1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/MustExecute.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/NoFolder.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/DebugCounter.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/GraphWriter.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 
52 #include <cassert>
53 #include <string>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "attributor"
58 
59 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
60               "Determine what attributes are manifested in the IR");
61 
62 STATISTIC(NumFnDeleted, "Number of function deleted");
63 STATISTIC(NumFnWithExactDefinition,
64           "Number of functions with exact definitions");
65 STATISTIC(NumFnWithoutExactDefinition,
66           "Number of functions without exact definitions");
67 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
68 STATISTIC(NumAttributesTimedOut,
69           "Number of abstract attributes timed out before fixpoint");
70 STATISTIC(NumAttributesValidFixpoint,
71           "Number of abstract attributes in a valid fixpoint state");
72 STATISTIC(NumAttributesManifested,
73           "Number of abstract attributes manifested in IR");
74 
75 // TODO: Determine a good default value.
76 //
77 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
78 // (when run with the first 5 abstract attributes). The results also indicate
79 // that we never reach 32 iterations but always find a fixpoint sooner.
80 //
81 // This will become more evolved once we perform two interleaved fixpoint
82 // iterations: bottom-up and top-down.
83 static cl::opt<unsigned>
84     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
85                           cl::desc("Maximal number of fixpoint iterations."),
86                           cl::init(32));
87 
88 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
89     "attributor-max-initialization-chain-length", cl::Hidden,
90     cl::desc(
91         "Maximal number of chained initializations (to avoid stack overflows)"),
92     cl::location(MaxInitializationChainLength), cl::init(1024));
93 unsigned llvm::MaxInitializationChainLength;
94 
95 static cl::opt<bool> VerifyMaxFixpointIterations(
96     "attributor-max-iterations-verify", cl::Hidden,
97     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
98     cl::init(false));
99 
100 static cl::opt<bool> AnnotateDeclarationCallSites(
101     "attributor-annotate-decl-cs", cl::Hidden,
102     cl::desc("Annotate call sites of function declarations."), cl::init(false));
103 
104 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
105                                        cl::init(true), cl::Hidden);
106 
107 static cl::opt<bool>
108     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
109                          cl::desc("Allow the Attributor to create shallow "
110                                   "wrappers for non-exact definitions."),
111                          cl::init(false));
112 
113 static cl::opt<bool>
114     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
115                      cl::desc("Allow the Attributor to use IP information "
116                               "derived from non-exact functions via cloning"),
117                      cl::init(false));
118 
119 // These options can only used for debug builds.
120 #ifndef NDEBUG
121 static cl::list<std::string>
122     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
123                   cl::desc("Comma seperated list of attribute names that are "
124                            "allowed to be seeded."),
125                   cl::ZeroOrMore, cl::CommaSeparated);
126 
127 static cl::list<std::string> FunctionSeedAllowList(
128     "attributor-function-seed-allow-list", cl::Hidden,
129     cl::desc("Comma seperated list of function names that are "
130              "allowed to be seeded."),
131     cl::ZeroOrMore, cl::CommaSeparated);
132 #endif
133 
134 static cl::opt<bool>
135     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
136                  cl::desc("Dump the dependency graph to dot files."),
137                  cl::init(false));
138 
139 static cl::opt<std::string> DepGraphDotFileNamePrefix(
140     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
141     cl::desc("The prefix used for the CallGraph dot file names."));
142 
143 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
144                                   cl::desc("View the dependency graph."),
145                                   cl::init(false));
146 
147 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
148                                        cl::desc("Print attribute dependencies"),
149                                        cl::init(false));
150 
151 static cl::opt<bool> EnableCallSiteSpecific(
152     "attributor-enable-call-site-specific-deduction", cl::Hidden,
153     cl::desc("Allow the Attributor to do call site specific analysis"),
154     cl::init(false));
155 
156 static cl::opt<bool>
157     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
158                    cl::desc("Print Attributor's internal call graph"),
159                    cl::init(false));
160 
161 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
162                                       cl::Hidden,
163                                       cl::desc("Try to simplify all loads."),
164                                       cl::init(true));
165 
166 /// Logic operators for the change status enum class.
167 ///
168 ///{
169 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
170   return L == ChangeStatus::CHANGED ? L : R;
171 }
172 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
173   L = L | R;
174   return L;
175 }
176 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
177   return L == ChangeStatus::UNCHANGED ? L : R;
178 }
179 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
180   L = L & R;
181   return L;
182 }
183 ///}
184 
185 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
186                              const Value &V) {
187   if (auto *C = dyn_cast<Constant>(&V))
188     return !C->isThreadDependent();
189   // TODO: Inspect and cache more complex instructions.
190   if (auto *CB = dyn_cast<CallBase>(&V))
191     return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
192            !CB->mayReadFromMemory();
193   const Function *Scope = nullptr;
194   if (auto *I = dyn_cast<Instruction>(&V))
195     Scope = I->getFunction();
196   if (auto *A = dyn_cast<Argument>(&V))
197     Scope = A->getParent();
198   if (!Scope)
199     return false;
200   auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
201       QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
202   return NoRecurseAA.isAssumedNoRecurse();
203 }
204 
205 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty) {
206   if (isa<AllocaInst>(Obj))
207     return UndefValue::get(&Ty);
208   auto *GV = dyn_cast<GlobalVariable>(&Obj);
209   if (!GV || !GV->hasLocalLinkage())
210     return nullptr;
211   if (!GV->hasInitializer())
212     return UndefValue::get(&Ty);
213   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
214 }
215 
216 bool AA::isValidInScope(const Value &V, const Function *Scope) {
217   if (isa<Constant>(V))
218     return true;
219   if (auto *I = dyn_cast<Instruction>(&V))
220     return I->getFunction() == Scope;
221   if (auto *A = dyn_cast<Argument>(&V))
222     return A->getParent() == Scope;
223   return false;
224 }
225 
226 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
227                            InformationCache &InfoCache) {
228   if (isa<Constant>(V))
229     return true;
230   const Function *Scope = CtxI.getFunction();
231   if (auto *A = dyn_cast<Argument>(&V))
232     return A->getParent() == Scope;
233   if (auto *I = dyn_cast<Instruction>(&V))
234     if (I->getFunction() == Scope) {
235       const DominatorTree *DT =
236           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
237       return DT && DT->dominates(I, &CtxI);
238     }
239   return false;
240 }
241 
242 Value *AA::getWithType(Value &V, Type &Ty) {
243   if (V.getType() == &Ty)
244     return &V;
245   if (isa<PoisonValue>(V))
246     return PoisonValue::get(&Ty);
247   if (isa<UndefValue>(V))
248     return UndefValue::get(&Ty);
249   if (auto *C = dyn_cast<Constant>(&V)) {
250     if (C->isNullValue())
251       return Constant::getNullValue(&Ty);
252     if (C->getType()->isPointerTy() && Ty.isPointerTy())
253       return ConstantExpr::getPointerCast(C, &Ty);
254     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
255       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
256         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
257       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
258         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
259     }
260   }
261   return nullptr;
262 }
263 
264 Optional<Value *>
265 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
266                                          const Optional<Value *> &B, Type *Ty) {
267   if (A == B)
268     return A;
269   if (!B.hasValue())
270     return A;
271   if (*B == nullptr)
272     return nullptr;
273   if (!A.hasValue())
274     return Ty ? getWithType(**B, *Ty) : nullptr;
275   if (*A == nullptr)
276     return nullptr;
277   if (!Ty)
278     Ty = (*A)->getType();
279   if (isa_and_nonnull<UndefValue>(*A))
280     return getWithType(**B, *Ty);
281   if (isa<UndefValue>(*B))
282     return A;
283   if (*A && *B && *A == getWithType(**B, *Ty))
284     return A;
285   return nullptr;
286 }
287 
288 bool AA::getPotentialCopiesOfStoredValue(
289     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
290     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
291 
292   Value &Ptr = *SI.getPointerOperand();
293   SmallVector<Value *, 8> Objects;
294   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI)) {
295     LLVM_DEBUG(
296         dbgs() << "Underlying objects stored into could not be determined\n";);
297     return false;
298   }
299 
300   SmallVector<const AAPointerInfo *> PIs;
301   SmallVector<Value *> NewCopies;
302 
303   for (Value *Obj : Objects) {
304     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
305     if (isa<UndefValue>(Obj))
306       continue;
307     if (isa<ConstantPointerNull>(Obj)) {
308       // A null pointer access can be undefined but any offset from null may
309       // be OK. We do not try to optimize the latter.
310       if (!NullPointerIsDefined(SI.getFunction(),
311                                 Ptr.getType()->getPointerAddressSpace()) &&
312           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
313               Obj)
314         continue;
315       LLVM_DEBUG(
316           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
317       return false;
318     }
319     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj)) {
320       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
321                         << "\n";);
322       return false;
323     }
324     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
325       if (!GV->hasLocalLinkage()) {
326         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
327                              "linkage, not supported yet: "
328                           << *Obj << "\n";);
329         return false;
330       }
331 
332     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
333       if (!Acc.isRead())
334         return true;
335       auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
336       if (!LI) {
337         LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
338                              "instruction not supported yet: "
339                           << *Acc.getRemoteInst() << "\n";);
340         return false;
341       }
342       NewCopies.push_back(LI);
343       return true;
344     };
345 
346     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
347                                          DepClassTy::NONE);
348     if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
349       LLVM_DEBUG(
350           dbgs()
351           << "Failed to verify all interfering accesses for underlying object: "
352           << *Obj << "\n");
353       return false;
354     }
355     PIs.push_back(&PI);
356   }
357 
358   for (auto *PI : PIs) {
359     if (!PI->getState().isAtFixpoint())
360       UsedAssumedInformation = true;
361     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
362   }
363   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
364 
365   return true;
366 }
367 
368 /// Return true if \p New is equal or worse than \p Old.
369 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
370   if (!Old.isIntAttribute())
371     return true;
372 
373   return Old.getValueAsInt() >= New.getValueAsInt();
374 }
375 
376 /// Return true if the information provided by \p Attr was added to the
377 /// attribute list \p Attrs. This is only the case if it was not already present
378 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
379 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
380                              AttributeList &Attrs, int AttrIdx,
381                              bool ForceReplace = false) {
382 
383   if (Attr.isEnumAttribute()) {
384     Attribute::AttrKind Kind = Attr.getKindAsEnum();
385     if (Attrs.hasAttribute(AttrIdx, Kind))
386       if (!ForceReplace &&
387           isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
388         return false;
389     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
390     return true;
391   }
392   if (Attr.isStringAttribute()) {
393     StringRef Kind = Attr.getKindAsString();
394     if (Attrs.hasAttribute(AttrIdx, Kind))
395       if (!ForceReplace &&
396           isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
397         return false;
398     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
399     return true;
400   }
401   if (Attr.isIntAttribute()) {
402     Attribute::AttrKind Kind = Attr.getKindAsEnum();
403     if (Attrs.hasAttribute(AttrIdx, Kind))
404       if (!ForceReplace &&
405           isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
406         return false;
407     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
408     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
409     return true;
410   }
411 
412   llvm_unreachable("Expected enum or string attribute!");
413 }
414 
415 Argument *IRPosition::getAssociatedArgument() const {
416   if (getPositionKind() == IRP_ARGUMENT)
417     return cast<Argument>(&getAnchorValue());
418 
419   // Not an Argument and no argument number means this is not a call site
420   // argument, thus we cannot find a callback argument to return.
421   int ArgNo = getCallSiteArgNo();
422   if (ArgNo < 0)
423     return nullptr;
424 
425   // Use abstract call sites to make the connection between the call site
426   // values and the ones in callbacks. If a callback was found that makes use
427   // of the underlying call site operand, we want the corresponding callback
428   // callee argument and not the direct callee argument.
429   Optional<Argument *> CBCandidateArg;
430   SmallVector<const Use *, 4> CallbackUses;
431   const auto &CB = cast<CallBase>(getAnchorValue());
432   AbstractCallSite::getCallbackUses(CB, CallbackUses);
433   for (const Use *U : CallbackUses) {
434     AbstractCallSite ACS(U);
435     assert(ACS && ACS.isCallbackCall());
436     if (!ACS.getCalledFunction())
437       continue;
438 
439     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
440 
441       // Test if the underlying call site operand is argument number u of the
442       // callback callee.
443       if (ACS.getCallArgOperandNo(u) != ArgNo)
444         continue;
445 
446       assert(ACS.getCalledFunction()->arg_size() > u &&
447              "ACS mapped into var-args arguments!");
448       if (CBCandidateArg.hasValue()) {
449         CBCandidateArg = nullptr;
450         break;
451       }
452       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
453     }
454   }
455 
456   // If we found a unique callback candidate argument, return it.
457   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
458     return CBCandidateArg.getValue();
459 
460   // If no callbacks were found, or none used the underlying call site operand
461   // exclusively, use the direct callee argument if available.
462   const Function *Callee = CB.getCalledFunction();
463   if (Callee && Callee->arg_size() > unsigned(ArgNo))
464     return Callee->getArg(ArgNo);
465 
466   return nullptr;
467 }
468 
469 ChangeStatus AbstractAttribute::update(Attributor &A) {
470   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
471   if (getState().isAtFixpoint())
472     return HasChanged;
473 
474   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
475 
476   HasChanged = updateImpl(A);
477 
478   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
479                     << "\n");
480 
481   return HasChanged;
482 }
483 
484 ChangeStatus
485 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
486                                    const ArrayRef<Attribute> &DeducedAttrs,
487                                    bool ForceReplace) {
488   Function *ScopeFn = IRP.getAnchorScope();
489   IRPosition::Kind PK = IRP.getPositionKind();
490 
491   // In the following some generic code that will manifest attributes in
492   // DeducedAttrs if they improve the current IR. Due to the different
493   // annotation positions we use the underlying AttributeList interface.
494 
495   AttributeList Attrs;
496   switch (PK) {
497   case IRPosition::IRP_INVALID:
498   case IRPosition::IRP_FLOAT:
499     return ChangeStatus::UNCHANGED;
500   case IRPosition::IRP_ARGUMENT:
501   case IRPosition::IRP_FUNCTION:
502   case IRPosition::IRP_RETURNED:
503     Attrs = ScopeFn->getAttributes();
504     break;
505   case IRPosition::IRP_CALL_SITE:
506   case IRPosition::IRP_CALL_SITE_RETURNED:
507   case IRPosition::IRP_CALL_SITE_ARGUMENT:
508     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
509     break;
510   }
511 
512   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
513   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
514   for (const Attribute &Attr : DeducedAttrs) {
515     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
516       continue;
517 
518     HasChanged = ChangeStatus::CHANGED;
519   }
520 
521   if (HasChanged == ChangeStatus::UNCHANGED)
522     return HasChanged;
523 
524   switch (PK) {
525   case IRPosition::IRP_ARGUMENT:
526   case IRPosition::IRP_FUNCTION:
527   case IRPosition::IRP_RETURNED:
528     ScopeFn->setAttributes(Attrs);
529     break;
530   case IRPosition::IRP_CALL_SITE:
531   case IRPosition::IRP_CALL_SITE_RETURNED:
532   case IRPosition::IRP_CALL_SITE_ARGUMENT:
533     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
534     break;
535   case IRPosition::IRP_INVALID:
536   case IRPosition::IRP_FLOAT:
537     break;
538   }
539 
540   return HasChanged;
541 }
542 
543 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
544 const IRPosition
545     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
546 
547 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
548   IRPositions.emplace_back(IRP);
549 
550   // Helper to determine if operand bundles on a call site are benin or
551   // potentially problematic. We handle only llvm.assume for now.
552   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
553     return (isa<IntrinsicInst>(CB) &&
554             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
555   };
556 
557   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
558   switch (IRP.getPositionKind()) {
559   case IRPosition::IRP_INVALID:
560   case IRPosition::IRP_FLOAT:
561   case IRPosition::IRP_FUNCTION:
562     return;
563   case IRPosition::IRP_ARGUMENT:
564   case IRPosition::IRP_RETURNED:
565     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
566     return;
567   case IRPosition::IRP_CALL_SITE:
568     assert(CB && "Expected call site!");
569     // TODO: We need to look at the operand bundles similar to the redirection
570     //       in CallBase.
571     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
572       if (const Function *Callee = CB->getCalledFunction())
573         IRPositions.emplace_back(IRPosition::function(*Callee));
574     return;
575   case IRPosition::IRP_CALL_SITE_RETURNED:
576     assert(CB && "Expected call site!");
577     // TODO: We need to look at the operand bundles similar to the redirection
578     //       in CallBase.
579     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
580       if (const Function *Callee = CB->getCalledFunction()) {
581         IRPositions.emplace_back(IRPosition::returned(*Callee));
582         IRPositions.emplace_back(IRPosition::function(*Callee));
583         for (const Argument &Arg : Callee->args())
584           if (Arg.hasReturnedAttr()) {
585             IRPositions.emplace_back(
586                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
587             IRPositions.emplace_back(
588                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
589             IRPositions.emplace_back(IRPosition::argument(Arg));
590           }
591       }
592     }
593     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
594     return;
595   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
596     assert(CB && "Expected call site!");
597     // TODO: We need to look at the operand bundles similar to the redirection
598     //       in CallBase.
599     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
600       const Function *Callee = CB->getCalledFunction();
601       if (Callee) {
602         if (Argument *Arg = IRP.getAssociatedArgument())
603           IRPositions.emplace_back(IRPosition::argument(*Arg));
604         IRPositions.emplace_back(IRPosition::function(*Callee));
605       }
606     }
607     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
608     return;
609   }
610   }
611 }
612 
613 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
614                          bool IgnoreSubsumingPositions, Attributor *A) const {
615   SmallVector<Attribute, 4> Attrs;
616   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
617     for (Attribute::AttrKind AK : AKs)
618       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
619         return true;
620     // The first position returned by the SubsumingPositionIterator is
621     // always the position itself. If we ignore subsuming positions we
622     // are done after the first iteration.
623     if (IgnoreSubsumingPositions)
624       break;
625   }
626   if (A)
627     for (Attribute::AttrKind AK : AKs)
628       if (getAttrsFromAssumes(AK, Attrs, *A))
629         return true;
630   return false;
631 }
632 
633 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
634                           SmallVectorImpl<Attribute> &Attrs,
635                           bool IgnoreSubsumingPositions, Attributor *A) const {
636   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
637     for (Attribute::AttrKind AK : AKs)
638       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
639     // The first position returned by the SubsumingPositionIterator is
640     // always the position itself. If we ignore subsuming positions we
641     // are done after the first iteration.
642     if (IgnoreSubsumingPositions)
643       break;
644   }
645   if (A)
646     for (Attribute::AttrKind AK : AKs)
647       getAttrsFromAssumes(AK, Attrs, *A);
648 }
649 
650 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
651                                     SmallVectorImpl<Attribute> &Attrs) const {
652   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
653     return false;
654 
655   AttributeList AttrList;
656   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
657     AttrList = CB->getAttributes();
658   else
659     AttrList = getAssociatedFunction()->getAttributes();
660 
661   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
662   if (HasAttr)
663     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
664   return HasAttr;
665 }
666 
667 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
668                                      SmallVectorImpl<Attribute> &Attrs,
669                                      Attributor &A) const {
670   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
671   Value &AssociatedValue = getAssociatedValue();
672 
673   const Assume2KnowledgeMap &A2K =
674       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
675 
676   // Check if we found any potential assume use, if not we don't need to create
677   // explorer iterators.
678   if (A2K.empty())
679     return false;
680 
681   LLVMContext &Ctx = AssociatedValue.getContext();
682   unsigned AttrsSize = Attrs.size();
683   MustBeExecutedContextExplorer &Explorer =
684       A.getInfoCache().getMustBeExecutedContextExplorer();
685   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
686   for (auto &It : A2K)
687     if (Explorer.findInContextOf(It.first, EIt, EEnd))
688       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
689   return AttrsSize != Attrs.size();
690 }
691 
692 void IRPosition::verify() {
693 #ifdef EXPENSIVE_CHECKS
694   switch (getPositionKind()) {
695   case IRP_INVALID:
696     assert((CBContext == nullptr) &&
697            "Invalid position must not have CallBaseContext!");
698     assert(!Enc.getOpaqueValue() &&
699            "Expected a nullptr for an invalid position!");
700     return;
701   case IRP_FLOAT:
702     assert((!isa<CallBase>(&getAssociatedValue()) &&
703             !isa<Argument>(&getAssociatedValue())) &&
704            "Expected specialized kind for call base and argument values!");
705     return;
706   case IRP_RETURNED:
707     assert(isa<Function>(getAsValuePtr()) &&
708            "Expected function for a 'returned' position!");
709     assert(getAsValuePtr() == &getAssociatedValue() &&
710            "Associated value mismatch!");
711     return;
712   case IRP_CALL_SITE_RETURNED:
713     assert((CBContext == nullptr) &&
714            "'call site returned' position must not have CallBaseContext!");
715     assert((isa<CallBase>(getAsValuePtr())) &&
716            "Expected call base for 'call site returned' position!");
717     assert(getAsValuePtr() == &getAssociatedValue() &&
718            "Associated value mismatch!");
719     return;
720   case IRP_CALL_SITE:
721     assert((CBContext == nullptr) &&
722            "'call site function' position must not have CallBaseContext!");
723     assert((isa<CallBase>(getAsValuePtr())) &&
724            "Expected call base for 'call site function' position!");
725     assert(getAsValuePtr() == &getAssociatedValue() &&
726            "Associated value mismatch!");
727     return;
728   case IRP_FUNCTION:
729     assert(isa<Function>(getAsValuePtr()) &&
730            "Expected function for a 'function' position!");
731     assert(getAsValuePtr() == &getAssociatedValue() &&
732            "Associated value mismatch!");
733     return;
734   case IRP_ARGUMENT:
735     assert(isa<Argument>(getAsValuePtr()) &&
736            "Expected argument for a 'argument' position!");
737     assert(getAsValuePtr() == &getAssociatedValue() &&
738            "Associated value mismatch!");
739     return;
740   case IRP_CALL_SITE_ARGUMENT: {
741     assert((CBContext == nullptr) &&
742            "'call site argument' position must not have CallBaseContext!");
743     Use *U = getAsUsePtr();
744     assert(U && "Expected use for a 'call site argument' position!");
745     assert(isa<CallBase>(U->getUser()) &&
746            "Expected call base user for a 'call site argument' position!");
747     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
748            "Expected call base argument operand for a 'call site argument' "
749            "position");
750     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
751                unsigned(getCallSiteArgNo()) &&
752            "Argument number mismatch!");
753     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
754     return;
755   }
756   }
757 #endif
758 }
759 
760 Optional<Constant *>
761 Attributor::getAssumedConstant(const IRPosition &IRP,
762                                const AbstractAttribute &AA,
763                                bool &UsedAssumedInformation) {
764   // First check all callbacks provided by outside AAs. If any of them returns
765   // a non-null value that is different from the associated value, or None, we
766   // assume it's simpliied.
767   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
768     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
769     if (!SimplifiedV.hasValue())
770       return llvm::None;
771     if (isa_and_nonnull<Constant>(*SimplifiedV))
772       return cast<Constant>(*SimplifiedV);
773     return nullptr;
774   }
775   const auto &ValueSimplifyAA =
776       getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
777   Optional<Value *> SimplifiedV =
778       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
779   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
780   UsedAssumedInformation |= !IsKnown;
781   if (!SimplifiedV.hasValue()) {
782     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
783     return llvm::None;
784   }
785   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
786     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
787     return UndefValue::get(IRP.getAssociatedType());
788   }
789   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
790   if (CI)
791     CI = dyn_cast_or_null<Constant>(
792         AA::getWithType(*CI, *IRP.getAssociatedType()));
793   if (CI)
794     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
795   return CI;
796 }
797 
798 Optional<Value *>
799 Attributor::getAssumedSimplified(const IRPosition &IRP,
800                                  const AbstractAttribute *AA,
801                                  bool &UsedAssumedInformation) {
802   // First check all callbacks provided by outside AAs. If any of them returns
803   // a non-null value that is different from the associated value, or None, we
804   // assume it's simpliied.
805   for (auto &CB : SimplificationCallbacks.lookup(IRP))
806     return CB(IRP, AA, UsedAssumedInformation);
807 
808   // If no high-level/outside simplification occured, use AAValueSimplify.
809   const auto &ValueSimplifyAA =
810       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
811   Optional<Value *> SimplifiedV =
812       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
813   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
814   UsedAssumedInformation |= !IsKnown;
815   if (!SimplifiedV.hasValue()) {
816     if (AA)
817       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
818     return llvm::None;
819   }
820   if (*SimplifiedV == nullptr)
821     return const_cast<Value *>(&IRP.getAssociatedValue());
822   if (Value *SimpleV =
823           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
824     if (AA)
825       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
826     return SimpleV;
827   }
828   return const_cast<Value *>(&IRP.getAssociatedValue());
829 }
830 
831 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
832     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
833     bool &UsedAssumedInformation) {
834   if (!V.hasValue())
835     return V;
836   if (*V == nullptr || isa<Constant>(*V))
837     return V;
838   if (auto *Arg = dyn_cast<Argument>(*V))
839     if (CB.getCalledFunction() == Arg->getParent())
840       if (!Arg->hasPointeeInMemoryValueAttr())
841         return getAssumedSimplified(
842             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
843             UsedAssumedInformation);
844   return nullptr;
845 }
846 
847 Attributor::~Attributor() {
848   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
849   // thus we cannot delete them. We can, and want to, destruct them though.
850   for (auto &DepAA : DG.SyntheticRoot.Deps) {
851     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
852     AA->~AbstractAttribute();
853   }
854 }
855 
856 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
857                                const AAIsDead *FnLivenessAA,
858                                bool &UsedAssumedInformation,
859                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
860   const IRPosition &IRP = AA.getIRPosition();
861   if (!Functions.count(IRP.getAnchorScope()))
862     return false;
863   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
864                        CheckBBLivenessOnly, DepClass);
865 }
866 
867 bool Attributor::isAssumedDead(const Use &U,
868                                const AbstractAttribute *QueryingAA,
869                                const AAIsDead *FnLivenessAA,
870                                bool &UsedAssumedInformation,
871                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
872   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
873   if (!UserI)
874     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
875                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
876 
877   if (auto *CB = dyn_cast<CallBase>(UserI)) {
878     // For call site argument uses we can check if the argument is
879     // unused/dead.
880     if (CB->isArgOperand(&U)) {
881       const IRPosition &CSArgPos =
882           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
883       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
884                            UsedAssumedInformation, CheckBBLivenessOnly,
885                            DepClass);
886     }
887   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
888     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
889     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
890                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
891   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
892     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
893     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
894                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
895   }
896 
897   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
898                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
899 }
900 
901 bool Attributor::isAssumedDead(const Instruction &I,
902                                const AbstractAttribute *QueryingAA,
903                                const AAIsDead *FnLivenessAA,
904                                bool &UsedAssumedInformation,
905                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
906   const IRPosition::CallBaseContext *CBCtx =
907       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
908 
909   if (ManifestAddedBlocks.contains(I.getParent()))
910     return false;
911 
912   if (!FnLivenessAA)
913     FnLivenessAA =
914         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
915                               QueryingAA, DepClassTy::NONE);
916 
917   // If we have a context instruction and a liveness AA we use it.
918   if (FnLivenessAA &&
919       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
920       FnLivenessAA->isAssumedDead(&I)) {
921     if (QueryingAA)
922       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
923     if (!FnLivenessAA->isKnownDead(&I))
924       UsedAssumedInformation = true;
925     return true;
926   }
927 
928   if (CheckBBLivenessOnly)
929     return false;
930 
931   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
932       IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
933   // Don't check liveness for AAIsDead.
934   if (QueryingAA == &IsDeadAA)
935     return false;
936 
937   if (IsDeadAA.isAssumedDead()) {
938     if (QueryingAA)
939       recordDependence(IsDeadAA, *QueryingAA, DepClass);
940     if (!IsDeadAA.isKnownDead())
941       UsedAssumedInformation = true;
942     return true;
943   }
944 
945   return false;
946 }
947 
948 bool Attributor::isAssumedDead(const IRPosition &IRP,
949                                const AbstractAttribute *QueryingAA,
950                                const AAIsDead *FnLivenessAA,
951                                bool &UsedAssumedInformation,
952                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
953   Instruction *CtxI = IRP.getCtxI();
954   if (CtxI &&
955       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
956                     /* CheckBBLivenessOnly */ true,
957                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
958     return true;
959 
960   if (CheckBBLivenessOnly)
961     return false;
962 
963   // If we haven't succeeded we query the specific liveness info for the IRP.
964   const AAIsDead *IsDeadAA;
965   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
966     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
967         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
968         QueryingAA, DepClassTy::NONE);
969   else
970     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
971   // Don't check liveness for AAIsDead.
972   if (QueryingAA == IsDeadAA)
973     return false;
974 
975   if (IsDeadAA->isAssumedDead()) {
976     if (QueryingAA)
977       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
978     if (!IsDeadAA->isKnownDead())
979       UsedAssumedInformation = true;
980     return true;
981   }
982 
983   return false;
984 }
985 
986 bool Attributor::isAssumedDead(const BasicBlock &BB,
987                                const AbstractAttribute *QueryingAA,
988                                const AAIsDead *FnLivenessAA,
989                                DepClassTy DepClass) {
990   if (!FnLivenessAA)
991     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
992                                          QueryingAA, DepClassTy::NONE);
993   if (FnLivenessAA->isAssumedDead(&BB)) {
994     if (QueryingAA)
995       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
996     return true;
997   }
998 
999   return false;
1000 }
1001 
1002 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
1003                                  const AbstractAttribute &QueryingAA,
1004                                  const Value &V, bool CheckBBLivenessOnly,
1005                                  DepClassTy LivenessDepClass) {
1006 
1007   // Check the trivial case first as it catches void values.
1008   if (V.use_empty())
1009     return true;
1010 
1011   const IRPosition &IRP = QueryingAA.getIRPosition();
1012   SmallVector<const Use *, 16> Worklist;
1013   SmallPtrSet<const Use *, 16> Visited;
1014 
1015   for (const Use &U : V.uses())
1016     Worklist.push_back(&U);
1017 
1018   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1019                     << " initial uses to check\n");
1020 
1021   const Function *ScopeFn = IRP.getAnchorScope();
1022   const auto *LivenessAA =
1023       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1024                                     DepClassTy::NONE)
1025               : nullptr;
1026 
1027   while (!Worklist.empty()) {
1028     const Use *U = Worklist.pop_back_val();
1029     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1030       continue;
1031     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
1032                       << *U->getUser() << "\n");
1033     bool UsedAssumedInformation = false;
1034     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1035                       CheckBBLivenessOnly, LivenessDepClass)) {
1036       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1037       continue;
1038     }
1039     if (U->getUser()->isDroppable()) {
1040       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1041       continue;
1042     }
1043 
1044     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1045       if (&SI->getOperandUse(0) == U) {
1046         SmallSetVector<Value *, 4> PotentialCopies;
1047         if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1048                                                 QueryingAA,
1049                                                 UsedAssumedInformation)) {
1050           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1051                             << PotentialCopies.size()
1052                             << " potential copies instead!\n");
1053           for (Value *PotentialCopy : PotentialCopies)
1054             for (const Use &U : PotentialCopy->uses())
1055               Worklist.push_back(&U);
1056           continue;
1057         }
1058       }
1059     }
1060 
1061     bool Follow = false;
1062     if (!Pred(*U, Follow))
1063       return false;
1064     if (!Follow)
1065       continue;
1066     for (const Use &UU : U->getUser()->uses())
1067       Worklist.push_back(&UU);
1068   }
1069 
1070   return true;
1071 }
1072 
1073 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1074                                       const AbstractAttribute &QueryingAA,
1075                                       bool RequireAllCallSites,
1076                                       bool &AllCallSitesKnown) {
1077   // We can try to determine information from
1078   // the call sites. However, this is only possible all call sites are known,
1079   // hence the function has internal linkage.
1080   const IRPosition &IRP = QueryingAA.getIRPosition();
1081   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1082   if (!AssociatedFunction) {
1083     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1084                       << "\n");
1085     AllCallSitesKnown = false;
1086     return false;
1087   }
1088 
1089   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1090                               &QueryingAA, AllCallSitesKnown);
1091 }
1092 
1093 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1094                                       const Function &Fn,
1095                                       bool RequireAllCallSites,
1096                                       const AbstractAttribute *QueryingAA,
1097                                       bool &AllCallSitesKnown) {
1098   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1099     LLVM_DEBUG(
1100         dbgs()
1101         << "[Attributor] Function " << Fn.getName()
1102         << " has no internal linkage, hence not all call sites are known\n");
1103     AllCallSitesKnown = false;
1104     return false;
1105   }
1106 
1107   // If we do not require all call sites we might not see all.
1108   AllCallSitesKnown = RequireAllCallSites;
1109 
1110   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1111   for (unsigned u = 0; u < Uses.size(); ++u) {
1112     const Use &U = *Uses[u];
1113     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
1114                       << *U.getUser() << "\n");
1115     bool UsedAssumedInformation = false;
1116     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1117                       /* CheckBBLivenessOnly */ true)) {
1118       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1119       continue;
1120     }
1121     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1122       if (CE->isCast() && CE->getType()->isPointerTy() &&
1123           CE->getType()->getPointerElementType()->isFunctionTy()) {
1124         for (const Use &CEU : CE->uses())
1125           Uses.push_back(&CEU);
1126         continue;
1127       }
1128     }
1129 
1130     AbstractCallSite ACS(&U);
1131     if (!ACS) {
1132       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1133                         << " has non call site use " << *U.get() << " in "
1134                         << *U.getUser() << "\n");
1135       // BlockAddress users are allowed.
1136       if (isa<BlockAddress>(U.getUser()))
1137         continue;
1138       return false;
1139     }
1140 
1141     const Use *EffectiveUse =
1142         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1143     if (!ACS.isCallee(EffectiveUse)) {
1144       if (!RequireAllCallSites)
1145         continue;
1146       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
1147                         << " is an invalid use of " << Fn.getName() << "\n");
1148       return false;
1149     }
1150 
1151     // Make sure the arguments that can be matched between the call site and the
1152     // callee argee on their type. It is unlikely they do not and it doesn't
1153     // make sense for all attributes to know/care about this.
1154     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1155     unsigned MinArgsParams =
1156         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1157     for (unsigned u = 0; u < MinArgsParams; ++u) {
1158       Value *CSArgOp = ACS.getCallArgOperand(u);
1159       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1160         LLVM_DEBUG(
1161             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1162                    << u << "@" << Fn.getName() << ": "
1163                    << *Fn.getArg(u)->getType() << " vs. "
1164                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1165         return false;
1166       }
1167     }
1168 
1169     if (Pred(ACS))
1170       continue;
1171 
1172     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1173                       << *ACS.getInstruction() << "\n");
1174     return false;
1175   }
1176 
1177   return true;
1178 }
1179 
1180 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1181   // TODO: Maintain a cache of Values that are
1182   // on the pathway from a Argument to a Instruction that would effect the
1183   // liveness/return state etc.
1184   return EnableCallSiteSpecific;
1185 }
1186 
1187 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1188     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1189     const AbstractAttribute &QueryingAA) {
1190 
1191   const IRPosition &IRP = QueryingAA.getIRPosition();
1192   // Since we need to provide return instructions we have to have an exact
1193   // definition.
1194   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1195   if (!AssociatedFunction)
1196     return false;
1197 
1198   // If this is a call site query we use the call site specific return values
1199   // and liveness information.
1200   // TODO: use the function scope once we have call site AAReturnedValues.
1201   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1202   const auto &AARetVal =
1203       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1204   if (!AARetVal.getState().isValidState())
1205     return false;
1206 
1207   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1208 }
1209 
1210 bool Attributor::checkForAllReturnedValues(
1211     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1212 
1213   const IRPosition &IRP = QueryingAA.getIRPosition();
1214   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1215   if (!AssociatedFunction)
1216     return false;
1217 
1218   // TODO: use the function scope once we have call site AAReturnedValues.
1219   const IRPosition &QueryIRP = IRPosition::function(
1220       *AssociatedFunction, QueryingAA.getCallBaseContext());
1221   const auto &AARetVal =
1222       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1223   if (!AARetVal.getState().isValidState())
1224     return false;
1225 
1226   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1227       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1228         return Pred(RV);
1229       });
1230 }
1231 
1232 static bool checkForAllInstructionsImpl(
1233     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1234     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1235     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1236     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1237     bool CheckPotentiallyDead = false) {
1238   for (unsigned Opcode : Opcodes) {
1239     // Check if we have instructions with this opcode at all first.
1240     auto *Insts = OpcodeInstMap.lookup(Opcode);
1241     if (!Insts)
1242       continue;
1243 
1244     for (Instruction *I : *Insts) {
1245       // Skip dead instructions.
1246       if (A && !CheckPotentiallyDead &&
1247           A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
1248                            UsedAssumedInformation, CheckBBLivenessOnly))
1249         continue;
1250 
1251       if (!Pred(*I))
1252         return false;
1253     }
1254   }
1255   return true;
1256 }
1257 
1258 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1259                                          const AbstractAttribute &QueryingAA,
1260                                          const ArrayRef<unsigned> &Opcodes,
1261                                          bool &UsedAssumedInformation,
1262                                          bool CheckBBLivenessOnly,
1263                                          bool CheckPotentiallyDead) {
1264 
1265   const IRPosition &IRP = QueryingAA.getIRPosition();
1266   // Since we need to provide instructions we have to have an exact definition.
1267   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1268   if (!AssociatedFunction)
1269     return false;
1270 
1271   if (AssociatedFunction->isDeclaration())
1272     return false;
1273 
1274   // TODO: use the function scope once we have call site AAReturnedValues.
1275   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1276   const auto *LivenessAA =
1277       (CheckBBLivenessOnly || CheckPotentiallyDead)
1278           ? nullptr
1279           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1280 
1281   auto &OpcodeInstMap =
1282       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1283   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1284                                    LivenessAA, Opcodes, UsedAssumedInformation,
1285                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1286     return false;
1287 
1288   return true;
1289 }
1290 
1291 bool Attributor::checkForAllReadWriteInstructions(
1292     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1293     bool &UsedAssumedInformation) {
1294 
1295   const Function *AssociatedFunction =
1296       QueryingAA.getIRPosition().getAssociatedFunction();
1297   if (!AssociatedFunction)
1298     return false;
1299 
1300   // TODO: use the function scope once we have call site AAReturnedValues.
1301   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1302   const auto &LivenessAA =
1303       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1304 
1305   for (Instruction *I :
1306        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1307     // Skip dead instructions.
1308     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA,
1309                       UsedAssumedInformation))
1310       continue;
1311 
1312     if (!Pred(*I))
1313       return false;
1314   }
1315 
1316   return true;
1317 }
1318 
1319 void Attributor::runTillFixpoint() {
1320   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1321   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1322                     << DG.SyntheticRoot.Deps.size()
1323                     << " abstract attributes.\n");
1324 
1325   // Now that all abstract attributes are collected and initialized we start
1326   // the abstract analysis.
1327 
1328   unsigned IterationCounter = 1;
1329   unsigned MaxFixedPointIterations;
1330   if (MaxFixpointIterations)
1331     MaxFixedPointIterations = MaxFixpointIterations.getValue();
1332   else
1333     MaxFixedPointIterations = SetFixpointIterations;
1334 
1335   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1336   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1337   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1338 
1339   do {
1340     // Remember the size to determine new attributes.
1341     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1342     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1343                       << ", Worklist size: " << Worklist.size() << "\n");
1344 
1345     // For invalid AAs we can fix dependent AAs that have a required dependence,
1346     // thereby folding long dependence chains in a single step without the need
1347     // to run updates.
1348     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1349       AbstractAttribute *InvalidAA = InvalidAAs[u];
1350 
1351       // Check the dependences to fast track invalidation.
1352       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1353                         << InvalidAA->Deps.size()
1354                         << " required & optional dependences\n");
1355       while (!InvalidAA->Deps.empty()) {
1356         const auto &Dep = InvalidAA->Deps.back();
1357         InvalidAA->Deps.pop_back();
1358         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1359         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1360           Worklist.insert(DepAA);
1361           continue;
1362         }
1363         DepAA->getState().indicatePessimisticFixpoint();
1364         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1365         if (!DepAA->getState().isValidState())
1366           InvalidAAs.insert(DepAA);
1367         else
1368           ChangedAAs.push_back(DepAA);
1369       }
1370     }
1371 
1372     // Add all abstract attributes that are potentially dependent on one that
1373     // changed to the work list.
1374     for (AbstractAttribute *ChangedAA : ChangedAAs)
1375       while (!ChangedAA->Deps.empty()) {
1376         Worklist.insert(
1377             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1378         ChangedAA->Deps.pop_back();
1379       }
1380 
1381     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1382                       << ", Worklist+Dependent size: " << Worklist.size()
1383                       << "\n");
1384 
1385     // Reset the changed and invalid set.
1386     ChangedAAs.clear();
1387     InvalidAAs.clear();
1388 
1389     // Update all abstract attribute in the work list and record the ones that
1390     // changed.
1391     for (AbstractAttribute *AA : Worklist) {
1392       const auto &AAState = AA->getState();
1393       if (!AAState.isAtFixpoint())
1394         if (updateAA(*AA) == ChangeStatus::CHANGED)
1395           ChangedAAs.push_back(AA);
1396 
1397       // Use the InvalidAAs vector to propagate invalid states fast transitively
1398       // without requiring updates.
1399       if (!AAState.isValidState())
1400         InvalidAAs.insert(AA);
1401     }
1402 
1403     // Add attributes to the changed set if they have been created in the last
1404     // iteration.
1405     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1406                       DG.SyntheticRoot.end());
1407 
1408     // Reset the work list and repopulate with the changed abstract attributes.
1409     // Note that dependent ones are added above.
1410     Worklist.clear();
1411     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1412 
1413   } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1414                                  VerifyMaxFixpointIterations));
1415 
1416   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1417                     << IterationCounter << "/" << MaxFixpointIterations
1418                     << " iterations\n");
1419 
1420   // Reset abstract arguments not settled in a sound fixpoint by now. This
1421   // happens when we stopped the fixpoint iteration early. Note that only the
1422   // ones marked as "changed" *and* the ones transitively depending on them
1423   // need to be reverted to a pessimistic state. Others might not be in a
1424   // fixpoint state but we can use the optimistic results for them anyway.
1425   SmallPtrSet<AbstractAttribute *, 32> Visited;
1426   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1427     AbstractAttribute *ChangedAA = ChangedAAs[u];
1428     if (!Visited.insert(ChangedAA).second)
1429       continue;
1430 
1431     AbstractState &State = ChangedAA->getState();
1432     if (!State.isAtFixpoint()) {
1433       State.indicatePessimisticFixpoint();
1434 
1435       NumAttributesTimedOut++;
1436     }
1437 
1438     while (!ChangedAA->Deps.empty()) {
1439       ChangedAAs.push_back(
1440           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1441       ChangedAA->Deps.pop_back();
1442     }
1443   }
1444 
1445   LLVM_DEBUG({
1446     if (!Visited.empty())
1447       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1448              << " abstract attributes.\n";
1449   });
1450 
1451   if (VerifyMaxFixpointIterations &&
1452       IterationCounter != MaxFixedPointIterations) {
1453     errs() << "\n[Attributor] Fixpoint iteration done after: "
1454            << IterationCounter << "/" << MaxFixedPointIterations
1455            << " iterations\n";
1456     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1457                      "specified iterations!");
1458   }
1459 }
1460 
1461 ChangeStatus Attributor::manifestAttributes() {
1462   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1463   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1464 
1465   unsigned NumManifested = 0;
1466   unsigned NumAtFixpoint = 0;
1467   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1468   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1469     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1470     AbstractState &State = AA->getState();
1471 
1472     // If there is not already a fixpoint reached, we can now take the
1473     // optimistic state. This is correct because we enforced a pessimistic one
1474     // on abstract attributes that were transitively dependent on a changed one
1475     // already above.
1476     if (!State.isAtFixpoint())
1477       State.indicateOptimisticFixpoint();
1478 
1479     // We must not manifest Attributes that use Callbase info.
1480     if (AA->hasCallBaseContext())
1481       continue;
1482     // If the state is invalid, we do not try to manifest it.
1483     if (!State.isValidState())
1484       continue;
1485 
1486     // Skip dead code.
1487     bool UsedAssumedInformation = false;
1488     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1489                       /* CheckBBLivenessOnly */ true))
1490       continue;
1491     // Check if the manifest debug counter that allows skipping manifestation of
1492     // AAs
1493     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1494       continue;
1495     // Manifest the state and record if we changed the IR.
1496     ChangeStatus LocalChange = AA->manifest(*this);
1497     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1498       AA->trackStatistics();
1499     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1500                       << "\n");
1501 
1502     ManifestChange = ManifestChange | LocalChange;
1503 
1504     NumAtFixpoint++;
1505     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1506   }
1507 
1508   (void)NumManifested;
1509   (void)NumAtFixpoint;
1510   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1511                     << " arguments while " << NumAtFixpoint
1512                     << " were in a valid fixpoint state\n");
1513 
1514   NumAttributesManifested += NumManifested;
1515   NumAttributesValidFixpoint += NumAtFixpoint;
1516 
1517   (void)NumFinalAAs;
1518   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1519     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1520       errs() << "Unexpected abstract attribute: "
1521              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1522              << " :: "
1523              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1524                     ->getIRPosition()
1525                     .getAssociatedValue()
1526              << "\n";
1527     llvm_unreachable("Expected the final number of abstract attributes to "
1528                      "remain unchanged!");
1529   }
1530   return ManifestChange;
1531 }
1532 
1533 void Attributor::identifyDeadInternalFunctions() {
1534   // Early exit if we don't intend to delete functions.
1535   if (!DeleteFns)
1536     return;
1537 
1538   // Identify dead internal functions and delete them. This happens outside
1539   // the other fixpoint analysis as we might treat potentially dead functions
1540   // as live to lower the number of iterations. If they happen to be dead, the
1541   // below fixpoint loop will identify and eliminate them.
1542   SmallVector<Function *, 8> InternalFns;
1543   for (Function *F : Functions)
1544     if (F->hasLocalLinkage())
1545       InternalFns.push_back(F);
1546 
1547   SmallPtrSet<Function *, 8> LiveInternalFns;
1548   bool FoundLiveInternal = true;
1549   while (FoundLiveInternal) {
1550     FoundLiveInternal = false;
1551     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1552       Function *F = InternalFns[u];
1553       if (!F)
1554         continue;
1555 
1556       bool AllCallSitesKnown;
1557       if (checkForAllCallSites(
1558               [&](AbstractCallSite ACS) {
1559                 Function *Callee = ACS.getInstruction()->getFunction();
1560                 return ToBeDeletedFunctions.count(Callee) ||
1561                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1562                         !LiveInternalFns.count(Callee));
1563               },
1564               *F, true, nullptr, AllCallSitesKnown)) {
1565         continue;
1566       }
1567 
1568       LiveInternalFns.insert(F);
1569       InternalFns[u] = nullptr;
1570       FoundLiveInternal = true;
1571     }
1572   }
1573 
1574   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1575     if (Function *F = InternalFns[u])
1576       ToBeDeletedFunctions.insert(F);
1577 }
1578 
1579 ChangeStatus Attributor::cleanupIR() {
1580   TimeTraceScope TimeScope("Attributor::cleanupIR");
1581   // Delete stuff at the end to avoid invalid references and a nice order.
1582   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1583                     << ToBeDeletedFunctions.size() << " functions and "
1584                     << ToBeDeletedBlocks.size() << " blocks and "
1585                     << ToBeDeletedInsts.size() << " instructions and "
1586                     << ToBeChangedValues.size() << " values and "
1587                     << ToBeChangedUses.size() << " uses. "
1588                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1589                     << " blocks\n");
1590 
1591   SmallVector<WeakTrackingVH, 32> DeadInsts;
1592   SmallVector<Instruction *, 32> TerminatorsToFold;
1593 
1594   auto ReplaceUse = [&](Use *U, Value *NewV) {
1595     Value *OldV = U->get();
1596 
1597     // If we plan to replace NewV we need to update it at this point.
1598     do {
1599       const auto &Entry = ToBeChangedValues.lookup(NewV);
1600       if (!Entry.first)
1601         break;
1602       NewV = Entry.first;
1603     } while (true);
1604 
1605     // Do not replace uses in returns if the value is a must-tail call we will
1606     // not delete.
1607     if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1608       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1609         if (CI->isMustTailCall() &&
1610             (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1611           return;
1612       // If we rewrite a return and the new value is not an argument, strip the
1613       // `returned` attribute as it is wrong now.
1614       if (!isa<Argument>(NewV))
1615         for (auto &Arg : RI->getFunction()->args())
1616           Arg.removeAttr(Attribute::Returned);
1617     }
1618 
1619     // Do not perform call graph altering changes outside the SCC.
1620     if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1621       if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1622         return;
1623 
1624     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1625                       << " instead of " << *OldV << "\n");
1626     U->set(NewV);
1627 
1628     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1629       CGModifiedFunctions.insert(I->getFunction());
1630       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1631           isInstructionTriviallyDead(I))
1632         DeadInsts.push_back(I);
1633     }
1634     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1635       auto *CB = cast<CallBase>(U->getUser());
1636       if (CB->isArgOperand(U)) {
1637         unsigned Idx = CB->getArgOperandNo(U);
1638         CB->removeParamAttr(Idx, Attribute::NoUndef);
1639         Function *Fn = CB->getCalledFunction();
1640         if (Fn && Fn->arg_size() > Idx)
1641           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1642       }
1643     }
1644     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1645       Instruction *UserI = cast<Instruction>(U->getUser());
1646       if (isa<UndefValue>(NewV)) {
1647         ToBeChangedToUnreachableInsts.insert(UserI);
1648       } else {
1649         TerminatorsToFold.push_back(UserI);
1650       }
1651     }
1652   };
1653 
1654   for (auto &It : ToBeChangedUses) {
1655     Use *U = It.first;
1656     Value *NewV = It.second;
1657     ReplaceUse(U, NewV);
1658   }
1659 
1660   SmallVector<Use *, 4> Uses;
1661   for (auto &It : ToBeChangedValues) {
1662     Value *OldV = It.first;
1663     auto &Entry = It.second;
1664     Value *NewV = Entry.first;
1665     Uses.clear();
1666     for (auto &U : OldV->uses())
1667       if (Entry.second || !U.getUser()->isDroppable())
1668         Uses.push_back(&U);
1669     for (Use *U : Uses)
1670       ReplaceUse(U, NewV);
1671   }
1672 
1673   for (auto &V : InvokeWithDeadSuccessor)
1674     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1675       assert(isRunOn(*II->getFunction()) &&
1676              "Cannot replace an invoke outside the current SCC!");
1677       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1678       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1679       bool Invoke2CallAllowed =
1680           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1681       assert((UnwindBBIsDead || NormalBBIsDead) &&
1682              "Invoke does not have dead successors!");
1683       BasicBlock *BB = II->getParent();
1684       BasicBlock *NormalDestBB = II->getNormalDest();
1685       if (UnwindBBIsDead) {
1686         Instruction *NormalNextIP = &NormalDestBB->front();
1687         if (Invoke2CallAllowed) {
1688           changeToCall(II);
1689           NormalNextIP = BB->getTerminator();
1690         }
1691         if (NormalBBIsDead)
1692           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1693       } else {
1694         assert(NormalBBIsDead && "Broken invariant!");
1695         if (!NormalDestBB->getUniquePredecessor())
1696           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1697         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1698       }
1699     }
1700   for (Instruction *I : TerminatorsToFold) {
1701     if (!isRunOn(*I->getFunction()))
1702       continue;
1703     CGModifiedFunctions.insert(I->getFunction());
1704     ConstantFoldTerminator(I->getParent());
1705   }
1706   for (auto &V : ToBeChangedToUnreachableInsts)
1707     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1708       if (!isRunOn(*I->getFunction()))
1709         continue;
1710       CGModifiedFunctions.insert(I->getFunction());
1711       changeToUnreachable(I);
1712     }
1713 
1714   for (auto &V : ToBeDeletedInsts) {
1715     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1716       if (auto *CB = dyn_cast<CallBase>(I)) {
1717         if (!isRunOn(*I->getFunction()))
1718           continue;
1719         if (!isa<IntrinsicInst>(CB))
1720           CGUpdater.removeCallSite(*CB);
1721       }
1722       I->dropDroppableUses();
1723       CGModifiedFunctions.insert(I->getFunction());
1724       if (!I->getType()->isVoidTy())
1725         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1726       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1727         DeadInsts.push_back(I);
1728       else
1729         I->eraseFromParent();
1730     }
1731   }
1732 
1733   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1734     return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1735   });
1736 
1737   LLVM_DEBUG({
1738     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1739     for (auto &I : DeadInsts)
1740       if (I)
1741         dbgs() << "  - " << *I << "\n";
1742   });
1743 
1744   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1745 
1746   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1747     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1748     ToBeDeletedBBs.reserve(NumDeadBlocks);
1749     for (BasicBlock *BB : ToBeDeletedBlocks) {
1750       assert(isRunOn(*BB->getParent()) &&
1751              "Cannot delete a block outside the current SCC!");
1752       CGModifiedFunctions.insert(BB->getParent());
1753       // Do not delete BBs added during manifests of AAs.
1754       if (ManifestAddedBlocks.contains(BB))
1755         continue;
1756       ToBeDeletedBBs.push_back(BB);
1757     }
1758     // Actually we do not delete the blocks but squash them into a single
1759     // unreachable but untangling branches that jump here is something we need
1760     // to do in a more generic way.
1761     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1762   }
1763 
1764   identifyDeadInternalFunctions();
1765 
1766   // Rewrite the functions as requested during manifest.
1767   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1768 
1769   for (Function *Fn : CGModifiedFunctions)
1770     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1771       CGUpdater.reanalyzeFunction(*Fn);
1772 
1773   for (Function *Fn : ToBeDeletedFunctions) {
1774     if (!Functions.count(Fn))
1775       continue;
1776     CGUpdater.removeFunction(*Fn);
1777   }
1778 
1779   if (!ToBeChangedUses.empty())
1780     ManifestChange = ChangeStatus::CHANGED;
1781 
1782   if (!ToBeChangedToUnreachableInsts.empty())
1783     ManifestChange = ChangeStatus::CHANGED;
1784 
1785   if (!ToBeDeletedFunctions.empty())
1786     ManifestChange = ChangeStatus::CHANGED;
1787 
1788   if (!ToBeDeletedBlocks.empty())
1789     ManifestChange = ChangeStatus::CHANGED;
1790 
1791   if (!ToBeDeletedInsts.empty())
1792     ManifestChange = ChangeStatus::CHANGED;
1793 
1794   if (!InvokeWithDeadSuccessor.empty())
1795     ManifestChange = ChangeStatus::CHANGED;
1796 
1797   if (!DeadInsts.empty())
1798     ManifestChange = ChangeStatus::CHANGED;
1799 
1800   NumFnDeleted += ToBeDeletedFunctions.size();
1801 
1802   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1803                     << " functions after manifest.\n");
1804 
1805 #ifdef EXPENSIVE_CHECKS
1806   for (Function *F : Functions) {
1807     if (ToBeDeletedFunctions.count(F))
1808       continue;
1809     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1810   }
1811 #endif
1812 
1813   return ManifestChange;
1814 }
1815 
1816 ChangeStatus Attributor::run() {
1817   TimeTraceScope TimeScope("Attributor::run");
1818   AttributorCallGraph ACallGraph(*this);
1819 
1820   if (PrintCallGraph)
1821     ACallGraph.populateAll();
1822 
1823   Phase = AttributorPhase::UPDATE;
1824   runTillFixpoint();
1825 
1826   // dump graphs on demand
1827   if (DumpDepGraph)
1828     DG.dumpGraph();
1829 
1830   if (ViewDepGraph)
1831     DG.viewGraph();
1832 
1833   if (PrintDependencies)
1834     DG.print();
1835 
1836   Phase = AttributorPhase::MANIFEST;
1837   ChangeStatus ManifestChange = manifestAttributes();
1838 
1839   Phase = AttributorPhase::CLEANUP;
1840   ChangeStatus CleanupChange = cleanupIR();
1841 
1842   if (PrintCallGraph)
1843     ACallGraph.print();
1844 
1845   return ManifestChange | CleanupChange;
1846 }
1847 
1848 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1849   TimeTraceScope TimeScope(
1850       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1851       "::updateAA");
1852   assert(Phase == AttributorPhase::UPDATE &&
1853          "We can update AA only in the update stage!");
1854 
1855   // Use a new dependence vector for this update.
1856   DependenceVector DV;
1857   DependenceStack.push_back(&DV);
1858 
1859   auto &AAState = AA.getState();
1860   ChangeStatus CS = ChangeStatus::UNCHANGED;
1861   bool UsedAssumedInformation = false;
1862   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
1863                      /* CheckBBLivenessOnly */ true))
1864     CS = AA.update(*this);
1865 
1866   if (DV.empty()) {
1867     // If the attribute did not query any non-fix information, the state
1868     // will not change and we can indicate that right away.
1869     AAState.indicateOptimisticFixpoint();
1870   }
1871 
1872   if (!AAState.isAtFixpoint())
1873     rememberDependences();
1874 
1875   // Verify the stack was used properly, that is we pop the dependence vector we
1876   // put there earlier.
1877   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1878   (void)PoppedDV;
1879   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1880 
1881   return CS;
1882 }
1883 
1884 void Attributor::createShallowWrapper(Function &F) {
1885   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1886 
1887   Module &M = *F.getParent();
1888   LLVMContext &Ctx = M.getContext();
1889   FunctionType *FnTy = F.getFunctionType();
1890 
1891   Function *Wrapper =
1892       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1893   F.setName(""); // set the inside function anonymous
1894   M.getFunctionList().insert(F.getIterator(), Wrapper);
1895 
1896   F.setLinkage(GlobalValue::InternalLinkage);
1897 
1898   F.replaceAllUsesWith(Wrapper);
1899   assert(F.use_empty() && "Uses remained after wrapper was created!");
1900 
1901   // Move the COMDAT section to the wrapper.
1902   // TODO: Check if we need to keep it for F as well.
1903   Wrapper->setComdat(F.getComdat());
1904   F.setComdat(nullptr);
1905 
1906   // Copy all metadata and attributes but keep them on F as well.
1907   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1908   F.getAllMetadata(MDs);
1909   for (auto MDIt : MDs)
1910     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1911   Wrapper->setAttributes(F.getAttributes());
1912 
1913   // Create the call in the wrapper.
1914   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1915 
1916   SmallVector<Value *, 8> Args;
1917   Argument *FArgIt = F.arg_begin();
1918   for (Argument &Arg : Wrapper->args()) {
1919     Args.push_back(&Arg);
1920     Arg.setName((FArgIt++)->getName());
1921   }
1922 
1923   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1924   CI->setTailCall(true);
1925   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1926   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1927 
1928   NumFnShallowWrappersCreated++;
1929 }
1930 
1931 bool Attributor::isInternalizable(Function &F) {
1932   if (F.isDeclaration() || F.hasLocalLinkage() ||
1933       GlobalValue::isInterposableLinkage(F.getLinkage()))
1934     return false;
1935   return true;
1936 }
1937 
1938 Function *Attributor::internalizeFunction(Function &F, bool Force) {
1939   if (!AllowDeepWrapper && !Force)
1940     return nullptr;
1941   if (!isInternalizable(F))
1942     return nullptr;
1943 
1944   SmallPtrSet<Function *, 2> FnSet = {&F};
1945   DenseMap<Function *, Function *> InternalizedFns;
1946   internalizeFunctions(FnSet, InternalizedFns);
1947 
1948   return InternalizedFns[&F];
1949 }
1950 
1951 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
1952                                       DenseMap<Function *, Function *> &FnMap) {
1953   for (Function *F : FnSet)
1954     if (!Attributor::isInternalizable(*F))
1955       return false;
1956 
1957   FnMap.clear();
1958   // Generate the internalized version of each function.
1959   for (Function *F : FnSet) {
1960     Module &M = *F->getParent();
1961     FunctionType *FnTy = F->getFunctionType();
1962 
1963     // Create a copy of the current function
1964     Function *Copied =
1965         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
1966                          F->getName() + ".internalized");
1967     ValueToValueMapTy VMap;
1968     auto *NewFArgIt = Copied->arg_begin();
1969     for (auto &Arg : F->args()) {
1970       auto ArgName = Arg.getName();
1971       NewFArgIt->setName(ArgName);
1972       VMap[&Arg] = &(*NewFArgIt++);
1973     }
1974     SmallVector<ReturnInst *, 8> Returns;
1975 
1976     // Copy the body of the original function to the new one
1977     CloneFunctionInto(Copied, F, VMap,
1978                       CloneFunctionChangeType::LocalChangesOnly, Returns);
1979 
1980     // Set the linakage and visibility late as CloneFunctionInto has some
1981     // implicit requirements.
1982     Copied->setVisibility(GlobalValue::DefaultVisibility);
1983     Copied->setLinkage(GlobalValue::PrivateLinkage);
1984 
1985     // Copy metadata
1986     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1987     F->getAllMetadata(MDs);
1988     for (auto MDIt : MDs)
1989       if (!Copied->hasMetadata())
1990         Copied->addMetadata(MDIt.first, *MDIt.second);
1991 
1992     M.getFunctionList().insert(F->getIterator(), Copied);
1993     Copied->setDSOLocal(true);
1994     FnMap[F] = Copied;
1995   }
1996 
1997   // Replace all uses of the old function with the new internalized function
1998   // unless the caller is a function that was just internalized.
1999   for (Function *F : FnSet) {
2000     auto &InternalizedFn = FnMap[F];
2001     auto IsNotInternalized = [&](Use &U) -> bool {
2002       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2003         return !FnMap.lookup(CB->getCaller());
2004       return false;
2005     };
2006     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2007   }
2008 
2009   return true;
2010 }
2011 
2012 bool Attributor::isValidFunctionSignatureRewrite(
2013     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2014 
2015   if (!RewriteSignatures)
2016     return false;
2017 
2018   Function *Fn = Arg.getParent();
2019   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2020     // Forbid the call site to cast the function return type. If we need to
2021     // rewrite these functions we need to re-create a cast for the new call site
2022     // (if the old had uses).
2023     if (!ACS.getCalledFunction() ||
2024         ACS.getInstruction()->getType() !=
2025             ACS.getCalledFunction()->getReturnType())
2026       return false;
2027     if (ACS.getCalledOperand()->getType() != Fn->getType())
2028       return false;
2029     // Forbid must-tail calls for now.
2030     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2031   };
2032 
2033   // Avoid var-arg functions for now.
2034   if (Fn->isVarArg()) {
2035     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2036     return false;
2037   }
2038 
2039   // Avoid functions with complicated argument passing semantics.
2040   AttributeList FnAttributeList = Fn->getAttributes();
2041   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2042       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2043       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2044       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2045     LLVM_DEBUG(
2046         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2047     return false;
2048   }
2049 
2050   // Avoid callbacks for now.
2051   bool AllCallSitesKnown;
2052   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2053                             AllCallSitesKnown)) {
2054     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2055     return false;
2056   }
2057 
2058   auto InstPred = [](Instruction &I) {
2059     if (auto *CI = dyn_cast<CallInst>(&I))
2060       return !CI->isMustTailCall();
2061     return true;
2062   };
2063 
2064   // Forbid must-tail calls for now.
2065   // TODO:
2066   bool UsedAssumedInformation = false;
2067   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2068   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2069                                    nullptr, {Instruction::Call},
2070                                    UsedAssumedInformation)) {
2071     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2072     return false;
2073   }
2074 
2075   return true;
2076 }
2077 
2078 bool Attributor::registerFunctionSignatureRewrite(
2079     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2080     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2081     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2082   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2083                     << Arg.getParent()->getName() << " with "
2084                     << ReplacementTypes.size() << " replacements\n");
2085   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2086          "Cannot register an invalid rewrite");
2087 
2088   Function *Fn = Arg.getParent();
2089   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2090       ArgumentReplacementMap[Fn];
2091   if (ARIs.empty())
2092     ARIs.resize(Fn->arg_size());
2093 
2094   // If we have a replacement already with less than or equal new arguments,
2095   // ignore this request.
2096   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2097   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2098     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2099     return false;
2100   }
2101 
2102   // If we have a replacement already but we like the new one better, delete
2103   // the old.
2104   ARI.reset();
2105 
2106   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2107                     << Arg.getParent()->getName() << " with "
2108                     << ReplacementTypes.size() << " replacements\n");
2109 
2110   // Remember the replacement.
2111   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2112                                         std::move(CalleeRepairCB),
2113                                         std::move(ACSRepairCB)));
2114 
2115   return true;
2116 }
2117 
2118 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2119   bool Result = true;
2120 #ifndef NDEBUG
2121   if (SeedAllowList.size() != 0)
2122     Result =
2123         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
2124   Function *Fn = AA.getAnchorScope();
2125   if (FunctionSeedAllowList.size() != 0 && Fn)
2126     Result &= std::count(FunctionSeedAllowList.begin(),
2127                          FunctionSeedAllowList.end(), Fn->getName());
2128 #endif
2129   return Result;
2130 }
2131 
2132 ChangeStatus Attributor::rewriteFunctionSignatures(
2133     SmallPtrSetImpl<Function *> &ModifiedFns) {
2134   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2135 
2136   for (auto &It : ArgumentReplacementMap) {
2137     Function *OldFn = It.getFirst();
2138 
2139     // Deleted functions do not require rewrites.
2140     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2141       continue;
2142 
2143     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2144         It.getSecond();
2145     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2146 
2147     SmallVector<Type *, 16> NewArgumentTypes;
2148     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2149 
2150     // Collect replacement argument types and copy over existing attributes.
2151     AttributeList OldFnAttributeList = OldFn->getAttributes();
2152     for (Argument &Arg : OldFn->args()) {
2153       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2154               ARIs[Arg.getArgNo()]) {
2155         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2156                                 ARI->ReplacementTypes.end());
2157         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2158                                      AttributeSet());
2159       } else {
2160         NewArgumentTypes.push_back(Arg.getType());
2161         NewArgumentAttributes.push_back(
2162             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2163       }
2164     }
2165 
2166     FunctionType *OldFnTy = OldFn->getFunctionType();
2167     Type *RetTy = OldFnTy->getReturnType();
2168 
2169     // Construct the new function type using the new arguments types.
2170     FunctionType *NewFnTy =
2171         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2172 
2173     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2174                       << "' from " << *OldFn->getFunctionType() << " to "
2175                       << *NewFnTy << "\n");
2176 
2177     // Create the new function body and insert it into the module.
2178     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2179                                        OldFn->getAddressSpace(), "");
2180     Functions.insert(NewFn);
2181     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2182     NewFn->takeName(OldFn);
2183     NewFn->copyAttributesFrom(OldFn);
2184 
2185     // Patch the pointer to LLVM function in debug info descriptor.
2186     NewFn->setSubprogram(OldFn->getSubprogram());
2187     OldFn->setSubprogram(nullptr);
2188 
2189     // Recompute the parameter attributes list based on the new arguments for
2190     // the function.
2191     LLVMContext &Ctx = OldFn->getContext();
2192     NewFn->setAttributes(AttributeList::get(
2193         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2194         NewArgumentAttributes));
2195 
2196     // Since we have now created the new function, splice the body of the old
2197     // function right into the new function, leaving the old rotting hulk of the
2198     // function empty.
2199     NewFn->getBasicBlockList().splice(NewFn->begin(),
2200                                       OldFn->getBasicBlockList());
2201 
2202     // Fixup block addresses to reference new function.
2203     SmallVector<BlockAddress *, 8u> BlockAddresses;
2204     for (User *U : OldFn->users())
2205       if (auto *BA = dyn_cast<BlockAddress>(U))
2206         BlockAddresses.push_back(BA);
2207     for (auto *BA : BlockAddresses)
2208       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2209 
2210     // Set of all "call-like" instructions that invoke the old function mapped
2211     // to their new replacements.
2212     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2213 
2214     // Callback to create a new "call-like" instruction for a given one.
2215     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2216       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2217       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2218 
2219       // Collect the new argument operands for the replacement call site.
2220       SmallVector<Value *, 16> NewArgOperands;
2221       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2222       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2223         unsigned NewFirstArgNum = NewArgOperands.size();
2224         (void)NewFirstArgNum; // only used inside assert.
2225         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2226                 ARIs[OldArgNum]) {
2227           if (ARI->ACSRepairCB)
2228             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2229           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2230                      NewArgOperands.size() &&
2231                  "ACS repair callback did not provide as many operand as new "
2232                  "types were registered!");
2233           // TODO: Exose the attribute set to the ACS repair callback
2234           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2235                                          AttributeSet());
2236         } else {
2237           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2238           NewArgOperandAttributes.push_back(
2239               OldCallAttributeList.getParamAttrs(OldArgNum));
2240         }
2241       }
2242 
2243       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2244              "Mismatch # argument operands vs. # argument operand attributes!");
2245       assert(NewArgOperands.size() == NewFn->arg_size() &&
2246              "Mismatch # argument operands vs. # function arguments!");
2247 
2248       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2249       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2250 
2251       // Create a new call or invoke instruction to replace the old one.
2252       CallBase *NewCB;
2253       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2254         NewCB =
2255             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2256                                NewArgOperands, OperandBundleDefs, "", OldCB);
2257       } else {
2258         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2259                                        "", OldCB);
2260         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2261         NewCB = NewCI;
2262       }
2263 
2264       // Copy over various properties and the new attributes.
2265       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2266       NewCB->setCallingConv(OldCB->getCallingConv());
2267       NewCB->takeName(OldCB);
2268       NewCB->setAttributes(AttributeList::get(
2269           Ctx, OldCallAttributeList.getFnAttrs(),
2270           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2271 
2272       CallSitePairs.push_back({OldCB, NewCB});
2273       return true;
2274     };
2275 
2276     // Use the CallSiteReplacementCreator to create replacement call sites.
2277     bool AllCallSitesKnown;
2278     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2279                                         true, nullptr, AllCallSitesKnown);
2280     (void)Success;
2281     assert(Success && "Assumed call site replacement to succeed!");
2282 
2283     // Rewire the arguments.
2284     Argument *OldFnArgIt = OldFn->arg_begin();
2285     Argument *NewFnArgIt = NewFn->arg_begin();
2286     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2287          ++OldArgNum, ++OldFnArgIt) {
2288       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2289               ARIs[OldArgNum]) {
2290         if (ARI->CalleeRepairCB)
2291           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2292         NewFnArgIt += ARI->ReplacementTypes.size();
2293       } else {
2294         NewFnArgIt->takeName(&*OldFnArgIt);
2295         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2296         ++NewFnArgIt;
2297       }
2298     }
2299 
2300     // Eliminate the instructions *after* we visited all of them.
2301     for (auto &CallSitePair : CallSitePairs) {
2302       CallBase &OldCB = *CallSitePair.first;
2303       CallBase &NewCB = *CallSitePair.second;
2304       assert(OldCB.getType() == NewCB.getType() &&
2305              "Cannot handle call sites with different types!");
2306       ModifiedFns.insert(OldCB.getFunction());
2307       CGUpdater.replaceCallSite(OldCB, NewCB);
2308       OldCB.replaceAllUsesWith(&NewCB);
2309       OldCB.eraseFromParent();
2310     }
2311 
2312     // Replace the function in the call graph (if any).
2313     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2314 
2315     // If the old function was modified and needed to be reanalyzed, the new one
2316     // does now.
2317     if (ModifiedFns.erase(OldFn))
2318       ModifiedFns.insert(NewFn);
2319 
2320     Changed = ChangeStatus::CHANGED;
2321   }
2322 
2323   return Changed;
2324 }
2325 
2326 void InformationCache::initializeInformationCache(const Function &CF,
2327                                                   FunctionInfo &FI) {
2328   // As we do not modify the function here we can remove the const
2329   // withouth breaking implicit assumptions. At the end of the day, we could
2330   // initialize the cache eagerly which would look the same to the users.
2331   Function &F = const_cast<Function &>(CF);
2332 
2333   // Walk all instructions to find interesting instructions that might be
2334   // queried by abstract attributes during their initialization or update.
2335   // This has to happen before we create attributes.
2336 
2337   for (Instruction &I : instructions(&F)) {
2338     bool IsInterestingOpcode = false;
2339 
2340     // To allow easy access to all instructions in a function with a given
2341     // opcode we store them in the InfoCache. As not all opcodes are interesting
2342     // to concrete attributes we only cache the ones that are as identified in
2343     // the following switch.
2344     // Note: There are no concrete attributes now so this is initially empty.
2345     switch (I.getOpcode()) {
2346     default:
2347       assert(!isa<CallBase>(&I) &&
2348              "New call base instruction type needs to be known in the "
2349              "Attributor.");
2350       break;
2351     case Instruction::Call:
2352       // Calls are interesting on their own, additionally:
2353       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2354       // For `must-tail` calls we remember the caller and callee.
2355       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2356         fillMapFromAssume(*Assume, KnowledgeMap);
2357       } else if (cast<CallInst>(I).isMustTailCall()) {
2358         FI.ContainsMustTailCall = true;
2359         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2360           getFunctionInfo(*Callee).CalledViaMustTail = true;
2361       }
2362       LLVM_FALLTHROUGH;
2363     case Instruction::CallBr:
2364     case Instruction::Invoke:
2365     case Instruction::CleanupRet:
2366     case Instruction::CatchSwitch:
2367     case Instruction::AtomicRMW:
2368     case Instruction::AtomicCmpXchg:
2369     case Instruction::Br:
2370     case Instruction::Resume:
2371     case Instruction::Ret:
2372     case Instruction::Load:
2373       // The alignment of a pointer is interesting for loads.
2374     case Instruction::Store:
2375       // The alignment of a pointer is interesting for stores.
2376     case Instruction::Alloca:
2377     case Instruction::AddrSpaceCast:
2378       IsInterestingOpcode = true;
2379     }
2380     if (IsInterestingOpcode) {
2381       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2382       if (!Insts)
2383         Insts = new (Allocator) InstructionVectorTy();
2384       Insts->push_back(&I);
2385     }
2386     if (I.mayReadOrWriteMemory())
2387       FI.RWInsts.push_back(&I);
2388   }
2389 
2390   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2391       isInlineViable(F).isSuccess())
2392     InlineableFunctions.insert(&F);
2393 }
2394 
2395 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2396   return AG.getAnalysis<AAManager>(F);
2397 }
2398 
2399 InformationCache::FunctionInfo::~FunctionInfo() {
2400   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2401   // manually destroy them.
2402   for (auto &It : OpcodeInstMap)
2403     It.getSecond()->~InstructionVectorTy();
2404 }
2405 
2406 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2407                                   const AbstractAttribute &ToAA,
2408                                   DepClassTy DepClass) {
2409   if (DepClass == DepClassTy::NONE)
2410     return;
2411   // If we are outside of an update, thus before the actual fixpoint iteration
2412   // started (= when we create AAs), we do not track dependences because we will
2413   // put all AAs into the initial worklist anyway.
2414   if (DependenceStack.empty())
2415     return;
2416   if (FromAA.getState().isAtFixpoint())
2417     return;
2418   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2419 }
2420 
2421 void Attributor::rememberDependences() {
2422   assert(!DependenceStack.empty() && "No dependences to remember!");
2423 
2424   for (DepInfo &DI : *DependenceStack.back()) {
2425     assert((DI.DepClass == DepClassTy::REQUIRED ||
2426             DI.DepClass == DepClassTy::OPTIONAL) &&
2427            "Expected required or optional dependence (1 bit)!");
2428     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2429     DepAAs.push_back(AbstractAttribute::DepTy(
2430         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2431   }
2432 }
2433 
2434 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2435   if (!VisitedFunctions.insert(&F).second)
2436     return;
2437   if (F.isDeclaration())
2438     return;
2439 
2440   // In non-module runs we need to look at the call sites of a function to
2441   // determine if it is part of a must-tail call edge. This will influence what
2442   // attributes we can derive.
2443   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2444   if (!isModulePass() && !FI.CalledViaMustTail) {
2445     for (const Use &U : F.uses())
2446       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2447         if (CB->isCallee(&U) && CB->isMustTailCall())
2448           FI.CalledViaMustTail = true;
2449   }
2450 
2451   IRPosition FPos = IRPosition::function(F);
2452 
2453   // Check for dead BasicBlocks in every function.
2454   // We need dead instruction detection because we do not want to deal with
2455   // broken IR in which SSA rules do not apply.
2456   getOrCreateAAFor<AAIsDead>(FPos);
2457 
2458   // Every function might be "will-return".
2459   getOrCreateAAFor<AAWillReturn>(FPos);
2460 
2461   // Every function might contain instructions that cause "undefined behavior".
2462   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2463 
2464   // Every function can be nounwind.
2465   getOrCreateAAFor<AANoUnwind>(FPos);
2466 
2467   // Every function might be marked "nosync"
2468   getOrCreateAAFor<AANoSync>(FPos);
2469 
2470   // Every function might be "no-free".
2471   getOrCreateAAFor<AANoFree>(FPos);
2472 
2473   // Every function might be "no-return".
2474   getOrCreateAAFor<AANoReturn>(FPos);
2475 
2476   // Every function might be "no-recurse".
2477   getOrCreateAAFor<AANoRecurse>(FPos);
2478 
2479   // Every function might be "readnone/readonly/writeonly/...".
2480   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2481 
2482   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2483   getOrCreateAAFor<AAMemoryLocation>(FPos);
2484 
2485   // Every function might be applicable for Heap-To-Stack conversion.
2486   if (EnableHeapToStack)
2487     getOrCreateAAFor<AAHeapToStack>(FPos);
2488 
2489   // Return attributes are only appropriate if the return type is non void.
2490   Type *ReturnType = F.getReturnType();
2491   if (!ReturnType->isVoidTy()) {
2492     // Argument attribute "returned" --- Create only one per function even
2493     // though it is an argument attribute.
2494     getOrCreateAAFor<AAReturnedValues>(FPos);
2495 
2496     IRPosition RetPos = IRPosition::returned(F);
2497 
2498     // Every returned value might be dead.
2499     getOrCreateAAFor<AAIsDead>(RetPos);
2500 
2501     // Every function might be simplified.
2502     getOrCreateAAFor<AAValueSimplify>(RetPos);
2503 
2504     // Every returned value might be marked noundef.
2505     getOrCreateAAFor<AANoUndef>(RetPos);
2506 
2507     if (ReturnType->isPointerTy()) {
2508 
2509       // Every function with pointer return type might be marked align.
2510       getOrCreateAAFor<AAAlign>(RetPos);
2511 
2512       // Every function with pointer return type might be marked nonnull.
2513       getOrCreateAAFor<AANonNull>(RetPos);
2514 
2515       // Every function with pointer return type might be marked noalias.
2516       getOrCreateAAFor<AANoAlias>(RetPos);
2517 
2518       // Every function with pointer return type might be marked
2519       // dereferenceable.
2520       getOrCreateAAFor<AADereferenceable>(RetPos);
2521     }
2522   }
2523 
2524   for (Argument &Arg : F.args()) {
2525     IRPosition ArgPos = IRPosition::argument(Arg);
2526 
2527     // Every argument might be simplified. We have to go through the Attributor
2528     // interface though as outside AAs can register custom simplification
2529     // callbacks.
2530     bool UsedAssumedInformation = false;
2531     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2532 
2533     // Every argument might be dead.
2534     getOrCreateAAFor<AAIsDead>(ArgPos);
2535 
2536     // Every argument might be marked noundef.
2537     getOrCreateAAFor<AANoUndef>(ArgPos);
2538 
2539     if (Arg.getType()->isPointerTy()) {
2540       // Every argument with pointer type might be marked nonnull.
2541       getOrCreateAAFor<AANonNull>(ArgPos);
2542 
2543       // Every argument with pointer type might be marked noalias.
2544       getOrCreateAAFor<AANoAlias>(ArgPos);
2545 
2546       // Every argument with pointer type might be marked dereferenceable.
2547       getOrCreateAAFor<AADereferenceable>(ArgPos);
2548 
2549       // Every argument with pointer type might be marked align.
2550       getOrCreateAAFor<AAAlign>(ArgPos);
2551 
2552       // Every argument with pointer type might be marked nocapture.
2553       getOrCreateAAFor<AANoCapture>(ArgPos);
2554 
2555       // Every argument with pointer type might be marked
2556       // "readnone/readonly/writeonly/..."
2557       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2558 
2559       // Every argument with pointer type might be marked nofree.
2560       getOrCreateAAFor<AANoFree>(ArgPos);
2561 
2562       // Every argument with pointer type might be privatizable (or promotable)
2563       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2564     }
2565   }
2566 
2567   auto CallSitePred = [&](Instruction &I) -> bool {
2568     auto &CB = cast<CallBase>(I);
2569     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2570 
2571     // Call sites might be dead if they do not have side effects and no live
2572     // users. The return value might be dead if there are no live users.
2573     getOrCreateAAFor<AAIsDead>(CBRetPos);
2574 
2575     Function *Callee = CB.getCalledFunction();
2576     // TODO: Even if the callee is not known now we might be able to simplify
2577     //       the call/callee.
2578     if (!Callee)
2579       return true;
2580 
2581     // Skip declarations except if annotations on their call sites were
2582     // explicitly requested.
2583     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2584         !Callee->hasMetadata(LLVMContext::MD_callback))
2585       return true;
2586 
2587     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2588 
2589       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2590       getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2591     }
2592 
2593     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2594 
2595       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2596 
2597       // Every call site argument might be dead.
2598       getOrCreateAAFor<AAIsDead>(CBArgPos);
2599 
2600       // Call site argument might be simplified. We have to go through the
2601       // Attributor interface though as outside AAs can register custom
2602       // simplification callbacks.
2603       bool UsedAssumedInformation = false;
2604       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2605 
2606       // Every call site argument might be marked "noundef".
2607       getOrCreateAAFor<AANoUndef>(CBArgPos);
2608 
2609       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2610         continue;
2611 
2612       // Call site argument attribute "non-null".
2613       getOrCreateAAFor<AANonNull>(CBArgPos);
2614 
2615       // Call site argument attribute "nocapture".
2616       getOrCreateAAFor<AANoCapture>(CBArgPos);
2617 
2618       // Call site argument attribute "no-alias".
2619       getOrCreateAAFor<AANoAlias>(CBArgPos);
2620 
2621       // Call site argument attribute "dereferenceable".
2622       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2623 
2624       // Call site argument attribute "align".
2625       getOrCreateAAFor<AAAlign>(CBArgPos);
2626 
2627       // Call site argument attribute
2628       // "readnone/readonly/writeonly/..."
2629       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2630 
2631       // Call site argument attribute "nofree".
2632       getOrCreateAAFor<AANoFree>(CBArgPos);
2633     }
2634     return true;
2635   };
2636 
2637   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2638   bool Success;
2639   bool UsedAssumedInformation = false;
2640   Success = checkForAllInstructionsImpl(
2641       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2642       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2643        (unsigned)Instruction::Call},
2644       UsedAssumedInformation);
2645   (void)Success;
2646   assert(Success && "Expected the check call to be successful!");
2647 
2648   auto LoadStorePred = [&](Instruction &I) -> bool {
2649     if (isa<LoadInst>(I)) {
2650       getOrCreateAAFor<AAAlign>(
2651           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2652       if (SimplifyAllLoads)
2653         getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2654     } else
2655       getOrCreateAAFor<AAAlign>(
2656           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2657     return true;
2658   };
2659   Success = checkForAllInstructionsImpl(
2660       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2661       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2662       UsedAssumedInformation);
2663   (void)Success;
2664   assert(Success && "Expected the check call to be successful!");
2665 }
2666 
2667 /// Helpers to ease debugging through output streams and print calls.
2668 ///
2669 ///{
2670 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2671   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2672 }
2673 
2674 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2675   switch (AP) {
2676   case IRPosition::IRP_INVALID:
2677     return OS << "inv";
2678   case IRPosition::IRP_FLOAT:
2679     return OS << "flt";
2680   case IRPosition::IRP_RETURNED:
2681     return OS << "fn_ret";
2682   case IRPosition::IRP_CALL_SITE_RETURNED:
2683     return OS << "cs_ret";
2684   case IRPosition::IRP_FUNCTION:
2685     return OS << "fn";
2686   case IRPosition::IRP_CALL_SITE:
2687     return OS << "cs";
2688   case IRPosition::IRP_ARGUMENT:
2689     return OS << "arg";
2690   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2691     return OS << "cs_arg";
2692   }
2693   llvm_unreachable("Unknown attribute position!");
2694 }
2695 
2696 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2697   const Value &AV = Pos.getAssociatedValue();
2698   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2699      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2700 
2701   if (Pos.hasCallBaseContext())
2702     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2703   return OS << "}";
2704 }
2705 
2706 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2707   OS << "range-state(" << S.getBitWidth() << ")<";
2708   S.getKnown().print(OS);
2709   OS << " / ";
2710   S.getAssumed().print(OS);
2711   OS << ">";
2712 
2713   return OS << static_cast<const AbstractState &>(S);
2714 }
2715 
2716 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2717   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2718 }
2719 
2720 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2721   AA.print(OS);
2722   return OS;
2723 }
2724 
2725 raw_ostream &llvm::operator<<(raw_ostream &OS,
2726                               const PotentialConstantIntValuesState &S) {
2727   OS << "set-state(< {";
2728   if (!S.isValidState())
2729     OS << "full-set";
2730   else {
2731     for (auto &it : S.getAssumedSet())
2732       OS << it << ", ";
2733     if (S.undefIsContained())
2734       OS << "undef ";
2735   }
2736   OS << "} >)";
2737 
2738   return OS;
2739 }
2740 
2741 void AbstractAttribute::print(raw_ostream &OS) const {
2742   OS << "[";
2743   OS << getName();
2744   OS << "] for CtxI ";
2745 
2746   if (auto *I = getCtxI()) {
2747     OS << "'";
2748     I->print(OS);
2749     OS << "'";
2750   } else
2751     OS << "<<null inst>>";
2752 
2753   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2754      << '\n';
2755 }
2756 
2757 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2758   print(OS);
2759 
2760   for (const auto &DepAA : Deps) {
2761     auto *AA = DepAA.getPointer();
2762     OS << "  updates ";
2763     AA->print(OS);
2764   }
2765 
2766   OS << '\n';
2767 }
2768 
2769 raw_ostream &llvm::operator<<(raw_ostream &OS,
2770                               const AAPointerInfo::Access &Acc) {
2771   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
2772   if (Acc.getLocalInst() != Acc.getRemoteInst())
2773     OS << " via " << *Acc.getLocalInst();
2774   if (Acc.getContent().hasValue())
2775     OS << " [" << *Acc.getContent() << "]";
2776   return OS;
2777 }
2778 ///}
2779 
2780 /// ----------------------------------------------------------------------------
2781 ///                       Pass (Manager) Boilerplate
2782 /// ----------------------------------------------------------------------------
2783 
2784 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2785                                      SetVector<Function *> &Functions,
2786                                      AnalysisGetter &AG,
2787                                      CallGraphUpdater &CGUpdater,
2788                                      bool DeleteFns) {
2789   if (Functions.empty())
2790     return false;
2791 
2792   LLVM_DEBUG({
2793     dbgs() << "[Attributor] Run on module with " << Functions.size()
2794            << " functions:\n";
2795     for (Function *Fn : Functions)
2796       dbgs() << "  - " << Fn->getName() << "\n";
2797   });
2798 
2799   // Create an Attributor and initially empty information cache that is filled
2800   // while we identify default attribute opportunities.
2801   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2802                DeleteFns);
2803 
2804   // Create shallow wrappers for all functions that are not IPO amendable
2805   if (AllowShallowWrappers)
2806     for (Function *F : Functions)
2807       if (!A.isFunctionIPOAmendable(*F))
2808         Attributor::createShallowWrapper(*F);
2809 
2810   // Internalize non-exact functions
2811   // TODO: for now we eagerly internalize functions without calculating the
2812   //       cost, we need a cost interface to determine whether internalizing
2813   //       a function is "benefitial"
2814   if (AllowDeepWrapper) {
2815     unsigned FunSize = Functions.size();
2816     for (unsigned u = 0; u < FunSize; u++) {
2817       Function *F = Functions[u];
2818       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2819           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2820         Function *NewF = Attributor::internalizeFunction(*F);
2821         assert(NewF && "Could not internalize function.");
2822         Functions.insert(NewF);
2823 
2824         // Update call graph
2825         CGUpdater.replaceFunctionWith(*F, *NewF);
2826         for (const Use &U : NewF->uses())
2827           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2828             auto *CallerF = CB->getCaller();
2829             CGUpdater.reanalyzeFunction(*CallerF);
2830           }
2831       }
2832     }
2833   }
2834 
2835   for (Function *F : Functions) {
2836     if (F->hasExactDefinition())
2837       NumFnWithExactDefinition++;
2838     else
2839       NumFnWithoutExactDefinition++;
2840 
2841     // We look at internal functions only on-demand but if any use is not a
2842     // direct call or outside the current set of analyzed functions, we have
2843     // to do it eagerly.
2844     if (F->hasLocalLinkage()) {
2845       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2846             const auto *CB = dyn_cast<CallBase>(U.getUser());
2847             return CB && CB->isCallee(&U) &&
2848                    Functions.count(const_cast<Function *>(CB->getCaller()));
2849           }))
2850         continue;
2851     }
2852 
2853     // Populate the Attributor with abstract attribute opportunities in the
2854     // function and the information cache with IR information.
2855     A.identifyDefaultAbstractAttributes(*F);
2856   }
2857 
2858   ChangeStatus Changed = A.run();
2859 
2860   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2861                     << " functions, result: " << Changed << ".\n");
2862   return Changed == ChangeStatus::CHANGED;
2863 }
2864 
2865 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2866 
2867 void AADepGraph::dumpGraph() {
2868   static std::atomic<int> CallTimes;
2869   std::string Prefix;
2870 
2871   if (!DepGraphDotFileNamePrefix.empty())
2872     Prefix = DepGraphDotFileNamePrefix;
2873   else
2874     Prefix = "dep_graph";
2875   std::string Filename =
2876       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2877 
2878   outs() << "Dependency graph dump to " << Filename << ".\n";
2879 
2880   std::error_code EC;
2881 
2882   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2883   if (!EC)
2884     llvm::WriteGraph(File, this);
2885 
2886   CallTimes++;
2887 }
2888 
2889 void AADepGraph::print() {
2890   for (auto DepAA : SyntheticRoot.Deps)
2891     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2892 }
2893 
2894 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2895   FunctionAnalysisManager &FAM =
2896       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2897   AnalysisGetter AG(FAM);
2898 
2899   SetVector<Function *> Functions;
2900   for (Function &F : M)
2901     Functions.insert(&F);
2902 
2903   CallGraphUpdater CGUpdater;
2904   BumpPtrAllocator Allocator;
2905   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2906   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2907                                /* DeleteFns */ true)) {
2908     // FIXME: Think about passes we will preserve and add them here.
2909     return PreservedAnalyses::none();
2910   }
2911   return PreservedAnalyses::all();
2912 }
2913 
2914 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2915                                            CGSCCAnalysisManager &AM,
2916                                            LazyCallGraph &CG,
2917                                            CGSCCUpdateResult &UR) {
2918   FunctionAnalysisManager &FAM =
2919       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2920   AnalysisGetter AG(FAM);
2921 
2922   SetVector<Function *> Functions;
2923   for (LazyCallGraph::Node &N : C)
2924     Functions.insert(&N.getFunction());
2925 
2926   if (Functions.empty())
2927     return PreservedAnalyses::all();
2928 
2929   Module &M = *Functions.back()->getParent();
2930   CallGraphUpdater CGUpdater;
2931   CGUpdater.initialize(CG, C, AM, UR);
2932   BumpPtrAllocator Allocator;
2933   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2934   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2935                                /* DeleteFns */ false)) {
2936     // FIXME: Think about passes we will preserve and add them here.
2937     PreservedAnalyses PA;
2938     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2939     return PA;
2940   }
2941   return PreservedAnalyses::all();
2942 }
2943 
2944 namespace llvm {
2945 
2946 template <> struct GraphTraits<AADepGraphNode *> {
2947   using NodeRef = AADepGraphNode *;
2948   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2949   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2950 
2951   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2952   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2953 
2954   using ChildIteratorType =
2955       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2956   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2957 
2958   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2959 
2960   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2961 };
2962 
2963 template <>
2964 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2965   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2966 
2967   using nodes_iterator =
2968       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2969 
2970   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2971 
2972   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2973 };
2974 
2975 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2976   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2977 
2978   static std::string getNodeLabel(const AADepGraphNode *Node,
2979                                   const AADepGraph *DG) {
2980     std::string AAString;
2981     raw_string_ostream O(AAString);
2982     Node->print(O);
2983     return AAString;
2984   }
2985 };
2986 
2987 } // end namespace llvm
2988 
2989 namespace {
2990 
2991 struct AttributorLegacyPass : public ModulePass {
2992   static char ID;
2993 
2994   AttributorLegacyPass() : ModulePass(ID) {
2995     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2996   }
2997 
2998   bool runOnModule(Module &M) override {
2999     if (skipModule(M))
3000       return false;
3001 
3002     AnalysisGetter AG;
3003     SetVector<Function *> Functions;
3004     for (Function &F : M)
3005       Functions.insert(&F);
3006 
3007     CallGraphUpdater CGUpdater;
3008     BumpPtrAllocator Allocator;
3009     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3010     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3011                                     /* DeleteFns*/ true);
3012   }
3013 
3014   void getAnalysisUsage(AnalysisUsage &AU) const override {
3015     // FIXME: Think about passes we will preserve and add them here.
3016     AU.addRequired<TargetLibraryInfoWrapperPass>();
3017   }
3018 };
3019 
3020 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3021   static char ID;
3022 
3023   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3024     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3025   }
3026 
3027   bool runOnSCC(CallGraphSCC &SCC) override {
3028     if (skipSCC(SCC))
3029       return false;
3030 
3031     SetVector<Function *> Functions;
3032     for (CallGraphNode *CGN : SCC)
3033       if (Function *Fn = CGN->getFunction())
3034         if (!Fn->isDeclaration())
3035           Functions.insert(Fn);
3036 
3037     if (Functions.empty())
3038       return false;
3039 
3040     AnalysisGetter AG;
3041     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3042     CallGraphUpdater CGUpdater;
3043     CGUpdater.initialize(CG, SCC);
3044     Module &M = *Functions.back()->getParent();
3045     BumpPtrAllocator Allocator;
3046     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3047     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3048                                     /* DeleteFns */ false);
3049   }
3050 
3051   void getAnalysisUsage(AnalysisUsage &AU) const override {
3052     // FIXME: Think about passes we will preserve and add them here.
3053     AU.addRequired<TargetLibraryInfoWrapperPass>();
3054     CallGraphSCCPass::getAnalysisUsage(AU);
3055   }
3056 };
3057 
3058 } // end anonymous namespace
3059 
3060 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3061 Pass *llvm::createAttributorCGSCCLegacyPass() {
3062   return new AttributorCGSCCLegacyPass();
3063 }
3064 
3065 char AttributorLegacyPass::ID = 0;
3066 char AttributorCGSCCLegacyPass::ID = 0;
3067 
3068 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3069                       "Deduce and propagate attributes", false, false)
3070 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3071 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3072                     "Deduce and propagate attributes", false, false)
3073 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3074                       "Deduce and propagate attributes (CGSCC pass)", false,
3075                       false)
3076 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3077 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3078 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3079                     "Deduce and propagate attributes (CGSCC pass)", false,
3080                     false)
3081