1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/CallGraphSCCPass.h"
25 #include "llvm/Analysis/InlineCost.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MustExecute.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/DebugCounter.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/GraphWriter.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Cloning.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 
49 #ifdef EXPENSIVE_CHECKS
50 #include "llvm/IR/Verifier.h"
51 #endif
52 
53 #include <cassert>
54 #include <string>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "attributor"
59 
60 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
61               "Determine what attributes are manifested in the IR");
62 
63 STATISTIC(NumFnDeleted, "Number of function deleted");
64 STATISTIC(NumFnWithExactDefinition,
65           "Number of functions with exact definitions");
66 STATISTIC(NumFnWithoutExactDefinition,
67           "Number of functions without exact definitions");
68 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
69 STATISTIC(NumAttributesTimedOut,
70           "Number of abstract attributes timed out before fixpoint");
71 STATISTIC(NumAttributesValidFixpoint,
72           "Number of abstract attributes in a valid fixpoint state");
73 STATISTIC(NumAttributesManifested,
74           "Number of abstract attributes manifested in IR");
75 
76 // TODO: Determine a good default value.
77 //
78 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
79 // (when run with the first 5 abstract attributes). The results also indicate
80 // that we never reach 32 iterations but always find a fixpoint sooner.
81 //
82 // This will become more evolved once we perform two interleaved fixpoint
83 // iterations: bottom-up and top-down.
84 static cl::opt<unsigned>
85     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
86                           cl::desc("Maximal number of fixpoint iterations."),
87                           cl::init(32));
88 
89 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
90     "attributor-max-initialization-chain-length", cl::Hidden,
91     cl::desc(
92         "Maximal number of chained initializations (to avoid stack overflows)"),
93     cl::location(MaxInitializationChainLength), cl::init(1024));
94 unsigned llvm::MaxInitializationChainLength;
95 
96 static cl::opt<bool> VerifyMaxFixpointIterations(
97     "attributor-max-iterations-verify", cl::Hidden,
98     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
99     cl::init(false));
100 
101 static cl::opt<bool> AnnotateDeclarationCallSites(
102     "attributor-annotate-decl-cs", cl::Hidden,
103     cl::desc("Annotate call sites of function declarations."), cl::init(false));
104 
105 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
106                                        cl::init(true), cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
110                          cl::desc("Allow the Attributor to create shallow "
111                                   "wrappers for non-exact definitions."),
112                          cl::init(false));
113 
114 static cl::opt<bool>
115     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
116                      cl::desc("Allow the Attributor to use IP information "
117                               "derived from non-exact functions via cloning"),
118                      cl::init(false));
119 
120 // These options can only used for debug builds.
121 #ifndef NDEBUG
122 static cl::list<std::string>
123     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
124                   cl::desc("Comma seperated list of attribute names that are "
125                            "allowed to be seeded."),
126                   cl::ZeroOrMore, cl::CommaSeparated);
127 
128 static cl::list<std::string> FunctionSeedAllowList(
129     "attributor-function-seed-allow-list", cl::Hidden,
130     cl::desc("Comma seperated list of function names that are "
131              "allowed to be seeded."),
132     cl::ZeroOrMore, cl::CommaSeparated);
133 #endif
134 
135 static cl::opt<bool>
136     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
137                  cl::desc("Dump the dependency graph to dot files."),
138                  cl::init(false));
139 
140 static cl::opt<std::string> DepGraphDotFileNamePrefix(
141     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
142     cl::desc("The prefix used for the CallGraph dot file names."));
143 
144 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
145                                   cl::desc("View the dependency graph."),
146                                   cl::init(false));
147 
148 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
149                                        cl::desc("Print attribute dependencies"),
150                                        cl::init(false));
151 
152 static cl::opt<bool> EnableCallSiteSpecific(
153     "attributor-enable-call-site-specific-deduction", cl::Hidden,
154     cl::desc("Allow the Attributor to do call site specific analysis"),
155     cl::init(false));
156 
157 static cl::opt<bool>
158     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
159                    cl::desc("Print Attributor's internal call graph"),
160                    cl::init(false));
161 
162 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
163                                       cl::Hidden,
164                                       cl::desc("Try to simplify all loads."),
165                                       cl::init(true));
166 
167 /// Logic operators for the change status enum class.
168 ///
169 ///{
170 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
171   return L == ChangeStatus::CHANGED ? L : R;
172 }
173 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
174   L = L | R;
175   return L;
176 }
177 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
178   return L == ChangeStatus::UNCHANGED ? L : R;
179 }
180 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
181   L = L & R;
182   return L;
183 }
184 ///}
185 
186 bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
187                       const AbstractAttribute &QueryingAA) {
188   // We are looking for volatile instructions or non-relaxed atomics.
189   if (const auto *CB = dyn_cast<CallBase>(&I)) {
190     if (CB->hasFnAttr(Attribute::NoSync))
191       return true;
192 
193     // Non-convergent and readnone imply nosync.
194     if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
195       return true;
196 
197     if (AANoSync::isNoSyncIntrinsic(&I))
198       return true;
199 
200     const auto &NoSyncAA = A.getAAFor<AANoSync>(
201         QueryingAA, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
202     return NoSyncAA.isAssumedNoSync();
203   }
204 
205   if (!I.mayReadOrWriteMemory())
206     return true;
207 
208   return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
209 }
210 
211 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
212                              const Value &V, bool ForAnalysisOnly) {
213   // TODO: See the AAInstanceInfo class comment.
214   if (!ForAnalysisOnly)
215     return false;
216   auto &InstanceInfoAA = A.getAAFor<AAInstanceInfo>(
217       QueryingAA, IRPosition::value(V), DepClassTy::OPTIONAL);
218   return InstanceInfoAA.isAssumedUniqueForAnalysis();
219 }
220 
221 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty,
222                                     const TargetLibraryInfo *TLI) {
223   if (isa<AllocaInst>(Obj))
224     return UndefValue::get(&Ty);
225   if (isAllocationFn(&Obj, TLI))
226     return getInitialValueOfAllocation(&cast<CallBase>(Obj), TLI, &Ty);
227   auto *GV = dyn_cast<GlobalVariable>(&Obj);
228   if (!GV || !GV->hasLocalLinkage())
229     return nullptr;
230   if (!GV->hasInitializer())
231     return UndefValue::get(&Ty);
232   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
233 }
234 
235 bool AA::isValidInScope(const Value &V, const Function *Scope) {
236   if (isa<Constant>(V))
237     return true;
238   if (auto *I = dyn_cast<Instruction>(&V))
239     return I->getFunction() == Scope;
240   if (auto *A = dyn_cast<Argument>(&V))
241     return A->getParent() == Scope;
242   return false;
243 }
244 
245 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
246                            InformationCache &InfoCache) {
247   if (isa<Constant>(V) || &V == &CtxI)
248     return true;
249   const Function *Scope = CtxI.getFunction();
250   if (auto *A = dyn_cast<Argument>(&V))
251     return A->getParent() == Scope;
252   if (auto *I = dyn_cast<Instruction>(&V)) {
253     if (I->getFunction() == Scope) {
254       if (const DominatorTree *DT =
255               InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
256                   *Scope))
257         return DT->dominates(I, &CtxI);
258       // Local dominance check mostly for the old PM passes.
259       if (I->getParent() == CtxI.getParent())
260         return llvm::any_of(
261             make_range(I->getIterator(), I->getParent()->end()),
262             [&](const Instruction &AfterI) { return &AfterI == &CtxI; });
263     }
264   }
265   return false;
266 }
267 
268 Value *AA::getWithType(Value &V, Type &Ty) {
269   if (V.getType() == &Ty)
270     return &V;
271   if (isa<PoisonValue>(V))
272     return PoisonValue::get(&Ty);
273   if (isa<UndefValue>(V))
274     return UndefValue::get(&Ty);
275   if (auto *C = dyn_cast<Constant>(&V)) {
276     if (C->isNullValue())
277       return Constant::getNullValue(&Ty);
278     if (C->getType()->isPointerTy() && Ty.isPointerTy())
279       return ConstantExpr::getPointerCast(C, &Ty);
280     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
281       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
282         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
283       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
284         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
285     }
286   }
287   return nullptr;
288 }
289 
290 Optional<Value *>
291 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
292                                          const Optional<Value *> &B, Type *Ty) {
293   if (A == B)
294     return A;
295   if (!B.hasValue())
296     return A;
297   if (*B == nullptr)
298     return nullptr;
299   if (!A.hasValue())
300     return Ty ? getWithType(**B, *Ty) : nullptr;
301   if (*A == nullptr)
302     return nullptr;
303   if (!Ty)
304     Ty = (*A)->getType();
305   if (isa_and_nonnull<UndefValue>(*A))
306     return getWithType(**B, *Ty);
307   if (isa<UndefValue>(*B))
308     return A;
309   if (*A && *B && *A == getWithType(**B, *Ty))
310     return A;
311   return nullptr;
312 }
313 
314 template <bool IsLoad, typename Ty>
315 static bool getPotentialCopiesOfMemoryValue(
316     Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies,
317     SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
318     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
319     bool OnlyExact) {
320   LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
321                     << " (only exact: " << OnlyExact << ")\n";);
322 
323   Value &Ptr = *I.getPointerOperand();
324   SmallVector<Value *, 8> Objects;
325   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &I,
326                                        UsedAssumedInformation)) {
327     LLVM_DEBUG(
328         dbgs() << "Underlying objects stored into could not be determined\n";);
329     return false;
330   }
331 
332   // Containers to remember the pointer infos and new copies while we are not
333   // sure that we can find all of them. If we abort we want to avoid spurious
334   // dependences and potential copies in the provided container.
335   SmallVector<const AAPointerInfo *> PIs;
336   SmallVector<Value *> NewCopies;
337   SmallVector<Instruction *> NewCopyOrigins;
338 
339   const auto *TLI =
340       A.getInfoCache().getTargetLibraryInfoForFunction(*I.getFunction());
341   for (Value *Obj : Objects) {
342     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
343     if (isa<UndefValue>(Obj))
344       continue;
345     if (isa<ConstantPointerNull>(Obj)) {
346       // A null pointer access can be undefined but any offset from null may
347       // be OK. We do not try to optimize the latter.
348       if (!NullPointerIsDefined(I.getFunction(),
349                                 Ptr.getType()->getPointerAddressSpace()) &&
350           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
351               Obj)
352         continue;
353       LLVM_DEBUG(
354           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
355       return false;
356     }
357     // TODO: Use assumed noalias return.
358     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
359         !(IsLoad ? isAllocationFn(Obj, TLI) : isNoAliasCall(Obj))) {
360       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
361                         << "\n";);
362       return false;
363     }
364     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
365       if (!GV->hasLocalLinkage()) {
366         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
367                              "linkage, not supported yet: "
368                           << *Obj << "\n";);
369         return false;
370       }
371 
372     if (IsLoad) {
373       Value *InitialValue = AA::getInitialValueForObj(*Obj, *I.getType(), TLI);
374       if (!InitialValue)
375         return false;
376       NewCopies.push_back(InitialValue);
377       NewCopyOrigins.push_back(nullptr);
378     }
379 
380     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
381       if ((IsLoad && !Acc.isWrite()) || (!IsLoad && !Acc.isRead()))
382         return true;
383       if (IsLoad && Acc.isWrittenValueYetUndetermined())
384         return true;
385       if (OnlyExact && !IsExact &&
386           !isa_and_nonnull<UndefValue>(Acc.getWrittenValue())) {
387         LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst()
388                           << ", abort!\n");
389         return false;
390       }
391       if (IsLoad) {
392         assert(isa<LoadInst>(I) && "Expected load or store instruction only!");
393         if (!Acc.isWrittenValueUnknown()) {
394           NewCopies.push_back(Acc.getWrittenValue());
395           NewCopyOrigins.push_back(Acc.getRemoteInst());
396           return true;
397         }
398         auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst());
399         if (!SI) {
400           LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
401                                "instruction not supported yet: "
402                             << *Acc.getRemoteInst() << "\n";);
403           return false;
404         }
405         NewCopies.push_back(SI->getValueOperand());
406         NewCopyOrigins.push_back(SI);
407       } else {
408         assert(isa<StoreInst>(I) && "Expected load or store instruction only!");
409         auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
410         if (!LI && OnlyExact) {
411           LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
412                                "instruction not supported yet: "
413                             << *Acc.getRemoteInst() << "\n";);
414           return false;
415         }
416         NewCopies.push_back(Acc.getRemoteInst());
417       }
418       return true;
419     };
420 
421     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
422                                          DepClassTy::NONE);
423     if (!PI.forallInterferingAccesses(A, QueryingAA, I, CheckAccess)) {
424       LLVM_DEBUG(
425           dbgs()
426           << "Failed to verify all interfering accesses for underlying object: "
427           << *Obj << "\n");
428       return false;
429     }
430     PIs.push_back(&PI);
431   }
432 
433   // Only if we were successful collection all potential copies we record
434   // dependences (on non-fix AAPointerInfo AAs). We also only then modify the
435   // given PotentialCopies container.
436   for (auto *PI : PIs) {
437     if (!PI->getState().isAtFixpoint())
438       UsedAssumedInformation = true;
439     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
440   }
441   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
442   PotentialValueOrigins.insert(NewCopyOrigins.begin(), NewCopyOrigins.end());
443 
444   return true;
445 }
446 
447 bool AA::getPotentiallyLoadedValues(
448     Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
449     SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
450     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
451     bool OnlyExact) {
452   return getPotentialCopiesOfMemoryValue</* IsLoad */ true>(
453       A, LI, PotentialValues, PotentialValueOrigins, QueryingAA,
454       UsedAssumedInformation, OnlyExact);
455 }
456 
457 bool AA::getPotentialCopiesOfStoredValue(
458     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
459     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
460     bool OnlyExact) {
461   SmallSetVector<Instruction *, 4> PotentialValueOrigins;
462   return getPotentialCopiesOfMemoryValue</* IsLoad */ false>(
463       A, SI, PotentialCopies, PotentialValueOrigins, QueryingAA,
464       UsedAssumedInformation, OnlyExact);
465 }
466 
467 static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
468                                         const AbstractAttribute &QueryingAA,
469                                         bool RequireReadNone, bool &IsKnown) {
470 
471   IRPosition::Kind Kind = IRP.getPositionKind();
472   if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
473     const auto &MemLocAA =
474         A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
475     if (MemLocAA.isAssumedReadNone()) {
476       IsKnown = MemLocAA.isKnownReadNone();
477       if (!IsKnown)
478         A.recordDependence(MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
479       return true;
480     }
481   }
482 
483   const auto &MemBehaviorAA =
484       A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
485   if (MemBehaviorAA.isAssumedReadNone() ||
486       (!RequireReadNone && MemBehaviorAA.isAssumedReadOnly())) {
487     IsKnown = RequireReadNone ? MemBehaviorAA.isKnownReadNone()
488                               : MemBehaviorAA.isKnownReadOnly();
489     if (!IsKnown)
490       A.recordDependence(MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
491     return true;
492   }
493 
494   return false;
495 }
496 
497 bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
498                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
499   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
500                                      /* RequireReadNone */ false, IsKnown);
501 }
502 bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
503                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
504   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
505                                      /* RequireReadNone */ true, IsKnown);
506 }
507 
508 static bool
509 isPotentiallyReachable(Attributor &A, const Instruction &FromI,
510                        const Instruction *ToI, const Function &ToFn,
511                        const AbstractAttribute &QueryingAA,
512                        std::function<bool(const Function &F)> GoBackwardsCB) {
513   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName()
514                     << " from " << FromI << " [GBCB: " << bool(GoBackwardsCB)
515                     << "]\n");
516 
517   SmallPtrSet<const Instruction *, 8> Visited;
518   SmallVector<const Instruction *> Worklist;
519   Worklist.push_back(&FromI);
520 
521   const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
522       QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
523   while (!Worklist.empty()) {
524     const Instruction *CurFromI = Worklist.pop_back_val();
525     if (!Visited.insert(CurFromI).second)
526       continue;
527 
528     const Function *FromFn = CurFromI->getFunction();
529     if (FromFn == &ToFn) {
530       if (!ToI)
531         return true;
532       LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
533                         << " intraprocedurally\n");
534       const auto &ReachabilityAA = A.getAAFor<AAReachability>(
535           QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
536       bool Result = ReachabilityAA.isAssumedReachable(A, *CurFromI, *ToI);
537       LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
538                         << (Result ? "can potentially " : "cannot ") << "reach "
539                         << *ToI << " [Intra]\n");
540       if (Result)
541         return true;
542       if (NoRecurseAA.isAssumedNoRecurse())
543         continue;
544     }
545 
546     // TODO: If we can go arbitrarily backwards we will eventually reach an
547     // entry point that can reach ToI. Only once this takes a set of blocks
548     // through which we cannot go, or once we track internal functions not
549     // accessible from the outside, it makes sense to perform backwards analysis
550     // in the absence of a GoBackwardsCB.
551     if (!GoBackwardsCB) {
552       LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from "
553                         << *CurFromI << " is not checked backwards, abort\n");
554       return true;
555     }
556 
557     // Check if the current instruction is already known to reach the ToFn.
558     const auto &FnReachabilityAA = A.getAAFor<AAFunctionReachability>(
559         QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
560     bool Result = FnReachabilityAA.instructionCanReach(
561         A, *CurFromI, ToFn, /* UseBackwards */ false);
562     LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
563                       << " " << (Result ? "can potentially " : "cannot ")
564                       << "reach @" << ToFn.getName() << " [FromFn]\n");
565     if (Result)
566       return true;
567 
568     // If we do not go backwards from the FromFn we are done here and so far we
569     // could not find a way to reach ToFn/ToI.
570     if (!GoBackwardsCB(*FromFn))
571       continue;
572 
573     LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
574                       << FromFn->getName() << "\n");
575 
576     auto CheckCallSite = [&](AbstractCallSite ACS) {
577       CallBase *CB = ACS.getInstruction();
578       if (!CB)
579         return false;
580 
581       if (isa<InvokeInst>(CB))
582         return false;
583 
584       Instruction *Inst = CB->getNextNonDebugInstruction();
585       Worklist.push_back(Inst);
586       return true;
587     };
588 
589     bool UsedAssumedInformation = false;
590     Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
591                                      /* RequireAllCallSites */ true,
592                                      &QueryingAA, UsedAssumedInformation);
593     if (Result) {
594       LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
595                         << " in @" << FromFn->getName()
596                         << " failed, give up\n");
597       return true;
598     }
599 
600     LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
601                       << " in @" << FromFn->getName()
602                       << " worklist size is: " << Worklist.size() << "\n");
603   }
604   return false;
605 }
606 
607 bool AA::isPotentiallyReachable(
608     Attributor &A, const Instruction &FromI, const Instruction &ToI,
609     const AbstractAttribute &QueryingAA,
610     std::function<bool(const Function &F)> GoBackwardsCB) {
611   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable " << ToI << " from "
612                     << FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n");
613   const Function *ToFn = ToI.getFunction();
614   return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
615                                   GoBackwardsCB);
616 }
617 
618 bool AA::isPotentiallyReachable(
619     Attributor &A, const Instruction &FromI, const Function &ToFn,
620     const AbstractAttribute &QueryingAA,
621     std::function<bool(const Function &F)> GoBackwardsCB) {
622   return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA,
623                                   GoBackwardsCB);
624 }
625 
626 /// Return true if \p New is equal or worse than \p Old.
627 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
628   if (!Old.isIntAttribute())
629     return true;
630 
631   return Old.getValueAsInt() >= New.getValueAsInt();
632 }
633 
634 /// Return true if the information provided by \p Attr was added to the
635 /// attribute list \p Attrs. This is only the case if it was not already present
636 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
637 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
638                              AttributeList &Attrs, int AttrIdx,
639                              bool ForceReplace = false) {
640 
641   if (Attr.isEnumAttribute()) {
642     Attribute::AttrKind Kind = Attr.getKindAsEnum();
643     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
644       if (!ForceReplace &&
645           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
646         return false;
647     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
648     return true;
649   }
650   if (Attr.isStringAttribute()) {
651     StringRef Kind = Attr.getKindAsString();
652     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
653       if (!ForceReplace &&
654           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
655         return false;
656     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
657     return true;
658   }
659   if (Attr.isIntAttribute()) {
660     Attribute::AttrKind Kind = Attr.getKindAsEnum();
661     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
662       if (!ForceReplace &&
663           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
664         return false;
665     Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
666     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
667     return true;
668   }
669 
670   llvm_unreachable("Expected enum or string attribute!");
671 }
672 
673 Argument *IRPosition::getAssociatedArgument() const {
674   if (getPositionKind() == IRP_ARGUMENT)
675     return cast<Argument>(&getAnchorValue());
676 
677   // Not an Argument and no argument number means this is not a call site
678   // argument, thus we cannot find a callback argument to return.
679   int ArgNo = getCallSiteArgNo();
680   if (ArgNo < 0)
681     return nullptr;
682 
683   // Use abstract call sites to make the connection between the call site
684   // values and the ones in callbacks. If a callback was found that makes use
685   // of the underlying call site operand, we want the corresponding callback
686   // callee argument and not the direct callee argument.
687   Optional<Argument *> CBCandidateArg;
688   SmallVector<const Use *, 4> CallbackUses;
689   const auto &CB = cast<CallBase>(getAnchorValue());
690   AbstractCallSite::getCallbackUses(CB, CallbackUses);
691   for (const Use *U : CallbackUses) {
692     AbstractCallSite ACS(U);
693     assert(ACS && ACS.isCallbackCall());
694     if (!ACS.getCalledFunction())
695       continue;
696 
697     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
698 
699       // Test if the underlying call site operand is argument number u of the
700       // callback callee.
701       if (ACS.getCallArgOperandNo(u) != ArgNo)
702         continue;
703 
704       assert(ACS.getCalledFunction()->arg_size() > u &&
705              "ACS mapped into var-args arguments!");
706       if (CBCandidateArg.hasValue()) {
707         CBCandidateArg = nullptr;
708         break;
709       }
710       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
711     }
712   }
713 
714   // If we found a unique callback candidate argument, return it.
715   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
716     return CBCandidateArg.getValue();
717 
718   // If no callbacks were found, or none used the underlying call site operand
719   // exclusively, use the direct callee argument if available.
720   const Function *Callee = CB.getCalledFunction();
721   if (Callee && Callee->arg_size() > unsigned(ArgNo))
722     return Callee->getArg(ArgNo);
723 
724   return nullptr;
725 }
726 
727 ChangeStatus AbstractAttribute::update(Attributor &A) {
728   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
729   if (getState().isAtFixpoint())
730     return HasChanged;
731 
732   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
733 
734   HasChanged = updateImpl(A);
735 
736   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
737                     << "\n");
738 
739   return HasChanged;
740 }
741 
742 ChangeStatus
743 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
744                                    const ArrayRef<Attribute> &DeducedAttrs,
745                                    bool ForceReplace) {
746   Function *ScopeFn = IRP.getAnchorScope();
747   IRPosition::Kind PK = IRP.getPositionKind();
748 
749   // In the following some generic code that will manifest attributes in
750   // DeducedAttrs if they improve the current IR. Due to the different
751   // annotation positions we use the underlying AttributeList interface.
752 
753   AttributeList Attrs;
754   switch (PK) {
755   case IRPosition::IRP_INVALID:
756   case IRPosition::IRP_FLOAT:
757     return ChangeStatus::UNCHANGED;
758   case IRPosition::IRP_ARGUMENT:
759   case IRPosition::IRP_FUNCTION:
760   case IRPosition::IRP_RETURNED:
761     Attrs = ScopeFn->getAttributes();
762     break;
763   case IRPosition::IRP_CALL_SITE:
764   case IRPosition::IRP_CALL_SITE_RETURNED:
765   case IRPosition::IRP_CALL_SITE_ARGUMENT:
766     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
767     break;
768   }
769 
770   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
771   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
772   for (const Attribute &Attr : DeducedAttrs) {
773     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
774       continue;
775 
776     HasChanged = ChangeStatus::CHANGED;
777   }
778 
779   if (HasChanged == ChangeStatus::UNCHANGED)
780     return HasChanged;
781 
782   switch (PK) {
783   case IRPosition::IRP_ARGUMENT:
784   case IRPosition::IRP_FUNCTION:
785   case IRPosition::IRP_RETURNED:
786     ScopeFn->setAttributes(Attrs);
787     break;
788   case IRPosition::IRP_CALL_SITE:
789   case IRPosition::IRP_CALL_SITE_RETURNED:
790   case IRPosition::IRP_CALL_SITE_ARGUMENT:
791     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
792     break;
793   case IRPosition::IRP_INVALID:
794   case IRPosition::IRP_FLOAT:
795     break;
796   }
797 
798   return HasChanged;
799 }
800 
801 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
802 const IRPosition
803     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
804 
805 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
806   IRPositions.emplace_back(IRP);
807 
808   // Helper to determine if operand bundles on a call site are benin or
809   // potentially problematic. We handle only llvm.assume for now.
810   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
811     return (isa<IntrinsicInst>(CB) &&
812             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
813   };
814 
815   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
816   switch (IRP.getPositionKind()) {
817   case IRPosition::IRP_INVALID:
818   case IRPosition::IRP_FLOAT:
819   case IRPosition::IRP_FUNCTION:
820     return;
821   case IRPosition::IRP_ARGUMENT:
822   case IRPosition::IRP_RETURNED:
823     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
824     return;
825   case IRPosition::IRP_CALL_SITE:
826     assert(CB && "Expected call site!");
827     // TODO: We need to look at the operand bundles similar to the redirection
828     //       in CallBase.
829     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
830       if (const Function *Callee = CB->getCalledFunction())
831         IRPositions.emplace_back(IRPosition::function(*Callee));
832     return;
833   case IRPosition::IRP_CALL_SITE_RETURNED:
834     assert(CB && "Expected call site!");
835     // TODO: We need to look at the operand bundles similar to the redirection
836     //       in CallBase.
837     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
838       if (const Function *Callee = CB->getCalledFunction()) {
839         IRPositions.emplace_back(IRPosition::returned(*Callee));
840         IRPositions.emplace_back(IRPosition::function(*Callee));
841         for (const Argument &Arg : Callee->args())
842           if (Arg.hasReturnedAttr()) {
843             IRPositions.emplace_back(
844                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
845             IRPositions.emplace_back(
846                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
847             IRPositions.emplace_back(IRPosition::argument(Arg));
848           }
849       }
850     }
851     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
852     return;
853   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
854     assert(CB && "Expected call site!");
855     // TODO: We need to look at the operand bundles similar to the redirection
856     //       in CallBase.
857     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
858       const Function *Callee = CB->getCalledFunction();
859       if (Callee) {
860         if (Argument *Arg = IRP.getAssociatedArgument())
861           IRPositions.emplace_back(IRPosition::argument(*Arg));
862         IRPositions.emplace_back(IRPosition::function(*Callee));
863       }
864     }
865     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
866     return;
867   }
868   }
869 }
870 
871 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
872                          bool IgnoreSubsumingPositions, Attributor *A) const {
873   SmallVector<Attribute, 4> Attrs;
874   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
875     for (Attribute::AttrKind AK : AKs)
876       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
877         return true;
878     // The first position returned by the SubsumingPositionIterator is
879     // always the position itself. If we ignore subsuming positions we
880     // are done after the first iteration.
881     if (IgnoreSubsumingPositions)
882       break;
883   }
884   if (A)
885     for (Attribute::AttrKind AK : AKs)
886       if (getAttrsFromAssumes(AK, Attrs, *A))
887         return true;
888   return false;
889 }
890 
891 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
892                           SmallVectorImpl<Attribute> &Attrs,
893                           bool IgnoreSubsumingPositions, Attributor *A) const {
894   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
895     for (Attribute::AttrKind AK : AKs)
896       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
897     // The first position returned by the SubsumingPositionIterator is
898     // always the position itself. If we ignore subsuming positions we
899     // are done after the first iteration.
900     if (IgnoreSubsumingPositions)
901       break;
902   }
903   if (A)
904     for (Attribute::AttrKind AK : AKs)
905       getAttrsFromAssumes(AK, Attrs, *A);
906 }
907 
908 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
909                                     SmallVectorImpl<Attribute> &Attrs) const {
910   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
911     return false;
912 
913   AttributeList AttrList;
914   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
915     AttrList = CB->getAttributes();
916   else
917     AttrList = getAssociatedFunction()->getAttributes();
918 
919   bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
920   if (HasAttr)
921     Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
922   return HasAttr;
923 }
924 
925 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
926                                      SmallVectorImpl<Attribute> &Attrs,
927                                      Attributor &A) const {
928   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
929   Value &AssociatedValue = getAssociatedValue();
930 
931   const Assume2KnowledgeMap &A2K =
932       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
933 
934   // Check if we found any potential assume use, if not we don't need to create
935   // explorer iterators.
936   if (A2K.empty())
937     return false;
938 
939   LLVMContext &Ctx = AssociatedValue.getContext();
940   unsigned AttrsSize = Attrs.size();
941   MustBeExecutedContextExplorer &Explorer =
942       A.getInfoCache().getMustBeExecutedContextExplorer();
943   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
944   for (auto &It : A2K)
945     if (Explorer.findInContextOf(It.first, EIt, EEnd))
946       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
947   return AttrsSize != Attrs.size();
948 }
949 
950 void IRPosition::verify() {
951 #ifdef EXPENSIVE_CHECKS
952   switch (getPositionKind()) {
953   case IRP_INVALID:
954     assert((CBContext == nullptr) &&
955            "Invalid position must not have CallBaseContext!");
956     assert(!Enc.getOpaqueValue() &&
957            "Expected a nullptr for an invalid position!");
958     return;
959   case IRP_FLOAT:
960     assert((!isa<Argument>(&getAssociatedValue())) &&
961            "Expected specialized kind for argument values!");
962     return;
963   case IRP_RETURNED:
964     assert(isa<Function>(getAsValuePtr()) &&
965            "Expected function for a 'returned' position!");
966     assert(getAsValuePtr() == &getAssociatedValue() &&
967            "Associated value mismatch!");
968     return;
969   case IRP_CALL_SITE_RETURNED:
970     assert((CBContext == nullptr) &&
971            "'call site returned' position must not have CallBaseContext!");
972     assert((isa<CallBase>(getAsValuePtr())) &&
973            "Expected call base for 'call site returned' position!");
974     assert(getAsValuePtr() == &getAssociatedValue() &&
975            "Associated value mismatch!");
976     return;
977   case IRP_CALL_SITE:
978     assert((CBContext == nullptr) &&
979            "'call site function' position must not have CallBaseContext!");
980     assert((isa<CallBase>(getAsValuePtr())) &&
981            "Expected call base for 'call site function' position!");
982     assert(getAsValuePtr() == &getAssociatedValue() &&
983            "Associated value mismatch!");
984     return;
985   case IRP_FUNCTION:
986     assert(isa<Function>(getAsValuePtr()) &&
987            "Expected function for a 'function' position!");
988     assert(getAsValuePtr() == &getAssociatedValue() &&
989            "Associated value mismatch!");
990     return;
991   case IRP_ARGUMENT:
992     assert(isa<Argument>(getAsValuePtr()) &&
993            "Expected argument for a 'argument' position!");
994     assert(getAsValuePtr() == &getAssociatedValue() &&
995            "Associated value mismatch!");
996     return;
997   case IRP_CALL_SITE_ARGUMENT: {
998     assert((CBContext == nullptr) &&
999            "'call site argument' position must not have CallBaseContext!");
1000     Use *U = getAsUsePtr();
1001     (void)U; // Silence unused variable warning.
1002     assert(U && "Expected use for a 'call site argument' position!");
1003     assert(isa<CallBase>(U->getUser()) &&
1004            "Expected call base user for a 'call site argument' position!");
1005     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
1006            "Expected call base argument operand for a 'call site argument' "
1007            "position");
1008     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
1009                unsigned(getCallSiteArgNo()) &&
1010            "Argument number mismatch!");
1011     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
1012     return;
1013   }
1014   }
1015 #endif
1016 }
1017 
1018 Optional<Constant *>
1019 Attributor::getAssumedConstant(const IRPosition &IRP,
1020                                const AbstractAttribute &AA,
1021                                bool &UsedAssumedInformation) {
1022   // First check all callbacks provided by outside AAs. If any of them returns
1023   // a non-null value that is different from the associated value, or None, we
1024   // assume it's simpliied.
1025   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
1026     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
1027     if (!SimplifiedV.hasValue())
1028       return llvm::None;
1029     if (isa_and_nonnull<Constant>(*SimplifiedV))
1030       return cast<Constant>(*SimplifiedV);
1031     return nullptr;
1032   }
1033   const auto &ValueSimplifyAA =
1034       getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
1035   Optional<Value *> SimplifiedV =
1036       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
1037   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
1038   UsedAssumedInformation |= !IsKnown;
1039   if (!SimplifiedV.hasValue()) {
1040     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
1041     return llvm::None;
1042   }
1043   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
1044     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
1045     return UndefValue::get(IRP.getAssociatedType());
1046   }
1047   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
1048   if (CI)
1049     CI = dyn_cast_or_null<Constant>(
1050         AA::getWithType(*CI, *IRP.getAssociatedType()));
1051   if (CI)
1052     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
1053   return CI;
1054 }
1055 
1056 Optional<Value *>
1057 Attributor::getAssumedSimplified(const IRPosition &IRP,
1058                                  const AbstractAttribute *AA,
1059                                  bool &UsedAssumedInformation) {
1060   // First check all callbacks provided by outside AAs. If any of them returns
1061   // a non-null value that is different from the associated value, or None, we
1062   // assume it's simpliied.
1063   for (auto &CB : SimplificationCallbacks.lookup(IRP))
1064     return CB(IRP, AA, UsedAssumedInformation);
1065 
1066   // If no high-level/outside simplification occurred, use AAValueSimplify.
1067   const auto &ValueSimplifyAA =
1068       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
1069   Optional<Value *> SimplifiedV =
1070       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
1071   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
1072   UsedAssumedInformation |= !IsKnown;
1073   if (!SimplifiedV.hasValue()) {
1074     if (AA)
1075       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
1076     return llvm::None;
1077   }
1078   if (*SimplifiedV == nullptr)
1079     return const_cast<Value *>(&IRP.getAssociatedValue());
1080   if (Value *SimpleV =
1081           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
1082     if (AA)
1083       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
1084     return SimpleV;
1085   }
1086   return const_cast<Value *>(&IRP.getAssociatedValue());
1087 }
1088 
1089 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
1090     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
1091     bool &UsedAssumedInformation) {
1092   if (!V.hasValue())
1093     return V;
1094   if (*V == nullptr || isa<Constant>(*V))
1095     return V;
1096   if (auto *Arg = dyn_cast<Argument>(*V))
1097     if (CB.getCalledFunction() == Arg->getParent())
1098       if (!Arg->hasPointeeInMemoryValueAttr())
1099         return getAssumedSimplified(
1100             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
1101             UsedAssumedInformation);
1102   return nullptr;
1103 }
1104 
1105 Attributor::~Attributor() {
1106   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1107   // thus we cannot delete them. We can, and want to, destruct them though.
1108   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1109     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1110     AA->~AbstractAttribute();
1111   }
1112 }
1113 
1114 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
1115                                const AAIsDead *FnLivenessAA,
1116                                bool &UsedAssumedInformation,
1117                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1118   const IRPosition &IRP = AA.getIRPosition();
1119   if (!Functions.count(IRP.getAnchorScope()))
1120     return false;
1121   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
1122                        CheckBBLivenessOnly, DepClass);
1123 }
1124 
1125 bool Attributor::isAssumedDead(const Use &U,
1126                                const AbstractAttribute *QueryingAA,
1127                                const AAIsDead *FnLivenessAA,
1128                                bool &UsedAssumedInformation,
1129                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1130   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1131   if (!UserI)
1132     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
1133                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1134 
1135   if (auto *CB = dyn_cast<CallBase>(UserI)) {
1136     // For call site argument uses we can check if the argument is
1137     // unused/dead.
1138     if (CB->isArgOperand(&U)) {
1139       const IRPosition &CSArgPos =
1140           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
1141       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
1142                            UsedAssumedInformation, CheckBBLivenessOnly,
1143                            DepClass);
1144     }
1145   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
1146     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
1147     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
1148                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1149   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
1150     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
1151     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
1152                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1153   } else if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
1154     if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) {
1155       const IRPosition IRP = IRPosition::inst(*SI);
1156       const AAIsDead &IsDeadAA =
1157           getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1158       if (IsDeadAA.isRemovableStore()) {
1159         if (QueryingAA)
1160           recordDependence(IsDeadAA, *QueryingAA, DepClass);
1161         if (!IsDeadAA.isKnown(AAIsDead::IS_REMOVABLE))
1162           UsedAssumedInformation = true;
1163         return true;
1164       }
1165     }
1166   }
1167 
1168   return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
1169                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1170 }
1171 
1172 bool Attributor::isAssumedDead(const Instruction &I,
1173                                const AbstractAttribute *QueryingAA,
1174                                const AAIsDead *FnLivenessAA,
1175                                bool &UsedAssumedInformation,
1176                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1177   const IRPosition::CallBaseContext *CBCtx =
1178       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
1179 
1180   if (ManifestAddedBlocks.contains(I.getParent()))
1181     return false;
1182 
1183   if (!FnLivenessAA)
1184     FnLivenessAA =
1185         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
1186                               QueryingAA, DepClassTy::NONE);
1187 
1188   // If we have a context instruction and a liveness AA we use it.
1189   if (FnLivenessAA &&
1190       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
1191       (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
1192                            : FnLivenessAA->isAssumedDead(&I))) {
1193     if (QueryingAA)
1194       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1195     if (!FnLivenessAA->isKnownDead(&I))
1196       UsedAssumedInformation = true;
1197     return true;
1198   }
1199 
1200   if (CheckBBLivenessOnly)
1201     return false;
1202 
1203   const IRPosition IRP = IRPosition::inst(I, CBCtx);
1204   const AAIsDead &IsDeadAA =
1205       getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1206   // Don't check liveness for AAIsDead.
1207   if (QueryingAA == &IsDeadAA)
1208     return false;
1209 
1210   if (IsDeadAA.isAssumedDead()) {
1211     if (QueryingAA)
1212       recordDependence(IsDeadAA, *QueryingAA, DepClass);
1213     if (!IsDeadAA.isKnownDead())
1214       UsedAssumedInformation = true;
1215     return true;
1216   }
1217 
1218   return false;
1219 }
1220 
1221 bool Attributor::isAssumedDead(const IRPosition &IRP,
1222                                const AbstractAttribute *QueryingAA,
1223                                const AAIsDead *FnLivenessAA,
1224                                bool &UsedAssumedInformation,
1225                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1226   Instruction *CtxI = IRP.getCtxI();
1227   if (CtxI &&
1228       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
1229                     /* CheckBBLivenessOnly */ true,
1230                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
1231     return true;
1232 
1233   if (CheckBBLivenessOnly)
1234     return false;
1235 
1236   // If we haven't succeeded we query the specific liveness info for the IRP.
1237   const AAIsDead *IsDeadAA;
1238   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
1239     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
1240         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
1241         QueryingAA, DepClassTy::NONE);
1242   else
1243     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1244   // Don't check liveness for AAIsDead.
1245   if (QueryingAA == IsDeadAA)
1246     return false;
1247 
1248   if (IsDeadAA->isAssumedDead()) {
1249     if (QueryingAA)
1250       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1251     if (!IsDeadAA->isKnownDead())
1252       UsedAssumedInformation = true;
1253     return true;
1254   }
1255 
1256   return false;
1257 }
1258 
1259 bool Attributor::isAssumedDead(const BasicBlock &BB,
1260                                const AbstractAttribute *QueryingAA,
1261                                const AAIsDead *FnLivenessAA,
1262                                DepClassTy DepClass) {
1263   if (!FnLivenessAA)
1264     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
1265                                          QueryingAA, DepClassTy::NONE);
1266   if (FnLivenessAA->isAssumedDead(&BB)) {
1267     if (QueryingAA)
1268       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1269     return true;
1270   }
1271 
1272   return false;
1273 }
1274 
1275 bool Attributor::checkForAllUses(
1276     function_ref<bool(const Use &, bool &)> Pred,
1277     const AbstractAttribute &QueryingAA, const Value &V,
1278     bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1279     bool IgnoreDroppableUses,
1280     function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1281 
1282   // Check the trivial case first as it catches void values.
1283   if (V.use_empty())
1284     return true;
1285 
1286   const IRPosition &IRP = QueryingAA.getIRPosition();
1287   SmallVector<const Use *, 16> Worklist;
1288   SmallPtrSet<const Use *, 16> Visited;
1289 
1290   for (const Use &U : V.uses())
1291     Worklist.push_back(&U);
1292 
1293   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1294                     << " initial uses to check\n");
1295 
1296   const Function *ScopeFn = IRP.getAnchorScope();
1297   const auto *LivenessAA =
1298       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1299                                     DepClassTy::NONE)
1300               : nullptr;
1301 
1302   while (!Worklist.empty()) {
1303     const Use *U = Worklist.pop_back_val();
1304     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1305       continue;
1306     LLVM_DEBUG({
1307       if (auto *Fn = dyn_cast<Function>(U->getUser()))
1308         dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
1309                << "\n";
1310       else
1311         dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
1312                << "\n";
1313     });
1314     bool UsedAssumedInformation = false;
1315     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1316                       CheckBBLivenessOnly, LivenessDepClass)) {
1317       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1318       continue;
1319     }
1320     if (IgnoreDroppableUses && U->getUser()->isDroppable()) {
1321       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1322       continue;
1323     }
1324 
1325     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1326       if (&SI->getOperandUse(0) == U) {
1327         if (!Visited.insert(U).second)
1328           continue;
1329         SmallSetVector<Value *, 4> PotentialCopies;
1330         if (AA::getPotentialCopiesOfStoredValue(
1331                 *this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation,
1332                 /* OnlyExact */ true)) {
1333           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1334                             << PotentialCopies.size()
1335                             << " potential copies instead!\n");
1336           for (Value *PotentialCopy : PotentialCopies)
1337             for (const Use &CopyUse : PotentialCopy->uses()) {
1338               if (EquivalentUseCB && !EquivalentUseCB(*U, CopyUse)) {
1339                 LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1340                                      "rejected by the equivalence call back: "
1341                                   << *CopyUse << "!\n");
1342                 return false;
1343               }
1344               Worklist.push_back(&CopyUse);
1345             }
1346           continue;
1347         }
1348       }
1349     }
1350 
1351     bool Follow = false;
1352     if (!Pred(*U, Follow))
1353       return false;
1354     if (!Follow)
1355       continue;
1356     for (const Use &UU : U->getUser()->uses())
1357       Worklist.push_back(&UU);
1358   }
1359 
1360   return true;
1361 }
1362 
1363 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1364                                       const AbstractAttribute &QueryingAA,
1365                                       bool RequireAllCallSites,
1366                                       bool &UsedAssumedInformation) {
1367   // We can try to determine information from
1368   // the call sites. However, this is only possible all call sites are known,
1369   // hence the function has internal linkage.
1370   const IRPosition &IRP = QueryingAA.getIRPosition();
1371   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1372   if (!AssociatedFunction) {
1373     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1374                       << "\n");
1375     return false;
1376   }
1377 
1378   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1379                               &QueryingAA, UsedAssumedInformation);
1380 }
1381 
1382 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1383                                       const Function &Fn,
1384                                       bool RequireAllCallSites,
1385                                       const AbstractAttribute *QueryingAA,
1386                                       bool &UsedAssumedInformation) {
1387   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1388     LLVM_DEBUG(
1389         dbgs()
1390         << "[Attributor] Function " << Fn.getName()
1391         << " has no internal linkage, hence not all call sites are known\n");
1392     return false;
1393   }
1394 
1395   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1396   for (unsigned u = 0; u < Uses.size(); ++u) {
1397     const Use &U = *Uses[u];
1398     LLVM_DEBUG({
1399       if (auto *Fn = dyn_cast<Function>(U))
1400         dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
1401                << *U.getUser() << "\n";
1402       else
1403         dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
1404                << "\n";
1405     });
1406     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1407                       /* CheckBBLivenessOnly */ true)) {
1408       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1409       continue;
1410     }
1411     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1412       if (CE->isCast() && CE->getType()->isPointerTy()) {
1413         LLVM_DEBUG(
1414             dbgs() << "[Attributor] Use, is constant cast expression, add "
1415                    << CE->getNumUses()
1416                    << " uses of that expression instead!\n");
1417         for (const Use &CEU : CE->uses())
1418           Uses.push_back(&CEU);
1419         continue;
1420       }
1421     }
1422 
1423     AbstractCallSite ACS(&U);
1424     if (!ACS) {
1425       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1426                         << " has non call site use " << *U.get() << " in "
1427                         << *U.getUser() << "\n");
1428       // BlockAddress users are allowed.
1429       if (isa<BlockAddress>(U.getUser()))
1430         continue;
1431       return false;
1432     }
1433 
1434     const Use *EffectiveUse =
1435         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1436     if (!ACS.isCallee(EffectiveUse)) {
1437       if (!RequireAllCallSites) {
1438         LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1439                           << " is not a call of " << Fn.getName()
1440                           << ", skip use\n");
1441         continue;
1442       }
1443       LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1444                         << " is an invalid use of " << Fn.getName() << "\n");
1445       return false;
1446     }
1447 
1448     // Make sure the arguments that can be matched between the call site and the
1449     // callee argee on their type. It is unlikely they do not and it doesn't
1450     // make sense for all attributes to know/care about this.
1451     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1452     unsigned MinArgsParams =
1453         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1454     for (unsigned u = 0; u < MinArgsParams; ++u) {
1455       Value *CSArgOp = ACS.getCallArgOperand(u);
1456       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1457         LLVM_DEBUG(
1458             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1459                    << u << "@" << Fn.getName() << ": "
1460                    << *Fn.getArg(u)->getType() << " vs. "
1461                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1462         return false;
1463       }
1464     }
1465 
1466     if (Pred(ACS))
1467       continue;
1468 
1469     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1470                       << *ACS.getInstruction() << "\n");
1471     return false;
1472   }
1473 
1474   return true;
1475 }
1476 
1477 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1478   // TODO: Maintain a cache of Values that are
1479   // on the pathway from a Argument to a Instruction that would effect the
1480   // liveness/return state etc.
1481   return EnableCallSiteSpecific;
1482 }
1483 
1484 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1485     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1486     const AbstractAttribute &QueryingAA) {
1487 
1488   const IRPosition &IRP = QueryingAA.getIRPosition();
1489   // Since we need to provide return instructions we have to have an exact
1490   // definition.
1491   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1492   if (!AssociatedFunction)
1493     return false;
1494 
1495   // If this is a call site query we use the call site specific return values
1496   // and liveness information.
1497   // TODO: use the function scope once we have call site AAReturnedValues.
1498   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1499   const auto &AARetVal =
1500       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1501   if (!AARetVal.getState().isValidState())
1502     return false;
1503 
1504   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1505 }
1506 
1507 bool Attributor::checkForAllReturnedValues(
1508     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1509 
1510   const IRPosition &IRP = QueryingAA.getIRPosition();
1511   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1512   if (!AssociatedFunction)
1513     return false;
1514 
1515   // TODO: use the function scope once we have call site AAReturnedValues.
1516   const IRPosition &QueryIRP = IRPosition::function(
1517       *AssociatedFunction, QueryingAA.getCallBaseContext());
1518   const auto &AARetVal =
1519       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1520   if (!AARetVal.getState().isValidState())
1521     return false;
1522 
1523   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1524       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1525         return Pred(RV);
1526       });
1527 }
1528 
1529 static bool checkForAllInstructionsImpl(
1530     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1531     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1532     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1533     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1534     bool CheckPotentiallyDead = false) {
1535   for (unsigned Opcode : Opcodes) {
1536     // Check if we have instructions with this opcode at all first.
1537     auto *Insts = OpcodeInstMap.lookup(Opcode);
1538     if (!Insts)
1539       continue;
1540 
1541     for (Instruction *I : *Insts) {
1542       // Skip dead instructions.
1543       if (A && !CheckPotentiallyDead &&
1544           A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
1545                            UsedAssumedInformation, CheckBBLivenessOnly)) {
1546         LLVM_DEBUG(dbgs() << "[Attributor] Instruction " << *I
1547                           << " is potentially dead, skip!\n";);
1548         continue;
1549       }
1550 
1551       if (!Pred(*I))
1552         return false;
1553     }
1554   }
1555   return true;
1556 }
1557 
1558 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1559                                          const Function *Fn,
1560                                          const AbstractAttribute &QueryingAA,
1561                                          const ArrayRef<unsigned> &Opcodes,
1562                                          bool &UsedAssumedInformation,
1563                                          bool CheckBBLivenessOnly,
1564                                          bool CheckPotentiallyDead) {
1565   // Since we need to provide instructions we have to have an exact definition.
1566   if (!Fn || Fn->isDeclaration())
1567     return false;
1568 
1569   // TODO: use the function scope once we have call site AAReturnedValues.
1570   const IRPosition &QueryIRP = IRPosition::function(*Fn);
1571   const auto *LivenessAA =
1572       (CheckBBLivenessOnly || CheckPotentiallyDead)
1573           ? nullptr
1574           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1575 
1576   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1577   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1578                                    LivenessAA, Opcodes, UsedAssumedInformation,
1579                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1580     return false;
1581 
1582   return true;
1583 }
1584 
1585 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1586                                          const AbstractAttribute &QueryingAA,
1587                                          const ArrayRef<unsigned> &Opcodes,
1588                                          bool &UsedAssumedInformation,
1589                                          bool CheckBBLivenessOnly,
1590                                          bool CheckPotentiallyDead) {
1591   const IRPosition &IRP = QueryingAA.getIRPosition();
1592   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1593   return checkForAllInstructions(Pred, AssociatedFunction, QueryingAA, Opcodes,
1594                                  UsedAssumedInformation, CheckBBLivenessOnly,
1595                                  CheckPotentiallyDead);
1596 }
1597 
1598 bool Attributor::checkForAllReadWriteInstructions(
1599     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1600     bool &UsedAssumedInformation) {
1601 
1602   const Function *AssociatedFunction =
1603       QueryingAA.getIRPosition().getAssociatedFunction();
1604   if (!AssociatedFunction)
1605     return false;
1606 
1607   // TODO: use the function scope once we have call site AAReturnedValues.
1608   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1609   const auto &LivenessAA =
1610       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1611 
1612   for (Instruction *I :
1613        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1614     // Skip dead instructions.
1615     if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, &LivenessAA,
1616                       UsedAssumedInformation))
1617       continue;
1618 
1619     if (!Pred(*I))
1620       return false;
1621   }
1622 
1623   return true;
1624 }
1625 
1626 void Attributor::runTillFixpoint() {
1627   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1628   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1629                     << DG.SyntheticRoot.Deps.size()
1630                     << " abstract attributes.\n");
1631 
1632   // Now that all abstract attributes are collected and initialized we start
1633   // the abstract analysis.
1634 
1635   unsigned IterationCounter = 1;
1636   unsigned MaxIterations =
1637       Configuration.MaxFixpointIterations.getValueOr(SetFixpointIterations);
1638 
1639   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1640   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1641   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1642 
1643   do {
1644     // Remember the size to determine new attributes.
1645     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1646     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1647                       << ", Worklist size: " << Worklist.size() << "\n");
1648 
1649     // For invalid AAs we can fix dependent AAs that have a required dependence,
1650     // thereby folding long dependence chains in a single step without the need
1651     // to run updates.
1652     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1653       AbstractAttribute *InvalidAA = InvalidAAs[u];
1654 
1655       // Check the dependences to fast track invalidation.
1656       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1657                         << InvalidAA->Deps.size()
1658                         << " required & optional dependences\n");
1659       while (!InvalidAA->Deps.empty()) {
1660         const auto &Dep = InvalidAA->Deps.back();
1661         InvalidAA->Deps.pop_back();
1662         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1663         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1664           LLVM_DEBUG(dbgs() << " - recompute: " << *DepAA);
1665           Worklist.insert(DepAA);
1666           continue;
1667         }
1668         LLVM_DEBUG(dbgs() << " - invalidate: " << *DepAA);
1669         DepAA->getState().indicatePessimisticFixpoint();
1670         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1671         if (!DepAA->getState().isValidState())
1672           InvalidAAs.insert(DepAA);
1673         else
1674           ChangedAAs.push_back(DepAA);
1675       }
1676     }
1677 
1678     // Add all abstract attributes that are potentially dependent on one that
1679     // changed to the work list.
1680     for (AbstractAttribute *ChangedAA : ChangedAAs)
1681       while (!ChangedAA->Deps.empty()) {
1682         Worklist.insert(
1683             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1684         ChangedAA->Deps.pop_back();
1685       }
1686 
1687     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1688                       << ", Worklist+Dependent size: " << Worklist.size()
1689                       << "\n");
1690 
1691     // Reset the changed and invalid set.
1692     ChangedAAs.clear();
1693     InvalidAAs.clear();
1694 
1695     // Update all abstract attribute in the work list and record the ones that
1696     // changed.
1697     for (AbstractAttribute *AA : Worklist) {
1698       const auto &AAState = AA->getState();
1699       if (!AAState.isAtFixpoint())
1700         if (updateAA(*AA) == ChangeStatus::CHANGED)
1701           ChangedAAs.push_back(AA);
1702 
1703       // Use the InvalidAAs vector to propagate invalid states fast transitively
1704       // without requiring updates.
1705       if (!AAState.isValidState())
1706         InvalidAAs.insert(AA);
1707     }
1708 
1709     // Add attributes to the changed set if they have been created in the last
1710     // iteration.
1711     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1712                       DG.SyntheticRoot.end());
1713 
1714     // Reset the work list and repopulate with the changed abstract attributes.
1715     // Note that dependent ones are added above.
1716     Worklist.clear();
1717     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1718     Worklist.insert(QueryAAsAwaitingUpdate.begin(),
1719                     QueryAAsAwaitingUpdate.end());
1720     QueryAAsAwaitingUpdate.clear();
1721 
1722   } while (!Worklist.empty() &&
1723            (IterationCounter++ < MaxIterations || VerifyMaxFixpointIterations));
1724 
1725   if (IterationCounter > MaxIterations && !Functions.empty()) {
1726     auto Remark = [&](OptimizationRemarkMissed ORM) {
1727       return ORM << "Attributor did not reach a fixpoint after "
1728                  << ore::NV("Iterations", MaxIterations) << " iterations.";
1729     };
1730     Function *F = Functions.front();
1731     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
1732   }
1733 
1734   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1735                     << IterationCounter << "/" << MaxIterations
1736                     << " iterations\n");
1737 
1738   // Reset abstract arguments not settled in a sound fixpoint by now. This
1739   // happens when we stopped the fixpoint iteration early. Note that only the
1740   // ones marked as "changed" *and* the ones transitively depending on them
1741   // need to be reverted to a pessimistic state. Others might not be in a
1742   // fixpoint state but we can use the optimistic results for them anyway.
1743   SmallPtrSet<AbstractAttribute *, 32> Visited;
1744   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1745     AbstractAttribute *ChangedAA = ChangedAAs[u];
1746     if (!Visited.insert(ChangedAA).second)
1747       continue;
1748 
1749     AbstractState &State = ChangedAA->getState();
1750     if (!State.isAtFixpoint()) {
1751       State.indicatePessimisticFixpoint();
1752 
1753       NumAttributesTimedOut++;
1754     }
1755 
1756     while (!ChangedAA->Deps.empty()) {
1757       ChangedAAs.push_back(
1758           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1759       ChangedAA->Deps.pop_back();
1760     }
1761   }
1762 
1763   LLVM_DEBUG({
1764     if (!Visited.empty())
1765       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1766              << " abstract attributes.\n";
1767   });
1768 
1769   if (VerifyMaxFixpointIterations && IterationCounter != MaxIterations) {
1770     errs() << "\n[Attributor] Fixpoint iteration done after: "
1771            << IterationCounter << "/" << MaxIterations << " iterations\n";
1772     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1773                      "specified iterations!");
1774   }
1775 }
1776 
1777 void Attributor::registerForUpdate(AbstractAttribute &AA) {
1778   assert(AA.isQueryAA() &&
1779          "Non-query AAs should not be required to register for updates!");
1780   QueryAAsAwaitingUpdate.insert(&AA);
1781 }
1782 
1783 ChangeStatus Attributor::manifestAttributes() {
1784   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1785   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1786 
1787   unsigned NumManifested = 0;
1788   unsigned NumAtFixpoint = 0;
1789   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1790   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1791     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1792     AbstractState &State = AA->getState();
1793 
1794     // If there is not already a fixpoint reached, we can now take the
1795     // optimistic state. This is correct because we enforced a pessimistic one
1796     // on abstract attributes that were transitively dependent on a changed one
1797     // already above.
1798     if (!State.isAtFixpoint())
1799       State.indicateOptimisticFixpoint();
1800 
1801     // We must not manifest Attributes that use Callbase info.
1802     if (AA->hasCallBaseContext())
1803       continue;
1804     // If the state is invalid, we do not try to manifest it.
1805     if (!State.isValidState())
1806       continue;
1807 
1808     if (AA->getCtxI() && !isRunOn(*AA->getAnchorScope()))
1809       continue;
1810 
1811     // Skip dead code.
1812     bool UsedAssumedInformation = false;
1813     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1814                       /* CheckBBLivenessOnly */ true))
1815       continue;
1816     // Check if the manifest debug counter that allows skipping manifestation of
1817     // AAs
1818     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1819       continue;
1820     // Manifest the state and record if we changed the IR.
1821     ChangeStatus LocalChange = AA->manifest(*this);
1822     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1823       AA->trackStatistics();
1824     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1825                       << "\n");
1826 
1827     ManifestChange = ManifestChange | LocalChange;
1828 
1829     NumAtFixpoint++;
1830     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1831   }
1832 
1833   (void)NumManifested;
1834   (void)NumAtFixpoint;
1835   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1836                     << " arguments while " << NumAtFixpoint
1837                     << " were in a valid fixpoint state\n");
1838 
1839   NumAttributesManifested += NumManifested;
1840   NumAttributesValidFixpoint += NumAtFixpoint;
1841 
1842   (void)NumFinalAAs;
1843   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1844     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1845       errs() << "Unexpected abstract attribute: "
1846              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1847              << " :: "
1848              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1849                     ->getIRPosition()
1850                     .getAssociatedValue()
1851              << "\n";
1852     llvm_unreachable("Expected the final number of abstract attributes to "
1853                      "remain unchanged!");
1854   }
1855   return ManifestChange;
1856 }
1857 
1858 void Attributor::identifyDeadInternalFunctions() {
1859   // Early exit if we don't intend to delete functions.
1860   if (!Configuration.DeleteFns)
1861     return;
1862 
1863   // Identify dead internal functions and delete them. This happens outside
1864   // the other fixpoint analysis as we might treat potentially dead functions
1865   // as live to lower the number of iterations. If they happen to be dead, the
1866   // below fixpoint loop will identify and eliminate them.
1867   SmallVector<Function *, 8> InternalFns;
1868   for (Function *F : Functions)
1869     if (F->hasLocalLinkage())
1870       InternalFns.push_back(F);
1871 
1872   SmallPtrSet<Function *, 8> LiveInternalFns;
1873   bool FoundLiveInternal = true;
1874   while (FoundLiveInternal) {
1875     FoundLiveInternal = false;
1876     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1877       Function *F = InternalFns[u];
1878       if (!F)
1879         continue;
1880 
1881       bool UsedAssumedInformation = false;
1882       if (checkForAllCallSites(
1883               [&](AbstractCallSite ACS) {
1884                 Function *Callee = ACS.getInstruction()->getFunction();
1885                 return ToBeDeletedFunctions.count(Callee) ||
1886                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1887                         !LiveInternalFns.count(Callee));
1888               },
1889               *F, true, nullptr, UsedAssumedInformation)) {
1890         continue;
1891       }
1892 
1893       LiveInternalFns.insert(F);
1894       InternalFns[u] = nullptr;
1895       FoundLiveInternal = true;
1896     }
1897   }
1898 
1899   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1900     if (Function *F = InternalFns[u])
1901       ToBeDeletedFunctions.insert(F);
1902 }
1903 
1904 ChangeStatus Attributor::cleanupIR() {
1905   TimeTraceScope TimeScope("Attributor::cleanupIR");
1906   // Delete stuff at the end to avoid invalid references and a nice order.
1907   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1908                     << ToBeDeletedFunctions.size() << " functions and "
1909                     << ToBeDeletedBlocks.size() << " blocks and "
1910                     << ToBeDeletedInsts.size() << " instructions and "
1911                     << ToBeChangedValues.size() << " values and "
1912                     << ToBeChangedUses.size() << " uses. "
1913                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1914                     << " blocks\n");
1915 
1916   SmallVector<WeakTrackingVH, 32> DeadInsts;
1917   SmallVector<Instruction *, 32> TerminatorsToFold;
1918 
1919   auto ReplaceUse = [&](Use *U, Value *NewV) {
1920     Value *OldV = U->get();
1921 
1922     // If we plan to replace NewV we need to update it at this point.
1923     do {
1924       const auto &Entry = ToBeChangedValues.lookup(NewV);
1925       if (!Entry.first)
1926         break;
1927       NewV = Entry.first;
1928     } while (true);
1929 
1930     Instruction *I = dyn_cast<Instruction>(U->getUser());
1931     assert((!I || isRunOn(*I->getFunction())) &&
1932            "Cannot replace an invoke outside the current SCC!");
1933 
1934     // Do not replace uses in returns if the value is a must-tail call we will
1935     // not delete.
1936     if (auto *RI = dyn_cast_or_null<ReturnInst>(I)) {
1937       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1938         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1939           return;
1940       // If we rewrite a return and the new value is not an argument, strip the
1941       // `returned` attribute as it is wrong now.
1942       if (!isa<Argument>(NewV))
1943         for (auto &Arg : RI->getFunction()->args())
1944           Arg.removeAttr(Attribute::Returned);
1945     }
1946 
1947     // Do not perform call graph altering changes outside the SCC.
1948     if (auto *CB = dyn_cast_or_null<CallBase>(I))
1949       if (CB->isCallee(U))
1950         return;
1951 
1952     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1953                       << " instead of " << *OldV << "\n");
1954     U->set(NewV);
1955 
1956     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1957       CGModifiedFunctions.insert(I->getFunction());
1958       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1959           isInstructionTriviallyDead(I))
1960         DeadInsts.push_back(I);
1961     }
1962     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1963       auto *CB = cast<CallBase>(U->getUser());
1964       if (CB->isArgOperand(U)) {
1965         unsigned Idx = CB->getArgOperandNo(U);
1966         CB->removeParamAttr(Idx, Attribute::NoUndef);
1967         Function *Fn = CB->getCalledFunction();
1968         if (Fn && Fn->arg_size() > Idx)
1969           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1970       }
1971     }
1972     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1973       Instruction *UserI = cast<Instruction>(U->getUser());
1974       if (isa<UndefValue>(NewV)) {
1975         ToBeChangedToUnreachableInsts.insert(UserI);
1976       } else {
1977         TerminatorsToFold.push_back(UserI);
1978       }
1979     }
1980   };
1981 
1982   for (auto &It : ToBeChangedUses) {
1983     Use *U = It.first;
1984     Value *NewV = It.second;
1985     ReplaceUse(U, NewV);
1986   }
1987 
1988   SmallVector<Use *, 4> Uses;
1989   for (auto &It : ToBeChangedValues) {
1990     Value *OldV = It.first;
1991     auto &Entry = It.second;
1992     Value *NewV = Entry.first;
1993     Uses.clear();
1994     for (auto &U : OldV->uses())
1995       if (Entry.second || !U.getUser()->isDroppable())
1996         Uses.push_back(&U);
1997     for (Use *U : Uses)
1998       ReplaceUse(U, NewV);
1999   }
2000 
2001   for (auto &V : InvokeWithDeadSuccessor)
2002     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
2003       assert(isRunOn(*II->getFunction()) &&
2004              "Cannot replace an invoke outside the current SCC!");
2005       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
2006       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
2007       bool Invoke2CallAllowed =
2008           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
2009       assert((UnwindBBIsDead || NormalBBIsDead) &&
2010              "Invoke does not have dead successors!");
2011       BasicBlock *BB = II->getParent();
2012       BasicBlock *NormalDestBB = II->getNormalDest();
2013       if (UnwindBBIsDead) {
2014         Instruction *NormalNextIP = &NormalDestBB->front();
2015         if (Invoke2CallAllowed) {
2016           changeToCall(II);
2017           NormalNextIP = BB->getTerminator();
2018         }
2019         if (NormalBBIsDead)
2020           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
2021       } else {
2022         assert(NormalBBIsDead && "Broken invariant!");
2023         if (!NormalDestBB->getUniquePredecessor())
2024           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
2025         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
2026       }
2027     }
2028   for (Instruction *I : TerminatorsToFold) {
2029     assert(isRunOn(*I->getFunction()) &&
2030            "Cannot replace a terminator outside the current SCC!");
2031     CGModifiedFunctions.insert(I->getFunction());
2032     ConstantFoldTerminator(I->getParent());
2033   }
2034   for (auto &V : ToBeChangedToUnreachableInsts)
2035     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2036       assert(isRunOn(*I->getFunction()) &&
2037              "Cannot replace an instruction outside the current SCC!");
2038       CGModifiedFunctions.insert(I->getFunction());
2039       changeToUnreachable(I);
2040     }
2041 
2042   for (auto &V : ToBeDeletedInsts) {
2043     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2044       if (auto *CB = dyn_cast<CallBase>(I)) {
2045         assert(isRunOn(*I->getFunction()) &&
2046                "Cannot delete an instruction outside the current SCC!");
2047         if (!isa<IntrinsicInst>(CB))
2048           Configuration.CGUpdater.removeCallSite(*CB);
2049       }
2050       I->dropDroppableUses();
2051       CGModifiedFunctions.insert(I->getFunction());
2052       if (!I->getType()->isVoidTy())
2053         I->replaceAllUsesWith(UndefValue::get(I->getType()));
2054       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
2055         DeadInsts.push_back(I);
2056       else
2057         I->eraseFromParent();
2058     }
2059   }
2060 
2061   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I; });
2062 
2063   LLVM_DEBUG({
2064     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
2065     for (auto &I : DeadInsts)
2066       if (I)
2067         dbgs() << "  - " << *I << "\n";
2068   });
2069 
2070   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
2071 
2072   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
2073     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
2074     ToBeDeletedBBs.reserve(NumDeadBlocks);
2075     for (BasicBlock *BB : ToBeDeletedBlocks) {
2076       assert(isRunOn(*BB->getParent()) &&
2077              "Cannot delete a block outside the current SCC!");
2078       CGModifiedFunctions.insert(BB->getParent());
2079       // Do not delete BBs added during manifests of AAs.
2080       if (ManifestAddedBlocks.contains(BB))
2081         continue;
2082       ToBeDeletedBBs.push_back(BB);
2083     }
2084     // Actually we do not delete the blocks but squash them into a single
2085     // unreachable but untangling branches that jump here is something we need
2086     // to do in a more generic way.
2087     detachDeadBlocks(ToBeDeletedBBs, nullptr);
2088   }
2089 
2090   identifyDeadInternalFunctions();
2091 
2092   // Rewrite the functions as requested during manifest.
2093   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
2094 
2095   for (Function *Fn : CGModifiedFunctions)
2096     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
2097       Configuration.CGUpdater.reanalyzeFunction(*Fn);
2098 
2099   for (Function *Fn : ToBeDeletedFunctions) {
2100     if (!Functions.count(Fn))
2101       continue;
2102     Configuration.CGUpdater.removeFunction(*Fn);
2103   }
2104 
2105   if (!ToBeChangedUses.empty())
2106     ManifestChange = ChangeStatus::CHANGED;
2107 
2108   if (!ToBeChangedToUnreachableInsts.empty())
2109     ManifestChange = ChangeStatus::CHANGED;
2110 
2111   if (!ToBeDeletedFunctions.empty())
2112     ManifestChange = ChangeStatus::CHANGED;
2113 
2114   if (!ToBeDeletedBlocks.empty())
2115     ManifestChange = ChangeStatus::CHANGED;
2116 
2117   if (!ToBeDeletedInsts.empty())
2118     ManifestChange = ChangeStatus::CHANGED;
2119 
2120   if (!InvokeWithDeadSuccessor.empty())
2121     ManifestChange = ChangeStatus::CHANGED;
2122 
2123   if (!DeadInsts.empty())
2124     ManifestChange = ChangeStatus::CHANGED;
2125 
2126   NumFnDeleted += ToBeDeletedFunctions.size();
2127 
2128   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
2129                     << " functions after manifest.\n");
2130 
2131 #ifdef EXPENSIVE_CHECKS
2132   for (Function *F : Functions) {
2133     if (ToBeDeletedFunctions.count(F))
2134       continue;
2135     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
2136   }
2137 #endif
2138 
2139   return ManifestChange;
2140 }
2141 
2142 ChangeStatus Attributor::run() {
2143   TimeTraceScope TimeScope("Attributor::run");
2144   AttributorCallGraph ACallGraph(*this);
2145 
2146   if (PrintCallGraph)
2147     ACallGraph.populateAll();
2148 
2149   Phase = AttributorPhase::UPDATE;
2150   runTillFixpoint();
2151 
2152   // dump graphs on demand
2153   if (DumpDepGraph)
2154     DG.dumpGraph();
2155 
2156   if (ViewDepGraph)
2157     DG.viewGraph();
2158 
2159   if (PrintDependencies)
2160     DG.print();
2161 
2162   Phase = AttributorPhase::MANIFEST;
2163   ChangeStatus ManifestChange = manifestAttributes();
2164 
2165   Phase = AttributorPhase::CLEANUP;
2166   ChangeStatus CleanupChange = cleanupIR();
2167 
2168   if (PrintCallGraph)
2169     ACallGraph.print();
2170 
2171   return ManifestChange | CleanupChange;
2172 }
2173 
2174 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
2175   TimeTraceScope TimeScope(
2176       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
2177       "::updateAA");
2178   assert(Phase == AttributorPhase::UPDATE &&
2179          "We can update AA only in the update stage!");
2180 
2181   // Use a new dependence vector for this update.
2182   DependenceVector DV;
2183   DependenceStack.push_back(&DV);
2184 
2185   auto &AAState = AA.getState();
2186   ChangeStatus CS = ChangeStatus::UNCHANGED;
2187   bool UsedAssumedInformation = false;
2188   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
2189                      /* CheckBBLivenessOnly */ true))
2190     CS = AA.update(*this);
2191 
2192   if (!AA.isQueryAA() && DV.empty()) {
2193     // If the attribute did not query any non-fix information, the state
2194     // will not change and we can indicate that right away.
2195     AAState.indicateOptimisticFixpoint();
2196   }
2197 
2198   if (!AAState.isAtFixpoint())
2199     rememberDependences();
2200 
2201   // Verify the stack was used properly, that is we pop the dependence vector we
2202   // put there earlier.
2203   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
2204   (void)PoppedDV;
2205   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
2206 
2207   return CS;
2208 }
2209 
2210 void Attributor::createShallowWrapper(Function &F) {
2211   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
2212 
2213   Module &M = *F.getParent();
2214   LLVMContext &Ctx = M.getContext();
2215   FunctionType *FnTy = F.getFunctionType();
2216 
2217   Function *Wrapper =
2218       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
2219   F.setName(""); // set the inside function anonymous
2220   M.getFunctionList().insert(F.getIterator(), Wrapper);
2221 
2222   F.setLinkage(GlobalValue::InternalLinkage);
2223 
2224   F.replaceAllUsesWith(Wrapper);
2225   assert(F.use_empty() && "Uses remained after wrapper was created!");
2226 
2227   // Move the COMDAT section to the wrapper.
2228   // TODO: Check if we need to keep it for F as well.
2229   Wrapper->setComdat(F.getComdat());
2230   F.setComdat(nullptr);
2231 
2232   // Copy all metadata and attributes but keep them on F as well.
2233   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2234   F.getAllMetadata(MDs);
2235   for (auto MDIt : MDs)
2236     Wrapper->addMetadata(MDIt.first, *MDIt.second);
2237   Wrapper->setAttributes(F.getAttributes());
2238 
2239   // Create the call in the wrapper.
2240   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
2241 
2242   SmallVector<Value *, 8> Args;
2243   Argument *FArgIt = F.arg_begin();
2244   for (Argument &Arg : Wrapper->args()) {
2245     Args.push_back(&Arg);
2246     Arg.setName((FArgIt++)->getName());
2247   }
2248 
2249   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
2250   CI->setTailCall(true);
2251   CI->addFnAttr(Attribute::NoInline);
2252   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
2253 
2254   NumFnShallowWrappersCreated++;
2255 }
2256 
2257 bool Attributor::isInternalizable(Function &F) {
2258   if (F.isDeclaration() || F.hasLocalLinkage() ||
2259       GlobalValue::isInterposableLinkage(F.getLinkage()))
2260     return false;
2261   return true;
2262 }
2263 
2264 Function *Attributor::internalizeFunction(Function &F, bool Force) {
2265   if (!AllowDeepWrapper && !Force)
2266     return nullptr;
2267   if (!isInternalizable(F))
2268     return nullptr;
2269 
2270   SmallPtrSet<Function *, 2> FnSet = {&F};
2271   DenseMap<Function *, Function *> InternalizedFns;
2272   internalizeFunctions(FnSet, InternalizedFns);
2273 
2274   return InternalizedFns[&F];
2275 }
2276 
2277 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
2278                                       DenseMap<Function *, Function *> &FnMap) {
2279   for (Function *F : FnSet)
2280     if (!Attributor::isInternalizable(*F))
2281       return false;
2282 
2283   FnMap.clear();
2284   // Generate the internalized version of each function.
2285   for (Function *F : FnSet) {
2286     Module &M = *F->getParent();
2287     FunctionType *FnTy = F->getFunctionType();
2288 
2289     // Create a copy of the current function
2290     Function *Copied =
2291         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2292                          F->getName() + ".internalized");
2293     ValueToValueMapTy VMap;
2294     auto *NewFArgIt = Copied->arg_begin();
2295     for (auto &Arg : F->args()) {
2296       auto ArgName = Arg.getName();
2297       NewFArgIt->setName(ArgName);
2298       VMap[&Arg] = &(*NewFArgIt++);
2299     }
2300     SmallVector<ReturnInst *, 8> Returns;
2301 
2302     // Copy the body of the original function to the new one
2303     CloneFunctionInto(Copied, F, VMap,
2304                       CloneFunctionChangeType::LocalChangesOnly, Returns);
2305 
2306     // Set the linakage and visibility late as CloneFunctionInto has some
2307     // implicit requirements.
2308     Copied->setVisibility(GlobalValue::DefaultVisibility);
2309     Copied->setLinkage(GlobalValue::PrivateLinkage);
2310 
2311     // Copy metadata
2312     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2313     F->getAllMetadata(MDs);
2314     for (auto MDIt : MDs)
2315       if (!Copied->hasMetadata())
2316         Copied->addMetadata(MDIt.first, *MDIt.second);
2317 
2318     M.getFunctionList().insert(F->getIterator(), Copied);
2319     Copied->setDSOLocal(true);
2320     FnMap[F] = Copied;
2321   }
2322 
2323   // Replace all uses of the old function with the new internalized function
2324   // unless the caller is a function that was just internalized.
2325   for (Function *F : FnSet) {
2326     auto &InternalizedFn = FnMap[F];
2327     auto IsNotInternalized = [&](Use &U) -> bool {
2328       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2329         return !FnMap.lookup(CB->getCaller());
2330       return false;
2331     };
2332     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2333   }
2334 
2335   return true;
2336 }
2337 
2338 bool Attributor::isValidFunctionSignatureRewrite(
2339     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2340 
2341   if (!Configuration.RewriteSignatures)
2342     return false;
2343 
2344   Function *Fn = Arg.getParent();
2345   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2346     // Forbid the call site to cast the function return type. If we need to
2347     // rewrite these functions we need to re-create a cast for the new call site
2348     // (if the old had uses).
2349     if (!ACS.getCalledFunction() ||
2350         ACS.getInstruction()->getType() !=
2351             ACS.getCalledFunction()->getReturnType())
2352       return false;
2353     if (ACS.getCalledOperand()->getType() != Fn->getType())
2354       return false;
2355     // Forbid must-tail calls for now.
2356     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2357   };
2358 
2359   // Avoid var-arg functions for now.
2360   if (Fn->isVarArg()) {
2361     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2362     return false;
2363   }
2364 
2365   // Avoid functions with complicated argument passing semantics.
2366   AttributeList FnAttributeList = Fn->getAttributes();
2367   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2368       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2369       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2370       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2371     LLVM_DEBUG(
2372         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2373     return false;
2374   }
2375 
2376   // Avoid callbacks for now.
2377   bool UsedAssumedInformation = false;
2378   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2379                             UsedAssumedInformation)) {
2380     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2381     return false;
2382   }
2383 
2384   auto InstPred = [](Instruction &I) {
2385     if (auto *CI = dyn_cast<CallInst>(&I))
2386       return !CI->isMustTailCall();
2387     return true;
2388   };
2389 
2390   // Forbid must-tail calls for now.
2391   // TODO:
2392   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2393   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2394                                    nullptr, {Instruction::Call},
2395                                    UsedAssumedInformation)) {
2396     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2397     return false;
2398   }
2399 
2400   return true;
2401 }
2402 
2403 bool Attributor::registerFunctionSignatureRewrite(
2404     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2405     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2406     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2407   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2408                     << Arg.getParent()->getName() << " with "
2409                     << ReplacementTypes.size() << " replacements\n");
2410   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2411          "Cannot register an invalid rewrite");
2412 
2413   Function *Fn = Arg.getParent();
2414   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2415       ArgumentReplacementMap[Fn];
2416   if (ARIs.empty())
2417     ARIs.resize(Fn->arg_size());
2418 
2419   // If we have a replacement already with less than or equal new arguments,
2420   // ignore this request.
2421   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2422   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2423     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2424     return false;
2425   }
2426 
2427   // If we have a replacement already but we like the new one better, delete
2428   // the old.
2429   ARI.reset();
2430 
2431   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2432                     << Arg.getParent()->getName() << " with "
2433                     << ReplacementTypes.size() << " replacements\n");
2434 
2435   // Remember the replacement.
2436   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2437                                         std::move(CalleeRepairCB),
2438                                         std::move(ACSRepairCB)));
2439 
2440   return true;
2441 }
2442 
2443 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2444   bool Result = true;
2445 #ifndef NDEBUG
2446   if (SeedAllowList.size() != 0)
2447     Result = llvm::is_contained(SeedAllowList, AA.getName());
2448   Function *Fn = AA.getAnchorScope();
2449   if (FunctionSeedAllowList.size() != 0 && Fn)
2450     Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2451 #endif
2452   return Result;
2453 }
2454 
2455 ChangeStatus Attributor::rewriteFunctionSignatures(
2456     SmallSetVector<Function *, 8> &ModifiedFns) {
2457   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2458 
2459   for (auto &It : ArgumentReplacementMap) {
2460     Function *OldFn = It.getFirst();
2461 
2462     // Deleted functions do not require rewrites.
2463     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2464       continue;
2465 
2466     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2467         It.getSecond();
2468     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2469 
2470     SmallVector<Type *, 16> NewArgumentTypes;
2471     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2472 
2473     // Collect replacement argument types and copy over existing attributes.
2474     AttributeList OldFnAttributeList = OldFn->getAttributes();
2475     for (Argument &Arg : OldFn->args()) {
2476       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2477               ARIs[Arg.getArgNo()]) {
2478         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2479                                 ARI->ReplacementTypes.end());
2480         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2481                                      AttributeSet());
2482       } else {
2483         NewArgumentTypes.push_back(Arg.getType());
2484         NewArgumentAttributes.push_back(
2485             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2486       }
2487     }
2488 
2489     FunctionType *OldFnTy = OldFn->getFunctionType();
2490     Type *RetTy = OldFnTy->getReturnType();
2491 
2492     // Construct the new function type using the new arguments types.
2493     FunctionType *NewFnTy =
2494         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2495 
2496     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2497                       << "' from " << *OldFn->getFunctionType() << " to "
2498                       << *NewFnTy << "\n");
2499 
2500     // Create the new function body and insert it into the module.
2501     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2502                                        OldFn->getAddressSpace(), "");
2503     Functions.insert(NewFn);
2504     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2505     NewFn->takeName(OldFn);
2506     NewFn->copyAttributesFrom(OldFn);
2507 
2508     // Patch the pointer to LLVM function in debug info descriptor.
2509     NewFn->setSubprogram(OldFn->getSubprogram());
2510     OldFn->setSubprogram(nullptr);
2511 
2512     // Recompute the parameter attributes list based on the new arguments for
2513     // the function.
2514     LLVMContext &Ctx = OldFn->getContext();
2515     NewFn->setAttributes(AttributeList::get(
2516         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2517         NewArgumentAttributes));
2518 
2519     // Since we have now created the new function, splice the body of the old
2520     // function right into the new function, leaving the old rotting hulk of the
2521     // function empty.
2522     NewFn->getBasicBlockList().splice(NewFn->begin(),
2523                                       OldFn->getBasicBlockList());
2524 
2525     // Fixup block addresses to reference new function.
2526     SmallVector<BlockAddress *, 8u> BlockAddresses;
2527     for (User *U : OldFn->users())
2528       if (auto *BA = dyn_cast<BlockAddress>(U))
2529         BlockAddresses.push_back(BA);
2530     for (auto *BA : BlockAddresses)
2531       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2532 
2533     // Set of all "call-like" instructions that invoke the old function mapped
2534     // to their new replacements.
2535     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2536 
2537     // Callback to create a new "call-like" instruction for a given one.
2538     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2539       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2540       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2541 
2542       // Collect the new argument operands for the replacement call site.
2543       SmallVector<Value *, 16> NewArgOperands;
2544       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2545       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2546         unsigned NewFirstArgNum = NewArgOperands.size();
2547         (void)NewFirstArgNum; // only used inside assert.
2548         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2549                 ARIs[OldArgNum]) {
2550           if (ARI->ACSRepairCB)
2551             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2552           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2553                      NewArgOperands.size() &&
2554                  "ACS repair callback did not provide as many operand as new "
2555                  "types were registered!");
2556           // TODO: Exose the attribute set to the ACS repair callback
2557           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2558                                          AttributeSet());
2559         } else {
2560           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2561           NewArgOperandAttributes.push_back(
2562               OldCallAttributeList.getParamAttrs(OldArgNum));
2563         }
2564       }
2565 
2566       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2567              "Mismatch # argument operands vs. # argument operand attributes!");
2568       assert(NewArgOperands.size() == NewFn->arg_size() &&
2569              "Mismatch # argument operands vs. # function arguments!");
2570 
2571       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2572       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2573 
2574       // Create a new call or invoke instruction to replace the old one.
2575       CallBase *NewCB;
2576       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2577         NewCB =
2578             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2579                                NewArgOperands, OperandBundleDefs, "", OldCB);
2580       } else {
2581         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2582                                        "", OldCB);
2583         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2584         NewCB = NewCI;
2585       }
2586 
2587       // Copy over various properties and the new attributes.
2588       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2589       NewCB->setCallingConv(OldCB->getCallingConv());
2590       NewCB->takeName(OldCB);
2591       NewCB->setAttributes(AttributeList::get(
2592           Ctx, OldCallAttributeList.getFnAttrs(),
2593           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2594 
2595       CallSitePairs.push_back({OldCB, NewCB});
2596       return true;
2597     };
2598 
2599     // Use the CallSiteReplacementCreator to create replacement call sites.
2600     bool UsedAssumedInformation = false;
2601     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2602                                         true, nullptr, UsedAssumedInformation);
2603     (void)Success;
2604     assert(Success && "Assumed call site replacement to succeed!");
2605 
2606     // Rewire the arguments.
2607     Argument *OldFnArgIt = OldFn->arg_begin();
2608     Argument *NewFnArgIt = NewFn->arg_begin();
2609     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2610          ++OldArgNum, ++OldFnArgIt) {
2611       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2612               ARIs[OldArgNum]) {
2613         if (ARI->CalleeRepairCB)
2614           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2615         if (ARI->ReplacementTypes.empty())
2616           OldFnArgIt->replaceAllUsesWith(
2617               PoisonValue::get(OldFnArgIt->getType()));
2618         NewFnArgIt += ARI->ReplacementTypes.size();
2619       } else {
2620         NewFnArgIt->takeName(&*OldFnArgIt);
2621         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2622         ++NewFnArgIt;
2623       }
2624     }
2625 
2626     // Eliminate the instructions *after* we visited all of them.
2627     for (auto &CallSitePair : CallSitePairs) {
2628       CallBase &OldCB = *CallSitePair.first;
2629       CallBase &NewCB = *CallSitePair.second;
2630       assert(OldCB.getType() == NewCB.getType() &&
2631              "Cannot handle call sites with different types!");
2632       ModifiedFns.insert(OldCB.getFunction());
2633       Configuration.CGUpdater.replaceCallSite(OldCB, NewCB);
2634       OldCB.replaceAllUsesWith(&NewCB);
2635       OldCB.eraseFromParent();
2636     }
2637 
2638     // Replace the function in the call graph (if any).
2639     Configuration.CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2640 
2641     // If the old function was modified and needed to be reanalyzed, the new one
2642     // does now.
2643     if (ModifiedFns.remove(OldFn))
2644       ModifiedFns.insert(NewFn);
2645 
2646     Changed = ChangeStatus::CHANGED;
2647   }
2648 
2649   return Changed;
2650 }
2651 
2652 void InformationCache::initializeInformationCache(const Function &CF,
2653                                                   FunctionInfo &FI) {
2654   // As we do not modify the function here we can remove the const
2655   // withouth breaking implicit assumptions. At the end of the day, we could
2656   // initialize the cache eagerly which would look the same to the users.
2657   Function &F = const_cast<Function &>(CF);
2658 
2659   // Walk all instructions to find interesting instructions that might be
2660   // queried by abstract attributes during their initialization or update.
2661   // This has to happen before we create attributes.
2662 
2663   DenseMap<const Value *, Optional<short>> AssumeUsesMap;
2664 
2665   // Add \p V to the assume uses map which track the number of uses outside of
2666   // "visited" assumes. If no outside uses are left the value is added to the
2667   // assume only use vector.
2668   auto AddToAssumeUsesMap = [&](const Value &V) -> void {
2669     SmallVector<const Instruction *> Worklist;
2670     if (auto *I = dyn_cast<Instruction>(&V))
2671       Worklist.push_back(I);
2672     while (!Worklist.empty()) {
2673       const Instruction *I = Worklist.pop_back_val();
2674       Optional<short> &NumUses = AssumeUsesMap[I];
2675       if (!NumUses.hasValue())
2676         NumUses = I->getNumUses();
2677       NumUses = NumUses.getValue() - /* this assume */ 1;
2678       if (NumUses.getValue() != 0)
2679         continue;
2680       AssumeOnlyValues.insert(I);
2681       for (const Value *Op : I->operands())
2682         if (auto *OpI = dyn_cast<Instruction>(Op))
2683           Worklist.push_back(OpI);
2684     }
2685   };
2686 
2687   for (Instruction &I : instructions(&F)) {
2688     bool IsInterestingOpcode = false;
2689 
2690     // To allow easy access to all instructions in a function with a given
2691     // opcode we store them in the InfoCache. As not all opcodes are interesting
2692     // to concrete attributes we only cache the ones that are as identified in
2693     // the following switch.
2694     // Note: There are no concrete attributes now so this is initially empty.
2695     switch (I.getOpcode()) {
2696     default:
2697       assert(!isa<CallBase>(&I) &&
2698              "New call base instruction type needs to be known in the "
2699              "Attributor.");
2700       break;
2701     case Instruction::Call:
2702       // Calls are interesting on their own, additionally:
2703       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2704       // For `must-tail` calls we remember the caller and callee.
2705       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2706         fillMapFromAssume(*Assume, KnowledgeMap);
2707         AddToAssumeUsesMap(*Assume->getArgOperand(0));
2708       } else if (cast<CallInst>(I).isMustTailCall()) {
2709         FI.ContainsMustTailCall = true;
2710         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2711           getFunctionInfo(*Callee).CalledViaMustTail = true;
2712       }
2713       LLVM_FALLTHROUGH;
2714     case Instruction::CallBr:
2715     case Instruction::Invoke:
2716     case Instruction::CleanupRet:
2717     case Instruction::CatchSwitch:
2718     case Instruction::AtomicRMW:
2719     case Instruction::AtomicCmpXchg:
2720     case Instruction::Br:
2721     case Instruction::Resume:
2722     case Instruction::Ret:
2723     case Instruction::Load:
2724       // The alignment of a pointer is interesting for loads.
2725     case Instruction::Store:
2726       // The alignment of a pointer is interesting for stores.
2727     case Instruction::Alloca:
2728     case Instruction::AddrSpaceCast:
2729       IsInterestingOpcode = true;
2730     }
2731     if (IsInterestingOpcode) {
2732       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2733       if (!Insts)
2734         Insts = new (Allocator) InstructionVectorTy();
2735       Insts->push_back(&I);
2736     }
2737     if (I.mayReadOrWriteMemory())
2738       FI.RWInsts.push_back(&I);
2739   }
2740 
2741   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2742       isInlineViable(F).isSuccess())
2743     InlineableFunctions.insert(&F);
2744 }
2745 
2746 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2747   return AG.getAnalysis<AAManager>(F);
2748 }
2749 
2750 InformationCache::FunctionInfo::~FunctionInfo() {
2751   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2752   // manually destroy them.
2753   for (auto &It : OpcodeInstMap)
2754     It.getSecond()->~InstructionVectorTy();
2755 }
2756 
2757 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2758                                   const AbstractAttribute &ToAA,
2759                                   DepClassTy DepClass) {
2760   if (DepClass == DepClassTy::NONE)
2761     return;
2762   // If we are outside of an update, thus before the actual fixpoint iteration
2763   // started (= when we create AAs), we do not track dependences because we will
2764   // put all AAs into the initial worklist anyway.
2765   if (DependenceStack.empty())
2766     return;
2767   if (FromAA.getState().isAtFixpoint())
2768     return;
2769   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2770 }
2771 
2772 void Attributor::rememberDependences() {
2773   assert(!DependenceStack.empty() && "No dependences to remember!");
2774 
2775   for (DepInfo &DI : *DependenceStack.back()) {
2776     assert((DI.DepClass == DepClassTy::REQUIRED ||
2777             DI.DepClass == DepClassTy::OPTIONAL) &&
2778            "Expected required or optional dependence (1 bit)!");
2779     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2780     DepAAs.push_back(AbstractAttribute::DepTy(
2781         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2782   }
2783 }
2784 
2785 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2786   if (!VisitedFunctions.insert(&F).second)
2787     return;
2788   if (F.isDeclaration())
2789     return;
2790 
2791   // In non-module runs we need to look at the call sites of a function to
2792   // determine if it is part of a must-tail call edge. This will influence what
2793   // attributes we can derive.
2794   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2795   if (!isModulePass() && !FI.CalledViaMustTail) {
2796     for (const Use &U : F.uses())
2797       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2798         if (CB->isCallee(&U) && CB->isMustTailCall())
2799           FI.CalledViaMustTail = true;
2800   }
2801 
2802   IRPosition FPos = IRPosition::function(F);
2803 
2804   // Check for dead BasicBlocks in every function.
2805   // We need dead instruction detection because we do not want to deal with
2806   // broken IR in which SSA rules do not apply.
2807   getOrCreateAAFor<AAIsDead>(FPos);
2808 
2809   // Every function might be "will-return".
2810   getOrCreateAAFor<AAWillReturn>(FPos);
2811 
2812   // Every function might contain instructions that cause "undefined behavior".
2813   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2814 
2815   // Every function can be nounwind.
2816   getOrCreateAAFor<AANoUnwind>(FPos);
2817 
2818   // Every function might be marked "nosync"
2819   getOrCreateAAFor<AANoSync>(FPos);
2820 
2821   // Every function might be "no-free".
2822   getOrCreateAAFor<AANoFree>(FPos);
2823 
2824   // Every function might be "no-return".
2825   getOrCreateAAFor<AANoReturn>(FPos);
2826 
2827   // Every function might be "no-recurse".
2828   getOrCreateAAFor<AANoRecurse>(FPos);
2829 
2830   // Every function might be "readnone/readonly/writeonly/...".
2831   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2832 
2833   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2834   getOrCreateAAFor<AAMemoryLocation>(FPos);
2835 
2836   // Every function can track active assumptions.
2837   getOrCreateAAFor<AAAssumptionInfo>(FPos);
2838 
2839   // Every function might be applicable for Heap-To-Stack conversion.
2840   if (EnableHeapToStack)
2841     getOrCreateAAFor<AAHeapToStack>(FPos);
2842 
2843   // Return attributes are only appropriate if the return type is non void.
2844   Type *ReturnType = F.getReturnType();
2845   if (!ReturnType->isVoidTy()) {
2846     // Argument attribute "returned" --- Create only one per function even
2847     // though it is an argument attribute.
2848     getOrCreateAAFor<AAReturnedValues>(FPos);
2849 
2850     IRPosition RetPos = IRPosition::returned(F);
2851 
2852     // Every returned value might be dead.
2853     getOrCreateAAFor<AAIsDead>(RetPos);
2854 
2855     // Every function might be simplified.
2856     getOrCreateAAFor<AAValueSimplify>(RetPos);
2857 
2858     // Every returned value might be marked noundef.
2859     getOrCreateAAFor<AANoUndef>(RetPos);
2860 
2861     if (ReturnType->isPointerTy()) {
2862 
2863       // Every function with pointer return type might be marked align.
2864       getOrCreateAAFor<AAAlign>(RetPos);
2865 
2866       // Every function with pointer return type might be marked nonnull.
2867       getOrCreateAAFor<AANonNull>(RetPos);
2868 
2869       // Every function with pointer return type might be marked noalias.
2870       getOrCreateAAFor<AANoAlias>(RetPos);
2871 
2872       // Every function with pointer return type might be marked
2873       // dereferenceable.
2874       getOrCreateAAFor<AADereferenceable>(RetPos);
2875     }
2876   }
2877 
2878   for (Argument &Arg : F.args()) {
2879     IRPosition ArgPos = IRPosition::argument(Arg);
2880 
2881     // Every argument might be simplified. We have to go through the Attributor
2882     // interface though as outside AAs can register custom simplification
2883     // callbacks.
2884     bool UsedAssumedInformation = false;
2885     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2886 
2887     // Every argument might be dead.
2888     getOrCreateAAFor<AAIsDead>(ArgPos);
2889 
2890     // Every argument might be marked noundef.
2891     getOrCreateAAFor<AANoUndef>(ArgPos);
2892 
2893     if (Arg.getType()->isPointerTy()) {
2894       // Every argument with pointer type might be marked nonnull.
2895       getOrCreateAAFor<AANonNull>(ArgPos);
2896 
2897       // Every argument with pointer type might be marked noalias.
2898       getOrCreateAAFor<AANoAlias>(ArgPos);
2899 
2900       // Every argument with pointer type might be marked dereferenceable.
2901       getOrCreateAAFor<AADereferenceable>(ArgPos);
2902 
2903       // Every argument with pointer type might be marked align.
2904       getOrCreateAAFor<AAAlign>(ArgPos);
2905 
2906       // Every argument with pointer type might be marked nocapture.
2907       getOrCreateAAFor<AANoCapture>(ArgPos);
2908 
2909       // Every argument with pointer type might be marked
2910       // "readnone/readonly/writeonly/..."
2911       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2912 
2913       // Every argument with pointer type might be marked nofree.
2914       getOrCreateAAFor<AANoFree>(ArgPos);
2915 
2916       // Every argument with pointer type might be privatizable (or promotable)
2917       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2918     }
2919   }
2920 
2921   auto CallSitePred = [&](Instruction &I) -> bool {
2922     auto &CB = cast<CallBase>(I);
2923     IRPosition CBInstPos = IRPosition::inst(CB);
2924     IRPosition CBFnPos = IRPosition::callsite_function(CB);
2925 
2926     // Call sites might be dead if they do not have side effects and no live
2927     // users. The return value might be dead if there are no live users.
2928     getOrCreateAAFor<AAIsDead>(CBInstPos);
2929 
2930     Function *Callee = CB.getCalledFunction();
2931     // TODO: Even if the callee is not known now we might be able to simplify
2932     //       the call/callee.
2933     if (!Callee)
2934       return true;
2935 
2936     // Every call site can track active assumptions.
2937     getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
2938 
2939     // Skip declarations except if annotations on their call sites were
2940     // explicitly requested.
2941     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2942         !Callee->hasMetadata(LLVMContext::MD_callback))
2943       return true;
2944 
2945     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2946 
2947       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2948       getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2949     }
2950 
2951     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
2952 
2953       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2954 
2955       // Every call site argument might be dead.
2956       getOrCreateAAFor<AAIsDead>(CBArgPos);
2957 
2958       // Call site argument might be simplified. We have to go through the
2959       // Attributor interface though as outside AAs can register custom
2960       // simplification callbacks.
2961       bool UsedAssumedInformation = false;
2962       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2963 
2964       // Every call site argument might be marked "noundef".
2965       getOrCreateAAFor<AANoUndef>(CBArgPos);
2966 
2967       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2968         continue;
2969 
2970       // Call site argument attribute "non-null".
2971       getOrCreateAAFor<AANonNull>(CBArgPos);
2972 
2973       // Call site argument attribute "nocapture".
2974       getOrCreateAAFor<AANoCapture>(CBArgPos);
2975 
2976       // Call site argument attribute "no-alias".
2977       getOrCreateAAFor<AANoAlias>(CBArgPos);
2978 
2979       // Call site argument attribute "dereferenceable".
2980       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2981 
2982       // Call site argument attribute "align".
2983       getOrCreateAAFor<AAAlign>(CBArgPos);
2984 
2985       // Call site argument attribute
2986       // "readnone/readonly/writeonly/..."
2987       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2988 
2989       // Call site argument attribute "nofree".
2990       getOrCreateAAFor<AANoFree>(CBArgPos);
2991     }
2992     return true;
2993   };
2994 
2995   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2996   bool Success;
2997   bool UsedAssumedInformation = false;
2998   Success = checkForAllInstructionsImpl(
2999       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
3000       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
3001        (unsigned)Instruction::Call},
3002       UsedAssumedInformation);
3003   (void)Success;
3004   assert(Success && "Expected the check call to be successful!");
3005 
3006   auto LoadStorePred = [&](Instruction &I) -> bool {
3007     if (isa<LoadInst>(I)) {
3008       getOrCreateAAFor<AAAlign>(
3009           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
3010       if (SimplifyAllLoads)
3011         getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
3012     } else
3013       getOrCreateAAFor<AAAlign>(
3014           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
3015     return true;
3016   };
3017   Success = checkForAllInstructionsImpl(
3018       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
3019       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
3020       UsedAssumedInformation);
3021   (void)Success;
3022   assert(Success && "Expected the check call to be successful!");
3023 }
3024 
3025 /// Helpers to ease debugging through output streams and print calls.
3026 ///
3027 ///{
3028 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
3029   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
3030 }
3031 
3032 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
3033   switch (AP) {
3034   case IRPosition::IRP_INVALID:
3035     return OS << "inv";
3036   case IRPosition::IRP_FLOAT:
3037     return OS << "flt";
3038   case IRPosition::IRP_RETURNED:
3039     return OS << "fn_ret";
3040   case IRPosition::IRP_CALL_SITE_RETURNED:
3041     return OS << "cs_ret";
3042   case IRPosition::IRP_FUNCTION:
3043     return OS << "fn";
3044   case IRPosition::IRP_CALL_SITE:
3045     return OS << "cs";
3046   case IRPosition::IRP_ARGUMENT:
3047     return OS << "arg";
3048   case IRPosition::IRP_CALL_SITE_ARGUMENT:
3049     return OS << "cs_arg";
3050   }
3051   llvm_unreachable("Unknown attribute position!");
3052 }
3053 
3054 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
3055   const Value &AV = Pos.getAssociatedValue();
3056   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
3057      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
3058 
3059   if (Pos.hasCallBaseContext())
3060     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
3061   return OS << "}";
3062 }
3063 
3064 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
3065   OS << "range-state(" << S.getBitWidth() << ")<";
3066   S.getKnown().print(OS);
3067   OS << " / ";
3068   S.getAssumed().print(OS);
3069   OS << ">";
3070 
3071   return OS << static_cast<const AbstractState &>(S);
3072 }
3073 
3074 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
3075   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
3076 }
3077 
3078 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
3079   AA.print(OS);
3080   return OS;
3081 }
3082 
3083 raw_ostream &llvm::operator<<(raw_ostream &OS,
3084                               const PotentialConstantIntValuesState &S) {
3085   OS << "set-state(< {";
3086   if (!S.isValidState())
3087     OS << "full-set";
3088   else {
3089     for (auto &it : S.getAssumedSet())
3090       OS << it << ", ";
3091     if (S.undefIsContained())
3092       OS << "undef ";
3093   }
3094   OS << "} >)";
3095 
3096   return OS;
3097 }
3098 
3099 void AbstractAttribute::print(raw_ostream &OS) const {
3100   OS << "[";
3101   OS << getName();
3102   OS << "] for CtxI ";
3103 
3104   if (auto *I = getCtxI()) {
3105     OS << "'";
3106     I->print(OS);
3107     OS << "'";
3108   } else
3109     OS << "<<null inst>>";
3110 
3111   OS << " at position " << getIRPosition() << " with state " << getAsStr()
3112      << '\n';
3113 }
3114 
3115 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
3116   print(OS);
3117 
3118   for (const auto &DepAA : Deps) {
3119     auto *AA = DepAA.getPointer();
3120     OS << "  updates ";
3121     AA->print(OS);
3122   }
3123 
3124   OS << '\n';
3125 }
3126 
3127 raw_ostream &llvm::operator<<(raw_ostream &OS,
3128                               const AAPointerInfo::Access &Acc) {
3129   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
3130   if (Acc.getLocalInst() != Acc.getRemoteInst())
3131     OS << " via " << *Acc.getLocalInst();
3132   if (Acc.getContent().hasValue()) {
3133     if (*Acc.getContent())
3134       OS << " [" << **Acc.getContent() << "]";
3135     else
3136       OS << " [ <unknown> ]";
3137   }
3138   return OS;
3139 }
3140 ///}
3141 
3142 /// ----------------------------------------------------------------------------
3143 ///                       Pass (Manager) Boilerplate
3144 /// ----------------------------------------------------------------------------
3145 
3146 static bool runAttributorOnFunctions(InformationCache &InfoCache,
3147                                      SetVector<Function *> &Functions,
3148                                      AnalysisGetter &AG,
3149                                      CallGraphUpdater &CGUpdater,
3150                                      bool DeleteFns, bool IsModulePass) {
3151   if (Functions.empty())
3152     return false;
3153 
3154   LLVM_DEBUG({
3155     dbgs() << "[Attributor] Run on module with " << Functions.size()
3156            << " functions:\n";
3157     for (Function *Fn : Functions)
3158       dbgs() << "  - " << Fn->getName() << "\n";
3159   });
3160 
3161   // Create an Attributor and initially empty information cache that is filled
3162   // while we identify default attribute opportunities.
3163   AttributorConfig AC(CGUpdater);
3164   AC.IsModulePass = IsModulePass;
3165   AC.DeleteFns = DeleteFns;
3166   Attributor A(Functions, InfoCache, AC);
3167 
3168   // Create shallow wrappers for all functions that are not IPO amendable
3169   if (AllowShallowWrappers)
3170     for (Function *F : Functions)
3171       if (!A.isFunctionIPOAmendable(*F))
3172         Attributor::createShallowWrapper(*F);
3173 
3174   // Internalize non-exact functions
3175   // TODO: for now we eagerly internalize functions without calculating the
3176   //       cost, we need a cost interface to determine whether internalizing
3177   //       a function is "benefitial"
3178   if (AllowDeepWrapper) {
3179     unsigned FunSize = Functions.size();
3180     for (unsigned u = 0; u < FunSize; u++) {
3181       Function *F = Functions[u];
3182       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
3183           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
3184         Function *NewF = Attributor::internalizeFunction(*F);
3185         assert(NewF && "Could not internalize function.");
3186         Functions.insert(NewF);
3187 
3188         // Update call graph
3189         CGUpdater.replaceFunctionWith(*F, *NewF);
3190         for (const Use &U : NewF->uses())
3191           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
3192             auto *CallerF = CB->getCaller();
3193             CGUpdater.reanalyzeFunction(*CallerF);
3194           }
3195       }
3196     }
3197   }
3198 
3199   for (Function *F : Functions) {
3200     if (F->hasExactDefinition())
3201       NumFnWithExactDefinition++;
3202     else
3203       NumFnWithoutExactDefinition++;
3204 
3205     // We look at internal functions only on-demand but if any use is not a
3206     // direct call or outside the current set of analyzed functions, we have
3207     // to do it eagerly.
3208     if (F->hasLocalLinkage()) {
3209       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3210             const auto *CB = dyn_cast<CallBase>(U.getUser());
3211             return CB && CB->isCallee(&U) &&
3212                    Functions.count(const_cast<Function *>(CB->getCaller()));
3213           }))
3214         continue;
3215     }
3216 
3217     // Populate the Attributor with abstract attribute opportunities in the
3218     // function and the information cache with IR information.
3219     A.identifyDefaultAbstractAttributes(*F);
3220   }
3221 
3222   ChangeStatus Changed = A.run();
3223 
3224   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3225                     << " functions, result: " << Changed << ".\n");
3226   return Changed == ChangeStatus::CHANGED;
3227 }
3228 
3229 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3230 
3231 void AADepGraph::dumpGraph() {
3232   static std::atomic<int> CallTimes;
3233   std::string Prefix;
3234 
3235   if (!DepGraphDotFileNamePrefix.empty())
3236     Prefix = DepGraphDotFileNamePrefix;
3237   else
3238     Prefix = "dep_graph";
3239   std::string Filename =
3240       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
3241 
3242   outs() << "Dependency graph dump to " << Filename << ".\n";
3243 
3244   std::error_code EC;
3245 
3246   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
3247   if (!EC)
3248     llvm::WriteGraph(File, this);
3249 
3250   CallTimes++;
3251 }
3252 
3253 void AADepGraph::print() {
3254   for (auto DepAA : SyntheticRoot.Deps)
3255     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
3256 }
3257 
3258 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
3259   FunctionAnalysisManager &FAM =
3260       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3261   AnalysisGetter AG(FAM);
3262 
3263   SetVector<Function *> Functions;
3264   for (Function &F : M)
3265     Functions.insert(&F);
3266 
3267   CallGraphUpdater CGUpdater;
3268   BumpPtrAllocator Allocator;
3269   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3270   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3271                                /* DeleteFns */ true, /* IsModulePass */ true)) {
3272     // FIXME: Think about passes we will preserve and add them here.
3273     return PreservedAnalyses::none();
3274   }
3275   return PreservedAnalyses::all();
3276 }
3277 
3278 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
3279                                            CGSCCAnalysisManager &AM,
3280                                            LazyCallGraph &CG,
3281                                            CGSCCUpdateResult &UR) {
3282   FunctionAnalysisManager &FAM =
3283       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
3284   AnalysisGetter AG(FAM);
3285 
3286   SetVector<Function *> Functions;
3287   for (LazyCallGraph::Node &N : C)
3288     Functions.insert(&N.getFunction());
3289 
3290   if (Functions.empty())
3291     return PreservedAnalyses::all();
3292 
3293   Module &M = *Functions.back()->getParent();
3294   CallGraphUpdater CGUpdater;
3295   CGUpdater.initialize(CG, C, AM, UR);
3296   BumpPtrAllocator Allocator;
3297   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3298   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3299                                /* DeleteFns */ false,
3300                                /* IsModulePass */ false)) {
3301     // FIXME: Think about passes we will preserve and add them here.
3302     PreservedAnalyses PA;
3303     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
3304     return PA;
3305   }
3306   return PreservedAnalyses::all();
3307 }
3308 
3309 namespace llvm {
3310 
3311 template <> struct GraphTraits<AADepGraphNode *> {
3312   using NodeRef = AADepGraphNode *;
3313   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
3314   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
3315 
3316   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
3317   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
3318 
3319   using ChildIteratorType =
3320       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3321   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
3322 
3323   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
3324 
3325   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
3326 };
3327 
3328 template <>
3329 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
3330   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
3331 
3332   using nodes_iterator =
3333       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3334 
3335   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
3336 
3337   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
3338 };
3339 
3340 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
3341   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3342 
3343   static std::string getNodeLabel(const AADepGraphNode *Node,
3344                                   const AADepGraph *DG) {
3345     std::string AAString;
3346     raw_string_ostream O(AAString);
3347     Node->print(O);
3348     return AAString;
3349   }
3350 };
3351 
3352 } // end namespace llvm
3353 
3354 namespace {
3355 
3356 struct AttributorLegacyPass : public ModulePass {
3357   static char ID;
3358 
3359   AttributorLegacyPass() : ModulePass(ID) {
3360     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3361   }
3362 
3363   bool runOnModule(Module &M) override {
3364     if (skipModule(M))
3365       return false;
3366 
3367     AnalysisGetter AG;
3368     SetVector<Function *> Functions;
3369     for (Function &F : M)
3370       Functions.insert(&F);
3371 
3372     CallGraphUpdater CGUpdater;
3373     BumpPtrAllocator Allocator;
3374     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3375     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3376                                     /* DeleteFns*/ true,
3377                                     /* IsModulePass */ true);
3378   }
3379 
3380   void getAnalysisUsage(AnalysisUsage &AU) const override {
3381     // FIXME: Think about passes we will preserve and add them here.
3382     AU.addRequired<TargetLibraryInfoWrapperPass>();
3383   }
3384 };
3385 
3386 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3387   static char ID;
3388 
3389   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3390     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3391   }
3392 
3393   bool runOnSCC(CallGraphSCC &SCC) override {
3394     if (skipSCC(SCC))
3395       return false;
3396 
3397     SetVector<Function *> Functions;
3398     for (CallGraphNode *CGN : SCC)
3399       if (Function *Fn = CGN->getFunction())
3400         if (!Fn->isDeclaration())
3401           Functions.insert(Fn);
3402 
3403     if (Functions.empty())
3404       return false;
3405 
3406     AnalysisGetter AG;
3407     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3408     CallGraphUpdater CGUpdater;
3409     CGUpdater.initialize(CG, SCC);
3410     Module &M = *Functions.back()->getParent();
3411     BumpPtrAllocator Allocator;
3412     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3413     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3414                                     /* DeleteFns */ false,
3415                                     /* IsModulePass */ false);
3416   }
3417 
3418   void getAnalysisUsage(AnalysisUsage &AU) const override {
3419     // FIXME: Think about passes we will preserve and add them here.
3420     AU.addRequired<TargetLibraryInfoWrapperPass>();
3421     CallGraphSCCPass::getAnalysisUsage(AU);
3422   }
3423 };
3424 
3425 } // end anonymous namespace
3426 
3427 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3428 Pass *llvm::createAttributorCGSCCLegacyPass() {
3429   return new AttributorCGSCCLegacyPass();
3430 }
3431 
3432 char AttributorLegacyPass::ID = 0;
3433 char AttributorCGSCCLegacyPass::ID = 0;
3434 
3435 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3436                       "Deduce and propagate attributes", false, false)
3437 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3438 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3439                     "Deduce and propagate attributes", false, false)
3440 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3441                       "Deduce and propagate attributes (CGSCC pass)", false,
3442                       false)
3443 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3444 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3445 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3446                     "Deduce and propagate attributes (CGSCC pass)", false,
3447                     false)
3448