!");
1858   }
1859 
1860   /// See AbstractAttribute::updateImpl(...).
1861   ChangeStatus updateImpl(Attributor &A) override {
1862     llvm_unreachable("NoFree is not applicable to function returns!");
1863   }
1864 
1865   /// See AbstractAttribute::trackStatistics()
1866   void trackStatistics() const override {}
1867 };
1868 
1869 /// NoFree attribute deduction for a call site return value.
1870 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
1871   AANoFreeCallSiteReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {}
1872 
1873   ChangeStatus manifest(Attributor &A) override {
1874     return ChangeStatus::UNCHANGED;
1875   }
1876   /// See AbstractAttribute::trackStatistics()
1877   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1878 };
1879 
1880 /// ------------------------ NonNull Argument Attribute ------------------------
1881 static int64_t getKnownNonNullAndDerefBytesForUse(
1882     Attributor &A, AbstractAttribute &QueryingAA, Value &AssociatedValue,
1883     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1884   TrackUse = false;
1885 
1886   const Value *UseV = U->get();
1887   if (!UseV->getType()->isPointerTy())
1888     return 0;
1889 
1890   Type *PtrTy = UseV->getType();
1891   const Function *F = I->getFunction();
1892   bool NullPointerIsDefined =
1893       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1894   const DataLayout &DL = A.getInfoCache().getDL();
1895   if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
1896     if (ICS.isBundleOperand(U))
1897       return 0;
1898 
1899     if (ICS.isCallee(U)) {
1900       IsNonNull |= !NullPointerIsDefined;
1901       return 0;
1902     }
1903 
1904     unsigned ArgNo = ICS.getArgumentNo(U);
1905     IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
1906     // As long as we only use known information there is no need to track
1907     // dependences here.
1908     auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
1909                                                   /* TrackDependence */ false);
1910     IsNonNull |= DerefAA.isKnownNonNull();
1911     return DerefAA.getKnownDereferenceableBytes();
1912   }
1913 
1914   // We need to follow common pointer manipulation uses to the accesses they
1915   // feed into. We can try to be smart to avoid looking through things we do not
1916   // like for now, e.g., non-inbounds GEPs.
1917   if (isa<CastInst>(I)) {
1918     TrackUse = true;
1919     return 0;
1920   }
1921   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1922     if (GEP->hasAllConstantIndices()) {
1923       TrackUse = true;
1924       return 0;
1925     }
1926 
1927   int64_t Offset;
1928   if (const Value *Base = getBasePointerOfAccessPointerOperand(I, Offset, DL)) {
1929     if (Base == &AssociatedValue &&
1930         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1931       int64_t DerefBytes =
1932           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1933 
1934       IsNonNull |= !NullPointerIsDefined;
1935       return std::max(int64_t(0), DerefBytes);
1936     }
1937   }
1938 
1939   /// Corner case when an offset is 0.
1940   if (const Value *Base = getBasePointerOfAccessPointerOperand(
1941           I, Offset, DL, /*AllowNonInbounds*/ true)) {
1942     if (Offset == 0 && Base == &AssociatedValue &&
1943         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1944       int64_t DerefBytes =
1945           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1946       IsNonNull |= !NullPointerIsDefined;
1947       return std::max(int64_t(0), DerefBytes);
1948     }
1949   }
1950 
1951   return 0;
1952 }
1953 
1954 struct AANonNullImpl : AANonNull {
1955   AANonNullImpl(const IRPosition &IRP)
1956       : AANonNull(IRP),
1957         NullIsDefined(NullPointerIsDefined(
1958             getAnchorScope(),
1959             getAssociatedValue().getType()->getPointerAddressSpace())) {}
1960 
1961   /// See AbstractAttribute::initialize(...).
1962   void initialize(Attributor &A) override {
1963     if (!NullIsDefined &&
1964         hasAttr({Attribute::NonNull, Attribute::Dereferenceable}))
1965       indicateOptimisticFixpoint();
1966     else if (isa<ConstantPointerNull>(getAssociatedValue()))
1967       indicatePessimisticFixpoint();
1968     else
1969       AANonNull::initialize(A);
1970   }
1971 
1972   /// See AAFromMustBeExecutedContext
1973   bool followUse(Attributor &A, const Use *U, const Instruction *I) {
1974     bool IsNonNull = false;
1975     bool TrackUse = false;
1976     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1977                                        IsNonNull, TrackUse);
1978     setKnown(IsNonNull);
1979     return TrackUse;
1980   }
1981 
1982   /// See AbstractAttribute::getAsStr().
1983   const std::string getAsStr() const override {
1984     return getAssumed() ? "nonnull" : "may-null";
1985   }
1986 
1987   /// Flag to determine if the underlying value can be null and still allow
1988   /// valid accesses.
1989   const bool NullIsDefined;
1990 };
1991 
1992 /// NonNull attribute for a floating value.
1993 struct AANonNullFloating
1994     : AAFromMustBeExecutedContext<AANonNull, AANonNullImpl> {
1995   using Base = AAFromMustBeExecutedContext<AANonNull, AANonNullImpl>;
1996   AANonNullFloating(const IRPosition &IRP) : Base(IRP) {}
1997 
1998   /// See AbstractAttribute::updateImpl(...).
1999   ChangeStatus updateImpl(Attributor &A) override {
2000     ChangeStatus Change = Base::updateImpl(A);
2001     if (isKnownNonNull())
2002       return Change;
2003 
2004     if (!NullIsDefined) {
2005       const auto &DerefAA =
2006           A.getAAFor<AADereferenceable>(*this, getIRPosition());
2007       if (DerefAA.getAssumedDereferenceableBytes())
2008         return Change;
2009     }
2010 
2011     const DataLayout &DL = A.getDataLayout();
2012 
2013     DominatorTree *DT = nullptr;
2014     InformationCache &InfoCache = A.getInfoCache();
2015     if (const Function *Fn = getAnchorScope())
2016       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2017 
2018     auto VisitValueCB = [&](Value &V, AANonNull::StateType &T,
2019                             bool Stripped) -> bool {
2020       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
2021       if (!Stripped && this == &AA) {
2022         if (!isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr, getCtxI(), DT))
2023           T.indicatePessimisticFixpoint();
2024       } else {
2025         // Use abstract attribute information.
2026         const AANonNull::StateType &NS =
2027             static_cast<const AANonNull::StateType &>(AA.getState());
2028         T ^= NS;
2029       }
2030       return T.isValidState();
2031     };
2032 
2033     StateType T;
2034     if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this,
2035                                                      T, VisitValueCB))
2036       return indicatePessimisticFixpoint();
2037 
2038     return clampStateAndIndicateChange(getState(), T);
2039   }
2040 
2041   /// See AbstractAttribute::trackStatistics()
2042   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2043 };
2044 
2045 /// NonNull attribute for function return value.
2046 struct AANonNullReturned final
2047     : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
2048   AANonNullReturned(const IRPosition &IRP)
2049       : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {}
2050 
2051   /// See AbstractAttribute::trackStatistics()
2052   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2053 };
2054 
2055 /// NonNull attribute for function argument.
2056 struct AANonNullArgument final
2057     : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
2058                                                               AANonNullImpl> {
2059   AANonNullArgument(const IRPosition &IRP)
2060       : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull,
2061                                                                 AANonNullImpl>(
2062             IRP) {}
2063 
2064   /// See AbstractAttribute::trackStatistics()
2065   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2066 };
2067 
2068 struct AANonNullCallSiteArgument final : AANonNullFloating {
2069   AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
2070 
2071   /// See AbstractAttribute::trackStatistics()
2072   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2073 };
2074 
2075 /// NonNull attribute for a call site return position.
2076 struct AANonNullCallSiteReturned final
2077     : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
2078                                                              AANonNullImpl> {
2079   AANonNullCallSiteReturned(const IRPosition &IRP)
2080       : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull,
2081                                                                AANonNullImpl>(
2082             IRP) {}
2083 
2084   /// See AbstractAttribute::trackStatistics()
2085   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2086 };
2087 
2088 /// ------------------------ No-Recurse Attributes ----------------------------
2089 
2090 struct AANoRecurseImpl : public AANoRecurse {
2091   AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
2092 
2093   /// See AbstractAttribute::getAsStr()
2094   const std::string getAsStr() const override {
2095     return getAssumed() ? "norecurse" : "may-recurse";
2096   }
2097 };
2098 
2099 struct AANoRecurseFunction final : AANoRecurseImpl {
2100   AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
2101 
2102   /// See AbstractAttribute::initialize(...).
2103   void initialize(Attributor &A) override {
2104     AANoRecurseImpl::initialize(A);
2105     if (const Function *F = getAnchorScope())
2106       if (A.getInfoCache().getSccSize(*F) != 1)
2107         indicatePessimisticFixpoint();
2108   }
2109 
2110   /// See AbstractAttribute::updateImpl(...).
2111   ChangeStatus updateImpl(Attributor &A) override {
2112 
2113     // If all live call sites are known to be no-recurse, we are as well.
2114     auto CallSitePred = [&](AbstractCallSite ACS) {
2115       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2116           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2117           /* TrackDependence */ false, DepClassTy::OPTIONAL);
2118       return NoRecurseAA.isKnownNoRecurse();
2119     };
2120     bool AllCallSitesKnown;
2121     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2122       // If we know all call sites and all are known no-recurse, we are done.
2123       // If all known call sites, which might not be all that exist, are known
2124       // to be no-recurse, we are not done but we can continue to assume
2125       // no-recurse. If one of the call sites we have not visited will become
2126       // live, another update is triggered.
2127       if (AllCallSitesKnown)
2128         indicateOptimisticFixpoint();
2129       return ChangeStatus::UNCHANGED;
2130     }
2131 
2132     // If the above check does not hold anymore we look at the calls.
2133     auto CheckForNoRecurse = [&](Instruction &I) {
2134       ImmutableCallSite ICS(&I);
2135       if (ICS.hasFnAttr(Attribute::NoRecurse))
2136         return true;
2137 
2138       const auto &NoRecurseAA =
2139           A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(ICS));
2140       if (!NoRecurseAA.isAssumedNoRecurse())
2141         return false;
2142 
2143       // Recursion to the same function
2144       if (ICS.getCalledFunction() == getAnchorScope())
2145         return false;
2146 
2147       return true;
2148     };
2149 
2150     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
2151       return indicatePessimisticFixpoint();
2152     return ChangeStatus::UNCHANGED;
2153   }
2154 
2155   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2156 };
2157 
2158 /// NoRecurse attribute deduction for a call sites.
2159 struct AANoRecurseCallSite final : AANoRecurseImpl {
2160   AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
2161 
2162   /// See AbstractAttribute::initialize(...).
2163   void initialize(Attributor &A) override {
2164     AANoRecurseImpl::initialize(A);
2165     Function *F = getAssociatedFunction();
2166     if (!F)
2167       indicatePessimisticFixpoint();
2168   }
2169 
2170   /// See AbstractAttribute::updateImpl(...).
2171   ChangeStatus updateImpl(Attributor &A) override {
2172     // TODO: Once we have call site specific value information we can provide
2173     //       call site specific liveness information and then it makes
2174     //       sense to specialize attributes for call sites arguments instead of
2175     //       redirecting requests to the callee argument.
2176     Function *F = getAssociatedFunction();
2177     const IRPosition &FnPos = IRPosition::function(*F);
2178     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
2179     return clampStateAndIndicateChange(
2180         getState(),
2181         static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
2182   }
2183 
2184   /// See AbstractAttribute::trackStatistics()
2185   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2186 };
2187 
2188 /// -------------------- Undefined-Behavior Attributes ------------------------
2189 
2190 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2191   AAUndefinedBehaviorImpl(const IRPosition &IRP) : AAUndefinedBehavior(IRP) {}
2192 
2193   /// See AbstractAttribute::updateImpl(...).
2194   // through a pointer (i.e. also branches etc.)
2195   ChangeStatus updateImpl(Attributor &A) override {
2196     const size_t UBPrevSize = KnownUBInsts.size();
2197     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2198 
2199     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2200       // Skip instructions that are already saved.
2201       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2202         return true;
2203 
2204       // If we reach here, we know we have an instruction
2205       // that accesses memory through a pointer operand,
2206       // for which getPointerOperand() should give it to us.
2207       const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
2208       assert(PtrOp &&
2209              "Expected pointer operand of memory accessing instruction");
2210 
2211       // A memory access through a pointer is considered UB
2212       // only if the pointer has constant null value.
2213       // TODO: Expand it to not only check constant values.
2214       if (!isa<ConstantPointerNull>(PtrOp)) {
2215         AssumedNoUBInsts.insert(&I);
2216         return true;
2217       }
2218       const Type *PtrTy = PtrOp->getType();
2219 
2220       // Because we only consider instructions inside functions,
2221       // assume that a parent function exists.
2222       const Function *F = I.getFunction();
2223 
2224       // A memory access using constant null pointer is only considered UB
2225       // if null pointer is _not_ defined for the target platform.
2226       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2227         AssumedNoUBInsts.insert(&I);
2228       else
2229         KnownUBInsts.insert(&I);
2230       return true;
2231     };
2232 
2233     auto InspectBrInstForUB = [&](Instruction &I) {
2234       // A conditional branch instruction is considered UB if it has `undef`
2235       // condition.
2236 
2237       // Skip instructions that are already saved.
2238       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2239         return true;
2240 
2241       // We know we have a branch instruction.
2242       auto BrInst = cast<BranchInst>(&I);
2243 
2244       // Unconditional branches are never considered UB.
2245       if (BrInst->isUnconditional())
2246         return true;
2247 
2248       // Either we stopped and the appropriate action was taken,
2249       // or we got back a simplified value to continue.
2250       Optional<Value *> SimplifiedCond =
2251           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2252       if (!SimplifiedCond.hasValue())
2253         return true;
2254       AssumedNoUBInsts.insert(&I);
2255       return true;
2256     };
2257 
2258     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2259                               {Instruction::Load, Instruction::Store,
2260                                Instruction::AtomicCmpXchg,
2261                                Instruction::AtomicRMW},
2262                               /* CheckBBLivenessOnly */ true);
2263     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2264                               /* CheckBBLivenessOnly */ true);
2265     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2266         UBPrevSize != KnownUBInsts.size())
2267       return ChangeStatus::CHANGED;
2268     return ChangeStatus::UNCHANGED;
2269   }
2270 
2271   bool isKnownToCauseUB(Instruction *I) const override {
2272     return KnownUBInsts.count(I);
2273   }
2274 
2275   bool isAssumedToCauseUB(Instruction *I) const override {
2276     // In simple words, if an instruction is not in the assumed to _not_
2277     // cause UB, then it is assumed UB (that includes those
2278     // in the KnownUBInsts set). The rest is boilerplate
2279     // is to ensure that it is one of the instructions we test
2280     // for UB.
2281 
2282     switch (I->getOpcode()) {
2283     case Instruction::Load:
2284     case Instruction::Store:
2285     case Instruction::AtomicCmpXchg:
2286     case Instruction::AtomicRMW:
2287       return !AssumedNoUBInsts.count(I);
2288     case Instruction::Br: {
2289       auto BrInst = cast<BranchInst>(I);
2290       if (BrInst->isUnconditional())
2291         return false;
2292       return !AssumedNoUBInsts.count(I);
2293     } break;
2294     default:
2295       return false;
2296     }
2297     return false;
2298   }
2299 
2300   ChangeStatus manifest(Attributor &A) override {
2301     if (KnownUBInsts.empty())
2302       return ChangeStatus::UNCHANGED;
2303     for (Instruction *I : KnownUBInsts)
2304       A.changeToUnreachableAfterManifest(I);
2305     return ChangeStatus::CHANGED;
2306   }
2307 
2308   /// See AbstractAttribute::getAsStr()
2309   const std::string getAsStr() const override {
2310     return getAssumed() ? "undefined-behavior" : "no-ub";
2311   }
2312 
2313   /// Note: The correctness of this analysis depends on the fact that the
2314   /// following 2 sets will stop changing after some point.
2315   /// "Change" here means that their size changes.
2316   /// The size of each set is monotonically increasing
2317   /// (we only add items to them) and it is upper bounded by the number of
2318   /// instructions in the processed function (we can never save more
2319   /// elements in either set than this number). Hence, at some point,
2320   /// they will stop increasing.
2321   /// Consequently, at some point, both sets will have stopped
2322   /// changing, effectively making the analysis reach a fixpoint.
2323 
2324   /// Note: These 2 sets are disjoint and an instruction can be considered
2325   /// one of 3 things:
2326   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2327   ///    the KnownUBInsts set.
2328   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2329   ///    has a reason to assume it).
2330   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2331   ///    could not find a reason to assume or prove that it can cause UB,
2332   ///    hence it assumes it doesn't. We have a set for these instructions
2333   ///    so that we don't reprocess them in every update.
2334   ///    Note however that instructions in this set may cause UB.
2335 
2336 protected:
2337   /// A set of all live instructions _known_ to cause UB.
2338   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2339 
2340 private:
2341   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2342   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2343 
2344   // Should be called on updates in which if we're processing an instruction
2345   // \p I that depends on a value \p V, one of the following has to happen:
2346   // - If the value is assumed, then stop.
2347   // - If the value is known but undef, then consider it UB.
2348   // - Otherwise, do specific processing with the simplified value.
2349   // We return None in the first 2 cases to signify that an appropriate
2350   // action was taken and the caller should stop.
2351   // Otherwise, we return the simplified value that the caller should
2352   // use for specific processing.
2353   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2354                                          Instruction *I) {
2355     const auto &ValueSimplifyAA =
2356         A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
2357     Optional<Value *> SimplifiedV =
2358         ValueSimplifyAA.getAssumedSimplifiedValue(A);
2359     if (!ValueSimplifyAA.isKnown()) {
2360       // Don't depend on assumed values.
2361       return llvm::None;
2362     }
2363     if (!SimplifiedV.hasValue()) {
2364       // If it is known (which we tested above) but it doesn't have a value,
2365       // then we can assume `undef` and hence the instruction is UB.
2366       KnownUBInsts.insert(I);
2367       return llvm::None;
2368     }
2369     Value *Val = SimplifiedV.getValue();
2370     if (isa<UndefValue>(Val)) {
2371       KnownUBInsts.insert(I);
2372       return llvm::None;
2373     }
2374     return Val;
2375   }
2376 };
2377 
2378 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2379   AAUndefinedBehaviorFunction(const IRPosition &IRP)
2380       : AAUndefinedBehaviorImpl(IRP) {}
2381 
2382   /// See AbstractAttribute::trackStatistics()
2383   void trackStatistics() const override {
2384     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2385                "Number of instructions known to have UB");
2386     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2387         KnownUBInsts.size();
2388   }
2389 };
2390 
2391 /// ------------------------ Will-Return Attributes ----------------------------
2392 
2393 // Helper function that checks whether a function has any cycle.
2394 // TODO: Replace with more efficent code
2395 static bool containsCycle(Function &F) {
2396   SmallPtrSet<BasicBlock *, 32> Visited;
2397 
2398   // Traverse BB by dfs and check whether successor is already visited.
2399   for (BasicBlock *BB : depth_first(&F)) {
2400     Visited.insert(BB);
2401     for (auto *SuccBB : successors(BB)) {
2402       if (Visited.count(SuccBB))
2403         return true;
2404     }
2405   }
2406   return false;
2407 }
2408 
2409 // Helper function that checks the function have a loop which might become an
2410 // endless loop
2411 // FIXME: Any cycle is regarded as endless loop for now.
2412 //        We have to allow some patterns.
2413 static bool containsPossiblyEndlessLoop(Function *F) {
2414   return !F || !F->hasExactDefinition() || containsCycle(*F);
2415 }
2416 
2417 struct AAWillReturnImpl : public AAWillReturn {
2418   AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
2419 
2420   /// See AbstractAttribute::initialize(...).
2421   void initialize(Attributor &A) override {
2422     AAWillReturn::initialize(A);
2423 
2424     Function *F = getAssociatedFunction();
2425     if (containsPossiblyEndlessLoop(F))
2426       indicatePessimisticFixpoint();
2427   }
2428 
2429   /// See AbstractAttribute::updateImpl(...).
2430   ChangeStatus updateImpl(Attributor &A) override {
2431     auto CheckForWillReturn = [&](Instruction &I) {
2432       IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I));
2433       const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
2434       if (WillReturnAA.isKnownWillReturn())
2435         return true;
2436       if (!WillReturnAA.isAssumedWillReturn())
2437         return false;
2438       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
2439       return NoRecurseAA.isAssumedNoRecurse();
2440     };
2441 
2442     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2443       return indicatePessimisticFixpoint();
2444 
2445     return ChangeStatus::UNCHANGED;
2446   }
2447 
2448   /// See AbstractAttribute::getAsStr()
2449   const std::string getAsStr() const override {
2450     return getAssumed() ? "willreturn" : "may-noreturn";
2451   }
2452 };
2453 
2454 struct AAWillReturnFunction final : AAWillReturnImpl {
2455   AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
2456 
2457   /// See AbstractAttribute::trackStatistics()
2458   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2459 };
2460 
2461 /// WillReturn attribute deduction for a call sites.
2462 struct AAWillReturnCallSite final : AAWillReturnImpl {
2463   AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
2464 
2465   /// See AbstractAttribute::initialize(...).
2466   void initialize(Attributor &A) override {
2467     AAWillReturnImpl::initialize(A);
2468     Function *F = getAssociatedFunction();
2469     if (!F)
2470       indicatePessimisticFixpoint();
2471   }
2472 
2473   /// See AbstractAttribute::updateImpl(...).
2474   ChangeStatus updateImpl(Attributor &A) override {
2475     // TODO: Once we have call site specific value information we can provide
2476     //       call site specific liveness information and then it makes
2477     //       sense to specialize attributes for call sites arguments instead of
2478     //       redirecting requests to the callee argument.
2479     Function *F = getAssociatedFunction();
2480     const IRPosition &FnPos = IRPosition::function(*F);
2481     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
2482     return clampStateAndIndicateChange(
2483         getState(),
2484         static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
2485   }
2486 
2487   /// See AbstractAttribute::trackStatistics()
2488   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2489 };
2490 
2491 /// -------------------AAReachability Attribute--------------------------
2492 
2493 struct AAReachabilityImpl : AAReachability {
2494   AAReachabilityImpl(const IRPosition &IRP) : AAReachability(IRP) {}
2495 
2496   const std::string getAsStr() const override {
2497     // TODO: Return the number of reachable queries.
2498     return "reachable";
2499   }
2500 
2501   /// See AbstractAttribute::initialize(...).
2502   void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2503 
2504   /// See AbstractAttribute::updateImpl(...).
2505   ChangeStatus updateImpl(Attributor &A) override {
2506     return indicatePessimisticFixpoint();
2507   }
2508 };
2509 
2510 struct AAReachabilityFunction final : public AAReachabilityImpl {
2511   AAReachabilityFunction(const IRPosition &IRP) : AAReachabilityImpl(IRP) {}
2512 
2513   /// See AbstractAttribute::trackStatistics()
2514   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2515 };
2516 
2517 /// ------------------------ NoAlias Argument Attribute ------------------------
2518 
2519 struct AANoAliasImpl : AANoAlias {
2520   AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {
2521     assert(getAssociatedType()->isPointerTy() &&
2522            "Noalias is a pointer attribute");
2523   }
2524 
2525   const std::string getAsStr() const override {
2526     return getAssumed() ? "noalias" : "may-alias";
2527   }
2528 };
2529 
2530 /// NoAlias attribute for a floating value.
2531 struct AANoAliasFloating final : AANoAliasImpl {
2532   AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
2533 
2534   /// See AbstractAttribute::initialize(...).
2535   void initialize(Attributor &A) override {
2536     AANoAliasImpl::initialize(A);
2537     Value *Val = &getAssociatedValue();
2538     do {
2539       CastInst *CI = dyn_cast<CastInst>(Val);
2540       if (!CI)
2541         break;
2542       Value *Base = CI->getOperand(0);
2543       if (Base->getNumUses() != 1)
2544         break;
2545       Val = Base;
2546     } while (true);
2547 
2548     if (!Val->getType()->isPointerTy()) {
2549       indicatePessimisticFixpoint();
2550       return;
2551     }
2552 
2553     if (isa<AllocaInst>(Val))
2554       indicateOptimisticFixpoint();
2555     else if (isa<ConstantPointerNull>(Val) &&
2556              !NullPointerIsDefined(getAnchorScope(),
2557                                    Val->getType()->getPointerAddressSpace()))
2558       indicateOptimisticFixpoint();
2559     else if (Val != &getAssociatedValue()) {
2560       const auto &ValNoAliasAA =
2561           A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
2562       if (ValNoAliasAA.isKnownNoAlias())
2563         indicateOptimisticFixpoint();
2564     }
2565   }
2566 
2567   /// See AbstractAttribute::updateImpl(...).
2568   ChangeStatus updateImpl(Attributor &A) override {
2569     // TODO: Implement this.
2570     return indicatePessimisticFixpoint();
2571   }
2572 
2573   /// See AbstractAttribute::trackStatistics()
2574   void trackStatistics() const override {
2575     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2576   }
2577 };
2578 
2579 /// NoAlias attribute for an argument.
2580 struct AANoAliasArgument final
2581     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2582   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2583   AANoAliasArgument(const IRPosition &IRP) : Base(IRP) {}
2584 
2585   /// See AbstractAttribute::initialize(...).
2586   void initialize(Attributor &A) override {
2587     Base::initialize(A);
2588     // See callsite argument attribute and callee argument attribute.
2589     if (hasAttr({Attribute::ByVal}))
2590       indicateOptimisticFixpoint();
2591   }
2592 
2593   /// See AbstractAttribute::update(...).
2594   ChangeStatus updateImpl(Attributor &A) override {
2595     // We have to make sure no-alias on the argument does not break
2596     // synchronization when this is a callback argument, see also [1] below.
2597     // If synchronization cannot be affected, we delegate to the base updateImpl
2598     // function, otherwise we give up for now.
2599 
2600     // If the function is no-sync, no-alias cannot break synchronization.
2601     const auto &NoSyncAA = A.getAAFor<AANoSync>(
2602         *this, IRPosition::function_scope(getIRPosition()));
2603     if (NoSyncAA.isAssumedNoSync())
2604       return Base::updateImpl(A);
2605 
2606     // If the argument is read-only, no-alias cannot break synchronization.
2607     const auto &MemBehaviorAA =
2608         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
2609     if (MemBehaviorAA.isAssumedReadOnly())
2610       return Base::updateImpl(A);
2611 
2612     // If the argument is never passed through callbacks, no-alias cannot break
2613     // synchronization.
2614     bool AllCallSitesKnown;
2615     if (A.checkForAllCallSites(
2616             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2617             true, AllCallSitesKnown))
2618       return Base::updateImpl(A);
2619 
2620     // TODO: add no-alias but make sure it doesn't break synchronization by
2621     // introducing fake uses. See:
2622     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2623     //     International Workshop on OpenMP 2018,
2624     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2625 
2626     return indicatePessimisticFixpoint();
2627   }
2628 
2629   /// See AbstractAttribute::trackStatistics()
2630   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2631 };
2632 
2633 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2634   AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
2635 
2636   /// See AbstractAttribute::initialize(...).
2637   void initialize(Attributor &A) override {
2638     // See callsite argument attribute and callee argument attribute.
2639     ImmutableCallSite ICS(&getAnchorValue());
2640     if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias))
2641       indicateOptimisticFixpoint();
2642     Value &Val = getAssociatedValue();
2643     if (isa<ConstantPointerNull>(Val) &&
2644         !NullPointerIsDefined(getAnchorScope(),
2645                               Val.getType()->getPointerAddressSpace()))
2646       indicateOptimisticFixpoint();
2647   }
2648 
2649   /// Determine if the underlying value may alias with the call site argument
2650   /// \p OtherArgNo of \p ICS (= the underlying call site).
2651   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2652                             const AAMemoryBehavior &MemBehaviorAA,
2653                             ImmutableCallSite ICS, unsigned OtherArgNo) {
2654     // We do not need to worry about aliasing with the underlying IRP.
2655     if (this->getArgNo() == (int)OtherArgNo)
2656       return false;
2657 
2658     // If it is not a pointer or pointer vector we do not alias.
2659     const Value *ArgOp = ICS.getArgOperand(OtherArgNo);
2660     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2661       return false;
2662 
2663     auto &ICSArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2664         *this, IRPosition::callsite_argument(ICS, OtherArgNo),
2665         /* TrackDependence */ false);
2666 
2667     // If the argument is readnone, there is no read-write aliasing.
2668     if (ICSArgMemBehaviorAA.isAssumedReadNone()) {
2669       A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2670       return false;
2671     }
2672 
2673     // If the argument is readonly and the underlying value is readonly, there
2674     // is no read-write aliasing.
2675     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2676     if (ICSArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2677       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2678       A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2679       return false;
2680     }
2681 
2682     // We have to utilize actual alias analysis queries so we need the object.
2683     if (!AAR)
2684       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2685 
2686     // Try to rule it out at the call site.
2687     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2688     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2689                          "callsite arguments: "
2690                       << getAssociatedValue() << " " << *ArgOp << " => "
2691                       << (IsAliasing ? "" : "no-") << "alias \n");
2692 
2693     return IsAliasing;
2694   }
2695 
2696   bool
2697   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2698                                          const AAMemoryBehavior &MemBehaviorAA,
2699                                          const AANoAlias &NoAliasAA) {
2700     // We can deduce "noalias" if the following conditions hold.
2701     // (i)   Associated value is assumed to be noalias in the definition.
2702     // (ii)  Associated value is assumed to be no-capture in all the uses
2703     //       possibly executed before this callsite.
2704     // (iii) There is no other pointer argument which could alias with the
2705     //       value.
2706 
2707     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2708     if (!AssociatedValueIsNoAliasAtDef) {
2709       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2710                         << " is not no-alias at the definition\n");
2711       return false;
2712     }
2713 
2714     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2715     auto &NoCaptureAA =
2716         A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
2717     // Check whether the value is captured in the scope using AANoCapture.
2718     // FIXME: This is conservative though, it is better to look at CFG and
2719     //        check only uses possibly executed before this callsite.
2720     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2721       LLVM_DEBUG(
2722           dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2723                  << " cannot be noalias as it is potentially captured\n");
2724       return false;
2725     }
2726     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2727 
2728     // Check there is no other pointer argument which could alias with the
2729     // value passed at this call site.
2730     // TODO: AbstractCallSite
2731     ImmutableCallSite ICS(&getAnchorValue());
2732     for (unsigned OtherArgNo = 0; OtherArgNo < ICS.getNumArgOperands();
2733          OtherArgNo++)
2734       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, ICS, OtherArgNo))
2735         return false;
2736 
2737     return true;
2738   }
2739 
2740   /// See AbstractAttribute::updateImpl(...).
2741   ChangeStatus updateImpl(Attributor &A) override {
2742     // If the argument is readnone we are done as there are no accesses via the
2743     // argument.
2744     auto &MemBehaviorAA =
2745         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2746                                      /* TrackDependence */ false);
2747     if (MemBehaviorAA.isAssumedReadNone()) {
2748       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2749       return ChangeStatus::UNCHANGED;
2750     }
2751 
2752     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2753     const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
2754                                                   /* TrackDependence */ false);
2755 
2756     AAResults *AAR = nullptr;
2757     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2758                                                NoAliasAA)) {
2759       LLVM_DEBUG(
2760           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2761       return ChangeStatus::UNCHANGED;
2762     }
2763 
2764     return indicatePessimisticFixpoint();
2765   }
2766 
2767   /// See AbstractAttribute::trackStatistics()
2768   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2769 };
2770 
2771 /// NoAlias attribute for function return value.
2772 struct AANoAliasReturned final : AANoAliasImpl {
2773   AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
2774 
2775   /// See AbstractAttribute::updateImpl(...).
2776   virtual ChangeStatus updateImpl(Attributor &A) override {
2777 
2778     auto CheckReturnValue = [&](Value &RV) -> bool {
2779       if (Constant *C = dyn_cast<Constant>(&RV))
2780         if (C->isNullValue() || isa<UndefValue>(C))
2781           return true;
2782 
2783       /// For now, we can only deduce noalias if we have call sites.
2784       /// FIXME: add more support.
2785       ImmutableCallSite ICS(&RV);
2786       if (!ICS)
2787         return false;
2788 
2789       const IRPosition &RVPos = IRPosition::value(RV);
2790       const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
2791       if (!NoAliasAA.isAssumedNoAlias())
2792         return false;
2793 
2794       const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
2795       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2796     };
2797 
2798     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2799       return indicatePessimisticFixpoint();
2800 
2801     return ChangeStatus::UNCHANGED;
2802   }
2803 
2804   /// See AbstractAttribute::trackStatistics()
2805   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2806 };
2807 
2808 /// NoAlias attribute deduction for a call site return value.
2809 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
2810   AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
2811 
2812   /// See AbstractAttribute::initialize(...).
2813   void initialize(Attributor &A) override {
2814     AANoAliasImpl::initialize(A);
2815     Function *F = getAssociatedFunction();
2816     if (!F)
2817       indicatePessimisticFixpoint();
2818   }
2819 
2820   /// See AbstractAttribute::updateImpl(...).
2821   ChangeStatus updateImpl(Attributor &A) override {
2822     // TODO: Once we have call site specific value information we can provide
2823     //       call site specific liveness information and then it makes
2824     //       sense to specialize attributes for call sites arguments instead of
2825     //       redirecting requests to the callee argument.
2826     Function *F = getAssociatedFunction();
2827     const IRPosition &FnPos = IRPosition::returned(*F);
2828     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
2829     return clampStateAndIndicateChange(
2830         getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
2831   }
2832 
2833   /// See AbstractAttribute::trackStatistics()
2834   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2835 };
2836 
2837 /// -------------------AAIsDead Function Attribute-----------------------
2838 
2839 struct AAIsDeadValueImpl : public AAIsDead {
2840   AAIsDeadValueImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
2841 
2842   /// See AAIsDead::isAssumedDead().
2843   bool isAssumedDead() const override { return getAssumed(); }
2844 
2845   /// See AAIsDead::isKnownDead().
2846   bool isKnownDead() const override { return getKnown(); }
2847 
2848   /// See AAIsDead::isAssumedDead(BasicBlock *).
2849   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2850 
2851   /// See AAIsDead::isKnownDead(BasicBlock *).
2852   bool isKnownDead(const BasicBlock *BB) const override { return false; }
2853 
2854   /// See AAIsDead::isAssumedDead(Instruction *I).
2855   bool isAssumedDead(const Instruction *I) const override {
2856     return I == getCtxI() && isAssumedDead();
2857   }
2858 
2859   /// See AAIsDead::isKnownDead(Instruction *I).
2860   bool isKnownDead(const Instruction *I) const override {
2861     return isAssumedDead(I) && getKnown();
2862   }
2863 
2864   /// See AbstractAttribute::getAsStr().
2865   const std::string getAsStr() const override {
2866     return isAssumedDead() ? "assumed-dead" : "assumed-live";
2867   }
2868 
2869   /// Check if all uses are assumed dead.
2870   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2871     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2872     // Explicitly set the dependence class to required because we want a long
2873     // chain of N dependent instructions to be considered live as soon as one is
2874     // without going through N update cycles. This is not required for
2875     // correctness.
2876     return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2877   }
2878 
2879   /// Determine if \p I is assumed to be side-effect free.
2880   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2881     if (!I || wouldInstructionBeTriviallyDead(I))
2882       return true;
2883 
2884     auto *CB = dyn_cast<CallBase>(I);
2885     if (!CB || isa<IntrinsicInst>(CB))
2886       return false;
2887 
2888     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2889     const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(*this, CallIRP);
2890     if (!NoUnwindAA.isAssumedNoUnwind())
2891       return false;
2892 
2893     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, CallIRP);
2894     if (!MemBehaviorAA.isAssumedReadOnly())
2895       return false;
2896 
2897     return true;
2898   }
2899 };
2900 
2901 struct AAIsDeadFloating : public AAIsDeadValueImpl {
2902   AAIsDeadFloating(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
2903 
2904   /// See AbstractAttribute::initialize(...).
2905   void initialize(Attributor &A) override {
2906     if (isa<UndefValue>(getAssociatedValue())) {
2907       indicatePessimisticFixpoint();
2908       return;
2909     }
2910 
2911     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2912     if (!isAssumedSideEffectFree(A, I))
2913       indicatePessimisticFixpoint();
2914   }
2915 
2916   /// See AbstractAttribute::updateImpl(...).
2917   ChangeStatus updateImpl(Attributor &A) override {
2918     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2919     if (!isAssumedSideEffectFree(A, I))
2920       return indicatePessimisticFixpoint();
2921 
2922     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2923       return indicatePessimisticFixpoint();
2924     return ChangeStatus::UNCHANGED;
2925   }
2926 
2927   /// See AbstractAttribute::manifest(...).
2928   ChangeStatus manifest(Attributor &A) override {
2929     Value &V = getAssociatedValue();
2930     if (auto *I = dyn_cast<Instruction>(&V)) {
2931       // If we get here we basically know the users are all dead. We check if
2932       // isAssumedSideEffectFree returns true here again because it might not be
2933       // the case and only the users are dead but the instruction (=call) is
2934       // still needed.
2935       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2936         A.deleteAfterManifest(*I);
2937         return ChangeStatus::CHANGED;
2938       }
2939     }
2940     if (V.use_empty())
2941       return ChangeStatus::UNCHANGED;
2942 
2943     bool UsedAssumedInformation = false;
2944     Optional<Constant *> C =
2945         getAssumedConstant(A, V, *this, UsedAssumedInformation);
2946     if (C.hasValue() && C.getValue())
2947       return ChangeStatus::UNCHANGED;
2948 
2949     UndefValue &UV = *UndefValue::get(V.getType());
2950     bool AnyChange = A.changeValueAfterManifest(V, UV);
2951     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2952   }
2953 
2954   /// See AbstractAttribute::trackStatistics()
2955   void trackStatistics() const override {
2956     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2957   }
2958 };
2959 
2960 struct AAIsDeadArgument : public AAIsDeadFloating {
2961   AAIsDeadArgument(const IRPosition &IRP) : AAIsDeadFloating(IRP) {}
2962 
2963   /// See AbstractAttribute::initialize(...).
2964   void initialize(Attributor &A) override {
2965     if (!getAssociatedFunction()->hasExactDefinition())
2966       indicatePessimisticFixpoint();
2967   }
2968 
2969   /// See AbstractAttribute::manifest(...).
2970   ChangeStatus manifest(Attributor &A) override {
2971     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2972     Argument &Arg = *getAssociatedArgument();
2973     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2974       if (A.registerFunctionSignatureRewrite(
2975               Arg, /* ReplacementTypes */ {},
2976               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2977               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{}))
2978         return ChangeStatus::CHANGED;
2979     return Changed;
2980   }
2981 
2982   /// See AbstractAttribute::trackStatistics()
2983   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
2984 };
2985 
2986 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
2987   AAIsDeadCallSiteArgument(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
2988 
2989   /// See AbstractAttribute::initialize(...).
2990   void initialize(Attributor &A) override {
2991     if (isa<UndefValue>(getAssociatedValue()))
2992       indicatePessimisticFixpoint();
2993   }
2994 
2995   /// See AbstractAttribute::updateImpl(...).
2996   ChangeStatus updateImpl(Attributor &A) override {
2997     // TODO: Once we have call site specific value information we can provide
2998     //       call site specific liveness information and then it makes
2999     //       sense to specialize attributes for call sites arguments instead of
3000     //       redirecting requests to the callee argument.
3001     Argument *Arg = getAssociatedArgument();
3002     if (!Arg)
3003       return indicatePessimisticFixpoint();
3004     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3005     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
3006     return clampStateAndIndicateChange(
3007         getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState()));
3008   }
3009 
3010   /// See AbstractAttribute::manifest(...).
3011   ChangeStatus manifest(Attributor &A) override {
3012     CallBase &CB = cast<CallBase>(getAnchorValue());
3013     Use &U = CB.getArgOperandUse(getArgNo());
3014     assert(!isa<UndefValue>(U.get()) &&
3015            "Expected undef values to be filtered out!");
3016     UndefValue &UV = *UndefValue::get(U->getType());
3017     if (A.changeUseAfterManifest(U, UV))
3018       return ChangeStatus::CHANGED;
3019     return ChangeStatus::UNCHANGED;
3020   }
3021 
3022   /// See AbstractAttribute::trackStatistics()
3023   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3024 };
3025 
3026 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3027   AAIsDeadCallSiteReturned(const IRPosition &IRP)
3028       : AAIsDeadFloating(IRP), IsAssumedSideEffectFree(true) {}
3029 
3030   /// See AAIsDead::isAssumedDead().
3031   bool isAssumedDead() const override {
3032     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3033   }
3034 
3035   /// See AbstractAttribute::initialize(...).
3036   void initialize(Attributor &A) override {
3037     if (isa<UndefValue>(getAssociatedValue())) {
3038       indicatePessimisticFixpoint();
3039       return;
3040     }
3041 
3042     // We track this separately as a secondary state.
3043     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3044   }
3045 
3046   /// See AbstractAttribute::updateImpl(...).
3047   ChangeStatus updateImpl(Attributor &A) override {
3048     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3049     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3050       IsAssumedSideEffectFree = false;
3051       Changed = ChangeStatus::CHANGED;
3052     }
3053 
3054     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3055       return indicatePessimisticFixpoint();
3056     return Changed;
3057   }
3058 
3059   /// See AbstractAttribute::manifest(...).
3060   ChangeStatus manifest(Attributor &A) override {
3061     if (auto *CI = dyn_cast<CallInst>(&getAssociatedValue()))
3062       if (CI->isMustTailCall())
3063         return ChangeStatus::UNCHANGED;
3064     return AAIsDeadFloating::manifest(A);
3065   }
3066 
3067   /// See AbstractAttribute::trackStatistics()
3068   void trackStatistics() const override {
3069     if (IsAssumedSideEffectFree)
3070       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3071     else
3072       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3073   }
3074 
3075   /// See AbstractAttribute::getAsStr().
3076   const std::string getAsStr() const override {
3077     return isAssumedDead()
3078                ? "assumed-dead"
3079                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3080   }
3081 
3082 private:
3083   bool IsAssumedSideEffectFree;
3084 };
3085 
3086 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3087   AAIsDeadReturned(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {}
3088 
3089   /// See AbstractAttribute::updateImpl(...).
3090   ChangeStatus updateImpl(Attributor &A) override {
3091 
3092     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3093                               {Instruction::Ret});
3094 
3095     auto PredForCallSite = [&](AbstractCallSite ACS) {
3096       if (ACS.isCallbackCall() || !ACS.getInstruction())
3097         return false;
3098       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3099     };
3100 
3101     bool AllCallSitesKnown;
3102     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3103                                 AllCallSitesKnown))
3104       return indicatePessimisticFixpoint();
3105 
3106     return ChangeStatus::UNCHANGED;
3107   }
3108 
3109   /// See AbstractAttribute::manifest(...).
3110   ChangeStatus manifest(Attributor &A) override {
3111     // TODO: Rewrite the signature to return void?
3112     bool AnyChange = false;
3113     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3114     auto RetInstPred = [&](Instruction &I) {
3115       ReturnInst &RI = cast<ReturnInst>(I);
3116       if (auto *CI = dyn_cast<CallInst>(RI.getReturnValue()))
3117         if (CI->isMustTailCall())
3118           return true;
3119       if (!isa<UndefValue>(RI.getReturnValue()))
3120         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3121       return true;
3122     };
3123     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
3124     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3125   }
3126 
3127   /// See AbstractAttribute::trackStatistics()
3128   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3129 };
3130 
3131 struct AAIsDeadFunction : public AAIsDead {
3132   AAIsDeadFunction(const IRPosition &IRP) : AAIsDead(IRP) {}
3133 
3134   /// See AbstractAttribute::initialize(...).
3135   void initialize(Attributor &A) override {
3136     const Function *F = getAssociatedFunction();
3137     if (F && !F->isDeclaration()) {
3138       ToBeExploredFrom.insert(&F->getEntryBlock().front());
3139       assumeLive(A, F->getEntryBlock());
3140     }
3141   }
3142 
3143   /// See AbstractAttribute::getAsStr().
3144   const std::string getAsStr() const override {
3145     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3146            std::to_string(getAssociatedFunction()->size()) + "][#TBEP " +
3147            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3148            std::to_string(KnownDeadEnds.size()) + "]";
3149   }
3150 
3151   /// See AbstractAttribute::manifest(...).
3152   ChangeStatus manifest(Attributor &A) override {
3153     assert(getState().isValidState() &&
3154            "Attempted to manifest an invalid state!");
3155 
3156     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3157     Function &F = *getAssociatedFunction();
3158 
3159     if (AssumedLiveBlocks.empty()) {
3160       A.deleteAfterManifest(F);
3161       return ChangeStatus::CHANGED;
3162     }
3163 
3164     // Flag to determine if we can change an invoke to a call assuming the
3165     // callee is nounwind. This is not possible if the personality of the
3166     // function allows to catch asynchronous exceptions.
3167     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3168 
3169     KnownDeadEnds.set_union(ToBeExploredFrom);
3170     for (const Instruction *DeadEndI : KnownDeadEnds) {
3171       auto *CB = dyn_cast<CallBase>(DeadEndI);
3172       if (!CB)
3173         continue;
3174       const auto &NoReturnAA =
3175           A.getAAFor<AANoReturn>(*this, IRPosition::callsite_function(*CB));
3176       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3177       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3178         continue;
3179 
3180       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3181         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3182       else
3183         A.changeToUnreachableAfterManifest(
3184             const_cast<Instruction *>(DeadEndI->getNextNode()));
3185       HasChanged = ChangeStatus::CHANGED;
3186     }
3187 
3188     for (BasicBlock &BB : F)
3189       if (!AssumedLiveBlocks.count(&BB))
3190         A.deleteAfterManifest(BB);
3191 
3192     return HasChanged;
3193   }
3194 
3195   /// See AbstractAttribute::updateImpl(...).
3196   ChangeStatus updateImpl(Attributor &A) override;
3197 
3198   /// See AbstractAttribute::trackStatistics()
3199   void trackStatistics() const override {}
3200 
3201   /// Returns true if the function is assumed dead.
3202   bool isAssumedDead() const override { return false; }
3203 
3204   /// See AAIsDead::isKnownDead().
3205   bool isKnownDead() const override { return false; }
3206 
3207   /// See AAIsDead::isAssumedDead(BasicBlock *).
3208   bool isAssumedDead(const BasicBlock *BB) const override {
3209     assert(BB->getParent() == getAssociatedFunction() &&
3210            "BB must be in the same anchor scope function.");
3211 
3212     if (!getAssumed())
3213       return false;
3214     return !AssumedLiveBlocks.count(BB);
3215   }
3216 
3217   /// See AAIsDead::isKnownDead(BasicBlock *).
3218   bool isKnownDead(const BasicBlock *BB) const override {
3219     return getKnown() && isAssumedDead(BB);
3220   }
3221 
3222   /// See AAIsDead::isAssumed(Instruction *I).
3223   bool isAssumedDead(const Instruction *I) const override {
3224     assert(I->getParent()->getParent() == getAssociatedFunction() &&
3225            "Instruction must be in the same anchor scope function.");
3226 
3227     if (!getAssumed())
3228       return false;
3229 
3230     // If it is not in AssumedLiveBlocks then it for sure dead.
3231     // Otherwise, it can still be after noreturn call in a live block.
3232     if (!AssumedLiveBlocks.count(I->getParent()))
3233       return true;
3234 
3235     // If it is not after a liveness barrier it is live.
3236     const Instruction *PrevI = I->getPrevNode();
3237     while (PrevI) {
3238       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3239         return true;
3240       PrevI = PrevI->getPrevNode();
3241     }
3242     return false;
3243   }
3244 
3245   /// See AAIsDead::isKnownDead(Instruction *I).
3246   bool isKnownDead(const Instruction *I) const override {
3247     return getKnown() && isAssumedDead(I);
3248   }
3249 
3250   /// Determine if \p F might catch asynchronous exceptions.
3251   static bool mayCatchAsynchronousExceptions(const Function &F) {
3252     return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
3253   }
3254 
3255   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3256   /// that internal function called from \p BB should now be looked at.
3257   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3258     if (!AssumedLiveBlocks.insert(&BB).second)
3259       return false;
3260 
3261     // We assume that all of BB is (probably) live now and if there are calls to
3262     // internal functions we will assume that those are now live as well. This
3263     // is a performance optimization for blocks with calls to a lot of internal
3264     // functions. It can however cause dead functions to be treated as live.
3265     for (const Instruction &I : BB)
3266       if (ImmutableCallSite ICS = ImmutableCallSite(&I))
3267         if (const Function *F = ICS.getCalledFunction())
3268           if (F->hasLocalLinkage())
3269             A.markLiveInternalFunction(*F);
3270     return true;
3271   }
3272 
3273   /// Collection of instructions that need to be explored again, e.g., we
3274   /// did assume they do not transfer control to (one of their) successors.
3275   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3276 
3277   /// Collection of instructions that are known to not transfer control.
3278   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3279 
3280   /// Collection of all assumed live BasicBlocks.
3281   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3282 };
3283 
3284 static bool
3285 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3286                         AbstractAttribute &AA,
3287                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3288   const IRPosition &IPos = IRPosition::callsite_function(CB);
3289 
3290   const auto &NoReturnAA = A.getAAFor<AANoReturn>(AA, IPos);
3291   if (NoReturnAA.isAssumedNoReturn())
3292     return !NoReturnAA.isKnownNoReturn();
3293   if (CB.isTerminator())
3294     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3295   else
3296     AliveSuccessors.push_back(CB.getNextNode());
3297   return false;
3298 }
3299 
3300 static bool
3301 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3302                         AbstractAttribute &AA,
3303                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3304   bool UsedAssumedInformation =
3305       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3306 
3307   // First, determine if we can change an invoke to a call assuming the
3308   // callee is nounwind. This is not possible if the personality of the
3309   // function allows to catch asynchronous exceptions.
3310   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3311     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3312   } else {
3313     const IRPosition &IPos = IRPosition::callsite_function(II);
3314     const auto &AANoUnw = A.getAAFor<AANoUnwind>(AA, IPos);
3315     if (AANoUnw.isAssumedNoUnwind()) {
3316       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3317     } else {
3318       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3319     }
3320   }
3321   return UsedAssumedInformation;
3322 }
3323 
3324 static bool
3325 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3326                         AbstractAttribute &AA,
3327                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3328   bool UsedAssumedInformation = false;
3329   if (BI.getNumSuccessors() == 1) {
3330     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3331   } else {
3332     Optional<ConstantInt *> CI = getAssumedConstantInt(
3333         A, *BI.getCondition(), AA, UsedAssumedInformation);
3334     if (!CI.hasValue()) {
3335       // No value yet, assume both edges are dead.
3336     } else if (CI.getValue()) {
3337       const BasicBlock *SuccBB =
3338           BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3339       AliveSuccessors.push_back(&SuccBB->front());
3340     } else {
3341       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3342       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3343       UsedAssumedInformation = false;
3344     }
3345   }
3346   return UsedAssumedInformation;
3347 }
3348 
3349 static bool
3350 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3351                         AbstractAttribute &AA,
3352                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3353   bool UsedAssumedInformation = false;
3354   Optional<ConstantInt *> CI =
3355       getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3356   if (!CI.hasValue()) {
3357     // No value yet, assume all edges are dead.
3358   } else if (CI.getValue()) {
3359     for (auto &CaseIt : SI.cases()) {
3360       if (CaseIt.getCaseValue() == CI.getValue()) {
3361         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3362         return UsedAssumedInformation;
3363       }
3364     }
3365     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3366     return UsedAssumedInformation;
3367   } else {
3368     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3369       AliveSuccessors.push_back(&SuccBB->front());
3370   }
3371   return UsedAssumedInformation;
3372 }
3373 
3374 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3375   ChangeStatus Change = ChangeStatus::UNCHANGED;
3376 
3377   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3378                     << getAssociatedFunction()->size() << "] BBs and "
3379                     << ToBeExploredFrom.size() << " exploration points and "
3380                     << KnownDeadEnds.size() << " known dead ends\n");
3381 
3382   // Copy and clear the list of instructions we need to explore from. It is
3383   // refilled with instructions the next update has to look at.
3384   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3385                                                ToBeExploredFrom.end());
3386   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3387 
3388   SmallVector<const Instruction *, 8> AliveSuccessors;
3389   while (!Worklist.empty()) {
3390     const Instruction *I = Worklist.pop_back_val();
3391     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3392 
3393     AliveSuccessors.clear();
3394 
3395     bool UsedAssumedInformation = false;
3396     switch (I->getOpcode()) {
3397     // TODO: look for (assumed) UB to backwards propagate "deadness".
3398     default:
3399       if (I->isTerminator()) {
3400         for (const BasicBlock *SuccBB : successors(I->getParent()))
3401           AliveSuccessors.push_back(&SuccBB->front());
3402       } else {
3403         AliveSuccessors.push_back(I->getNextNode());
3404       }
3405       break;
3406     case Instruction::Call:
3407       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3408                                                        *this, AliveSuccessors);
3409       break;
3410     case Instruction::Invoke:
3411       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3412                                                        *this, AliveSuccessors);
3413       break;
3414     case Instruction::Br:
3415       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3416                                                        *this, AliveSuccessors);
3417       break;
3418     case Instruction::Switch:
3419       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3420                                                        *this, AliveSuccessors);
3421       break;
3422     }
3423 
3424     if (UsedAssumedInformation) {
3425       NewToBeExploredFrom.insert(I);
3426     } else {
3427       Change = ChangeStatus::CHANGED;
3428       if (AliveSuccessors.empty() ||
3429           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3430         KnownDeadEnds.insert(I);
3431     }
3432 
3433     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3434                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3435                       << UsedAssumedInformation << "\n");
3436 
3437     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3438       if (!I->isTerminator()) {
3439         assert(AliveSuccessors.size() == 1 &&
3440                "Non-terminator expected to have a single successor!");
3441         Worklist.push_back(AliveSuccessor);
3442       } else {
3443         if (assumeLive(A, *AliveSuccessor->getParent()))
3444           Worklist.push_back(AliveSuccessor);
3445       }
3446     }
3447   }
3448 
3449   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3450 
3451   // If we know everything is live there is no need to query for liveness.
3452   // Instead, indicating a pessimistic fixpoint will cause the state to be
3453   // "invalid" and all queries to be answered conservatively without lookups.
3454   // To be in this state we have to (1) finished the exploration and (3) not
3455   // discovered any non-trivial dead end and (2) not ruled unreachable code
3456   // dead.
3457   if (ToBeExploredFrom.empty() &&
3458       getAssociatedFunction()->size() == AssumedLiveBlocks.size() &&
3459       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3460         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3461       }))
3462     return indicatePessimisticFixpoint();
3463   return Change;
3464 }
3465 
3466 /// Liveness information for a call sites.
3467 struct AAIsDeadCallSite final : AAIsDeadFunction {
3468   AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadFunction(IRP) {}
3469 
3470   /// See AbstractAttribute::initialize(...).
3471   void initialize(Attributor &A) override {
3472     // TODO: Once we have call site specific value information we can provide
3473     //       call site specific liveness information and then it makes
3474     //       sense to specialize attributes for call sites instead of
3475     //       redirecting requests to the callee.
3476     llvm_unreachable("Abstract attributes for liveness are not "
3477                      "supported for call sites yet!");
3478   }
3479 
3480   /// See AbstractAttribute::updateImpl(...).
3481   ChangeStatus updateImpl(Attributor &A) override {
3482     return indicatePessimisticFixpoint();
3483   }
3484 
3485   /// See AbstractAttribute::trackStatistics()
3486   void trackStatistics() const override {}
3487 };
3488 
3489 /// -------------------- Dereferenceable Argument Attribute --------------------
3490 
3491 template <>
3492 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3493                                                      const DerefState &R) {
3494   ChangeStatus CS0 =
3495       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3496   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3497   return CS0 | CS1;
3498 }
3499 
3500 struct AADereferenceableImpl : AADereferenceable {
3501   AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
3502   using StateType = DerefState;
3503 
3504   void initialize(Attributor &A) override {
3505     SmallVector<Attribute, 4> Attrs;
3506     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3507              Attrs);
3508     for (const Attribute &Attr : Attrs)
3509       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3510 
3511     NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition(),
3512                                        /* TrackDependence */ false);
3513 
3514     const IRPosition &IRP = this->getIRPosition();
3515     bool IsFnInterface = IRP.isFnInterfaceKind();
3516     const Function *FnScope = IRP.getAnchorScope();
3517     if (IsFnInterface && (!FnScope || !FnScope->hasExactDefinition()))
3518       indicatePessimisticFixpoint();
3519   }
3520 
3521   /// See AbstractAttribute::getState()
3522   /// {
3523   StateType &getState() override { return *this; }
3524   const StateType &getState() const override { return *this; }
3525   /// }
3526 
3527   /// Helper function for collecting accessed bytes in must-be-executed-context
3528   void addAccessedBytesForUse(Attributor &A, const Use *U,
3529                               const Instruction *I) {
3530     const Value *UseV = U->get();
3531     if (!UseV->getType()->isPointerTy())
3532       return;
3533 
3534     Type *PtrTy = UseV->getType();
3535     const DataLayout &DL = A.getDataLayout();
3536     int64_t Offset;
3537     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3538             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3539       if (Base == &getAssociatedValue() &&
3540           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3541         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3542         addAccessedBytes(Offset, Size);
3543       }
3544     }
3545     return;
3546   }
3547 
3548   /// See AAFromMustBeExecutedContext
3549   bool followUse(Attributor &A, const Use *U, const Instruction *I) {
3550     bool IsNonNull = false;
3551     bool TrackUse = false;
3552     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3553         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3554 
3555     addAccessedBytesForUse(A, U, I);
3556     takeKnownDerefBytesMaximum(DerefBytes);
3557     return TrackUse;
3558   }
3559 
3560   /// See AbstractAttribute::manifest(...).
3561   ChangeStatus manifest(Attributor &A) override {
3562     ChangeStatus Change = AADereferenceable::manifest(A);
3563     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3564       removeAttrs({Attribute::DereferenceableOrNull});
3565       return ChangeStatus::CHANGED;
3566     }
3567     return Change;
3568   }
3569 
3570   void getDeducedAttributes(LLVMContext &Ctx,
3571                             SmallVectorImpl<Attribute> &Attrs) const override {
3572     // TODO: Add *_globally support
3573     if (isAssumedNonNull())
3574       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3575           Ctx, getAssumedDereferenceableBytes()));
3576     else
3577       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3578           Ctx, getAssumedDereferenceableBytes()));
3579   }
3580 
3581   /// See AbstractAttribute::getAsStr().
3582   const std::string getAsStr() const override {
3583     if (!getAssumedDereferenceableBytes())
3584       return "unknown-dereferenceable";
3585     return std::string("dereferenceable") +
3586            (isAssumedNonNull() ? "" : "_or_null") +
3587            (isAssumedGlobal() ? "_globally" : "") + "<" +
3588            std::to_string(getKnownDereferenceableBytes()) + "-" +
3589            std::to_string(getAssumedDereferenceableBytes()) + ">";
3590   }
3591 };
3592 
3593 /// Dereferenceable attribute for a floating value.
3594 struct AADereferenceableFloating
3595     : AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl> {
3596   using Base =
3597       AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl>;
3598   AADereferenceableFloating(const IRPosition &IRP) : Base(IRP) {}
3599 
3600   /// See AbstractAttribute::updateImpl(...).
3601   ChangeStatus updateImpl(Attributor &A) override {
3602     ChangeStatus Change = Base::updateImpl(A);
3603 
3604     const DataLayout &DL = A.getDataLayout();
3605 
3606     auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool {
3607       unsigned IdxWidth =
3608           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3609       APInt Offset(IdxWidth, 0);
3610       const Value *Base =
3611           V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
3612 
3613       const auto &AA =
3614           A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
3615       int64_t DerefBytes = 0;
3616       if (!Stripped && this == &AA) {
3617         // Use IR information if we did not strip anything.
3618         // TODO: track globally.
3619         bool CanBeNull;
3620         DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3621         T.GlobalState.indicatePessimisticFixpoint();
3622       } else {
3623         const DerefState &DS = static_cast<const DerefState &>(AA.getState());
3624         DerefBytes = DS.DerefBytesState.getAssumed();
3625         T.GlobalState &= DS.GlobalState;
3626       }
3627 
3628       // TODO: Use `AAConstantRange` to infer dereferenceable bytes.
3629 
3630       // For now we do not try to "increase" dereferenceability due to negative
3631       // indices as we first have to come up with code to deal with loops and
3632       // for overflows of the dereferenceable bytes.
3633       int64_t OffsetSExt = Offset.getSExtValue();
3634       if (OffsetSExt < 0)
3635         OffsetSExt = 0;
3636 
3637       T.takeAssumedDerefBytesMinimum(
3638           std::max(int64_t(0), DerefBytes - OffsetSExt));
3639 
3640       if (this == &AA) {
3641         if (!Stripped) {
3642           // If nothing was stripped IR information is all we got.
3643           T.takeKnownDerefBytesMaximum(
3644               std::max(int64_t(0), DerefBytes - OffsetSExt));
3645           T.indicatePessimisticFixpoint();
3646         } else if (OffsetSExt > 0) {
3647           // If something was stripped but there is circular reasoning we look
3648           // for the offset. If it is positive we basically decrease the
3649           // dereferenceable bytes in a circluar loop now, which will simply
3650           // drive them down to the known value in a very slow way which we
3651           // can accelerate.
3652           T.indicatePessimisticFixpoint();
3653         }
3654       }
3655 
3656       return T.isValidState();
3657     };
3658 
3659     DerefState T;
3660     if (!genericValueTraversal<AADereferenceable, DerefState>(
3661             A, getIRPosition(), *this, T, VisitValueCB))
3662       return indicatePessimisticFixpoint();
3663 
3664     return Change | clampStateAndIndicateChange(getState(), T);
3665   }
3666 
3667   /// See AbstractAttribute::trackStatistics()
3668   void trackStatistics() const override {
3669     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3670   }
3671 };
3672 
3673 /// Dereferenceable attribute for a return value.
3674 struct AADereferenceableReturned final
3675     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
3676   AADereferenceableReturned(const IRPosition &IRP)
3677       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3678             IRP) {}
3679 
3680   /// See AbstractAttribute::trackStatistics()
3681   void trackStatistics() const override {
3682     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3683   }
3684 };
3685 
3686 /// Dereferenceable attribute for an argument
3687 struct AADereferenceableArgument final
3688     : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
3689           AADereferenceable, AADereferenceableImpl> {
3690   using Base = AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<
3691       AADereferenceable, AADereferenceableImpl>;
3692   AADereferenceableArgument(const IRPosition &IRP) : Base(IRP) {}
3693 
3694   /// See AbstractAttribute::trackStatistics()
3695   void trackStatistics() const override {
3696     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3697   }
3698 };
3699 
3700 /// Dereferenceable attribute for a call site argument.
3701 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
3702   AADereferenceableCallSiteArgument(const IRPosition &IRP)
3703       : AADereferenceableFloating(IRP) {}
3704 
3705   /// See AbstractAttribute::trackStatistics()
3706   void trackStatistics() const override {
3707     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3708   }
3709 };
3710 
3711 /// Dereferenceable attribute deduction for a call site return value.
3712 struct AADereferenceableCallSiteReturned final
3713     : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
3714           AADereferenceable, AADereferenceableImpl> {
3715   using Base = AACallSiteReturnedFromReturnedAndMustBeExecutedContext<
3716       AADereferenceable, AADereferenceableImpl>;
3717   AADereferenceableCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
3718 
3719   /// See AbstractAttribute::trackStatistics()
3720   void trackStatistics() const override {
3721     STATS_DECLTRACK_CS_ATTR(dereferenceable);
3722   }
3723 };
3724 
3725 // ------------------------ Align Argument Attribute ------------------------
3726 
3727 static unsigned int getKnownAlignForUse(Attributor &A,
3728                                         AbstractAttribute &QueryingAA,
3729                                         Value &AssociatedValue, const Use *U,
3730                                         const Instruction *I, bool &TrackUse) {
3731   // We need to follow common pointer manipulation uses to the accesses they
3732   // feed into.
3733   if (isa<CastInst>(I)) {
3734     // Follow all but ptr2int casts.
3735     TrackUse = !isa<PtrToIntInst>(I);
3736     return 0;
3737   }
3738   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3739     if (GEP->hasAllConstantIndices()) {
3740       TrackUse = true;
3741       return 0;
3742     }
3743   }
3744 
3745   unsigned Alignment = 0;
3746   if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
3747     if (ICS.isBundleOperand(U) || ICS.isCallee(U))
3748       return 0;
3749 
3750     unsigned ArgNo = ICS.getArgumentNo(U);
3751     IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo);
3752     // As long as we only use known information there is no need to track
3753     // dependences here.
3754     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
3755                                         /* TrackDependence */ false);
3756     Alignment = AlignAA.getKnownAlign();
3757   }
3758 
3759   const Value *UseV = U->get();
3760   if (auto *SI = dyn_cast<StoreInst>(I)) {
3761     if (SI->getPointerOperand() == UseV)
3762       Alignment = SI->getAlignment();
3763   } else if (auto *LI = dyn_cast<LoadInst>(I))
3764     Alignment = LI->getAlignment();
3765 
3766   if (Alignment <= 1)
3767     return 0;
3768 
3769   auto &DL = A.getDataLayout();
3770   int64_t Offset;
3771 
3772   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3773     if (Base == &AssociatedValue) {
3774       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3775       // So we can say that the maximum power of two which is a divisor of
3776       // gcd(Offset, Alignment) is an alignment.
3777 
3778       uint32_t gcd =
3779           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3780       Alignment = llvm::PowerOf2Floor(gcd);
3781     }
3782   }
3783 
3784   return Alignment;
3785 }
3786 struct AAAlignImpl : AAAlign {
3787   AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
3788 
3789   /// See AbstractAttribute::initialize(...).
3790   void initialize(Attributor &A) override {
3791     SmallVector<Attribute, 4> Attrs;
3792     getAttrs({Attribute::Alignment}, Attrs);
3793     for (const Attribute &Attr : Attrs)
3794       takeKnownMaximum(Attr.getValueAsInt());
3795 
3796     if (getIRPosition().isFnInterfaceKind() &&
3797         (!getAssociatedFunction() ||
3798          !getAssociatedFunction()->hasExactDefinition()))
3799       indicatePessimisticFixpoint();
3800   }
3801 
3802   /// See AbstractAttribute::manifest(...).
3803   ChangeStatus manifest(Attributor &A) override {
3804     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3805 
3806     // Check for users that allow alignment annotations.
3807     Value &AssociatedValue = getAssociatedValue();
3808     for (const Use &U : AssociatedValue.uses()) {
3809       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3810         if (SI->getPointerOperand() == &AssociatedValue)
3811           if (SI->getAlignment() < getAssumedAlign()) {
3812             STATS_DECLTRACK(AAAlign, Store,
3813                             "Number of times alignment added to a store");
3814             SI->setAlignment(Align(getAssumedAlign()));
3815             LoadStoreChanged = ChangeStatus::CHANGED;
3816           }
3817       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3818         if (LI->getPointerOperand() == &AssociatedValue)
3819           if (LI->getAlignment() < getAssumedAlign()) {
3820             LI->setAlignment(Align(getAssumedAlign()));
3821             STATS_DECLTRACK(AAAlign, Load,
3822                             "Number of times alignment added to a load");
3823             LoadStoreChanged = ChangeStatus::CHANGED;
3824           }
3825       }
3826     }
3827 
3828     ChangeStatus Changed = AAAlign::manifest(A);
3829 
3830     MaybeAlign InheritAlign =
3831         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3832     if (InheritAlign.valueOrOne() >= getAssumedAlign())
3833       return LoadStoreChanged;
3834     return Changed | LoadStoreChanged;
3835   }
3836 
3837   // TODO: Provide a helper to determine the implied ABI alignment and check in
3838   //       the existing manifest method and a new one for AAAlignImpl that value
3839   //       to avoid making the alignment explicit if it did not improve.
3840 
3841   /// See AbstractAttribute::getDeducedAttributes
3842   virtual void
3843   getDeducedAttributes(LLVMContext &Ctx,
3844                        SmallVectorImpl<Attribute> &Attrs) const override {
3845     if (getAssumedAlign() > 1)
3846       Attrs.emplace_back(
3847           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3848   }
3849   /// See AAFromMustBeExecutedContext
3850   bool followUse(Attributor &A, const Use *U, const Instruction *I) {
3851     bool TrackUse = false;
3852 
3853     unsigned int KnownAlign =
3854         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3855     takeKnownMaximum(KnownAlign);
3856 
3857     return TrackUse;
3858   }
3859 
3860   /// See AbstractAttribute::getAsStr().
3861   const std::string getAsStr() const override {
3862     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3863                                 "-" + std::to_string(getAssumedAlign()) + ">")
3864                              : "unknown-align";
3865   }
3866 };
3867 
3868 /// Align attribute for a floating value.
3869 struct AAAlignFloating : AAFromMustBeExecutedContext<AAAlign, AAAlignImpl> {
3870   using Base = AAFromMustBeExecutedContext<AAAlign, AAAlignImpl>;
3871   AAAlignFloating(const IRPosition &IRP) : Base(IRP) {}
3872 
3873   /// See AbstractAttribute::updateImpl(...).
3874   ChangeStatus updateImpl(Attributor &A) override {
3875     Base::updateImpl(A);
3876 
3877     const DataLayout &DL = A.getDataLayout();
3878 
3879     auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
3880                             bool Stripped) -> bool {
3881       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
3882       if (!Stripped && this == &AA) {
3883         // Use only IR information if we did not strip anything.
3884         const MaybeAlign PA = V.getPointerAlignment(DL);
3885         T.takeKnownMaximum(PA ? PA->value() : 0);
3886         T.indicatePessimisticFixpoint();
3887       } else {
3888         // Use abstract attribute information.
3889         const AAAlign::StateType &DS =
3890             static_cast<const AAAlign::StateType &>(AA.getState());
3891         T ^= DS;
3892       }
3893       return T.isValidState();
3894     };
3895 
3896     StateType T;
3897     if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3898                                                    VisitValueCB))
3899       return indicatePessimisticFixpoint();
3900 
3901     // TODO: If we know we visited all incoming values, thus no are assumed
3902     // dead, we can take the known information from the state T.
3903     return clampStateAndIndicateChange(getState(), T);
3904   }
3905 
3906   /// See AbstractAttribute::trackStatistics()
3907   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3908 };
3909 
3910 /// Align attribute for function return value.
3911 struct AAAlignReturned final
3912     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3913   AAAlignReturned(const IRPosition &IRP)
3914       : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {}
3915 
3916   /// See AbstractAttribute::trackStatistics()
3917   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3918 };
3919 
3920 /// Align attribute for function argument.
3921 struct AAAlignArgument final
3922     : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
3923                                                               AAAlignImpl> {
3924   AAAlignArgument(const IRPosition &IRP)
3925       : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign,
3926                                                                 AAAlignImpl>(
3927             IRP) {}
3928 
3929   /// See AbstractAttribute::trackStatistics()
3930   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
3931 };
3932 
3933 struct AAAlignCallSiteArgument final : AAAlignFloating {
3934   AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
3935 
3936   /// See AbstractAttribute::manifest(...).
3937   ChangeStatus manifest(Attributor &A) override {
3938     ChangeStatus Changed = AAAlignImpl::manifest(A);
3939     MaybeAlign InheritAlign =
3940         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3941     if (InheritAlign.valueOrOne() >= getAssumedAlign())
3942       Changed = ChangeStatus::UNCHANGED;
3943     return Changed;
3944   }
3945 
3946   /// See AbstractAttribute::updateImpl(Attributor &A).
3947   ChangeStatus updateImpl(Attributor &A) override {
3948     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
3949     if (Argument *Arg = getAssociatedArgument()) {
3950       // We only take known information from the argument
3951       // so we do not need to track a dependence.
3952       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
3953           *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
3954       takeKnownMaximum(ArgAlignAA.getKnownAlign());
3955     }
3956     return Changed;
3957   }
3958 
3959   /// See AbstractAttribute::trackStatistics()
3960   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
3961 };
3962 
3963 /// Align attribute deduction for a call site return value.
3964 struct AAAlignCallSiteReturned final
3965     : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
3966                                                              AAAlignImpl> {
3967   using Base =
3968       AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign,
3969                                                              AAAlignImpl>;
3970   AAAlignCallSiteReturned(const IRPosition &IRP) : Base(IRP) {}
3971 
3972   /// See AbstractAttribute::initialize(...).
3973   void initialize(Attributor &A) override {
3974     Base::initialize(A);
3975     Function *F = getAssociatedFunction();
3976     if (!F)
3977       indicatePessimisticFixpoint();
3978   }
3979 
3980   /// See AbstractAttribute::trackStatistics()
3981   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
3982 };
3983 
3984 /// ------------------ Function No-Return Attribute ----------------------------
3985 struct AANoReturnImpl : public AANoReturn {
3986   AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
3987 
3988   /// See AbstractAttribute::initialize(...).
3989   void initialize(Attributor &A) override {
3990     AANoReturn::initialize(A);
3991     Function *F = getAssociatedFunction();
3992     if (!F)
3993       indicatePessimisticFixpoint();
3994   }
3995 
3996   /// See AbstractAttribute::getAsStr().
3997   const std::string getAsStr() const override {
3998     return getAssumed() ? "noreturn" : "may-return";
3999   }
4000 
4001   /// See AbstractAttribute::updateImpl(Attributor &A).
4002   virtual ChangeStatus updateImpl(Attributor &A) override {
4003     auto CheckForNoReturn = [](Instruction &) { return false; };
4004     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4005                                    {(unsigned)Instruction::Ret}))
4006       return indicatePessimisticFixpoint();
4007     return ChangeStatus::UNCHANGED;
4008   }
4009 };
4010 
4011 struct AANoReturnFunction final : AANoReturnImpl {
4012   AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
4013 
4014   /// See AbstractAttribute::trackStatistics()
4015   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4016 };
4017 
4018 /// NoReturn attribute deduction for a call sites.
4019 struct AANoReturnCallSite final : AANoReturnImpl {
4020   AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
4021 
4022   /// See AbstractAttribute::updateImpl(...).
4023   ChangeStatus updateImpl(Attributor &A) override {
4024     // TODO: Once we have call site specific value information we can provide
4025     //       call site specific liveness information and then it makes
4026     //       sense to specialize attributes for call sites arguments instead of
4027     //       redirecting requests to the callee argument.
4028     Function *F = getAssociatedFunction();
4029     const IRPosition &FnPos = IRPosition::function(*F);
4030     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
4031     return clampStateAndIndicateChange(
4032         getState(),
4033         static_cast<const AANoReturn::StateType &>(FnAA.getState()));
4034   }
4035 
4036   /// See AbstractAttribute::trackStatistics()
4037   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4038 };
4039 
4040 /// ----------------------- Variable Capturing ---------------------------------
4041 
4042 /// A class to hold the state of for no-capture attributes.
4043 struct AANoCaptureImpl : public AANoCapture {
4044   AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {}
4045 
4046   /// See AbstractAttribute::initialize(...).
4047   void initialize(Attributor &A) override {
4048     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4049       indicateOptimisticFixpoint();
4050       return;
4051     }
4052     Function *AnchorScope = getAnchorScope();
4053     if (isFnInterfaceKind() &&
4054         (!AnchorScope || !AnchorScope->hasExactDefinition())) {
4055       indicatePessimisticFixpoint();
4056       return;
4057     }
4058 
4059     // You cannot "capture" null in the default address space.
4060     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4061         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4062       indicateOptimisticFixpoint();
4063       return;
4064     }
4065 
4066     const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope;
4067 
4068     // Check what state the associated function can actually capture.
4069     if (F)
4070       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4071     else
4072       indicatePessimisticFixpoint();
4073   }
4074 
4075   /// See AbstractAttribute::updateImpl(...).
4076   ChangeStatus updateImpl(Attributor &A) override;
4077 
4078   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4079   virtual void
4080   getDeducedAttributes(LLVMContext &Ctx,
4081                        SmallVectorImpl<Attribute> &Attrs) const override {
4082     if (!isAssumedNoCaptureMaybeReturned())
4083       return;
4084 
4085     if (getArgNo() >= 0) {
4086       if (isAssumedNoCapture())
4087         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4088       else if (ManifestInternal)
4089         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4090     }
4091   }
4092 
4093   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4094   /// depending on the ability of the function associated with \p IRP to capture
4095   /// state in memory and through "returning/throwing", respectively.
4096   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4097                                                    const Function &F,
4098                                                    BitIntegerState &State) {
4099     // TODO: Once we have memory behavior attributes we should use them here.
4100 
4101     // If we know we cannot communicate or write to memory, we do not care about
4102     // ptr2int anymore.
4103     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4104         F.getReturnType()->isVoidTy()) {
4105       State.addKnownBits(NO_CAPTURE);
4106       return;
4107     }
4108 
4109     // A function cannot capture state in memory if it only reads memory, it can
4110     // however return/throw state and the state might be influenced by the
4111     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4112     if (F.onlyReadsMemory())
4113       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4114 
4115     // A function cannot communicate state back if it does not through
4116     // exceptions and doesn not return values.
4117     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4118       State.addKnownBits(NOT_CAPTURED_IN_RET);
4119 
4120     // Check existing "returned" attributes.
4121     int ArgNo = IRP.getArgNo();
4122     if (F.doesNotThrow() && ArgNo >= 0) {
4123       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4124         if (F.hasParamAttribute(u, Attribute::Returned)) {
4125           if (u == unsigned(ArgNo))
4126             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4127           else if (F.onlyReadsMemory())
4128             State.addKnownBits(NO_CAPTURE);
4129           else
4130             State.addKnownBits(NOT_CAPTURED_IN_RET);
4131           break;
4132         }
4133     }
4134   }
4135 
4136   /// See AbstractState::getAsStr().
4137   const std::string getAsStr() const override {
4138     if (isKnownNoCapture())
4139       return "known not-captured";
4140     if (isAssumedNoCapture())
4141       return "assumed not-captured";
4142     if (isKnownNoCaptureMaybeReturned())
4143       return "known not-captured-maybe-returned";
4144     if (isAssumedNoCaptureMaybeReturned())
4145       return "assumed not-captured-maybe-returned";
4146     return "assumed-captured";
4147   }
4148 };
4149 
4150 /// Attributor-aware capture tracker.
4151 struct AACaptureUseTracker final : public CaptureTracker {
4152 
4153   /// Create a capture tracker that can lookup in-flight abstract attributes
4154   /// through the Attributor \p A.
4155   ///
4156   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4157   /// search is stopped. If a use leads to a return instruction,
4158   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4159   /// If a use leads to a ptr2int which may capture the value,
4160   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4161   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4162   /// set. All values in \p PotentialCopies are later tracked as well. For every
4163   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4164   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4165   /// conservatively set to true.
4166   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4167                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4168                       SmallVectorImpl<const Value *> &PotentialCopies,
4169                       unsigned &RemainingUsesToExplore)
4170       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4171         PotentialCopies(PotentialCopies),
4172         RemainingUsesToExplore(RemainingUsesToExplore) {}
4173 
4174   /// Determine if \p V maybe captured. *Also updates the state!*
4175   bool valueMayBeCaptured(const Value *V) {
4176     if (V->getType()->isPointerTy()) {
4177       PointerMayBeCaptured(V, this);
4178     } else {
4179       State.indicatePessimisticFixpoint();
4180     }
4181     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4182   }
4183 
4184   /// See CaptureTracker::tooManyUses().
4185   void tooManyUses() override {
4186     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4187   }
4188 
4189   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4190     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4191       return true;
4192     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4193         NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
4194         DepClassTy::OPTIONAL);
4195     return DerefAA.getAssumedDereferenceableBytes();
4196   }
4197 
4198   /// See CaptureTracker::captured(...).
4199   bool captured(const Use *U) override {
4200     Instruction *UInst = cast<Instruction>(U->getUser());
4201     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4202                       << "\n");
4203 
4204     // Because we may reuse the tracker multiple times we keep track of the
4205     // number of explored uses ourselves as well.
4206     if (RemainingUsesToExplore-- == 0) {
4207       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4208       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4209                           /* Return */ true);
4210     }
4211 
4212     // Deal with ptr2int by following uses.
4213     if (isa<PtrToIntInst>(UInst)) {
4214       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4215       return valueMayBeCaptured(UInst);
4216     }
4217 
4218     // Explicitly catch return instructions.
4219     if (isa<ReturnInst>(UInst))
4220       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4221                           /* Return */ true);
4222 
4223     // For now we only use special logic for call sites. However, the tracker
4224     // itself knows about a lot of other non-capturing cases already.
4225     CallSite CS(UInst);
4226     if (!CS || !CS.isArgOperand(U))
4227       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4228                           /* Return */ true);
4229 
4230     unsigned ArgNo = CS.getArgumentNo(U);
4231     const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
4232     // If we have a abstract no-capture attribute for the argument we can use
4233     // it to justify a non-capture attribute here. This allows recursion!
4234     auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
4235     if (ArgNoCaptureAA.isAssumedNoCapture())
4236       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4237                           /* Return */ false);
4238     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4239       addPotentialCopy(CS);
4240       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4241                           /* Return */ false);
4242     }
4243 
4244     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4245     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4246                         /* Return */ true);
4247   }
4248 
4249   /// Register \p CS as potential copy of the value we are checking.
4250   void addPotentialCopy(CallSite CS) {
4251     PotentialCopies.push_back(CS.getInstruction());
4252   }
4253 
4254   /// See CaptureTracker::shouldExplore(...).
4255   bool shouldExplore(const Use *U) override {
4256     // Check liveness.
4257     return !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4258   }
4259 
4260   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4261   /// \p CapturedInRet, then return the appropriate value for use in the
4262   /// CaptureTracker::captured() interface.
4263   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4264                     bool CapturedInRet) {
4265     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4266                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4267     if (CapturedInMem)
4268       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4269     if (CapturedInInt)
4270       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4271     if (CapturedInRet)
4272       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4273     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4274   }
4275 
4276 private:
4277   /// The attributor providing in-flight abstract attributes.
4278   Attributor &A;
4279 
4280   /// The abstract attribute currently updated.
4281   AANoCapture &NoCaptureAA;
4282 
4283   /// The abstract liveness state.
4284   const AAIsDead &IsDeadAA;
4285 
4286   /// The state currently updated.
4287   AANoCapture::StateType &State;
4288 
4289   /// Set of potential copies of the tracked value.
4290   SmallVectorImpl<const Value *> &PotentialCopies;
4291 
4292   /// Global counter to limit the number of explored uses.
4293   unsigned &RemainingUsesToExplore;
4294 };
4295 
4296 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4297   const IRPosition &IRP = getIRPosition();
4298   const Value *V =
4299       getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
4300   if (!V)
4301     return indicatePessimisticFixpoint();
4302 
4303   const Function *F =
4304       getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4305   assert(F && "Expected a function!");
4306   const IRPosition &FnPos = IRPosition::function(*F);
4307   const auto &IsDeadAA =
4308       A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
4309 
4310   AANoCapture::StateType T;
4311 
4312   // Readonly means we cannot capture through memory.
4313   const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
4314       *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4315   if (FnMemAA.isAssumedReadOnly()) {
4316     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4317     if (FnMemAA.isKnownReadOnly())
4318       addKnownBits(NOT_CAPTURED_IN_MEM);
4319   }
4320 
4321   // Make sure all returned values are different than the underlying value.
4322   // TODO: we could do this in a more sophisticated way inside
4323   //       AAReturnedValues, e.g., track all values that escape through returns
4324   //       directly somehow.
4325   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4326     bool SeenConstant = false;
4327     for (auto &It : RVAA.returned_values()) {
4328       if (isa<Constant>(It.first)) {
4329         if (SeenConstant)
4330           return false;
4331         SeenConstant = true;
4332       } else if (!isa<Argument>(It.first) ||
4333                  It.first == getAssociatedArgument())
4334         return false;
4335     }
4336     return true;
4337   };
4338 
4339   const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
4340       *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4341   if (NoUnwindAA.isAssumedNoUnwind()) {
4342     bool IsVoidTy = F->getReturnType()->isVoidTy();
4343     const AAReturnedValues *RVAA =
4344         IsVoidTy ? nullptr
4345                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4346                                                  /* TrackDependence */ true,
4347                                                  DepClassTy::OPTIONAL);
4348     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4349       T.addKnownBits(NOT_CAPTURED_IN_RET);
4350       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4351         return ChangeStatus::UNCHANGED;
4352       if (NoUnwindAA.isKnownNoUnwind() &&
4353           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4354         addKnownBits(NOT_CAPTURED_IN_RET);
4355         if (isKnown(NOT_CAPTURED_IN_MEM))
4356           return indicateOptimisticFixpoint();
4357       }
4358     }
4359   }
4360 
4361   // Use the CaptureTracker interface and logic with the specialized tracker,
4362   // defined in AACaptureUseTracker, that can look at in-flight abstract
4363   // attributes and directly updates the assumed state.
4364   SmallVector<const Value *, 4> PotentialCopies;
4365   unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore;
4366   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4367                               RemainingUsesToExplore);
4368 
4369   // Check all potential copies of the associated value until we can assume
4370   // none will be captured or we have to assume at least one might be.
4371   unsigned Idx = 0;
4372   PotentialCopies.push_back(V);
4373   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4374     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4375 
4376   AANoCapture::StateType &S = getState();
4377   auto Assumed = S.getAssumed();
4378   S.intersectAssumedBits(T.getAssumed());
4379   if (!isAssumedNoCaptureMaybeReturned())
4380     return indicatePessimisticFixpoint();
4381   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4382                                    : ChangeStatus::CHANGED;
4383 }
4384 
4385 /// NoCapture attribute for function arguments.
4386 struct AANoCaptureArgument final : AANoCaptureImpl {
4387   AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
4388 
4389   /// See AbstractAttribute::trackStatistics()
4390   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4391 };
4392 
4393 /// NoCapture attribute for call site arguments.
4394 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4395   AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
4396 
4397   /// See AbstractAttribute::initialize(...).
4398   void initialize(Attributor &A) override {
4399     if (Argument *Arg = getAssociatedArgument())
4400       if (Arg->hasByValAttr())
4401         indicateOptimisticFixpoint();
4402     AANoCaptureImpl::initialize(A);
4403   }
4404 
4405   /// See AbstractAttribute::updateImpl(...).
4406   ChangeStatus updateImpl(Attributor &A) override {
4407     // TODO: Once we have call site specific value information we can provide
4408     //       call site specific liveness information and then it makes
4409     //       sense to specialize attributes for call sites arguments instead of
4410     //       redirecting requests to the callee argument.
4411     Argument *Arg = getAssociatedArgument();
4412     if (!Arg)
4413       return indicatePessimisticFixpoint();
4414     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4415     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
4416     return clampStateAndIndicateChange(
4417         getState(),
4418         static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
4419   }
4420 
4421   /// See AbstractAttribute::trackStatistics()
4422   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4423 };
4424 
4425 /// NoCapture attribute for floating values.
4426 struct AANoCaptureFloating final : AANoCaptureImpl {
4427   AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
4428 
4429   /// See AbstractAttribute::trackStatistics()
4430   void trackStatistics() const override {
4431     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4432   }
4433 };
4434 
4435 /// NoCapture attribute for function return value.
4436 struct AANoCaptureReturned final : AANoCaptureImpl {
4437   AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {
4438     llvm_unreachable("NoCapture is not applicable to function returns!");
4439   }
4440 
4441   /// See AbstractAttribute::initialize(...).
4442   void initialize(Attributor &A) override {
4443     llvm_unreachable("NoCapture is not applicable to function returns!");
4444   }
4445 
4446   /// See AbstractAttribute::updateImpl(...).
4447   ChangeStatus updateImpl(Attributor &A) override {
4448     llvm_unreachable("NoCapture is not applicable to function returns!");
4449   }
4450 
4451   /// See AbstractAttribute::trackStatistics()
4452   void trackStatistics() const override {}
4453 };
4454 
4455 /// NoCapture attribute deduction for a call site return value.
4456 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4457   AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
4458 
4459   /// See AbstractAttribute::trackStatistics()
4460   void trackStatistics() const override {
4461     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4462   }
4463 };
4464 
4465 /// ------------------ Value Simplify Attribute ----------------------------
4466 struct AAValueSimplifyImpl : AAValueSimplify {
4467   AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {}
4468 
4469   /// See AbstractAttribute::initialize(...).
4470   void initialize(Attributor &A) override {
4471     if (getAssociatedValue().getType()->isVoidTy())
4472       indicatePessimisticFixpoint();
4473   }
4474 
4475   /// See AbstractAttribute::getAsStr().
4476   const std::string getAsStr() const override {
4477     return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4478                         : "not-simple";
4479   }
4480 
4481   /// See AbstractAttribute::trackStatistics()
4482   void trackStatistics() const override {}
4483 
4484   /// See AAValueSimplify::getAssumedSimplifiedValue()
4485   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4486     if (!getAssumed())
4487       return const_cast<Value *>(&getAssociatedValue());
4488     return SimplifiedAssociatedValue;
4489   }
4490 
4491   /// Helper function for querying AAValueSimplify and updating candicate.
4492   /// \param QueryingValue Value trying to unify with SimplifiedValue
4493   /// \param AccumulatedSimplifiedValue Current simplification result.
4494   static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4495                              Value &QueryingValue,
4496                              Optional<Value *> &AccumulatedSimplifiedValue) {
4497     // FIXME: Add a typecast support.
4498 
4499     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4500         QueryingAA, IRPosition::value(QueryingValue));
4501 
4502     Optional<Value *> QueryingValueSimplified =
4503         ValueSimplifyAA.getAssumedSimplifiedValue(A);
4504 
4505     if (!QueryingValueSimplified.hasValue())
4506       return true;
4507 
4508     if (!QueryingValueSimplified.getValue())
4509       return false;
4510 
4511     Value &QueryingValueSimplifiedUnwrapped =
4512         *QueryingValueSimplified.getValue();
4513 
4514     if (AccumulatedSimplifiedValue.hasValue() &&
4515         !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4516         !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4517       return AccumulatedSimplifiedValue == QueryingValueSimplified;
4518     if (AccumulatedSimplifiedValue.hasValue() &&
4519         isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4520       return true;
4521 
4522     LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4523                       << " is assumed to be "
4524                       << QueryingValueSimplifiedUnwrapped << "\n");
4525 
4526     AccumulatedSimplifiedValue = QueryingValueSimplified;
4527     return true;
4528   }
4529 
4530   bool askSimplifiedValueForAAValueConstantRange(Attributor &A) {
4531     if (!getAssociatedValue().getType()->isIntegerTy())
4532       return false;
4533 
4534     const auto &ValueConstantRangeAA =
4535         A.getAAFor<AAValueConstantRange>(*this, getIRPosition());
4536 
4537     Optional<ConstantInt *> COpt =
4538         ValueConstantRangeAA.getAssumedConstantInt(A);
4539     if (COpt.hasValue()) {
4540       if (auto *C = COpt.getValue())
4541         SimplifiedAssociatedValue = C;
4542       else
4543         return false;
4544     } else {
4545       SimplifiedAssociatedValue = llvm::None;
4546     }
4547     return true;
4548   }
4549 
4550   /// See AbstractAttribute::manifest(...).
4551   ChangeStatus manifest(Attributor &A) override {
4552     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4553 
4554     if (SimplifiedAssociatedValue.hasValue() &&
4555         !SimplifiedAssociatedValue.getValue())
4556       return Changed;
4557 
4558     Value &V = getAssociatedValue();
4559     auto *C = SimplifiedAssociatedValue.hasValue()
4560                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4561                   : UndefValue::get(V.getType());
4562     if (C) {
4563       // We can replace the AssociatedValue with the constant.
4564       if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4565         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4566                           << " :: " << *this << "\n");
4567         if (A.changeValueAfterManifest(V, *C))
4568           Changed = ChangeStatus::CHANGED;
4569       }
4570     }
4571 
4572     return Changed | AAValueSimplify::manifest(A);
4573   }
4574 
4575   /// See AbstractState::indicatePessimisticFixpoint(...).
4576   ChangeStatus indicatePessimisticFixpoint() override {
4577     // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4578     // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4579     SimplifiedAssociatedValue = &getAssociatedValue();
4580     indicateOptimisticFixpoint();
4581     return ChangeStatus::CHANGED;
4582   }
4583 
4584 protected:
4585   // An assumed simplified value. Initially, it is set to Optional::None, which
4586   // means that the value is not clear under current assumption. If in the
4587   // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4588   // returns orignal associated value.
4589   Optional<Value *> SimplifiedAssociatedValue;
4590 };
4591 
4592 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
4593   AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
4594 
4595   void initialize(Attributor &A) override {
4596     AAValueSimplifyImpl::initialize(A);
4597     if (!getAssociatedFunction() || getAssociatedFunction()->isDeclaration())
4598       indicatePessimisticFixpoint();
4599     if (hasAttr({Attribute::InAlloca, Attribute::StructRet, Attribute::Nest},
4600                 /* IgnoreSubsumingPositions */ true))
4601       indicatePessimisticFixpoint();
4602 
4603     // FIXME: This is a hack to prevent us from propagating function poiner in
4604     // the new pass manager CGSCC pass as it creates call edges the
4605     // CallGraphUpdater cannot handle yet.
4606     Value &V = getAssociatedValue();
4607     if (V.getType()->isPointerTy() &&
4608         V.getType()->getPointerElementType()->isFunctionTy() &&
4609         !A.isModulePass() &&
4610         A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
4611             *getAnchorScope()))
4612       indicatePessimisticFixpoint();
4613   }
4614 
4615   /// See AbstractAttribute::updateImpl(...).
4616   ChangeStatus updateImpl(Attributor &A) override {
4617     // Byval is only replacable if it is readonly otherwise we would write into
4618     // the replaced value and not the copy that byval creates implicitly.
4619     Argument *Arg = getAssociatedArgument();
4620     if (Arg->hasByValAttr()) {
4621       // TODO: We probably need to verify synchronization is not an issue, e.g.,
4622       //       there is no race by not copying a constant byval.
4623       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
4624       if (!MemAA.isAssumedReadOnly())
4625         return indicatePessimisticFixpoint();
4626     }
4627 
4628     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4629 
4630     auto PredForCallSite = [&](AbstractCallSite ACS) {
4631       const IRPosition &ACSArgPos =
4632           IRPosition::callsite_argument(ACS, getArgNo());
4633       // Check if a coresponding argument was found or if it is on not
4634       // associated (which can happen for callback calls).
4635       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4636         return false;
4637 
4638       // We can only propagate thread independent values through callbacks.
4639       // This is different to direct/indirect call sites because for them we
4640       // know the thread executing the caller and callee is the same. For
4641       // callbacks this is not guaranteed, thus a thread dependent value could
4642       // be different for the caller and callee, making it invalid to propagate.
4643       Value &ArgOp = ACSArgPos.getAssociatedValue();
4644       if (ACS.isCallbackCall())
4645         if (auto *C = dyn_cast<Constant>(&ArgOp))
4646           if (C->isThreadDependent())
4647             return false;
4648       return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4649     };
4650 
4651     bool AllCallSitesKnown;
4652     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4653                                 AllCallSitesKnown))
4654       if (!askSimplifiedValueForAAValueConstantRange(A))
4655         return indicatePessimisticFixpoint();
4656 
4657     // If a candicate was found in this update, return CHANGED.
4658     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4659                ? ChangeStatus::UNCHANGED
4660                : ChangeStatus ::CHANGED;
4661   }
4662 
4663   /// See AbstractAttribute::trackStatistics()
4664   void trackStatistics() const override {
4665     STATS_DECLTRACK_ARG_ATTR(value_simplify)
4666   }
4667 };
4668 
4669 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
4670   AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
4671 
4672   /// See AbstractAttribute::updateImpl(...).
4673   ChangeStatus updateImpl(Attributor &A) override {
4674     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4675 
4676     auto PredForReturned = [&](Value &V) {
4677       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4678     };
4679 
4680     if (!A.checkForAllReturnedValues(PredForReturned, *this))
4681       if (!askSimplifiedValueForAAValueConstantRange(A))
4682         return indicatePessimisticFixpoint();
4683 
4684     // If a candicate was found in this update, return CHANGED.
4685     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4686                ? ChangeStatus::UNCHANGED
4687                : ChangeStatus ::CHANGED;
4688   }
4689 
4690   ChangeStatus manifest(Attributor &A) override {
4691     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4692 
4693     if (SimplifiedAssociatedValue.hasValue() &&
4694         !SimplifiedAssociatedValue.getValue())
4695       return Changed;
4696 
4697     Value &V = getAssociatedValue();
4698     auto *C = SimplifiedAssociatedValue.hasValue()
4699                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4700                   : UndefValue::get(V.getType());
4701     if (C) {
4702       auto PredForReturned =
4703           [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4704             // We can replace the AssociatedValue with the constant.
4705             if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4706               return true;
4707             if (auto *CI = dyn_cast<CallInst>(&V))
4708               if (CI->isMustTailCall())
4709                 return true;
4710 
4711             for (ReturnInst *RI : RetInsts) {
4712               if (RI->getFunction() != getAnchorScope())
4713                 continue;
4714               LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4715                                 << " in " << *RI << " :: " << *this << "\n");
4716               if (A.changeUseAfterManifest(RI->getOperandUse(0), *C))
4717                 Changed = ChangeStatus::CHANGED;
4718             }
4719             return true;
4720           };
4721       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4722     }
4723 
4724     return Changed | AAValueSimplify::manifest(A);
4725   }
4726 
4727   /// See AbstractAttribute::trackStatistics()
4728   void trackStatistics() const override {
4729     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4730   }
4731 };
4732 
4733 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
4734   AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
4735 
4736   /// See AbstractAttribute::initialize(...).
4737   void initialize(Attributor &A) override {
4738     AAValueSimplifyImpl::initialize(A);
4739     Value &V = getAnchorValue();
4740 
4741     // TODO: add other stuffs
4742     if (isa<Constant>(V))
4743       indicatePessimisticFixpoint();
4744   }
4745 
4746   /// See AbstractAttribute::updateImpl(...).
4747   ChangeStatus updateImpl(Attributor &A) override {
4748     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4749 
4750     auto VisitValueCB = [&](Value &V, bool &, bool Stripped) -> bool {
4751       auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
4752       if (!Stripped && this == &AA) {
4753         // TODO: Look the instruction and check recursively.
4754 
4755         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4756                           << "\n");
4757         return false;
4758       }
4759       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4760     };
4761 
4762     bool Dummy = false;
4763     if (!genericValueTraversal<AAValueSimplify, bool>(A, getIRPosition(), *this,
4764                                                       Dummy, VisitValueCB))
4765       if (!askSimplifiedValueForAAValueConstantRange(A))
4766         return indicatePessimisticFixpoint();
4767 
4768     // If a candicate was found in this update, return CHANGED.
4769 
4770     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4771                ? ChangeStatus::UNCHANGED
4772                : ChangeStatus ::CHANGED;
4773   }
4774 
4775   /// See AbstractAttribute::trackStatistics()
4776   void trackStatistics() const override {
4777     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4778   }
4779 };
4780 
4781 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
4782   AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
4783 
4784   /// See AbstractAttribute::initialize(...).
4785   void initialize(Attributor &A) override {
4786     SimplifiedAssociatedValue = &getAnchorValue();
4787     indicateOptimisticFixpoint();
4788   }
4789   /// See AbstractAttribute::initialize(...).
4790   ChangeStatus updateImpl(Attributor &A) override {
4791     llvm_unreachable(
4792         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4793   }
4794   /// See AbstractAttribute::trackStatistics()
4795   void trackStatistics() const override {
4796     STATS_DECLTRACK_FN_ATTR(value_simplify)
4797   }
4798 };
4799 
4800 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
4801   AAValueSimplifyCallSite(const IRPosition &IRP)
4802       : AAValueSimplifyFunction(IRP) {}
4803   /// See AbstractAttribute::trackStatistics()
4804   void trackStatistics() const override {
4805     STATS_DECLTRACK_CS_ATTR(value_simplify)
4806   }
4807 };
4808 
4809 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
4810   AAValueSimplifyCallSiteReturned(const IRPosition &IRP)
4811       : AAValueSimplifyReturned(IRP) {}
4812 
4813   /// See AbstractAttribute::manifest(...).
4814   ChangeStatus manifest(Attributor &A) override {
4815     if (auto *CI = dyn_cast<CallInst>(&getAssociatedValue()))
4816       if (CI->isMustTailCall())
4817         return ChangeStatus::UNCHANGED;
4818     return AAValueSimplifyImpl::manifest(A);
4819   }
4820 
4821   void trackStatistics() const override {
4822     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
4823   }
4824 };
4825 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
4826   AAValueSimplifyCallSiteArgument(const IRPosition &IRP)
4827       : AAValueSimplifyFloating(IRP) {}
4828 
4829   void trackStatistics() const override {
4830     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
4831   }
4832 };
4833 
4834 /// ----------------------- Heap-To-Stack Conversion ---------------------------
4835 struct AAHeapToStackImpl : public AAHeapToStack {
4836   AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {}
4837 
4838   const std::string getAsStr() const override {
4839     return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
4840   }
4841 
4842   ChangeStatus manifest(Attributor &A) override {
4843     assert(getState().isValidState() &&
4844            "Attempted to manifest an invalid state!");
4845 
4846     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4847     Function *F = getAssociatedFunction();
4848     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4849 
4850     for (Instruction *MallocCall : MallocCalls) {
4851       // This malloc cannot be replaced.
4852       if (BadMallocCalls.count(MallocCall))
4853         continue;
4854 
4855       for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
4856         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
4857         A.deleteAfterManifest(*FreeCall);
4858         HasChanged = ChangeStatus::CHANGED;
4859       }
4860 
4861       LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
4862                         << "\n");
4863 
4864       Constant *Size;
4865       if (isCallocLikeFn(MallocCall, TLI)) {
4866         auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
4867         auto *SizeT = dyn_cast<ConstantInt>(MallocCall->getOperand(1));
4868         APInt TotalSize = SizeT->getValue() * Num->getValue();
4869         Size =
4870             ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
4871       } else {
4872         Size = cast<ConstantInt>(MallocCall->getOperand(0));
4873       }
4874 
4875       unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
4876       Instruction *AI = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
4877                                        Size, "", MallocCall->getNextNode());
4878 
4879       if (AI->getType() != MallocCall->getType())
4880         AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
4881                              AI->getNextNode());
4882 
4883       A.changeValueAfterManifest(*MallocCall, *AI);
4884 
4885       if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
4886         auto *NBB = II->getNormalDest();
4887         BranchInst::Create(NBB, MallocCall->getParent());
4888         A.deleteAfterManifest(*MallocCall);
4889       } else {
4890         A.deleteAfterManifest(*MallocCall);
4891       }
4892 
4893       if (isCallocLikeFn(MallocCall, TLI)) {
4894         auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
4895                                    AI->getNextNode());
4896         Value *Ops[] = {
4897             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
4898             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
4899 
4900         Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
4901         Module *M = F->getParent();
4902         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
4903         CallInst::Create(Fn, Ops, "", BI->getNextNode());
4904       }
4905       HasChanged = ChangeStatus::CHANGED;
4906     }
4907 
4908     return HasChanged;
4909   }
4910 
4911   /// Collection of all malloc calls in a function.
4912   SmallSetVector<Instruction *, 4> MallocCalls;
4913 
4914   /// Collection of malloc calls that cannot be converted.
4915   DenseSet<const Instruction *> BadMallocCalls;
4916 
4917   /// A map for each malloc call to the set of associated free calls.
4918   DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
4919 
4920   ChangeStatus updateImpl(Attributor &A) override;
4921 };
4922 
4923 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
4924   const Function *F = getAssociatedFunction();
4925   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4926 
4927   MustBeExecutedContextExplorer &Explorer =
4928       A.getInfoCache().getMustBeExecutedContextExplorer();
4929 
4930   auto FreeCheck = [&](Instruction &I) {
4931     const auto &Frees = FreesForMalloc.lookup(&I);
4932     if (Frees.size() != 1)
4933       return false;
4934     Instruction *UniqueFree = *Frees.begin();
4935     return Explorer.findInContextOf(UniqueFree, I.getNextNode());
4936   };
4937 
4938   auto UsesCheck = [&](Instruction &I) {
4939     bool ValidUsesOnly = true;
4940     bool MustUse = true;
4941     auto Pred = [&](const Use &U, bool &Follow) -> bool {
4942       Instruction *UserI = cast<Instruction>(U.getUser());
4943       if (isa<LoadInst>(UserI))
4944         return true;
4945       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
4946         if (SI->getValueOperand() == U.get()) {
4947           LLVM_DEBUG(dbgs()
4948                      << "[H2S] escaping store to memory: " << *UserI << "\n");
4949           ValidUsesOnly = false;
4950         } else {
4951           // A store into the malloc'ed memory is fine.
4952         }
4953         return true;
4954       }
4955       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4956         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
4957           return true;
4958         // Record malloc.
4959         if (isFreeCall(UserI, TLI)) {
4960           if (MustUse) {
4961             FreesForMalloc[&I].insert(UserI);
4962           } else {
4963             LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
4964                               << *UserI << "\n");
4965             ValidUsesOnly = false;
4966           }
4967           return true;
4968         }
4969 
4970         unsigned ArgNo = CB->getArgOperandNo(&U);
4971 
4972         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
4973             *this, IRPosition::callsite_argument(*CB, ArgNo));
4974 
4975         // If a callsite argument use is nofree, we are fine.
4976         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
4977             *this, IRPosition::callsite_argument(*CB, ArgNo));
4978 
4979         if (!NoCaptureAA.isAssumedNoCapture() ||
4980             !ArgNoFreeAA.isAssumedNoFree()) {
4981           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
4982           ValidUsesOnly = false;
4983         }
4984         return true;
4985       }
4986 
4987       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
4988           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4989         MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
4990         Follow = true;
4991         return true;
4992       }
4993       // Unknown user for which we can not track uses further (in a way that
4994       // makes sense).
4995       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
4996       ValidUsesOnly = false;
4997       return true;
4998     };
4999     A.checkForAllUses(Pred, *this, I);
5000     return ValidUsesOnly;
5001   };
5002 
5003   auto MallocCallocCheck = [&](Instruction &I) {
5004     if (BadMallocCalls.count(&I))
5005       return true;
5006 
5007     bool IsMalloc = isMallocLikeFn(&I, TLI);
5008     bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
5009     if (!IsMalloc && !IsCalloc) {
5010       BadMallocCalls.insert(&I);
5011       return true;
5012     }
5013 
5014     if (IsMalloc) {
5015       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
5016         if (Size->getValue().ule(MaxHeapToStackSize))
5017           if (UsesCheck(I) || FreeCheck(I)) {
5018             MallocCalls.insert(&I);
5019             return true;
5020           }
5021     } else if (IsCalloc) {
5022       bool Overflow = false;
5023       if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
5024         if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5025           if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
5026                   .ule(MaxHeapToStackSize))
5027             if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
5028               MallocCalls.insert(&I);
5029               return true;
5030             }
5031     }
5032 
5033     BadMallocCalls.insert(&I);
5034     return true;
5035   };
5036 
5037   size_t NumBadMallocs = BadMallocCalls.size();
5038 
5039   A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
5040 
5041   if (NumBadMallocs != BadMallocCalls.size())
5042     return ChangeStatus::CHANGED;
5043 
5044   return ChangeStatus::UNCHANGED;
5045 }
5046 
5047 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
5048   AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {}
5049 
5050   /// See AbstractAttribute::trackStatistics()
5051   void trackStatistics() const override {
5052     STATS_DECL(MallocCalls, Function,
5053                "Number of malloc calls converted to allocas");
5054     for (auto *C : MallocCalls)
5055       if (!BadMallocCalls.count(C))
5056         ++BUILD_STAT_NAME(MallocCalls, Function);
5057   }
5058 };
5059 
5060 /// ----------------------- Privatizable Pointers ------------------------------
5061 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
5062   AAPrivatizablePtrImpl(const IRPosition &IRP)
5063       : AAPrivatizablePtr(IRP), PrivatizableType(llvm::None) {}
5064 
5065   ChangeStatus indicatePessimisticFixpoint() override {
5066     AAPrivatizablePtr::indicatePessimisticFixpoint();
5067     PrivatizableType = nullptr;
5068     return ChangeStatus::CHANGED;
5069   }
5070 
5071   /// Identify the type we can chose for a private copy of the underlying
5072   /// argument. None means it is not clear yet, nullptr means there is none.
5073   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
5074 
5075   /// Return a privatizable type that encloses both T0 and T1.
5076   /// TODO: This is merely a stub for now as we should manage a mapping as well.
5077   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
5078     if (!T0.hasValue())
5079       return T1;
5080     if (!T1.hasValue())
5081       return T0;
5082     if (T0 == T1)
5083       return T0;
5084     return nullptr;
5085   }
5086 
5087   Optional<Type *> getPrivatizableType() const override {
5088     return PrivatizableType;
5089   }
5090 
5091   const std::string getAsStr() const override {
5092     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
5093   }
5094 
5095 protected:
5096   Optional<Type *> PrivatizableType;
5097 };
5098 
5099 // TODO: Do this for call site arguments (probably also other values) as well.
5100 
5101 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
5102   AAPrivatizablePtrArgument(const IRPosition &IRP)
5103       : AAPrivatizablePtrImpl(IRP) {}
5104 
5105   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5106   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5107     // If this is a byval argument and we know all the call sites (so we can
5108     // rewrite them), there is no need to check them explicitly.
5109     bool AllCallSitesKnown;
5110     if (getIRPosition().hasAttr(Attribute::ByVal) &&
5111         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5112                                true, AllCallSitesKnown))
5113       return getAssociatedValue().getType()->getPointerElementType();
5114 
5115     Optional<Type *> Ty;
5116     unsigned ArgNo = getIRPosition().getArgNo();
5117 
5118     // Make sure the associated call site argument has the same type at all call
5119     // sites and it is an allocation we know is safe to privatize, for now that
5120     // means we only allow alloca instructions.
5121     // TODO: We can additionally analyze the accesses in the callee to  create
5122     //       the type from that information instead. That is a little more
5123     //       involved and will be done in a follow up patch.
5124     auto CallSiteCheck = [&](AbstractCallSite ACS) {
5125       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5126       // Check if a coresponding argument was found or if it is one not
5127       // associated (which can happen for callback calls).
5128       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5129         return false;
5130 
5131       // Check that all call sites agree on a type.
5132       auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
5133       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5134 
5135       LLVM_DEBUG({
5136         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5137         if (CSTy.hasValue() && CSTy.getValue())
5138           CSTy.getValue()->print(dbgs());
5139         else if (CSTy.hasValue())
5140           dbgs() << "<nullptr>";
5141         else
5142           dbgs() << "<none>";
5143       });
5144 
5145       Ty = combineTypes(Ty, CSTy);
5146 
5147       LLVM_DEBUG({
5148         dbgs() << " : New Type: ";
5149         if (Ty.hasValue() && Ty.getValue())
5150           Ty.getValue()->print(dbgs());
5151         else if (Ty.hasValue())
5152           dbgs() << "<nullptr>";
5153         else
5154           dbgs() << "<none>";
5155         dbgs() << "\n";
5156       });
5157 
5158       return !Ty.hasValue() || Ty.getValue();
5159     };
5160 
5161     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5162       return nullptr;
5163     return Ty;
5164   }
5165 
5166   /// See AbstractAttribute::updateImpl(...).
5167   ChangeStatus updateImpl(Attributor &A) override {
5168     PrivatizableType = identifyPrivatizableType(A);
5169     if (!PrivatizableType.hasValue())
5170       return ChangeStatus::UNCHANGED;
5171     if (!PrivatizableType.getValue())
5172       return indicatePessimisticFixpoint();
5173 
5174     // Avoid arguments with padding for now.
5175     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5176         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5177                                                 A.getInfoCache().getDL())) {
5178       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5179       return indicatePessimisticFixpoint();
5180     }
5181 
5182     // Verify callee and caller agree on how the promoted argument would be
5183     // passed.
5184     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5185     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5186     // which doesn't require the arguments ArgumentPromotion wanted to pass.
5187     Function &Fn = *getIRPosition().getAnchorScope();
5188     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5189     ArgsToPromote.insert(getAssociatedArgument());
5190     const auto *TTI =
5191         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5192     if (!TTI ||
5193         !ArgumentPromotionPass::areFunctionArgsABICompatible(
5194             Fn, *TTI, ArgsToPromote, Dummy) ||
5195         ArgsToPromote.empty()) {
5196       LLVM_DEBUG(
5197           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5198                  << Fn.getName() << "\n");
5199       return indicatePessimisticFixpoint();
5200     }
5201 
5202     // Collect the types that will replace the privatizable type in the function
5203     // signature.
5204     SmallVector<Type *, 16> ReplacementTypes;
5205     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5206 
5207     // Register a rewrite of the argument.
5208     Argument *Arg = getAssociatedArgument();
5209     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5210       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5211       return indicatePessimisticFixpoint();
5212     }
5213 
5214     unsigned ArgNo = Arg->getArgNo();
5215 
5216     // Helper to check if for the given call site the associated argument is
5217     // passed to a callback where the privatization would be different.
5218     auto IsCompatiblePrivArgOfCallback = [&](CallSite CS) {
5219       SmallVector<const Use *, 4> CBUses;
5220       AbstractCallSite::getCallbackUses(CS, CBUses);
5221       for (const Use *U : CBUses) {
5222         AbstractCallSite CBACS(U);
5223         assert(CBACS && CBACS.isCallbackCall());
5224         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5225           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5226 
5227           LLVM_DEBUG({
5228             dbgs()
5229                 << "[AAPrivatizablePtr] Argument " << *Arg
5230                 << "check if can be privatized in the context of its parent ("
5231                 << Arg->getParent()->getName()
5232                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5233                    "callback ("
5234                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5235                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5236                 << CBACS.getCallArgOperand(CBArg) << " vs "
5237                 << CS.getArgOperand(ArgNo) << "\n"
5238                 << "[AAPrivatizablePtr] " << CBArg << " : "
5239                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5240           });
5241 
5242           if (CBArgNo != int(ArgNo))
5243             continue;
5244           const auto &CBArgPrivAA =
5245               A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
5246           if (CBArgPrivAA.isValidState()) {
5247             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5248             if (!CBArgPrivTy.hasValue())
5249               continue;
5250             if (CBArgPrivTy.getValue() == PrivatizableType)
5251               continue;
5252           }
5253 
5254           LLVM_DEBUG({
5255             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5256                    << " cannot be privatized in the context of its parent ("
5257                    << Arg->getParent()->getName()
5258                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
5259                       "callback ("
5260                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5261                    << ").\n[AAPrivatizablePtr] for which the argument "
5262                       "privatization is not compatible.\n";
5263           });
5264           return false;
5265         }
5266       }
5267       return true;
5268     };
5269 
5270     // Helper to check if for the given call site the associated argument is
5271     // passed to a direct call where the privatization would be different.
5272     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5273       CallBase *DC = cast<CallBase>(ACS.getInstruction());
5274       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5275       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5276              "Expected a direct call operand for callback call operand");
5277 
5278       LLVM_DEBUG({
5279         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5280                << " check if be privatized in the context of its parent ("
5281                << Arg->getParent()->getName()
5282                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5283                   "direct call of ("
5284                << DCArgNo << "@" << DC->getCalledFunction()->getName()
5285                << ").\n";
5286       });
5287 
5288       Function *DCCallee = DC->getCalledFunction();
5289       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5290         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5291             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
5292         if (DCArgPrivAA.isValidState()) {
5293           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5294           if (!DCArgPrivTy.hasValue())
5295             return true;
5296           if (DCArgPrivTy.getValue() == PrivatizableType)
5297             return true;
5298         }
5299       }
5300 
5301       LLVM_DEBUG({
5302         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5303                << " cannot be privatized in the context of its parent ("
5304                << Arg->getParent()->getName()
5305                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5306                   "direct call of ("
5307                << ACS.getCallSite().getCalledFunction()->getName()
5308                << ").\n[AAPrivatizablePtr] for which the argument "
5309                   "privatization is not compatible.\n";
5310       });
5311       return false;
5312     };
5313 
5314     // Helper to check if the associated argument is used at the given abstract
5315     // call site in a way that is incompatible with the privatization assumed
5316     // here.
5317     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5318       if (ACS.isDirectCall())
5319         return IsCompatiblePrivArgOfCallback(ACS.getCallSite());
5320       if (ACS.isCallbackCall())
5321         return IsCompatiblePrivArgOfDirectCS(ACS);
5322       return false;
5323     };
5324 
5325     bool AllCallSitesKnown;
5326     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5327                                 AllCallSitesKnown))
5328       return indicatePessimisticFixpoint();
5329 
5330     return ChangeStatus::UNCHANGED;
5331   }
5332 
5333   /// Given a type to private \p PrivType, collect the constituates (which are
5334   /// used) in \p ReplacementTypes.
5335   static void
5336   identifyReplacementTypes(Type *PrivType,
5337                            SmallVectorImpl<Type *> &ReplacementTypes) {
5338     // TODO: For now we expand the privatization type to the fullest which can
5339     //       lead to dead arguments that need to be removed later.
5340     assert(PrivType && "Expected privatizable type!");
5341 
5342     // Traverse the type, extract constituate types on the outermost level.
5343     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5344       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5345         ReplacementTypes.push_back(PrivStructType->getElementType(u));
5346     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5347       ReplacementTypes.append(PrivArrayType->getNumElements(),
5348                               PrivArrayType->getElementType());
5349     } else {
5350       ReplacementTypes.push_back(PrivType);
5351     }
5352   }
5353 
5354   /// Initialize \p Base according to the type \p PrivType at position \p IP.
5355   /// The values needed are taken from the arguments of \p F starting at
5356   /// position \p ArgNo.
5357   static void createInitialization(Type *PrivType, Value &Base, Function &F,
5358                                    unsigned ArgNo, Instruction &IP) {
5359     assert(PrivType && "Expected privatizable type!");
5360 
5361     IRBuilder<NoFolder> IRB(&IP);
5362     const DataLayout &DL = F.getParent()->getDataLayout();
5363 
5364     // Traverse the type, build GEPs and stores.
5365     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5366       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5367       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5368         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5369         Value *Ptr = constructPointer(
5370             PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
5371         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5372       }
5373     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5374       Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
5375       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
5376       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5377         Value *Ptr =
5378             constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
5379         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5380       }
5381     } else {
5382       new StoreInst(F.getArg(ArgNo), &Base, &IP);
5383     }
5384   }
5385 
5386   /// Extract values from \p Base according to the type \p PrivType at the
5387   /// call position \p ACS. The values are appended to \p ReplacementValues.
5388   void createReplacementValues(Type *PrivType, AbstractCallSite ACS,
5389                                Value *Base,
5390                                SmallVectorImpl<Value *> &ReplacementValues) {
5391     assert(Base && "Expected base value!");
5392     assert(PrivType && "Expected privatizable type!");
5393     Instruction *IP = ACS.getInstruction();
5394 
5395     IRBuilder<NoFolder> IRB(IP);
5396     const DataLayout &DL = IP->getModule()->getDataLayout();
5397 
5398     if (Base->getType()->getPointerElementType() != PrivType)
5399       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5400                                                  "", ACS.getInstruction());
5401 
5402     // TODO: Improve the alignment of the loads.
5403     // Traverse the type, build GEPs and loads.
5404     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5405       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5406       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5407         Type *PointeeTy = PrivStructType->getElementType(u);
5408         Value *Ptr =
5409             constructPointer(PointeeTy->getPointerTo(), Base,
5410                              PrivStructLayout->getElementOffset(u), IRB, DL);
5411         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5412         L->setAlignment(MaybeAlign(1));
5413         ReplacementValues.push_back(L);
5414       }
5415     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5416       Type *PointeeTy = PrivArrayType->getElementType();
5417       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5418       Type *PointeePtrTy = PointeeTy->getPointerTo();
5419       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5420         Value *Ptr =
5421             constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
5422         LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
5423         L->setAlignment(MaybeAlign(1));
5424         ReplacementValues.push_back(L);
5425       }
5426     } else {
5427       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5428       L->setAlignment(MaybeAlign(1));
5429       ReplacementValues.push_back(L);
5430     }
5431   }
5432 
5433   /// See AbstractAttribute::manifest(...)
5434   ChangeStatus manifest(Attributor &A) override {
5435     if (!PrivatizableType.hasValue())
5436       return ChangeStatus::UNCHANGED;
5437     assert(PrivatizableType.getValue() && "Expected privatizable type!");
5438 
5439     // Collect all tail calls in the function as we cannot allow new allocas to
5440     // escape into tail recursion.
5441     // TODO: Be smarter about new allocas escaping into tail calls.
5442     SmallVector<CallInst *, 16> TailCalls;
5443     if (!A.checkForAllInstructions(
5444             [&](Instruction &I) {
5445               CallInst &CI = cast<CallInst>(I);
5446               if (CI.isTailCall())
5447                 TailCalls.push_back(&CI);
5448               return true;
5449             },
5450             *this, {Instruction::Call}))
5451       return ChangeStatus::UNCHANGED;
5452 
5453     Argument *Arg = getAssociatedArgument();
5454 
5455     // Callback to repair the associated function. A new alloca is placed at the
5456     // beginning and initialized with the values passed through arguments. The
5457     // new alloca replaces the use of the old pointer argument.
5458     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5459         [=](const Attributor::ArgumentReplacementInfo &ARI,
5460             Function &ReplacementFn, Function::arg_iterator ArgIt) {
5461           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5462           Instruction *IP = &*EntryBB.getFirstInsertionPt();
5463           auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5464                                     Arg->getName() + ".priv", IP);
5465           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5466                                ArgIt->getArgNo(), *IP);
5467           Arg->replaceAllUsesWith(AI);
5468 
5469           for (CallInst *CI : TailCalls)
5470             CI->setTailCall(false);
5471         };
5472 
5473     // Callback to repair a call site of the associated function. The elements
5474     // of the privatizable type are loaded prior to the call and passed to the
5475     // new function version.
5476     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5477         [=](const Attributor::ArgumentReplacementInfo &ARI,
5478             AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) {
5479           createReplacementValues(
5480               PrivatizableType.getValue(), ACS,
5481               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5482                                   NewArgOperands);
5483         };
5484 
5485     // Collect the types that will replace the privatizable type in the function
5486     // signature.
5487     SmallVector<Type *, 16> ReplacementTypes;
5488     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5489 
5490     // Register a rewrite of the argument.
5491     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5492                                            std::move(FnRepairCB),
5493                                            std::move(ACSRepairCB)))
5494       return ChangeStatus::CHANGED;
5495     return ChangeStatus::UNCHANGED;
5496   }
5497 
5498   /// See AbstractAttribute::trackStatistics()
5499   void trackStatistics() const override {
5500     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5501   }
5502 };
5503 
5504 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
5505   AAPrivatizablePtrFloating(const IRPosition &IRP)
5506       : AAPrivatizablePtrImpl(IRP) {}
5507 
5508   /// See AbstractAttribute::initialize(...).
5509   virtual void initialize(Attributor &A) override {
5510     // TODO: We can privatize more than arguments.
5511     indicatePessimisticFixpoint();
5512   }
5513 
5514   ChangeStatus updateImpl(Attributor &A) override {
5515     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5516                      "updateImpl will not be called");
5517   }
5518 
5519   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5520   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5521     Value *Obj =
5522         GetUnderlyingObject(&getAssociatedValue(), A.getInfoCache().getDL());
5523     if (!Obj) {
5524       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5525       return nullptr;
5526     }
5527 
5528     if (auto *AI = dyn_cast<AllocaInst>(Obj))
5529       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5530         if (CI->isOne())
5531           return Obj->getType()->getPointerElementType();
5532     if (auto *Arg = dyn_cast<Argument>(Obj)) {
5533       auto &PrivArgAA =
5534           A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
5535       if (PrivArgAA.isAssumedPrivatizablePtr())
5536         return Obj->getType()->getPointerElementType();
5537     }
5538 
5539     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5540                          "alloca nor privatizable argument: "
5541                       << *Obj << "!\n");
5542     return nullptr;
5543   }
5544 
5545   /// See AbstractAttribute::trackStatistics()
5546   void trackStatistics() const override {
5547     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5548   }
5549 };
5550 
5551 struct AAPrivatizablePtrCallSiteArgument final
5552     : public AAPrivatizablePtrFloating {
5553   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP)
5554       : AAPrivatizablePtrFloating(IRP) {}
5555 
5556   /// See AbstractAttribute::initialize(...).
5557   void initialize(Attributor &A) override {
5558     if (getIRPosition().hasAttr(Attribute::ByVal))
5559       indicateOptimisticFixpoint();
5560   }
5561 
5562   /// See AbstractAttribute::updateImpl(...).
5563   ChangeStatus updateImpl(Attributor &A) override {
5564     PrivatizableType = identifyPrivatizableType(A);
5565     if (!PrivatizableType.hasValue())
5566       return ChangeStatus::UNCHANGED;
5567     if (!PrivatizableType.getValue())
5568       return indicatePessimisticFixpoint();
5569 
5570     const IRPosition &IRP = getIRPosition();
5571     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
5572     if (!NoCaptureAA.isAssumedNoCapture()) {
5573       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5574       return indicatePessimisticFixpoint();
5575     }
5576 
5577     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
5578     if (!NoAliasAA.isAssumedNoAlias()) {
5579       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5580       return indicatePessimisticFixpoint();
5581     }
5582 
5583     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
5584     if (!MemBehaviorAA.isAssumedReadOnly()) {
5585       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5586       return indicatePessimisticFixpoint();
5587     }
5588 
5589     return ChangeStatus::UNCHANGED;
5590   }
5591 
5592   /// See AbstractAttribute::trackStatistics()
5593   void trackStatistics() const override {
5594     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5595   }
5596 };
5597 
5598 struct AAPrivatizablePtrCallSiteReturned final
5599     : public AAPrivatizablePtrFloating {
5600   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP)
5601       : AAPrivatizablePtrFloating(IRP) {}
5602 
5603   /// See AbstractAttribute::initialize(...).
5604   void initialize(Attributor &A) override {
5605     // TODO: We can privatize more than arguments.
5606     indicatePessimisticFixpoint();
5607   }
5608 
5609   /// See AbstractAttribute::trackStatistics()
5610   void trackStatistics() const override {
5611     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5612   }
5613 };
5614 
5615 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
5616   AAPrivatizablePtrReturned(const IRPosition &IRP)
5617       : AAPrivatizablePtrFloating(IRP) {}
5618 
5619   /// See AbstractAttribute::initialize(...).
5620   void initialize(Attributor &A) override {
5621     // TODO: We can privatize more than arguments.
5622     indicatePessimisticFixpoint();
5623   }
5624 
5625   /// See AbstractAttribute::trackStatistics()
5626   void trackStatistics() const override {
5627     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5628   }
5629 };
5630 
5631 /// -------------------- Memory Behavior Attributes ----------------------------
5632 /// Includes read-none, read-only, and write-only.
5633 /// ----------------------------------------------------------------------------
5634 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
5635   AAMemoryBehaviorImpl(const IRPosition &IRP) : AAMemoryBehavior(IRP) {}
5636 
5637   /// See AbstractAttribute::initialize(...).
5638   void initialize(Attributor &A) override {
5639     intersectAssumedBits(BEST_STATE);
5640     getKnownStateFromValue(getIRPosition(), getState());
5641     IRAttribute::initialize(A);
5642   }
5643 
5644   /// Return the memory behavior information encoded in the IR for \p IRP.
5645   static void getKnownStateFromValue(const IRPosition &IRP,
5646                                      BitIntegerState &State,
5647                                      bool IgnoreSubsumingPositions = false) {
5648     SmallVector<Attribute, 2> Attrs;
5649     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5650     for (const Attribute &Attr : Attrs) {
5651       switch (Attr.getKindAsEnum()) {
5652       case Attribute::ReadNone:
5653         State.addKnownBits(NO_ACCESSES);
5654         break;
5655       case Attribute::ReadOnly:
5656         State.addKnownBits(NO_WRITES);
5657         break;
5658       case Attribute::WriteOnly:
5659         State.addKnownBits(NO_READS);
5660         break;
5661       default:
5662         llvm_unreachable("Unexpected attribute!");
5663       }
5664     }
5665 
5666     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5667       if (!I->mayReadFromMemory())
5668         State.addKnownBits(NO_READS);
5669       if (!I->mayWriteToMemory())
5670         State.addKnownBits(NO_WRITES);
5671     }
5672   }
5673 
5674   /// See AbstractAttribute::getDeducedAttributes(...).
5675   void getDeducedAttributes(LLVMContext &Ctx,
5676                             SmallVectorImpl<Attribute> &Attrs) const override {
5677     assert(Attrs.size() == 0);
5678     if (isAssumedReadNone())
5679       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5680     else if (isAssumedReadOnly())
5681       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5682     else if (isAssumedWriteOnly())
5683       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5684     assert(Attrs.size() <= 1);
5685   }
5686 
5687   /// See AbstractAttribute::manifest(...).
5688   ChangeStatus manifest(Attributor &A) override {
5689     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5690       return ChangeStatus::UNCHANGED;
5691 
5692     const IRPosition &IRP = getIRPosition();
5693 
5694     // Check if we would improve the existing attributes first.
5695     SmallVector<Attribute, 4> DeducedAttrs;
5696     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5697     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5698           return IRP.hasAttr(Attr.getKindAsEnum(),
5699                              /* IgnoreSubsumingPositions */ true);
5700         }))
5701       return ChangeStatus::UNCHANGED;
5702 
5703     // Clear existing attributes.
5704     IRP.removeAttrs(AttrKinds);
5705 
5706     // Use the generic manifest method.
5707     return IRAttribute::manifest(A);
5708   }
5709 
5710   /// See AbstractState::getAsStr().
5711   const std::string getAsStr() const override {
5712     if (isAssumedReadNone())
5713       return "readnone";
5714     if (isAssumedReadOnly())
5715       return "readonly";
5716     if (isAssumedWriteOnly())
5717       return "writeonly";
5718     return "may-read/write";
5719   }
5720 
5721   /// The set of IR attributes AAMemoryBehavior deals with.
5722   static const Attribute::AttrKind AttrKinds[3];
5723 };
5724 
5725 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
5726     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
5727 
5728 /// Memory behavior attribute for a floating value.
5729 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
5730   AAMemoryBehaviorFloating(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
5731 
5732   /// See AbstractAttribute::initialize(...).
5733   void initialize(Attributor &A) override {
5734     AAMemoryBehaviorImpl::initialize(A);
5735     // Initialize the use vector with all direct uses of the associated value.
5736     for (const Use &U : getAssociatedValue().uses())
5737       Uses.insert(&U);
5738   }
5739 
5740   /// See AbstractAttribute::updateImpl(...).
5741   ChangeStatus updateImpl(Attributor &A) override;
5742 
5743   /// See AbstractAttribute::trackStatistics()
5744   void trackStatistics() const override {
5745     if (isAssumedReadNone())
5746       STATS_DECLTRACK_FLOATING_ATTR(readnone)
5747     else if (isAssumedReadOnly())
5748       STATS_DECLTRACK_FLOATING_ATTR(readonly)
5749     else if (isAssumedWriteOnly())
5750       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
5751   }
5752 
5753 private:
5754   /// Return true if users of \p UserI might access the underlying
5755   /// variable/location described by \p U and should therefore be analyzed.
5756   bool followUsersOfUseIn(Attributor &A, const Use *U,
5757                           const Instruction *UserI);
5758 
5759   /// Update the state according to the effect of use \p U in \p UserI.
5760   void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
5761 
5762 protected:
5763   /// Container for (transitive) uses of the associated argument.
5764   SetVector<const Use *> Uses;
5765 };
5766 
5767 /// Memory behavior attribute for function argument.
5768 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
5769   AAMemoryBehaviorArgument(const IRPosition &IRP)
5770       : AAMemoryBehaviorFloating(IRP) {}
5771 
5772   /// See AbstractAttribute::initialize(...).
5773   void initialize(Attributor &A) override {
5774     intersectAssumedBits(BEST_STATE);
5775     const IRPosition &IRP = getIRPosition();
5776     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
5777     // can query it when we use has/getAttr. That would allow us to reuse the
5778     // initialize of the base class here.
5779     bool HasByVal =
5780         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
5781     getKnownStateFromValue(IRP, getState(),
5782                            /* IgnoreSubsumingPositions */ HasByVal);
5783 
5784     // Initialize the use vector with all direct uses of the associated value.
5785     Argument *Arg = getAssociatedArgument();
5786     if (!Arg || !Arg->getParent()->hasExactDefinition()) {
5787       indicatePessimisticFixpoint();
5788     } else {
5789       // Initialize the use vector with all direct uses of the associated value.
5790       for (const Use &U : Arg->uses())
5791         Uses.insert(&U);
5792     }
5793   }
5794 
5795   ChangeStatus manifest(Attributor &A) override {
5796     // TODO: Pointer arguments are not supported on vectors of pointers yet.
5797     if (!getAssociatedValue().getType()->isPointerTy())
5798       return ChangeStatus::UNCHANGED;
5799 
5800     // TODO: From readattrs.ll: "inalloca parameters are always
5801     //                           considered written"
5802     if (hasAttr({Attribute::InAlloca})) {
5803       removeKnownBits(NO_WRITES);
5804       removeAssumedBits(NO_WRITES);
5805     }
5806     return AAMemoryBehaviorFloating::manifest(A);
5807   }
5808 
5809   /// See AbstractAttribute::trackStatistics()
5810   void trackStatistics() const override {
5811     if (isAssumedReadNone())
5812       STATS_DECLTRACK_ARG_ATTR(readnone)
5813     else if (isAssumedReadOnly())
5814       STATS_DECLTRACK_ARG_ATTR(readonly)
5815     else if (isAssumedWriteOnly())
5816       STATS_DECLTRACK_ARG_ATTR(writeonly)
5817   }
5818 };
5819 
5820 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
5821   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP)
5822       : AAMemoryBehaviorArgument(IRP) {}
5823 
5824   /// See AbstractAttribute::initialize(...).
5825   void initialize(Attributor &A) override {
5826     if (Argument *Arg = getAssociatedArgument()) {
5827       if (Arg->hasByValAttr()) {
5828         addKnownBits(NO_WRITES);
5829         removeKnownBits(NO_READS);
5830         removeAssumedBits(NO_READS);
5831       }
5832     } else {
5833     }
5834     AAMemoryBehaviorArgument::initialize(A);
5835   }
5836 
5837   /// See AbstractAttribute::updateImpl(...).
5838   ChangeStatus updateImpl(Attributor &A) override {
5839     // TODO: Once we have call site specific value information we can provide
5840     //       call site specific liveness liveness information and then it makes
5841     //       sense to specialize attributes for call sites arguments instead of
5842     //       redirecting requests to the callee argument.
5843     Argument *Arg = getAssociatedArgument();
5844     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5845     auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
5846     return clampStateAndIndicateChange(
5847         getState(),
5848         static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState()));
5849   }
5850 
5851   /// See AbstractAttribute::trackStatistics()
5852   void trackStatistics() const override {
5853     if (isAssumedReadNone())
5854       STATS_DECLTRACK_CSARG_ATTR(readnone)
5855     else if (isAssumedReadOnly())
5856       STATS_DECLTRACK_CSARG_ATTR(readonly)
5857     else if (isAssumedWriteOnly())
5858       STATS_DECLTRACK_CSARG_ATTR(writeonly)
5859   }
5860 };
5861 
5862 /// Memory behavior attribute for a call site return position.
5863 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
5864   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP)
5865       : AAMemoryBehaviorFloating(IRP) {}
5866 
5867   /// See AbstractAttribute::manifest(...).
5868   ChangeStatus manifest(Attributor &A) override {
5869     // We do not annotate returned values.
5870     return ChangeStatus::UNCHANGED;
5871   }
5872 
5873   /// See AbstractAttribute::trackStatistics()
5874   void trackStatistics() const override {}
5875 };
5876 
5877 /// An AA to represent the memory behavior function attributes.
5878 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
5879   AAMemoryBehaviorFunction(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
5880 
5881   /// See AbstractAttribute::updateImpl(Attributor &A).
5882   virtual ChangeStatus updateImpl(Attributor &A) override;
5883 
5884   /// See AbstractAttribute::manifest(...).
5885   ChangeStatus manifest(Attributor &A) override {
5886     Function &F = cast<Function>(getAnchorValue());
5887     if (isAssumedReadNone()) {
5888       F.removeFnAttr(Attribute::ArgMemOnly);
5889       F.removeFnAttr(Attribute::InaccessibleMemOnly);
5890       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
5891     }
5892     return AAMemoryBehaviorImpl::manifest(A);
5893   }
5894 
5895   /// See AbstractAttribute::trackStatistics()
5896   void trackStatistics() const override {
5897     if (isAssumedReadNone())
5898       STATS_DECLTRACK_FN_ATTR(readnone)
5899     else if (isAssumedReadOnly())
5900       STATS_DECLTRACK_FN_ATTR(readonly)
5901     else if (isAssumedWriteOnly())
5902       STATS_DECLTRACK_FN_ATTR(writeonly)
5903   }
5904 };
5905 
5906 /// AAMemoryBehavior attribute for call sites.
5907 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
5908   AAMemoryBehaviorCallSite(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {}
5909 
5910   /// See AbstractAttribute::initialize(...).
5911   void initialize(Attributor &A) override {
5912     AAMemoryBehaviorImpl::initialize(A);
5913     Function *F = getAssociatedFunction();
5914     if (!F || !F->hasExactDefinition())
5915       indicatePessimisticFixpoint();
5916   }
5917 
5918   /// See AbstractAttribute::updateImpl(...).
5919   ChangeStatus updateImpl(Attributor &A) override {
5920     // TODO: Once we have call site specific value information we can provide
5921     //       call site specific liveness liveness information and then it makes
5922     //       sense to specialize attributes for call sites arguments instead of
5923     //       redirecting requests to the callee argument.
5924     Function *F = getAssociatedFunction();
5925     const IRPosition &FnPos = IRPosition::function(*F);
5926     auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
5927     return clampStateAndIndicateChange(
5928         getState(),
5929         static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState()));
5930   }
5931 
5932   /// See AbstractAttribute::trackStatistics()
5933   void trackStatistics() const override {
5934     if (isAssumedReadNone())
5935       STATS_DECLTRACK_CS_ATTR(readnone)
5936     else if (isAssumedReadOnly())
5937       STATS_DECLTRACK_CS_ATTR(readonly)
5938     else if (isAssumedWriteOnly())
5939       STATS_DECLTRACK_CS_ATTR(writeonly)
5940   }
5941 };
5942 
5943 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
5944 
5945   // The current assumed state used to determine a change.
5946   auto AssumedState = getAssumed();
5947 
5948   auto CheckRWInst = [&](Instruction &I) {
5949     // If the instruction has an own memory behavior state, use it to restrict
5950     // the local state. No further analysis is required as the other memory
5951     // state is as optimistic as it gets.
5952     if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
5953       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
5954           *this, IRPosition::callsite_function(ICS));
5955       intersectAssumedBits(MemBehaviorAA.getAssumed());
5956       return !isAtFixpoint();
5957     }
5958 
5959     // Remove access kind modifiers if necessary.
5960     if (I.mayReadFromMemory())
5961       removeAssumedBits(NO_READS);
5962     if (I.mayWriteToMemory())
5963       removeAssumedBits(NO_WRITES);
5964     return !isAtFixpoint();
5965   };
5966 
5967   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
5968     return indicatePessimisticFixpoint();
5969 
5970   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
5971                                         : ChangeStatus::UNCHANGED;
5972 }
5973 
5974 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
5975 
5976   const IRPosition &IRP = getIRPosition();
5977   const IRPosition &FnPos = IRPosition::function_scope(IRP);
5978   AAMemoryBehavior::StateType &S = getState();
5979 
5980   // First, check the function scope. We take the known information and we avoid
5981   // work if the assumed information implies the current assumed information for
5982   // this attribute. This is a valid for all but byval arguments.
5983   Argument *Arg = IRP.getAssociatedArgument();
5984   AAMemoryBehavior::base_t FnMemAssumedState =
5985       AAMemoryBehavior::StateType::getWorstState();
5986   if (!Arg || !Arg->hasByValAttr()) {
5987     const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
5988         *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
5989     FnMemAssumedState = FnMemAA.getAssumed();
5990     S.addKnownBits(FnMemAA.getKnown());
5991     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
5992       return ChangeStatus::UNCHANGED;
5993   }
5994 
5995   // Make sure the value is not captured (except through "return"), if
5996   // it is, any information derived would be irrelevant anyway as we cannot
5997   // check the potential aliases introduced by the capture. However, no need
5998   // to fall back to anythign less optimistic than the function state.
5999   const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6000       *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6001   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
6002     S.intersectAssumedBits(FnMemAssumedState);
6003     return ChangeStatus::CHANGED;
6004   }
6005 
6006   // The current assumed state used to determine a change.
6007   auto AssumedState = S.getAssumed();
6008 
6009   // Liveness information to exclude dead users.
6010   // TODO: Take the FnPos once we have call site specific liveness information.
6011   const auto &LivenessAA = A.getAAFor<AAIsDead>(
6012       *this, IRPosition::function(*IRP.getAssociatedFunction()),
6013       /* TrackDependence */ false);
6014 
6015   // Visit and expand uses until all are analyzed or a fixpoint is reached.
6016   for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
6017     const Use *U = Uses[i];
6018     Instruction *UserI = cast<Instruction>(U->getUser());
6019     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
6020                       << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
6021                       << "]\n");
6022     if (A.isAssumedDead(*U, this, &LivenessAA))
6023       continue;
6024 
6025     // Check if the users of UserI should also be visited.
6026     if (followUsersOfUseIn(A, U, UserI))
6027       for (const Use &UserIUse : UserI->uses())
6028         Uses.insert(&UserIUse);
6029 
6030     // If UserI might touch memory we analyze the use in detail.
6031     if (UserI->mayReadOrWriteMemory())
6032       analyzeUseIn(A, U, UserI);
6033   }
6034 
6035   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6036                                         : ChangeStatus::UNCHANGED;
6037 }
6038 
6039 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
6040                                                   const Instruction *UserI) {
6041   // The loaded value is unrelated to the pointer argument, no need to
6042   // follow the users of the load.
6043   if (isa<LoadInst>(UserI))
6044     return false;
6045 
6046   // By default we follow all uses assuming UserI might leak information on U,
6047   // we have special handling for call sites operands though.
6048   ImmutableCallSite ICS(UserI);
6049   if (!ICS || !ICS.isArgOperand(U))
6050     return true;
6051 
6052   // If the use is a call argument known not to be captured, the users of
6053   // the call do not need to be visited because they have to be unrelated to
6054   // the input. Note that this check is not trivial even though we disallow
6055   // general capturing of the underlying argument. The reason is that the
6056   // call might the argument "through return", which we allow and for which we
6057   // need to check call users.
6058   if (U->get()->getType()->isPointerTy()) {
6059     unsigned ArgNo = ICS.getArgumentNo(U);
6060     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6061         *this, IRPosition::callsite_argument(ICS, ArgNo),
6062         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6063     return !ArgNoCaptureAA.isAssumedNoCapture();
6064   }
6065 
6066   return true;
6067 }
6068 
6069 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
6070                                             const Instruction *UserI) {
6071   assert(UserI->mayReadOrWriteMemory());
6072 
6073   switch (UserI->getOpcode()) {
6074   default:
6075     // TODO: Handle all atomics and other side-effect operations we know of.
6076     break;
6077   case Instruction::Load:
6078     // Loads cause the NO_READS property to disappear.
6079     removeAssumedBits(NO_READS);
6080     return;
6081 
6082   case Instruction::Store:
6083     // Stores cause the NO_WRITES property to disappear if the use is the
6084     // pointer operand. Note that we do assume that capturing was taken care of
6085     // somewhere else.
6086     if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
6087       removeAssumedBits(NO_WRITES);
6088     return;
6089 
6090   case Instruction::Call:
6091   case Instruction::CallBr:
6092   case Instruction::Invoke: {
6093     // For call sites we look at the argument memory behavior attribute (this
6094     // could be recursive!) in order to restrict our own state.
6095     ImmutableCallSite ICS(UserI);
6096 
6097     // Give up on operand bundles.
6098     if (ICS.isBundleOperand(U)) {
6099       indicatePessimisticFixpoint();
6100       return;
6101     }
6102 
6103     // Calling a function does read the function pointer, maybe write it if the
6104     // function is self-modifying.
6105     if (ICS.isCallee(U)) {
6106       removeAssumedBits(NO_READS);
6107       break;
6108     }
6109 
6110     // Adjust the possible access behavior based on the information on the
6111     // argument.
6112     IRPosition Pos;
6113     if (U->get()->getType()->isPointerTy())
6114       Pos = IRPosition::callsite_argument(ICS, ICS.getArgumentNo(U));
6115     else
6116       Pos = IRPosition::callsite_function(ICS);
6117     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6118         *this, Pos,
6119         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6120     // "assumed" has at most the same bits as the MemBehaviorAA assumed
6121     // and at least "known".
6122     intersectAssumedBits(MemBehaviorAA.getAssumed());
6123     return;
6124   }
6125   };
6126 
6127   // Generally, look at the "may-properties" and adjust the assumed state if we
6128   // did not trigger special handling before.
6129   if (UserI->mayReadFromMemory())
6130     removeAssumedBits(NO_READS);
6131   if (UserI->mayWriteToMemory())
6132     removeAssumedBits(NO_WRITES);
6133 }
6134 
6135 } // namespace
6136 
6137 /// -------------------- Memory Locations Attributes ---------------------------
6138 /// Includes read-none, argmemonly, inaccessiblememonly,
6139 /// inaccessiblememorargmemonly
6140 /// ----------------------------------------------------------------------------
6141 
6142 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6143     AAMemoryLocation::MemoryLocationsKind MLK) {
6144   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6145     return "all memory";
6146   if (MLK == AAMemoryLocation::NO_LOCATIONS)
6147     return "no memory";
6148   std::string S = "memory:";
6149   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6150     S += "stack,";
6151   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6152     S += "constant,";
6153   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6154     S += "internal global,";
6155   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6156     S += "external global,";
6157   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6158     S += "argument,";
6159   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6160     S += "inaccessible,";
6161   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6162     S += "malloced,";
6163   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6164     S += "unknown,";
6165   S.pop_back();
6166   return S;
6167 }
6168 
6169 namespace {
6170 
6171 struct AAMemoryLocationImpl : public AAMemoryLocation {
6172 
6173   AAMemoryLocationImpl(const IRPosition &IRP) : AAMemoryLocation(IRP) {}
6174 
6175   /// See AbstractAttribute::initialize(...).
6176   void initialize(Attributor &A) override {
6177     intersectAssumedBits(BEST_STATE);
6178     getKnownStateFromValue(getIRPosition(), getState());
6179     IRAttribute::initialize(A);
6180   }
6181 
6182   /// Return the memory behavior information encoded in the IR for \p IRP.
6183   static void getKnownStateFromValue(const IRPosition &IRP,
6184                                      BitIntegerState &State,
6185                                      bool IgnoreSubsumingPositions = false) {
6186     SmallVector<Attribute, 2> Attrs;
6187     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6188     for (const Attribute &Attr : Attrs) {
6189       switch (Attr.getKindAsEnum()) {
6190       case Attribute::ReadNone:
6191         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6192         break;
6193       case Attribute::InaccessibleMemOnly:
6194         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6195         break;
6196       case Attribute::ArgMemOnly:
6197         State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6198         break;
6199       case Attribute::InaccessibleMemOrArgMemOnly:
6200         State.addKnownBits(
6201             inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6202         break;
6203       default:
6204         llvm_unreachable("Unexpected attribute!");
6205       }
6206     }
6207   }
6208 
6209   /// See AbstractAttribute::getDeducedAttributes(...).
6210   void getDeducedAttributes(LLVMContext &Ctx,
6211                             SmallVectorImpl<Attribute> &Attrs) const override {
6212     assert(Attrs.size() == 0);
6213     if (isAssumedReadNone()) {
6214       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6215     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6216       if (isAssumedInaccessibleMemOnly())
6217         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6218       else if (isAssumedArgMemOnly())
6219         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6220       else if (isAssumedInaccessibleOrArgMemOnly())
6221         Attrs.push_back(
6222             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6223     }
6224     assert(Attrs.size() <= 1);
6225   }
6226 
6227   /// See AbstractAttribute::manifest(...).
6228   ChangeStatus manifest(Attributor &A) override {
6229     const IRPosition &IRP = getIRPosition();
6230 
6231     // Check if we would improve the existing attributes first.
6232     SmallVector<Attribute, 4> DeducedAttrs;
6233     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6234     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6235           return IRP.hasAttr(Attr.getKindAsEnum(),
6236                              /* IgnoreSubsumingPositions */ true);
6237         }))
6238       return ChangeStatus::UNCHANGED;
6239 
6240     // Clear existing attributes.
6241     IRP.removeAttrs(AttrKinds);
6242     if (isAssumedReadNone())
6243       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6244 
6245     // Use the generic manifest method.
6246     return IRAttribute::manifest(A);
6247   }
6248 
6249   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
6250   bool checkForAllAccessesToMemoryKind(
6251       const function_ref<bool(const Instruction *, const Value *, AccessKind,
6252                               MemoryLocationsKind)> &Pred,
6253       MemoryLocationsKind RequestedMLK) const override {
6254     if (!isValidState())
6255       return false;
6256 
6257     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6258     if (AssumedMLK == NO_LOCATIONS)
6259       return true;
6260 
6261     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6262       if (CurMLK & RequestedMLK)
6263         continue;
6264 
6265       const auto &Accesses = AccessKindAccessesMap.lookup(CurMLK);
6266       for (const AccessInfo &AI : Accesses) {
6267         if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6268           return false;
6269       }
6270     }
6271 
6272     return true;
6273   }
6274 
6275   ChangeStatus indicatePessimisticFixpoint() override {
6276     // If we give up and indicate a pessimistic fixpoint this instruction will
6277     // become an access for all potential access kinds:
6278     // TODO: Add pointers for argmemonly and globals to improve the results of
6279     //       checkForAllAccessesToMemoryKind.
6280     bool Changed = false;
6281     MemoryLocationsKind KnownMLK = getKnown();
6282     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6283     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6284       if (!(CurMLK & KnownMLK))
6285         updateStateAndAccessesMap(getState(), AccessKindAccessesMap, CurMLK, I,
6286                                   nullptr, Changed);
6287     return AAMemoryLocation::indicatePessimisticFixpoint();
6288   }
6289 
6290 protected:
6291   /// Helper struct to tie together an instruction that has a read or write
6292   /// effect with the pointer it accesses (if any).
6293   struct AccessInfo {
6294 
6295     /// The instruction that caused the access.
6296     const Instruction *I;
6297 
6298     /// The base pointer that is accessed, or null if unknown.
6299     const Value *Ptr;
6300 
6301     /// The kind of access (read/write/read+write).
6302     AccessKind Kind;
6303 
6304     bool operator==(const AccessInfo &RHS) const {
6305       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6306     }
6307     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6308       if (LHS.I != RHS.I)
6309         return LHS.I < RHS.I;
6310       if (LHS.Ptr != RHS.Ptr)
6311         return LHS.Ptr < RHS.Ptr;
6312       if (LHS.Kind != RHS.Kind)
6313         return LHS.Kind < RHS.Kind;
6314       return false;
6315     }
6316   };
6317 
6318   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6319   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6320   using AccessKindAccessesMapTy =
6321       DenseMap<unsigned, SmallSet<AccessInfo, 8, AccessInfo>>;
6322   AccessKindAccessesMapTy AccessKindAccessesMap;
6323 
6324   /// Return the kind(s) of location that may be accessed by \p V.
6325   AAMemoryLocation::MemoryLocationsKind
6326   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6327 
6328   /// Update the state \p State and the AccessKindAccessesMap given that \p I is
6329   /// an access to a \p MLK memory location with the access pointer \p Ptr.
6330   static void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6331                                         AccessKindAccessesMapTy &AccessMap,
6332                                         MemoryLocationsKind MLK,
6333                                         const Instruction *I, const Value *Ptr,
6334                                         bool &Changed) {
6335     // TODO: The kind should be determined at the call sites based on the
6336     // information we have there.
6337     AccessKind Kind = READ_WRITE;
6338     if (I) {
6339       Kind = I->mayReadFromMemory() ? READ : NONE;
6340       Kind = AccessKind(Kind | (I->mayWriteToMemory() ? WRITE : NONE));
6341     }
6342 
6343     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6344     Changed |= AccessMap[MLK].insert(AccessInfo{I, Ptr, Kind}).second;
6345     State.removeAssumedBits(MLK);
6346   }
6347 
6348   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6349   /// arguments, and update the state and access map accordingly.
6350   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6351                           AAMemoryLocation::StateType &State, bool &Changed);
6352 
6353   /// The set of IR attributes AAMemoryLocation deals with.
6354   static const Attribute::AttrKind AttrKinds[4];
6355 };
6356 
6357 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6358     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6359     Attribute::InaccessibleMemOrArgMemOnly};
6360 
6361 void AAMemoryLocationImpl::categorizePtrValue(
6362     Attributor &A, const Instruction &I, const Value &Ptr,
6363     AAMemoryLocation::StateType &State, bool &Changed) {
6364   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6365                     << Ptr << " ["
6366                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6367 
6368   auto StripGEPCB = [](Value *V) -> Value * {
6369     auto *GEP = dyn_cast<GEPOperator>(V);
6370     while (GEP) {
6371       V = GEP->getPointerOperand();
6372       GEP = dyn_cast<GEPOperator>(V);
6373     }
6374     return V;
6375   };
6376 
6377   auto VisitValueCB = [&](Value &V, AAMemoryLocation::StateType &T,
6378                           bool Stripped) -> bool {
6379     assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6380     if (isa<UndefValue>(V))
6381       return true;
6382     if (auto *Arg = dyn_cast<Argument>(&V)) {
6383       if (Arg->hasByValAttr())
6384         updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I,
6385                                   &V, Changed);
6386       else
6387         updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_ARGUMENT_MEM, &I,
6388                                   &V, Changed);
6389       return true;
6390     }
6391     if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6392       if (GV->hasLocalLinkage())
6393         updateStateAndAccessesMap(T, AccessKindAccessesMap,
6394                                   NO_GLOBAL_INTERNAL_MEM, &I, &V, Changed);
6395       else
6396         updateStateAndAccessesMap(T, AccessKindAccessesMap,
6397                                   NO_GLOBAL_EXTERNAL_MEM, &I, &V, Changed);
6398       return true;
6399     }
6400     if (isa<AllocaInst>(V)) {
6401       updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I, &V,
6402                                 Changed);
6403       return true;
6404     }
6405     if (ImmutableCallSite ICS = ImmutableCallSite(&V)) {
6406       const auto &NoAliasAA =
6407           A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(ICS));
6408       if (NoAliasAA.isAssumedNoAlias()) {
6409         updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_MALLOCED_MEM, &I,
6410                                   &V, Changed);
6411         return true;
6412       }
6413     }
6414 
6415     updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_UNKOWN_MEM, &I, &V,
6416                               Changed);
6417     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6418                       << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6419                       << "\n");
6420     return true;
6421   };
6422 
6423   if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6424           A, IRPosition::value(Ptr), *this, State, VisitValueCB,
6425           /* MaxValues */ 32, StripGEPCB)) {
6426     LLVM_DEBUG(
6427         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6428     updateStateAndAccessesMap(State, AccessKindAccessesMap, NO_UNKOWN_MEM, &I,
6429                               nullptr, Changed);
6430   } else {
6431     LLVM_DEBUG(
6432         dbgs()
6433         << "[AAMemoryLocation] Accessed locations with pointer locations: "
6434         << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6435   }
6436 }
6437 
6438 AAMemoryLocation::MemoryLocationsKind
6439 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6440                                                   bool &Changed) {
6441   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6442                     << I << "\n");
6443 
6444   AAMemoryLocation::StateType AccessedLocs;
6445   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6446 
6447   if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
6448 
6449     // First check if we assume any memory is access is visible.
6450     const auto &ICSMemLocationAA =
6451         A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(ICS));
6452     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6453                       << " [" << ICSMemLocationAA << "]\n");
6454 
6455     if (ICSMemLocationAA.isAssumedReadNone())
6456       return NO_LOCATIONS;
6457 
6458     if (ICSMemLocationAA.isAssumedInaccessibleMemOnly()) {
6459       updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap,
6460                                 NO_INACCESSIBLE_MEM, &I, nullptr, Changed);
6461       return AccessedLocs.getAssumed();
6462     }
6463 
6464     uint32_t ICSAssumedNotAccessedLocs =
6465         ICSMemLocationAA.getAssumedNotAccessedLocation();
6466 
6467     // Set the argmemonly and global bit as we handle them separately below.
6468     uint32_t ICSAssumedNotAccessedLocsNoArgMem =
6469         ICSAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6470 
6471     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6472       if (ICSAssumedNotAccessedLocsNoArgMem & CurMLK)
6473         continue;
6474       updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, CurMLK, &I,
6475                                 nullptr, Changed);
6476     }
6477 
6478     // Now handle global memory if it might be accessed.
6479     bool HasGlobalAccesses = !(ICSAssumedNotAccessedLocs & NO_GLOBAL_MEM);
6480     if (HasGlobalAccesses) {
6481       auto AccessPred = [&](const Instruction *, const Value *Ptr,
6482                             AccessKind Kind, MemoryLocationsKind MLK) {
6483         updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, MLK, &I,
6484                                   Ptr, Changed);
6485         return true;
6486       };
6487       if (!ICSMemLocationAA.checkForAllAccessesToMemoryKind(
6488               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6489         return AccessedLocs.getWorstState();
6490     }
6491 
6492     LLVM_DEBUG(
6493         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6494                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6495 
6496     // Now handle argument memory if it might be accessed.
6497     bool HasArgAccesses = !(ICSAssumedNotAccessedLocs & NO_ARGUMENT_MEM);
6498     if (HasArgAccesses) {
6499       for (unsigned ArgNo = 0, e = ICS.getNumArgOperands(); ArgNo < e;
6500            ++ArgNo) {
6501 
6502         // Skip non-pointer arguments.
6503         const Value *ArgOp = ICS.getArgOperand(ArgNo);
6504         if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6505           continue;
6506 
6507         // Skip readnone arguments.
6508         const IRPosition &ArgOpIRP = IRPosition::callsite_argument(ICS, ArgNo);
6509         const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
6510             *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6511 
6512         if (ArgOpMemLocationAA.isAssumedReadNone())
6513           continue;
6514 
6515         // Categorize potentially accessed pointer arguments as if there was an
6516         // access instruction with them as pointer.
6517         categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed);
6518       }
6519     }
6520 
6521     LLVM_DEBUG(
6522         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6523                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6524 
6525     return AccessedLocs.getAssumed();
6526   }
6527 
6528   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6529     LLVM_DEBUG(
6530         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6531                << I << " [" << *Ptr << "]\n");
6532     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6533     return AccessedLocs.getAssumed();
6534   }
6535 
6536   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6537                     << I << "\n");
6538   updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, NO_UNKOWN_MEM,
6539                             &I, nullptr, Changed);
6540   return AccessedLocs.getAssumed();
6541 }
6542 
6543 /// An AA to represent the memory behavior function attributes.
6544 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
6545   AAMemoryLocationFunction(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
6546 
6547   /// See AbstractAttribute::updateImpl(Attributor &A).
6548   virtual ChangeStatus updateImpl(Attributor &A) override {
6549 
6550     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6551         *this, getIRPosition(), /* TrackDependence */ false);
6552     if (MemBehaviorAA.isAssumedReadNone()) {
6553       if (MemBehaviorAA.isKnownReadNone())
6554         return indicateOptimisticFixpoint();
6555       assert(isAssumedReadNone() &&
6556              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6557       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6558       return ChangeStatus::UNCHANGED;
6559     }
6560 
6561     // The current assumed state used to determine a change.
6562     auto AssumedState = getAssumed();
6563     bool Changed = false;
6564 
6565     auto CheckRWInst = [&](Instruction &I) {
6566       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6567       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6568                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6569       removeAssumedBits(inverseLocation(MLK, false, false));
6570       return true;
6571     };
6572 
6573     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6574       return indicatePessimisticFixpoint();
6575 
6576     Changed |= AssumedState != getAssumed();
6577     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6578   }
6579 
6580   /// See AbstractAttribute::trackStatistics()
6581   void trackStatistics() const override {
6582     if (isAssumedReadNone())
6583       STATS_DECLTRACK_FN_ATTR(readnone)
6584     else if (isAssumedArgMemOnly())
6585       STATS_DECLTRACK_FN_ATTR(argmemonly)
6586     else if (isAssumedInaccessibleMemOnly())
6587       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6588     else if (isAssumedInaccessibleOrArgMemOnly())
6589       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6590   }
6591 };
6592 
6593 /// AAMemoryLocation attribute for call sites.
6594 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
6595   AAMemoryLocationCallSite(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {}
6596 
6597   /// See AbstractAttribute::initialize(...).
6598   void initialize(Attributor &A) override {
6599     AAMemoryLocationImpl::initialize(A);
6600     Function *F = getAssociatedFunction();
6601     if (!F || !F->hasExactDefinition())
6602       indicatePessimisticFixpoint();
6603   }
6604 
6605   /// See AbstractAttribute::updateImpl(...).
6606   ChangeStatus updateImpl(Attributor &A) override {
6607     // TODO: Once we have call site specific value information we can provide
6608     //       call site specific liveness liveness information and then it makes
6609     //       sense to specialize attributes for call sites arguments instead of
6610     //       redirecting requests to the callee argument.
6611     Function *F = getAssociatedFunction();
6612     const IRPosition &FnPos = IRPosition::function(*F);
6613     auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
6614     bool Changed = false;
6615     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
6616                           AccessKind Kind, MemoryLocationsKind MLK) {
6617       updateStateAndAccessesMap(getState(), AccessKindAccessesMap, MLK, I, Ptr,
6618                                 Changed);
6619       return true;
6620     };
6621     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
6622       return indicatePessimisticFixpoint();
6623     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6624   }
6625 
6626   /// See AbstractAttribute::trackStatistics()
6627   void trackStatistics() const override {
6628     if (isAssumedReadNone())
6629       STATS_DECLTRACK_CS_ATTR(readnone)
6630   }
6631 };
6632 
6633 /// ------------------ Value Constant Range Attribute -------------------------
6634 
6635 struct AAValueConstantRangeImpl : AAValueConstantRange {
6636   using StateType = IntegerRangeState;
6637   AAValueConstantRangeImpl(const IRPosition &IRP) : AAValueConstantRange(IRP) {}
6638 
6639   /// See AbstractAttribute::getAsStr().
6640   const std::string getAsStr() const override {
6641     std::string Str;
6642     llvm::raw_string_ostream OS(Str);
6643     OS << "range(" << getBitWidth() << ")<";
6644     getKnown().print(OS);
6645     OS << " / ";
6646     getAssumed().print(OS);
6647     OS << ">";
6648     return OS.str();
6649   }
6650 
6651   /// Helper function to get a SCEV expr for the associated value at program
6652   /// point \p I.
6653   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
6654     if (!getAnchorScope())
6655       return nullptr;
6656 
6657     ScalarEvolution *SE =
6658         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6659             *getAnchorScope());
6660 
6661     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
6662         *getAnchorScope());
6663 
6664     if (!SE || !LI)
6665       return nullptr;
6666 
6667     const SCEV *S = SE->getSCEV(&getAssociatedValue());
6668     if (!I)
6669       return S;
6670 
6671     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
6672   }
6673 
6674   /// Helper function to get a range from SCEV for the associated value at
6675   /// program point \p I.
6676   ConstantRange getConstantRangeFromSCEV(Attributor &A,
6677                                          const Instruction *I = nullptr) const {
6678     if (!getAnchorScope())
6679       return getWorstState(getBitWidth());
6680 
6681     ScalarEvolution *SE =
6682         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6683             *getAnchorScope());
6684 
6685     const SCEV *S = getSCEV(A, I);
6686     if (!SE || !S)
6687       return getWorstState(getBitWidth());
6688 
6689     return SE->getUnsignedRange(S);
6690   }
6691 
6692   /// Helper function to get a range from LVI for the associated value at
6693   /// program point \p I.
6694   ConstantRange
6695   getConstantRangeFromLVI(Attributor &A,
6696                           const Instruction *CtxI = nullptr) const {
6697     if (!getAnchorScope())
6698       return getWorstState(getBitWidth());
6699 
6700     LazyValueInfo *LVI =
6701         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
6702             *getAnchorScope());
6703 
6704     if (!LVI || !CtxI)
6705       return getWorstState(getBitWidth());
6706     return LVI->getConstantRange(&getAssociatedValue(),
6707                                  const_cast<BasicBlock *>(CtxI->getParent()),
6708                                  const_cast<Instruction *>(CtxI));
6709   }
6710 
6711   /// See AAValueConstantRange::getKnownConstantRange(..).
6712   ConstantRange
6713   getKnownConstantRange(Attributor &A,
6714                         const Instruction *CtxI = nullptr) const override {
6715     if (!CtxI || CtxI == getCtxI())
6716       return getKnown();
6717 
6718     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6719     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6720     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
6721   }
6722 
6723   /// See AAValueConstantRange::getAssumedConstantRange(..).
6724   ConstantRange
6725   getAssumedConstantRange(Attributor &A,
6726                           const Instruction *CtxI = nullptr) const override {
6727     // TODO: Make SCEV use Attributor assumption.
6728     //       We may be able to bound a variable range via assumptions in
6729     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
6730     //       evolve to x^2 + x, then we can say that y is in [2, 12].
6731 
6732     if (!CtxI || CtxI == getCtxI())
6733       return getAssumed();
6734 
6735     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6736     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6737     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
6738   }
6739 
6740   /// See AbstractAttribute::initialize(..).
6741   void initialize(Attributor &A) override {
6742     // Intersect a range given by SCEV.
6743     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
6744 
6745     // Intersect a range given by LVI.
6746     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
6747   }
6748 
6749   /// Helper function to create MDNode for range metadata.
6750   static MDNode *
6751   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
6752                             const ConstantRange &AssumedConstantRange) {
6753     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
6754                                   Ty, AssumedConstantRange.getLower())),
6755                               ConstantAsMetadata::get(ConstantInt::get(
6756                                   Ty, AssumedConstantRange.getUpper()))};
6757     return MDNode::get(Ctx, LowAndHigh);
6758   }
6759 
6760   /// Return true if \p Assumed is included in \p KnownRanges.
6761   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
6762 
6763     if (Assumed.isFullSet())
6764       return false;
6765 
6766     if (!KnownRanges)
6767       return true;
6768 
6769     // If multiple ranges are annotated in IR, we give up to annotate assumed
6770     // range for now.
6771 
6772     // TODO:  If there exists a known range which containts assumed range, we
6773     // can say assumed range is better.
6774     if (KnownRanges->getNumOperands() > 2)
6775       return false;
6776 
6777     ConstantInt *Lower =
6778         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
6779     ConstantInt *Upper =
6780         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
6781 
6782     ConstantRange Known(Lower->getValue(), Upper->getValue());
6783     return Known.contains(Assumed) && Known != Assumed;
6784   }
6785 
6786   /// Helper function to set range metadata.
6787   static bool
6788   setRangeMetadataIfisBetterRange(Instruction *I,
6789                                   const ConstantRange &AssumedConstantRange) {
6790     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
6791     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
6792       if (!AssumedConstantRange.isEmptySet()) {
6793         I->setMetadata(LLVMContext::MD_range,
6794                        getMDNodeForConstantRange(I->getType(), I->getContext(),
6795                                                  AssumedConstantRange));
6796         return true;
6797       }
6798     }
6799     return false;
6800   }
6801 
6802   /// See AbstractAttribute::manifest()
6803   ChangeStatus manifest(Attributor &A) override {
6804     ChangeStatus Changed = ChangeStatus::UNCHANGED;
6805     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
6806     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
6807 
6808     auto &V = getAssociatedValue();
6809     if (!AssumedConstantRange.isEmptySet() &&
6810         !AssumedConstantRange.isSingleElement()) {
6811       if (Instruction *I = dyn_cast<Instruction>(&V))
6812         if (isa<CallInst>(I) || isa<LoadInst>(I))
6813           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
6814             Changed = ChangeStatus::CHANGED;
6815     }
6816 
6817     return Changed;
6818   }
6819 };
6820 
6821 struct AAValueConstantRangeArgument final
6822     : AAArgumentFromCallSiteArguments<
6823           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
6824   AAValueConstantRangeArgument(const IRPosition &IRP)
6825       : AAArgumentFromCallSiteArguments<
6826             AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>(
6827             IRP) {}
6828 
6829   /// See AbstractAttribute::trackStatistics()
6830   void trackStatistics() const override {
6831     STATS_DECLTRACK_ARG_ATTR(value_range)
6832   }
6833 };
6834 
6835 struct AAValueConstantRangeReturned
6836     : AAReturnedFromReturnedValues<AAValueConstantRange,
6837                                    AAValueConstantRangeImpl> {
6838   using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
6839                                             AAValueConstantRangeImpl>;
6840   AAValueConstantRangeReturned(const IRPosition &IRP) : Base(IRP) {}
6841 
6842   /// See AbstractAttribute::initialize(...).
6843   void initialize(Attributor &A) override {}
6844 
6845   /// See AbstractAttribute::trackStatistics()
6846   void trackStatistics() const override {
6847     STATS_DECLTRACK_FNRET_ATTR(value_range)
6848   }
6849 };
6850 
6851 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
6852   AAValueConstantRangeFloating(const IRPosition &IRP)
6853       : AAValueConstantRangeImpl(IRP) {}
6854 
6855   /// See AbstractAttribute::initialize(...).
6856   void initialize(Attributor &A) override {
6857     AAValueConstantRangeImpl::initialize(A);
6858     Value &V = getAssociatedValue();
6859 
6860     if (auto *C = dyn_cast<ConstantInt>(&V)) {
6861       unionAssumed(ConstantRange(C->getValue()));
6862       indicateOptimisticFixpoint();
6863       return;
6864     }
6865 
6866     if (isa<UndefValue>(&V)) {
6867       // Collapse the undef state to 0.
6868       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
6869       indicateOptimisticFixpoint();
6870       return;
6871     }
6872 
6873     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
6874       return;
6875     // If it is a load instruction with range metadata, use it.
6876     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
6877       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
6878         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
6879         return;
6880       }
6881 
6882     // We can work with PHI and select instruction as we traverse their operands
6883     // during update.
6884     if (isa<SelectInst>(V) || isa<PHINode>(V))
6885       return;
6886 
6887     // Otherwise we give up.
6888     indicatePessimisticFixpoint();
6889 
6890     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
6891                       << getAssociatedValue() << "\n");
6892   }
6893 
6894   bool calculateBinaryOperator(
6895       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
6896       Instruction *CtxI,
6897       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6898     Value *LHS = BinOp->getOperand(0);
6899     Value *RHS = BinOp->getOperand(1);
6900     // TODO: Allow non integers as well.
6901     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
6902       return false;
6903 
6904     auto &LHSAA =
6905         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
6906     QuerriedAAs.push_back(&LHSAA);
6907     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
6908 
6909     auto &RHSAA =
6910         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
6911     QuerriedAAs.push_back(&RHSAA);
6912     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
6913 
6914     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
6915 
6916     T.unionAssumed(AssumedRange);
6917 
6918     // TODO: Track a known state too.
6919 
6920     return T.isValidState();
6921   }
6922 
6923   bool calculateCastInst(
6924       Attributor &A, CastInst *CastI, IntegerRangeState &T, Instruction *CtxI,
6925       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6926     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
6927     // TODO: Allow non integers as well.
6928     Value &OpV = *CastI->getOperand(0);
6929     if (!OpV.getType()->isIntegerTy())
6930       return false;
6931 
6932     auto &OpAA =
6933         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
6934     QuerriedAAs.push_back(&OpAA);
6935     T.unionAssumed(
6936         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
6937     return T.isValidState();
6938   }
6939 
6940   bool
6941   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
6942                    Instruction *CtxI,
6943                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
6944     Value *LHS = CmpI->getOperand(0);
6945     Value *RHS = CmpI->getOperand(1);
6946     // TODO: Allow non integers as well.
6947     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
6948       return false;
6949 
6950     auto &LHSAA =
6951         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
6952     QuerriedAAs.push_back(&LHSAA);
6953     auto &RHSAA =
6954         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
6955     QuerriedAAs.push_back(&RHSAA);
6956 
6957     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
6958     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
6959 
6960     // If one of them is empty set, we can't decide.
6961     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
6962       return true;
6963 
6964     bool MustTrue = false, MustFalse = false;
6965 
6966     auto AllowedRegion =
6967         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
6968 
6969     auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
6970         CmpI->getPredicate(), RHSAARange);
6971 
6972     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
6973       MustFalse = true;
6974 
6975     if (SatisfyingRegion.contains(LHSAARange))
6976       MustTrue = true;
6977 
6978     assert((!MustTrue || !MustFalse) &&
6979            "Either MustTrue or MustFalse should be false!");
6980 
6981     if (MustTrue)
6982       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
6983     else if (MustFalse)
6984       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
6985     else
6986       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
6987 
6988     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
6989                       << " " << RHSAA << "\n");
6990 
6991     // TODO: Track a known state too.
6992     return T.isValidState();
6993   }
6994 
6995   /// See AbstractAttribute::updateImpl(...).
6996   ChangeStatus updateImpl(Attributor &A) override {
6997     Instruction *CtxI = getCtxI();
6998     auto VisitValueCB = [&](Value &V, IntegerRangeState &T,
6999                             bool Stripped) -> bool {
7000       Instruction *I = dyn_cast<Instruction>(&V);
7001       if (!I) {
7002 
7003         // If the value is not instruction, we query AA to Attributor.
7004         const auto &AA =
7005             A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
7006 
7007         // Clamp operator is not used to utilize a program point CtxI.
7008         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
7009 
7010         return T.isValidState();
7011       }
7012 
7013       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
7014       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
7015         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
7016           return false;
7017       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
7018         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
7019           return false;
7020       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
7021         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
7022           return false;
7023       } else {
7024         // Give up with other instructions.
7025         // TODO: Add other instructions
7026 
7027         T.indicatePessimisticFixpoint();
7028         return false;
7029       }
7030 
7031       // Catch circular reasoning in a pessimistic way for now.
7032       // TODO: Check how the range evolves and if we stripped anything, see also
7033       //       AADereferenceable or AAAlign for similar situations.
7034       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
7035         if (QueriedAA != this)
7036           continue;
7037         // If we are in a stady state we do not need to worry.
7038         if (T.getAssumed() == getState().getAssumed())
7039           continue;
7040         T.indicatePessimisticFixpoint();
7041       }
7042 
7043       return T.isValidState();
7044     };
7045 
7046     IntegerRangeState T(getBitWidth());
7047 
7048     if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7049             A, getIRPosition(), *this, T, VisitValueCB))
7050       return indicatePessimisticFixpoint();
7051 
7052     return clampStateAndIndicateChange(getState(), T);
7053   }
7054 
7055   /// See AbstractAttribute::trackStatistics()
7056   void trackStatistics() const override {
7057     STATS_DECLTRACK_FLOATING_ATTR(value_range)
7058   }
7059 };
7060 
7061 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
7062   AAValueConstantRangeFunction(const IRPosition &IRP)
7063       : AAValueConstantRangeImpl(IRP) {}
7064 
7065   /// See AbstractAttribute::initialize(...).
7066   ChangeStatus updateImpl(Attributor &A) override {
7067     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7068                      "not be called");
7069   }
7070 
7071   /// See AbstractAttribute::trackStatistics()
7072   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7073 };
7074 
7075 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
7076   AAValueConstantRangeCallSite(const IRPosition &IRP)
7077       : AAValueConstantRangeFunction(IRP) {}
7078 
7079   /// See AbstractAttribute::trackStatistics()
7080   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7081 };
7082 
7083 struct AAValueConstantRangeCallSiteReturned
7084     : AACallSiteReturnedFromReturned<AAValueConstantRange,
7085                                      AAValueConstantRangeImpl> {
7086   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP)
7087       : AACallSiteReturnedFromReturned<AAValueConstantRange,
7088                                        AAValueConstantRangeImpl>(IRP) {}
7089 
7090   /// See AbstractAttribute::initialize(...).
7091   void initialize(Attributor &A) override {
7092     // If it is a load instruction with range metadata, use the metadata.
7093     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7094       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7095         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7096 
7097     AAValueConstantRangeImpl::initialize(A);
7098   }
7099 
7100   /// See AbstractAttribute::trackStatistics()
7101   void trackStatistics() const override {
7102     STATS_DECLTRACK_CSRET_ATTR(value_range)
7103   }
7104 };
7105 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
7106   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP)
7107       : AAValueConstantRangeFloating(IRP) {}
7108 
7109   /// See AbstractAttribute::trackStatistics()
7110   void trackStatistics() const override {
7111     STATS_DECLTRACK_CSARG_ATTR(value_range)
7112   }
7113 };
7114 
7115 } // namespace
7116 /// ----------------------------------------------------------------------------
7117 ///                               Attributor
7118 /// ----------------------------------------------------------------------------
7119 
7120 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
7121                                const AAIsDead *FnLivenessAA,
7122                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
7123   const IRPosition &IRP = AA.getIRPosition();
7124   if (!Functions.count(IRP.getAnchorScope()))
7125     return false;
7126   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
7127 }
7128 
7129 bool Attributor::isAssumedDead(const Use &U,
7130                                const AbstractAttribute *QueryingAA,
7131                                const AAIsDead *FnLivenessAA,
7132                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
7133   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
7134   if (!UserI)
7135     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
7136                          CheckBBLivenessOnly, DepClass);
7137 
7138   if (CallSite CS = CallSite(UserI)) {
7139     // For call site argument uses we can check if the argument is
7140     // unused/dead.
7141     if (CS.isArgOperand(&U)) {
7142       const IRPosition &CSArgPos =
7143           IRPosition::callsite_argument(CS, CS.getArgumentNo(&U));
7144       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
7145                            CheckBBLivenessOnly, DepClass);
7146     }
7147   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
7148     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
7149     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
7150                          DepClass);
7151   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
7152     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
7153     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
7154                          CheckBBLivenessOnly, DepClass);
7155   }
7156 
7157   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
7158                        CheckBBLivenessOnly, DepClass);
7159 }
7160 
7161 bool Attributor::isAssumedDead(const Instruction &I,
7162                                const AbstractAttribute *QueryingAA,
7163                                const AAIsDead *FnLivenessAA,
7164                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
7165   if (!FnLivenessAA)
7166     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
7167                                          QueryingAA,
7168                                          /* TrackDependence */ false);
7169 
7170   // If we have a context instruction and a liveness AA we use it.
7171   if (FnLivenessAA &&
7172       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
7173       FnLivenessAA->isAssumedDead(&I)) {
7174     if (QueryingAA)
7175       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
7176     return true;
7177   }
7178 
7179   if (CheckBBLivenessOnly)
7180     return false;
7181 
7182   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
7183       IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
7184   // Don't check liveness for AAIsDead.
7185   if (QueryingAA == &IsDeadAA)
7186     return false;
7187 
7188   if (IsDeadAA.isAssumedDead()) {
7189     if (QueryingAA)
7190       recordDependence(IsDeadAA, *QueryingAA, DepClass);
7191     return true;
7192   }
7193 
7194   return false;
7195 }
7196 
7197 bool Attributor::isAssumedDead(const IRPosition &IRP,
7198                                const AbstractAttribute *QueryingAA,
7199                                const AAIsDead *FnLivenessAA,
7200                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
7201   Instruction *CtxI = IRP.getCtxI();
7202   if (CtxI &&
7203       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
7204                     /* CheckBBLivenessOnly */ true,
7205                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
7206     return true;
7207 
7208   if (CheckBBLivenessOnly)
7209     return false;
7210 
7211   // If we haven't succeeded we query the specific liveness info for the IRP.
7212   const AAIsDead *IsDeadAA;
7213   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
7214     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
7215         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
7216         QueryingAA, /* TrackDependence */ false);
7217   else
7218     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
7219                                            /* TrackDependence */ false);
7220   // Don't check liveness for AAIsDead.
7221   if (QueryingAA == IsDeadAA)
7222     return false;
7223 
7224   if (IsDeadAA->isAssumedDead()) {
7225     if (QueryingAA)
7226       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
7227     return true;
7228   }
7229 
7230   return false;
7231 }
7232 
7233 bool Attributor::checkForAllUses(
7234     const function_ref<bool(const Use &, bool &)> &Pred,
7235     const AbstractAttribute &QueryingAA, const Value &V,
7236     DepClassTy LivenessDepClass) {
7237 
7238   // Check the trivial case first as it catches void values.
7239   if (V.use_empty())
7240     return true;
7241 
7242   // If the value is replaced by another one, for now a constant, we do not have
7243   // uses. Note that this requires users of `checkForAllUses` to not recurse but
7244   // instead use the `follow` callback argument to look at transitive users,
7245   // however, that should be clear from the presence of the argument.
7246   bool UsedAssumedInformation = false;
7247   Optional<Constant *> C =
7248       getAssumedConstant(*this, V, QueryingAA, UsedAssumedInformation);
7249   if (C.hasValue() && C.getValue()) {
7250     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
7251                       << " -> " << *C.getValue() << "\n");
7252     return true;
7253   }
7254 
7255   const IRPosition &IRP = QueryingAA.getIRPosition();
7256   SmallVector<const Use *, 16> Worklist;
7257   SmallPtrSet<const Use *, 16> Visited;
7258 
7259   for (const Use &U : V.uses())
7260     Worklist.push_back(&U);
7261 
7262   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
7263                     << " initial uses to check\n");
7264 
7265   const Function *ScopeFn = IRP.getAnchorScope();
7266   const auto *LivenessAA =
7267       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
7268                                     /* TrackDependence */ false)
7269               : nullptr;
7270 
7271   while (!Worklist.empty()) {
7272     const Use *U = Worklist.pop_back_val();
7273     if (!Visited.insert(U).second)
7274       continue;
7275     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
7276                       << *U->getUser() << "\n");
7277     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
7278                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
7279       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
7280       continue;
7281     }
7282 
7283     bool Follow = false;
7284     if (!Pred(*U, Follow))
7285       return false;
7286     if (!Follow)
7287       continue;
7288     for (const Use &UU : U->getUser()->uses())
7289       Worklist.push_back(&UU);
7290   }
7291 
7292   return true;
7293 }
7294 
7295 bool Attributor::checkForAllCallSites(
7296     const function_ref<bool(AbstractCallSite)> &Pred,
7297     const AbstractAttribute &QueryingAA, bool RequireAllCallSites,
7298     bool &AllCallSitesKnown) {
7299   // We can try to determine information from
7300   // the call sites. However, this is only possible all call sites are known,
7301   // hence the function has internal linkage.
7302   const IRPosition &IRP = QueryingAA.getIRPosition();
7303   const Function *AssociatedFunction = IRP.getAssociatedFunction();
7304   if (!AssociatedFunction) {
7305     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
7306                       << "\n");
7307     AllCallSitesKnown = false;
7308     return false;
7309   }
7310 
7311   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
7312                               &QueryingAA, AllCallSitesKnown);
7313 }
7314 
7315 bool Attributor::checkForAllCallSites(
7316     const function_ref<bool(AbstractCallSite)> &Pred, const Function &Fn,
7317     bool RequireAllCallSites, const AbstractAttribute *QueryingAA,
7318     bool &AllCallSitesKnown) {
7319   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
7320     LLVM_DEBUG(
7321         dbgs()
7322         << "[Attributor] Function " << Fn.getName()
7323         << " has no internal linkage, hence not all call sites are known\n");
7324     AllCallSitesKnown = false;
7325     return false;
7326   }
7327 
7328   // If we do not require all call sites we might not see all.
7329   AllCallSitesKnown = RequireAllCallSites;
7330 
7331   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
7332   for (unsigned u = 0; u < Uses.size(); ++u) {
7333     const Use &U = *Uses[u];
7334     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
7335                       << *U.getUser() << "\n");
7336     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
7337       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
7338       continue;
7339     }
7340     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
7341       if (CE->isCast() && CE->getType()->isPointerTy() &&
7342           CE->getType()->getPointerElementType()->isFunctionTy()) {
7343         for (const Use &CEU : CE->uses())
7344           Uses.push_back(&CEU);
7345         continue;
7346       }
7347     }
7348 
7349     AbstractCallSite ACS(&U);
7350     if (!ACS) {
7351       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
7352                         << " has non call site use " << *U.get() << " in "
7353                         << *U.getUser() << "\n");
7354       // BlockAddress users are allowed.
7355       if (isa<BlockAddress>(U.getUser()))
7356         continue;
7357       return false;
7358     }
7359 
7360     const Use *EffectiveUse =
7361         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
7362     if (!ACS.isCallee(EffectiveUse)) {
7363       if (!RequireAllCallSites)
7364         continue;
7365       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
7366                         << " is an invalid use of " << Fn.getName() << "\n");
7367       return false;
7368     }
7369 
7370     // Make sure the arguments that can be matched between the call site and the
7371     // callee argee on their type. It is unlikely they do not and it doesn't
7372     // make sense for all attributes to know/care about this.
7373     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
7374     unsigned MinArgsParams =
7375         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
7376     for (unsigned u = 0; u < MinArgsParams; ++u) {
7377       Value *CSArgOp = ACS.getCallArgOperand(u);
7378       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
7379         LLVM_DEBUG(
7380             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
7381                    << u << "@" << Fn.getName() << ": "
7382                    << *Fn.getArg(u)->getType() << " vs. "
7383                    << *ACS.getCallArgOperand(u)->getType() << "\n");
7384         return false;
7385       }
7386     }
7387 
7388     if (Pred(ACS))
7389       continue;
7390 
7391     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
7392                       << *ACS.getInstruction() << "\n");
7393     return false;
7394   }
7395 
7396   return true;
7397 }
7398 
7399 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
7400     const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
7401         &Pred,
7402     const AbstractAttribute &QueryingAA) {
7403 
7404   const IRPosition &IRP = QueryingAA.getIRPosition();
7405   // Since we need to provide return instructions we have to have an exact
7406   // definition.
7407   const Function *AssociatedFunction = IRP.getAssociatedFunction();
7408   if (!AssociatedFunction)
7409     return false;
7410 
7411   // If this is a call site query we use the call site specific return values
7412   // and liveness information.
7413   // TODO: use the function scope once we have call site AAReturnedValues.
7414   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
7415   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
7416   if (!AARetVal.getState().isValidState())
7417     return false;
7418 
7419   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
7420 }
7421 
7422 bool Attributor::checkForAllReturnedValues(
7423     const function_ref<bool(Value &)> &Pred,
7424     const AbstractAttribute &QueryingAA) {
7425 
7426   const IRPosition &IRP = QueryingAA.getIRPosition();
7427   const Function *AssociatedFunction = IRP.getAssociatedFunction();
7428   if (!AssociatedFunction)
7429     return false;
7430 
7431   // TODO: use the function scope once we have call site AAReturnedValues.
7432   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
7433   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
7434   if (!AARetVal.getState().isValidState())
7435     return false;
7436 
7437   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
7438       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
7439         return Pred(RV);
7440       });
7441 }
7442 
7443 static bool checkForAllInstructionsImpl(
7444     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
7445     const function_ref<bool(Instruction &)> &Pred,
7446     const AbstractAttribute *QueryingAA, const AAIsDead *LivenessAA,
7447     const ArrayRef<unsigned> &Opcodes, bool CheckBBLivenessOnly = false) {
7448   for (unsigned Opcode : Opcodes) {
7449     for (Instruction *I : OpcodeInstMap[Opcode]) {
7450       // Skip dead instructions.
7451       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
7452                                 CheckBBLivenessOnly))
7453         continue;
7454 
7455       if (!Pred(*I))
7456         return false;
7457     }
7458   }
7459   return true;
7460 }
7461 
7462 bool Attributor::checkForAllInstructions(
7463     const llvm::function_ref<bool(Instruction &)> &Pred,
7464     const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes,
7465     bool CheckBBLivenessOnly) {
7466 
7467   const IRPosition &IRP = QueryingAA.getIRPosition();
7468   // Since we need to provide instructions we have to have an exact definition.
7469   const Function *AssociatedFunction = IRP.getAssociatedFunction();
7470   if (!AssociatedFunction)
7471     return false;
7472 
7473   // TODO: use the function scope once we have call site AAReturnedValues.
7474   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
7475   const auto &LivenessAA =
7476       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
7477 
7478   auto &OpcodeInstMap =
7479       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
7480   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
7481                                    &LivenessAA, Opcodes, CheckBBLivenessOnly))
7482     return false;
7483 
7484   return true;
7485 }
7486 
7487 bool Attributor::checkForAllReadWriteInstructions(
7488     const llvm::function_ref<bool(Instruction &)> &Pred,
7489     AbstractAttribute &QueryingAA) {
7490 
7491   const Function *AssociatedFunction =
7492       QueryingAA.getIRPosition().getAssociatedFunction();
7493   if (!AssociatedFunction)
7494     return false;
7495 
7496   // TODO: use the function scope once we have call site AAReturnedValues.
7497   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
7498   const auto &LivenessAA =
7499       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
7500 
7501   for (Instruction *I :
7502        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
7503     // Skip dead instructions.
7504     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
7505       continue;
7506 
7507     if (!Pred(*I))
7508       return false;
7509   }
7510 
7511   return true;
7512 }
7513 
7514 ChangeStatus Attributor::run() {
7515   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
7516                     << AllAbstractAttributes.size()
7517                     << " abstract attributes.\n");
7518 
7519   // Now that all abstract attributes are collected and initialized we start
7520   // the abstract analysis.
7521 
7522   unsigned IterationCounter = 1;
7523 
7524   SmallVector<AbstractAttribute *, 64> ChangedAAs;
7525   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
7526   Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
7527 
7528   bool RecomputeDependences = false;
7529 
7530   do {
7531     // Remember the size to determine new attributes.
7532     size_t NumAAs = AllAbstractAttributes.size();
7533     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
7534                       << ", Worklist size: " << Worklist.size() << "\n");
7535 
7536     // For invalid AAs we can fix dependent AAs that have a required dependence,
7537     // thereby folding long dependence chains in a single step without the need
7538     // to run updates.
7539     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
7540       AbstractAttribute *InvalidAA = InvalidAAs[u];
7541       auto &QuerriedAAs = QueryMap[InvalidAA];
7542       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
7543                         << QuerriedAAs.RequiredAAs.size() << "/"
7544                         << QuerriedAAs.OptionalAAs.size()
7545                         << " required/optional dependences\n");
7546       for (AbstractAttribute *DepOnInvalidAA : QuerriedAAs.RequiredAAs) {
7547         AbstractState &DOIAAState = DepOnInvalidAA->getState();
7548         DOIAAState.indicatePessimisticFixpoint();
7549         ++NumAttributesFixedDueToRequiredDependences;
7550         assert(DOIAAState.isAtFixpoint() && "Expected fixpoint state!");
7551         if (!DOIAAState.isValidState())
7552           InvalidAAs.insert(DepOnInvalidAA);
7553         else
7554           ChangedAAs.push_back(DepOnInvalidAA);
7555       }
7556       if (!RecomputeDependences)
7557         Worklist.insert(QuerriedAAs.OptionalAAs.begin(),
7558                         QuerriedAAs.OptionalAAs.end());
7559     }
7560 
7561     // If dependences (=QueryMap) are recomputed we have to look at all abstract
7562     // attributes again, regardless of what changed in the last iteration.
7563     if (RecomputeDependences) {
7564       LLVM_DEBUG(
7565           dbgs() << "[Attributor] Run all AAs to recompute dependences\n");
7566       QueryMap.clear();
7567       ChangedAAs.clear();
7568       Worklist.insert(AllAbstractAttributes.begin(),
7569                       AllAbstractAttributes.end());
7570     }
7571 
7572     // Add all abstract attributes that are potentially dependent on one that
7573     // changed to the work list.
7574     for (AbstractAttribute *ChangedAA : ChangedAAs) {
7575       auto &QuerriedAAs = QueryMap[ChangedAA];
7576       Worklist.insert(QuerriedAAs.OptionalAAs.begin(),
7577                       QuerriedAAs.OptionalAAs.end());
7578       Worklist.insert(QuerriedAAs.RequiredAAs.begin(),
7579                       QuerriedAAs.RequiredAAs.end());
7580     }
7581 
7582     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
7583                       << ", Worklist+Dependent size: " << Worklist.size()
7584                       << "\n");
7585 
7586     // Reset the changed and invalid set.
7587     ChangedAAs.clear();
7588     InvalidAAs.clear();
7589 
7590     // Update all abstract attribute in the work list and record the ones that
7591     // changed.
7592     for (AbstractAttribute *AA : Worklist)
7593       if (!AA->getState().isAtFixpoint() &&
7594           !isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true)) {
7595         QueriedNonFixAA = false;
7596         if (AA->update(*this) == ChangeStatus::CHANGED) {
7597           ChangedAAs.push_back(AA);
7598           if (!AA->getState().isValidState())
7599             InvalidAAs.insert(AA);
7600         } else if (!QueriedNonFixAA) {
7601           // If the attribute did not query any non-fix information, the state
7602           // will not change and we can indicate that right away.
7603           AA->getState().indicateOptimisticFixpoint();
7604         }
7605       }
7606 
7607     // Check if we recompute the dependences in the next iteration.
7608     RecomputeDependences = (DepRecomputeInterval > 0 &&
7609                             IterationCounter % DepRecomputeInterval == 0);
7610 
7611     // Add attributes to the changed set if they have been created in the last
7612     // iteration.
7613     ChangedAAs.append(AllAbstractAttributes.begin() + NumAAs,
7614                       AllAbstractAttributes.end());
7615 
7616     // Reset the work list and repopulate with the changed abstract attributes.
7617     // Note that dependent ones are added above.
7618     Worklist.clear();
7619     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
7620 
7621   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
7622                                  VerifyMaxFixpointIterations));
7623 
7624   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
7625                     << IterationCounter << "/" << MaxFixpointIterations
7626                     << " iterations\n");
7627 
7628   size_t NumFinalAAs = AllAbstractAttributes.size();
7629 
7630   // Reset abstract arguments not settled in a sound fixpoint by now. This
7631   // happens when we stopped the fixpoint iteration early. Note that only the
7632   // ones marked as "changed" *and* the ones transitively depending on them
7633   // need to be reverted to a pessimistic state. Others might not be in a
7634   // fixpoint state but we can use the optimistic results for them anyway.
7635   SmallPtrSet<AbstractAttribute *, 32> Visited;
7636   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
7637     AbstractAttribute *ChangedAA = ChangedAAs[u];
7638     if (!Visited.insert(ChangedAA).second)
7639       continue;
7640 
7641     AbstractState &State = ChangedAA->getState();
7642     if (!State.isAtFixpoint()) {
7643       State.indicatePessimisticFixpoint();
7644 
7645       NumAttributesTimedOut++;
7646     }
7647 
7648     auto &QuerriedAAs = QueryMap[ChangedAA];
7649     ChangedAAs.append(QuerriedAAs.OptionalAAs.begin(),
7650                       QuerriedAAs.OptionalAAs.end());
7651     ChangedAAs.append(QuerriedAAs.RequiredAAs.begin(),
7652                       QuerriedAAs.RequiredAAs.end());
7653   }
7654 
7655   LLVM_DEBUG({
7656     if (!Visited.empty())
7657       dbgs() << "\n[Attributor] Finalized " << Visited.size()
7658              << " abstract attributes.\n";
7659   });
7660 
7661   unsigned NumManifested = 0;
7662   unsigned NumAtFixpoint = 0;
7663   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
7664   for (AbstractAttribute *AA : AllAbstractAttributes) {
7665     AbstractState &State = AA->getState();
7666 
7667     // If there is not already a fixpoint reached, we can now take the
7668     // optimistic state. This is correct because we enforced a pessimistic one
7669     // on abstract attributes that were transitively dependent on a changed one
7670     // already above.
7671     if (!State.isAtFixpoint())
7672       State.indicateOptimisticFixpoint();
7673 
7674     // If the state is invalid, we do not try to manifest it.
7675     if (!State.isValidState())
7676       continue;
7677 
7678     // Skip dead code.
7679     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
7680       continue;
7681     // Manifest the state and record if we changed the IR.
7682     ChangeStatus LocalChange = AA->manifest(*this);
7683     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
7684       AA->trackStatistics();
7685     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
7686                       << "\n");
7687 
7688     ManifestChange = ManifestChange | LocalChange;
7689 
7690     NumAtFixpoint++;
7691     NumManifested += (LocalChange == ChangeStatus::CHANGED);
7692   }
7693 
7694   (void)NumManifested;
7695   (void)NumAtFixpoint;
7696   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
7697                     << " arguments while " << NumAtFixpoint
7698                     << " were in a valid fixpoint state\n");
7699 
7700   NumAttributesManifested += NumManifested;
7701   NumAttributesValidFixpoint += NumAtFixpoint;
7702 
7703   (void)NumFinalAAs;
7704   if (NumFinalAAs != AllAbstractAttributes.size()) {
7705     for (unsigned u = NumFinalAAs; u < AllAbstractAttributes.size(); ++u)
7706       errs() << "Unexpected abstract attribute: " << *AllAbstractAttributes[u]
7707              << " :: "
7708              << AllAbstractAttributes[u]->getIRPosition().getAssociatedValue()
7709              << "\n";
7710     llvm_unreachable("Expected the final number of abstract attributes to "
7711                      "remain unchanged!");
7712   }
7713 
7714   // Delete stuff at the end to avoid invalid references and a nice order.
7715   {
7716     LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
7717                       << ToBeDeletedFunctions.size() << " functions and "
7718                       << ToBeDeletedBlocks.size() << " blocks and "
7719                       << ToBeDeletedInsts.size() << " instructions and "
7720                       << ToBeChangedUses.size() << " uses\n");
7721 
7722     SmallVector<WeakTrackingVH, 32> DeadInsts;
7723     SmallVector<Instruction *, 32> TerminatorsToFold;
7724 
7725     for (auto &It : ToBeChangedUses) {
7726       Use *U = It.first;
7727       Value *NewV = It.second;
7728       Value *OldV = U->get();
7729       LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
7730                         << " instead of " << *OldV << "\n");
7731       U->set(NewV);
7732       // Do not modify call instructions outside the SCC.
7733       if (auto *CB = dyn_cast<CallBase>(OldV))
7734         if (!Functions.count(CB->getCaller()))
7735           continue;
7736       if (Instruction *I = dyn_cast<Instruction>(OldV)) {
7737         CGModifiedFunctions.insert(I->getFunction());
7738         if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
7739             isInstructionTriviallyDead(I))
7740           DeadInsts.push_back(I);
7741       }
7742       if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
7743         Instruction *UserI = cast<Instruction>(U->getUser());
7744         if (isa<UndefValue>(NewV)) {
7745           ToBeChangedToUnreachableInsts.insert(UserI);
7746         } else {
7747           TerminatorsToFold.push_back(UserI);
7748         }
7749       }
7750     }
7751     for (auto &V : InvokeWithDeadSuccessor)
7752       if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
7753         bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
7754         bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
7755         bool Invoke2CallAllowed =
7756             !AAIsDeadFunction::mayCatchAsynchronousExceptions(
7757                 *II->getFunction());
7758         assert((UnwindBBIsDead || NormalBBIsDead) &&
7759                "Invoke does not have dead successors!");
7760         BasicBlock *BB = II->getParent();
7761         BasicBlock *NormalDestBB = II->getNormalDest();
7762         if (UnwindBBIsDead) {
7763           Instruction *NormalNextIP = &NormalDestBB->front();
7764           if (Invoke2CallAllowed) {
7765             changeToCall(II);
7766             NormalNextIP = BB->getTerminator();
7767           }
7768           if (NormalBBIsDead)
7769             ToBeChangedToUnreachableInsts.insert(NormalNextIP);
7770         } else {
7771           assert(NormalBBIsDead && "Broken invariant!");
7772           if (!NormalDestBB->getUniquePredecessor())
7773             NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
7774           ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
7775         }
7776       }
7777     for (auto &V : ToBeChangedToUnreachableInsts)
7778       if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
7779         CGModifiedFunctions.insert(I->getFunction());
7780         changeToUnreachable(I, /* UseLLVMTrap */ false);
7781       }
7782     for (Instruction *I : TerminatorsToFold) {
7783       CGModifiedFunctions.insert(I->getFunction());
7784       ConstantFoldTerminator(I->getParent());
7785     }
7786 
7787     for (auto &V : ToBeDeletedInsts) {
7788       if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
7789         CGModifiedFunctions.insert(I->getFunction());
7790         if (!I->getType()->isVoidTy())
7791           I->replaceAllUsesWith(UndefValue::get(I->getType()));
7792         if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
7793           DeadInsts.push_back(I);
7794         else
7795           I->eraseFromParent();
7796       }
7797     }
7798 
7799     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
7800 
7801     if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
7802       SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
7803       ToBeDeletedBBs.reserve(NumDeadBlocks);
7804       for (BasicBlock *BB : ToBeDeletedBlocks) {
7805         CGModifiedFunctions.insert(BB->getParent());
7806         ToBeDeletedBBs.push_back(BB);
7807       }
7808       // Actually we do not delete the blocks but squash them into a single
7809       // unreachable but untangling branches that jump here is something we need
7810       // to do in a more generic way.
7811       DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
7812       STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
7813       BUILD_STAT_NAME(AAIsDead, BasicBlock) += ToBeDeletedBlocks.size();
7814     }
7815 
7816     // Identify dead internal functions and delete them. This happens outside
7817     // the other fixpoint analysis as we might treat potentially dead functions
7818     // as live to lower the number of iterations. If they happen to be dead, the
7819     // below fixpoint loop will identify and eliminate them.
7820     SmallVector<Function *, 8> InternalFns;
7821     for (Function *F : Functions)
7822       if (F->hasLocalLinkage())
7823         InternalFns.push_back(F);
7824 
7825     bool FoundDeadFn = true;
7826     while (FoundDeadFn) {
7827       FoundDeadFn = false;
7828       for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
7829         Function *F = InternalFns[u];
7830         if (!F)
7831           continue;
7832 
7833         bool AllCallSitesKnown;
7834         if (!checkForAllCallSites(
7835                 [this](AbstractCallSite ACS) {
7836                   return ToBeDeletedFunctions.count(
7837                       ACS.getInstruction()->getFunction());
7838                 },
7839                 *F, true, nullptr, AllCallSitesKnown))
7840           continue;
7841 
7842         ToBeDeletedFunctions.insert(F);
7843         InternalFns[u] = nullptr;
7844         FoundDeadFn = true;
7845       }
7846     }
7847   }
7848 
7849   // Rewrite the functions as requested during manifest.
7850   ManifestChange =
7851       ManifestChange | rewriteFunctionSignatures(CGModifiedFunctions);
7852 
7853   for (Function *Fn : CGModifiedFunctions)
7854     CGUpdater.reanalyzeFunction(*Fn);
7855 
7856   STATS_DECL(AAIsDead, Function, "Number of dead functions deleted.");
7857   BUILD_STAT_NAME(AAIsDead, Function) += ToBeDeletedFunctions.size();
7858 
7859   for (Function *Fn : ToBeDeletedFunctions)
7860     CGUpdater.removeFunction(*Fn);
7861 
7862   if (VerifyMaxFixpointIterations &&
7863       IterationCounter != MaxFixpointIterations) {
7864     errs() << "\n[Attributor] Fixpoint iteration done after: "
7865            << IterationCounter << "/" << MaxFixpointIterations
7866            << " iterations\n";
7867     llvm_unreachable("The fixpoint was not reached with exactly the number of "
7868                      "specified iterations!");
7869   }
7870 
7871   return ManifestChange;
7872 }
7873 
7874 bool Attributor::isValidFunctionSignatureRewrite(
7875     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
7876 
7877   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
7878     // Forbid must-tail calls for now.
7879     return !ACS.isCallbackCall() && !ACS.getCallSite().isMustTailCall();
7880   };
7881 
7882   Function *Fn = Arg.getParent();
7883   // Avoid var-arg functions for now.
7884   if (Fn->isVarArg()) {
7885     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
7886     return false;
7887   }
7888 
7889   // Avoid functions with complicated argument passing semantics.
7890   AttributeList FnAttributeList = Fn->getAttributes();
7891   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
7892       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
7893       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca)) {
7894     LLVM_DEBUG(
7895         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
7896     return false;
7897   }
7898 
7899   // Avoid callbacks for now.
7900   bool AllCallSitesKnown;
7901   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
7902                             AllCallSitesKnown)) {
7903     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
7904     return false;
7905   }
7906 
7907   auto InstPred = [](Instruction &I) {
7908     if (auto *CI = dyn_cast<CallInst>(&I))
7909       return !CI->isMustTailCall();
7910     return true;
7911   };
7912 
7913   // Forbid must-tail calls for now.
7914   // TODO:
7915   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
7916   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
7917                                    nullptr, {Instruction::Call})) {
7918     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
7919     return false;
7920   }
7921 
7922   return true;
7923 }
7924 
7925 bool Attributor::registerFunctionSignatureRewrite(
7926     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
7927     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
7928     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
7929   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
7930                     << Arg.getParent()->getName() << " with "
7931                     << ReplacementTypes.size() << " replacements\n");
7932   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
7933          "Cannot register an invalid rewrite");
7934 
7935   Function *Fn = Arg.getParent();
7936   SmallVectorImpl<ArgumentReplacementInfo *> &ARIs = ArgumentReplacementMap[Fn];
7937   if (ARIs.empty())
7938     ARIs.resize(Fn->arg_size());
7939 
7940   // If we have a replacement already with less than or equal new arguments,
7941   // ignore this request.
7942   ArgumentReplacementInfo *&ARI = ARIs[Arg.getArgNo()];
7943   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
7944     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
7945     return false;
7946   }
7947 
7948   // If we have a replacement already but we like the new one better, delete
7949   // the old.
7950   if (ARI)
7951     delete ARI;
7952 
7953   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
7954                     << Arg.getParent()->getName() << " with "
7955                     << ReplacementTypes.size() << " replacements\n");
7956 
7957   // Remember the replacement.
7958   ARI = new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
7959                                     std::move(CalleeRepairCB),
7960                                     std::move(ACSRepairCB));
7961 
7962   return true;
7963 }
7964 
7965 ChangeStatus Attributor::rewriteFunctionSignatures(
7966     SmallPtrSetImpl<Function *> &ModifiedFns) {
7967   ChangeStatus Changed = ChangeStatus::UNCHANGED;
7968 
7969   for (auto &It : ArgumentReplacementMap) {
7970     Function *OldFn = It.getFirst();
7971 
7972     // Deleted functions do not require rewrites.
7973     if (ToBeDeletedFunctions.count(OldFn))
7974       continue;
7975 
7976     const SmallVectorImpl<ArgumentReplacementInfo *> &ARIs = It.getSecond();
7977     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
7978 
7979     SmallVector<Type *, 16> NewArgumentTypes;
7980     SmallVector<AttributeSet, 16> NewArgumentAttributes;
7981 
7982     // Collect replacement argument types and copy over existing attributes.
7983     AttributeList OldFnAttributeList = OldFn->getAttributes();
7984     for (Argument &Arg : OldFn->args()) {
7985       if (ArgumentReplacementInfo *ARI = ARIs[Arg.getArgNo()]) {
7986         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
7987                                 ARI->ReplacementTypes.end());
7988         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
7989                                      AttributeSet());
7990       } else {
7991         NewArgumentTypes.push_back(Arg.getType());
7992         NewArgumentAttributes.push_back(
7993             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
7994       }
7995     }
7996 
7997     FunctionType *OldFnTy = OldFn->getFunctionType();
7998     Type *RetTy = OldFnTy->getReturnType();
7999 
8000     // Construct the new function type using the new arguments types.
8001     FunctionType *NewFnTy =
8002         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
8003 
8004     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
8005                       << "' from " << *OldFn->getFunctionType() << " to "
8006                       << *NewFnTy << "\n");
8007 
8008     // Create the new function body and insert it into the module.
8009     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
8010                                        OldFn->getAddressSpace(), "");
8011     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
8012     NewFn->takeName(OldFn);
8013     NewFn->copyAttributesFrom(OldFn);
8014 
8015     // Patch the pointer to LLVM function in debug info descriptor.
8016     NewFn->setSubprogram(OldFn->getSubprogram());
8017     OldFn->setSubprogram(nullptr);
8018 
8019     // Recompute the parameter attributes list based on the new arguments for
8020     // the function.
8021     LLVMContext &Ctx = OldFn->getContext();
8022     NewFn->setAttributes(AttributeList::get(
8023         Ctx, OldFnAttributeList.getFnAttributes(),
8024         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
8025 
8026     // Since we have now created the new function, splice the body of the old
8027     // function right into the new function, leaving the old rotting hulk of the
8028     // function empty.
8029     NewFn->getBasicBlockList().splice(NewFn->begin(),
8030                                       OldFn->getBasicBlockList());
8031 
8032     // Set of all "call-like" instructions that invoke the old function mapped
8033     // to their new replacements.
8034     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
8035 
8036     // Callback to create a new "call-like" instruction for a given one.
8037     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
8038       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
8039       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
8040 
8041       // Collect the new argument operands for the replacement call site.
8042       SmallVector<Value *, 16> NewArgOperands;
8043       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
8044       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
8045         unsigned NewFirstArgNum = NewArgOperands.size();
8046         (void)NewFirstArgNum; // only used inside assert.
8047         if (ArgumentReplacementInfo *ARI = ARIs[OldArgNum]) {
8048           if (ARI->ACSRepairCB)
8049             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
8050           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
8051                      NewArgOperands.size() &&
8052                  "ACS repair callback did not provide as many operand as new "
8053                  "types were registered!");
8054           // TODO: Exose the attribute set to the ACS repair callback
8055           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
8056                                          AttributeSet());
8057         } else {
8058           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
8059           NewArgOperandAttributes.push_back(
8060               OldCallAttributeList.getParamAttributes(OldArgNum));
8061         }
8062       }
8063 
8064       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
8065              "Mismatch # argument operands vs. # argument operand attributes!");
8066       assert(NewArgOperands.size() == NewFn->arg_size() &&
8067              "Mismatch # argument operands vs. # function arguments!");
8068 
8069       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
8070       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
8071 
8072       // Create a new call or invoke instruction to replace the old one.
8073       CallBase *NewCB;
8074       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
8075         NewCB =
8076             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
8077                                NewArgOperands, OperandBundleDefs, "", OldCB);
8078       } else {
8079         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
8080                                        "", OldCB);
8081         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
8082         NewCB = NewCI;
8083       }
8084 
8085       // Copy over various properties and the new attributes.
8086       uint64_t W;
8087       if (OldCB->extractProfTotalWeight(W))
8088         NewCB->setProfWeight(W);
8089       NewCB->setCallingConv(OldCB->getCallingConv());
8090       NewCB->setDebugLoc(OldCB->getDebugLoc());
8091       NewCB->takeName(OldCB);
8092       NewCB->setAttributes(AttributeList::get(
8093           Ctx, OldCallAttributeList.getFnAttributes(),
8094           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
8095 
8096       CallSitePairs.push_back({OldCB, NewCB});
8097       return true;
8098     };
8099 
8100     // Use the CallSiteReplacementCreator to create replacement call sites.
8101     bool AllCallSitesKnown;
8102     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
8103                                         true, nullptr, AllCallSitesKnown);
8104     (void)Success;
8105     assert(Success && "Assumed call site replacement to succeed!");
8106 
8107     // Rewire the arguments.
8108     auto OldFnArgIt = OldFn->arg_begin();
8109     auto NewFnArgIt = NewFn->arg_begin();
8110     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
8111          ++OldArgNum, ++OldFnArgIt) {
8112       if (ArgumentReplacementInfo *ARI = ARIs[OldArgNum]) {
8113         if (ARI->CalleeRepairCB)
8114           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
8115         NewFnArgIt += ARI->ReplacementTypes.size();
8116       } else {
8117         NewFnArgIt->takeName(&*OldFnArgIt);
8118         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
8119         ++NewFnArgIt;
8120       }
8121     }
8122 
8123     // Eliminate the instructions *after* we visited all of them.
8124     for (auto &CallSitePair : CallSitePairs) {
8125       CallBase &OldCB = *CallSitePair.first;
8126       CallBase &NewCB = *CallSitePair.second;
8127       // We do not modify the call graph here but simply reanalyze the old
8128       // function. This should be revisited once the old PM is gone.
8129       ModifiedFns.insert(OldCB.getFunction());
8130       OldCB.replaceAllUsesWith(&NewCB);
8131       OldCB.eraseFromParent();
8132     }
8133 
8134     // Replace the function in the call graph (if any).
8135     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
8136 
8137     // If the old function was modified and needed to be reanalyzed, the new one
8138     // does now.
8139     if (ModifiedFns.erase(OldFn))
8140       ModifiedFns.insert(NewFn);
8141 
8142     Changed = ChangeStatus::CHANGED;
8143   }
8144 
8145   return Changed;
8146 }
8147 
8148 void Attributor::initializeInformationCache(Function &F) {
8149 
8150   // Walk all instructions to find interesting instructions that might be
8151   // queried by abstract attributes during their initialization or update.
8152   // This has to happen before we create attributes.
8153   auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
8154   auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
8155 
8156   for (Instruction &I : instructions(&F)) {
8157     bool IsInterestingOpcode = false;
8158 
8159     // To allow easy access to all instructions in a function with a given
8160     // opcode we store them in the InfoCache. As not all opcodes are interesting
8161     // to concrete attributes we only cache the ones that are as identified in
8162     // the following switch.
8163     // Note: There are no concrete attributes now so this is initially empty.
8164     switch (I.getOpcode()) {
8165     default:
8166       assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
8167              "New call site/base instruction type needs to be known int the "
8168              "Attributor.");
8169       break;
8170     case Instruction::Load:
8171       // The alignment of a pointer is interesting for loads.
8172     case Instruction::Store:
8173       // The alignment of a pointer is interesting for stores.
8174     case Instruction::Call:
8175     case Instruction::CallBr:
8176     case Instruction::Invoke:
8177     case Instruction::CleanupRet:
8178     case Instruction::CatchSwitch:
8179     case Instruction::AtomicRMW:
8180     case Instruction::AtomicCmpXchg:
8181     case Instruction::Br:
8182     case Instruction::Resume:
8183     case Instruction::Ret:
8184       IsInterestingOpcode = true;
8185     }
8186     if (IsInterestingOpcode)
8187       InstOpcodeMap[I.getOpcode()].push_back(&I);
8188     if (I.mayReadOrWriteMemory())
8189       ReadOrWriteInsts.push_back(&I);
8190   }
8191 }
8192 
8193 void Attributor::recordDependence(const AbstractAttribute &FromAA,
8194                                   const AbstractAttribute &ToAA,
8195                                   DepClassTy DepClass) {
8196   if (FromAA.getState().isAtFixpoint())
8197     return;
8198 
8199   if (DepClass == DepClassTy::REQUIRED)
8200     QueryMap[&FromAA].RequiredAAs.insert(
8201         const_cast<AbstractAttribute *>(&ToAA));
8202   else
8203     QueryMap[&FromAA].OptionalAAs.insert(
8204         const_cast<AbstractAttribute *>(&ToAA));
8205   QueriedNonFixAA = true;
8206 }
8207 
8208 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
8209   if (!VisitedFunctions.insert(&F).second)
8210     return;
8211   if (F.isDeclaration())
8212     return;
8213 
8214   IRPosition FPos = IRPosition::function(F);
8215 
8216   // Check for dead BasicBlocks in every function.
8217   // We need dead instruction detection because we do not want to deal with
8218   // broken IR in which SSA rules do not apply.
8219   getOrCreateAAFor<AAIsDead>(FPos);
8220 
8221   // Every function might be "will-return".
8222   getOrCreateAAFor<AAWillReturn>(FPos);
8223 
8224   // Every function might contain instructions that cause "undefined behavior".
8225   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
8226 
8227   // Every function can be nounwind.
8228   getOrCreateAAFor<AANoUnwind>(FPos);
8229 
8230   // Every function might be marked "nosync"
8231   getOrCreateAAFor<AANoSync>(FPos);
8232 
8233   // Every function might be "no-free".
8234   getOrCreateAAFor<AANoFree>(FPos);
8235 
8236   // Every function might be "no-return".
8237   getOrCreateAAFor<AANoReturn>(FPos);
8238 
8239   // Every function might be "no-recurse".
8240   getOrCreateAAFor<AANoRecurse>(FPos);
8241 
8242   // Every function might be "readnone/readonly/writeonly/...".
8243   getOrCreateAAFor<AAMemoryBehavior>(FPos);
8244 
8245   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
8246   getOrCreateAAFor<AAMemoryLocation>(FPos);
8247 
8248   // Every function might be applicable for Heap-To-Stack conversion.
8249   if (EnableHeapToStack)
8250     getOrCreateAAFor<AAHeapToStack>(FPos);
8251 
8252   // Return attributes are only appropriate if the return type is non void.
8253   Type *ReturnType = F.getReturnType();
8254   if (!ReturnType->isVoidTy()) {
8255     // Argument attribute "returned" --- Create only one per function even
8256     // though it is an argument attribute.
8257     getOrCreateAAFor<AAReturnedValues>(FPos);
8258 
8259     IRPosition RetPos = IRPosition::returned(F);
8260 
8261     // Every returned value might be dead.
8262     getOrCreateAAFor<AAIsDead>(RetPos);
8263 
8264     // Every function might be simplified.
8265     getOrCreateAAFor<AAValueSimplify>(RetPos);
8266 
8267     if (ReturnType->isPointerTy()) {
8268 
8269       // Every function with pointer return type might be marked align.
8270       getOrCreateAAFor<AAAlign>(RetPos);
8271 
8272       // Every function with pointer return type might be marked nonnull.
8273       getOrCreateAAFor<AANonNull>(RetPos);
8274 
8275       // Every function with pointer return type might be marked noalias.
8276       getOrCreateAAFor<AANoAlias>(RetPos);
8277 
8278       // Every function with pointer return type might be marked
8279       // dereferenceable.
8280       getOrCreateAAFor<AADereferenceable>(RetPos);
8281     }
8282   }
8283 
8284   for (Argument &Arg : F.args()) {
8285     IRPosition ArgPos = IRPosition::argument(Arg);
8286 
8287     // Every argument might be simplified.
8288     getOrCreateAAFor<AAValueSimplify>(ArgPos);
8289 
8290     // Every argument might be dead.
8291     getOrCreateAAFor<AAIsDead>(ArgPos);
8292 
8293     if (Arg.getType()->isPointerTy()) {
8294       // Every argument with pointer type might be marked nonnull.
8295       getOrCreateAAFor<AANonNull>(ArgPos);
8296 
8297       // Every argument with pointer type might be marked noalias.
8298       getOrCreateAAFor<AANoAlias>(ArgPos);
8299 
8300       // Every argument with pointer type might be marked dereferenceable.
8301       getOrCreateAAFor<AADereferenceable>(ArgPos);
8302 
8303       // Every argument with pointer type might be marked align.
8304       getOrCreateAAFor<AAAlign>(ArgPos);
8305 
8306       // Every argument with pointer type might be marked nocapture.
8307       getOrCreateAAFor<AANoCapture>(ArgPos);
8308 
8309       // Every argument with pointer type might be marked
8310       // "readnone/readonly/writeonly/..."
8311       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
8312 
8313       // Every argument with pointer type might be marked nofree.
8314       getOrCreateAAFor<AANoFree>(ArgPos);
8315 
8316       // Every argument with pointer type might be privatizable (or promotable)
8317       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
8318     }
8319   }
8320 
8321   auto CallSitePred = [&](Instruction &I) -> bool {
8322     CallSite CS(&I);
8323     IRPosition CSRetPos = IRPosition::callsite_returned(CS);
8324 
8325     // Call sites might be dead if they do not have side effects and no live
8326     // users. The return value might be dead if there are no live users.
8327     getOrCreateAAFor<AAIsDead>(CSRetPos);
8328 
8329     if (Function *Callee = CS.getCalledFunction()) {
8330       // Skip declerations except if annotations on their call sites were
8331       // explicitly requested.
8332       if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
8333           !Callee->hasMetadata(LLVMContext::MD_callback))
8334         return true;
8335 
8336       if (!Callee->getReturnType()->isVoidTy() && !CS->use_empty()) {
8337 
8338         IRPosition CSRetPos = IRPosition::callsite_returned(CS);
8339 
8340         // Call site return integer values might be limited by a constant range.
8341         if (Callee->getReturnType()->isIntegerTy())
8342           getOrCreateAAFor<AAValueConstantRange>(CSRetPos);
8343       }
8344 
8345       for (int i = 0, e = CS.getNumArgOperands(); i < e; i++) {
8346 
8347         IRPosition CSArgPos = IRPosition::callsite_argument(CS, i);
8348 
8349         // Every call site argument might be dead.
8350         getOrCreateAAFor<AAIsDead>(CSArgPos);
8351 
8352         // Call site argument might be simplified.
8353         getOrCreateAAFor<AAValueSimplify>(CSArgPos);
8354 
8355         if (!CS.getArgument(i)->getType()->isPointerTy())
8356           continue;
8357 
8358         // Call site argument attribute "non-null".
8359         getOrCreateAAFor<AANonNull>(CSArgPos);
8360 
8361         // Call site argument attribute "no-alias".
8362         getOrCreateAAFor<AANoAlias>(CSArgPos);
8363 
8364         // Call site argument attribute "dereferenceable".
8365         getOrCreateAAFor<AADereferenceable>(CSArgPos);
8366 
8367         // Call site argument attribute "align".
8368         getOrCreateAAFor<AAAlign>(CSArgPos);
8369 
8370         // Call site argument attribute
8371         // "readnone/readonly/writeonly/..."
8372         getOrCreateAAFor<AAMemoryBehavior>(CSArgPos);
8373 
8374         // Call site argument attribute "nofree".
8375         getOrCreateAAFor<AANoFree>(CSArgPos);
8376       }
8377     }
8378     return true;
8379   };
8380 
8381   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
8382   bool Success;
8383   Success = checkForAllInstructionsImpl(
8384       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
8385       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
8386        (unsigned)Instruction::Call});
8387   (void)Success;
8388   assert(Success && "Expected the check call to be successful!");
8389 
8390   auto LoadStorePred = [&](Instruction &I) -> bool {
8391     if (isa<LoadInst>(I))
8392       getOrCreateAAFor<AAAlign>(
8393           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
8394     else
8395       getOrCreateAAFor<AAAlign>(
8396           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
8397     return true;
8398   };
8399   Success = checkForAllInstructionsImpl(
8400       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
8401       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
8402   (void)Success;
8403   assert(Success && "Expected the check call to be successful!");
8404 }
8405 
8406 /// Helpers to ease debugging through output streams and print calls.
8407 ///
8408 ///{
8409 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
8410   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
8411 }
8412 
8413 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
8414   switch (AP) {
8415   case IRPosition::IRP_INVALID:
8416     return OS << "inv";
8417   case IRPosition::IRP_FLOAT:
8418     return OS << "flt";
8419   case IRPosition::IRP_RETURNED:
8420     return OS << "fn_ret";
8421   case IRPosition::IRP_CALL_SITE_RETURNED:
8422     return OS << "cs_ret";
8423   case IRPosition::IRP_FUNCTION:
8424     return OS << "fn";
8425   case IRPosition::IRP_CALL_SITE:
8426     return OS << "cs";
8427   case IRPosition::IRP_ARGUMENT:
8428     return OS << "arg";
8429   case IRPosition::IRP_CALL_SITE_ARGUMENT:
8430     return OS << "cs_arg";
8431   }
8432   llvm_unreachable("Unknown attribute position!");
8433 }
8434 
8435 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
8436   const Value &AV = Pos.getAssociatedValue();
8437   return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
8438             << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
8439 }
8440 
8441 template <typename base_ty, base_ty BestState, base_ty WorstState>
8442 raw_ostream &
8443 llvm::operator<<(raw_ostream &OS,
8444                  const IntegerStateBase<base_ty, BestState, WorstState> &S) {
8445   return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
8446             << static_cast<const AbstractState &>(S);
8447 }
8448 
8449 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
8450   OS << "range-state(" << S.getBitWidth() << ")<";
8451   S.getKnown().print(OS);
8452   OS << " / ";
8453   S.getAssumed().print(OS);
8454   OS << ">";
8455 
8456   return OS << static_cast<const AbstractState &>(S);
8457 }
8458 
8459 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
8460   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
8461 }
8462 
8463 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
8464   AA.print(OS);
8465   return OS;
8466 }
8467 
8468 void AbstractAttribute::print(raw_ostream &OS) const {
8469   OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState()
8470      << "]";
8471 }
8472 ///}
8473 
8474 /// ----------------------------------------------------------------------------
8475 ///                       Pass (Manager) Boilerplate
8476 /// ----------------------------------------------------------------------------
8477 
8478 static bool runAttributorOnFunctions(InformationCache &InfoCache,
8479                                      SetVector<Function *> &Functions,
8480                                      AnalysisGetter &AG,
8481                                      CallGraphUpdater &CGUpdater) {
8482   if (DisableAttributor || Functions.empty())
8483     return false;
8484 
8485   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
8486                     << " functions.\n");
8487 
8488   // Create an Attributor and initially empty information cache that is filled
8489   // while we identify default attribute opportunities.
8490   Attributor A(Functions, InfoCache, CGUpdater, DepRecInterval);
8491 
8492   for (Function *F : Functions)
8493     A.initializeInformationCache(*F);
8494 
8495   for (Function *F : Functions) {
8496     if (F->hasExactDefinition())
8497       NumFnWithExactDefinition++;
8498     else
8499       NumFnWithoutExactDefinition++;
8500 
8501     // We look at internal functions only on-demand but if any use is not a
8502     // direct call or outside the current set of analyzed functions, we have to
8503     // do it eagerly.
8504     if (F->hasLocalLinkage()) {
8505       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
8506             ImmutableCallSite ICS(U.getUser());
8507             return ICS && ICS.isCallee(&U) &&
8508                    Functions.count(const_cast<Function *>(ICS.getCaller()));
8509           }))
8510         continue;
8511     }
8512 
8513     // Populate the Attributor with abstract attribute opportunities in the
8514     // function and the information cache with IR information.
8515     A.identifyDefaultAbstractAttributes(*F);
8516   }
8517 
8518   ChangeStatus Changed = A.run();
8519   assert(!verifyModule(*Functions.front()->getParent(), &errs()) &&
8520          "Module verification failed!");
8521   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
8522                     << " functions, result: " << Changed << ".\n");
8523   return Changed == ChangeStatus::CHANGED;
8524 }
8525 
8526 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
8527   FunctionAnalysisManager &FAM =
8528       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
8529   AnalysisGetter AG(FAM);
8530 
8531   SetVector<Function *> Functions;
8532   for (Function &F : M)
8533     Functions.insert(&F);
8534 
8535   CallGraphUpdater CGUpdater;
8536   InformationCache InfoCache(M, AG, /* CGSCC */ nullptr);
8537   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
8538     // FIXME: Think about passes we will preserve and add them here.
8539     return PreservedAnalyses::none();
8540   }
8541   return PreservedAnalyses::all();
8542 }
8543 
8544 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
8545                                            CGSCCAnalysisManager &AM,
8546                                            LazyCallGraph &CG,
8547                                            CGSCCUpdateResult &UR) {
8548   FunctionAnalysisManager &FAM =
8549       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
8550   AnalysisGetter AG(FAM);
8551 
8552   SetVector<Function *> Functions;
8553   for (LazyCallGraph::Node &N : C)
8554     Functions.insert(&N.getFunction());
8555 
8556   if (Functions.empty())
8557     return PreservedAnalyses::all();
8558 
8559   Module &M = *Functions.back()->getParent();
8560   CallGraphUpdater CGUpdater;
8561   CGUpdater.initialize(CG, C, AM, UR);
8562   InformationCache InfoCache(M, AG, /* CGSCC */ &Functions);
8563   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
8564     // FIXME: Think about passes we will preserve and add them here.
8565     return PreservedAnalyses::none();
8566   }
8567   return PreservedAnalyses::all();
8568 }
8569 
8570 namespace {
8571 
8572 struct AttributorLegacyPass : public ModulePass {
8573   static char ID;
8574 
8575   AttributorLegacyPass() : ModulePass(ID) {
8576     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
8577   }
8578 
8579   bool runOnModule(Module &M) override {
8580     if (skipModule(M))
8581       return false;
8582 
8583     AnalysisGetter AG;
8584     SetVector<Function *> Functions;
8585     for (Function &F : M)
8586       Functions.insert(&F);
8587 
8588     CallGraphUpdater CGUpdater;
8589     InformationCache InfoCache(M, AG, /* CGSCC */ nullptr);
8590     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
8591   }
8592 
8593   void getAnalysisUsage(AnalysisUsage &AU) const override {
8594     // FIXME: Think about passes we will preserve and add them here.
8595     AU.addRequired<TargetLibraryInfoWrapperPass>();
8596   }
8597 };
8598 
8599 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
8600   CallGraphUpdater CGUpdater;
8601   static char ID;
8602 
8603   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
8604     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
8605   }
8606 
8607   bool runOnSCC(CallGraphSCC &SCC) override {
8608     if (skipSCC(SCC))
8609       return false;
8610 
8611     SetVector<Function *> Functions;
8612     for (CallGraphNode *CGN : SCC)
8613       if (Function *Fn = CGN->getFunction())
8614         if (!Fn->isDeclaration())
8615           Functions.insert(Fn);
8616 
8617     if (Functions.empty())
8618       return false;
8619 
8620     AnalysisGetter AG;
8621     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
8622     CGUpdater.initialize(CG, SCC);
8623     Module &M = *Functions.back()->getParent();
8624     InformationCache InfoCache(M, AG, /* CGSCC */ &Functions);
8625     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
8626   }
8627 
8628   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
8629 
8630   void getAnalysisUsage(AnalysisUsage &AU) const override {
8631     // FIXME: Think about passes we will preserve and add them here.
8632     AU.addRequired<TargetLibraryInfoWrapperPass>();
8633     CallGraphSCCPass::getAnalysisUsage(AU);
8634   }
8635 };
8636 
8637 } // end anonymous namespace
8638 
8639 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
8640 Pass *llvm::createAttributorCGSCCLegacyPass() {
8641   return new AttributorCGSCCLegacyPass();
8642 }
8643 
8644 char AttributorLegacyPass::ID = 0;
8645 char AttributorCGSCCLegacyPass::ID = 0;
8646 
8647 const char AAReturnedValues::ID = 0;
8648 const char AANoUnwind::ID = 0;
8649 const char AANoSync::ID = 0;
8650 const char AANoFree::ID = 0;
8651 const char AANonNull::ID = 0;
8652 const char AANoRecurse::ID = 0;
8653 const char AAWillReturn::ID = 0;
8654 const char AAUndefinedBehavior::ID = 0;
8655 const char AANoAlias::ID = 0;
8656 const char AAReachability::ID = 0;
8657 const char AANoReturn::ID = 0;
8658 const char AAIsDead::ID = 0;
8659 const char AADereferenceable::ID = 0;
8660 const char AAAlign::ID = 0;
8661 const char AANoCapture::ID = 0;
8662 const char AAValueSimplify::ID = 0;
8663 const char AAHeapToStack::ID = 0;
8664 const char AAPrivatizablePtr::ID = 0;
8665 const char AAMemoryBehavior::ID = 0;
8666 const char AAMemoryLocation::ID = 0;
8667 const char AAValueConstantRange::ID = 0;
8668 
8669 // Macro magic to create the static generator function for attributes that
8670 // follow the naming scheme.
8671 
8672 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
8673   case IRPosition::PK:                                                         \
8674     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
8675 
8676 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
8677   case IRPosition::PK:                                                         \
8678     AA = new CLASS##SUFFIX(IRP);                                               \
8679     break;
8680 
8681 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
8682   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8683     CLASS *AA = nullptr;                                                       \
8684     switch (IRP.getPositionKind()) {                                           \
8685       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8686       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8687       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8688       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8689       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8690       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8691       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8692       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8693     }                                                                          \
8694     return *AA;                                                                \
8695   }
8696 
8697 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
8698   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8699     CLASS *AA = nullptr;                                                       \
8700     switch (IRP.getPositionKind()) {                                           \
8701       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8702       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
8703       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8704       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8705       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8706       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8707       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8708       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8709     }                                                                          \
8710     return *AA;                                                                \
8711   }
8712 
8713 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
8714   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8715     CLASS *AA = nullptr;                                                       \
8716     switch (IRP.getPositionKind()) {                                           \
8717       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8718       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8719       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8720       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8721       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8722       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8723       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8724       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8725     }                                                                          \
8726     return *AA;                                                                \
8727   }
8728 
8729 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
8730   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8731     CLASS *AA = nullptr;                                                       \
8732     switch (IRP.getPositionKind()) {                                           \
8733       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8734       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8735       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8736       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8737       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8738       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8739       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8740       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8741     }                                                                          \
8742     return *AA;                                                                \
8743   }
8744 
8745 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
8746   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8747     CLASS *AA = nullptr;                                                       \
8748     switch (IRP.getPositionKind()) {                                           \
8749       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8750       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8751       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8752       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8753       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8754       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8755       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8756       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8757     }                                                                          \
8758     return *AA;                                                                \
8759   }
8760 
8761 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
8762 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
8763 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
8764 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
8765 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
8766 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
8767 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
8768 
8769 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
8770 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
8771 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
8772 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
8773 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
8774 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
8775 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
8776 
8777 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
8778 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
8779 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
8780 
8781 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
8782 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
8783 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
8784 
8785 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
8786 
8787 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
8788 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
8789 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
8790 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
8791 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
8792 #undef SWITCH_PK_CREATE
8793 #undef SWITCH_PK_INV
8794 
8795 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
8796                       "Deduce and propagate attributes", false, false)
8797 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
8798 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
8799                     "Deduce and propagate attributes", false, false)
8800 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
8801                       "Deduce and propagate attributes (CGSCC pass)", false,
8802                       false)
8803 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
8804 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
8805 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
8806                     "Deduce and propagate attributes (CGSCC pass)", false,
8807                     false)
8808