1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/FileSystem.h"
36 #include "llvm/Support/GraphWriter.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 
42 #include <cassert>
43 #include <string>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "attributor"
48 
49 STATISTIC(NumFnDeleted, "Number of function deleted");
50 STATISTIC(NumFnWithExactDefinition,
51           "Number of functions with exact definitions");
52 STATISTIC(NumFnWithoutExactDefinition,
53           "Number of functions without exact definitions");
54 STATISTIC(NumFnShallowWrapperCreated, "Number of shallow wrappers created");
55 STATISTIC(NumAttributesTimedOut,
56           "Number of abstract attributes timed out before fixpoint");
57 STATISTIC(NumAttributesValidFixpoint,
58           "Number of abstract attributes in a valid fixpoint state");
59 STATISTIC(NumAttributesManifested,
60           "Number of abstract attributes manifested in IR");
61 STATISTIC(NumAttributesFixedDueToRequiredDependences,
62           "Number of abstract attributes fixed due to required dependences");
63 
64 // TODO: Determine a good default value.
65 //
66 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
67 // (when run with the first 5 abstract attributes). The results also indicate
68 // that we never reach 32 iterations but always find a fixpoint sooner.
69 //
70 // This will become more evolved once we perform two interleaved fixpoint
71 // iterations: bottom-up and top-down.
72 static cl::opt<unsigned>
73     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
74                           cl::desc("Maximal number of fixpoint iterations."),
75                           cl::init(32));
76 static cl::opt<bool> VerifyMaxFixpointIterations(
77     "attributor-max-iterations-verify", cl::Hidden,
78     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
79     cl::init(false));
80 
81 static cl::opt<bool> AnnotateDeclarationCallSites(
82     "attributor-annotate-decl-cs", cl::Hidden,
83     cl::desc("Annotate call sites of function declarations."), cl::init(false));
84 
85 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
86                                        cl::init(true), cl::Hidden);
87 
88 static cl::opt<bool>
89     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
90                          cl::desc("Allow the Attributor to create shallow "
91                                   "wrappers for non-exact definitions."),
92                          cl::init(false));
93 
94 static cl::opt<bool>
95     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
96                      cl::desc("Allow the Attributor to use IP information "
97                               "derived from non-exact functions via cloning"),
98                      cl::init(false));
99 
100 static cl::list<std::string>
101     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
102                   cl::desc("Comma seperated list of attrbute names that are "
103                            "allowed to be seeded."),
104                   cl::ZeroOrMore, cl::CommaSeparated);
105 
106 static cl::opt<bool>
107     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
108                  cl::desc("Dump the dependency graph to dot files."),
109                  cl::init(false));
110 
111 static cl::opt<std::string> DepGraphDotFileNamePrefix(
112     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
113     cl::desc("The prefix used for the CallGraph dot file names."));
114 
115 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
116                                   cl::desc("View the dependency graph."),
117                                   cl::init(false));
118 
119 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
120                                        cl::desc("Print attribute dependencies"),
121                                        cl::init(false));
122 
123 /// Logic operators for the change status enum class.
124 ///
125 ///{
126 ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
127   return l == ChangeStatus::CHANGED ? l : r;
128 }
129 ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
130   return l == ChangeStatus::UNCHANGED ? l : r;
131 }
132 ///}
133 
134 /// Return true if \p New is equal or worse than \p Old.
135 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
136   if (!Old.isIntAttribute())
137     return true;
138 
139   return Old.getValueAsInt() >= New.getValueAsInt();
140 }
141 
142 /// Return true if the information provided by \p Attr was added to the
143 /// attribute list \p Attrs. This is only the case if it was not already present
144 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
145 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
146                              AttributeList &Attrs, int AttrIdx) {
147 
148   if (Attr.isEnumAttribute()) {
149     Attribute::AttrKind Kind = Attr.getKindAsEnum();
150     if (Attrs.hasAttribute(AttrIdx, Kind))
151       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
152         return false;
153     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
154     return true;
155   }
156   if (Attr.isStringAttribute()) {
157     StringRef Kind = Attr.getKindAsString();
158     if (Attrs.hasAttribute(AttrIdx, Kind))
159       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
160         return false;
161     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
162     return true;
163   }
164   if (Attr.isIntAttribute()) {
165     Attribute::AttrKind Kind = Attr.getKindAsEnum();
166     if (Attrs.hasAttribute(AttrIdx, Kind))
167       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
168         return false;
169     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
170     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
171     return true;
172   }
173 
174   llvm_unreachable("Expected enum or string attribute!");
175 }
176 
177 Argument *IRPosition::getAssociatedArgument() const {
178   if (getPositionKind() == IRP_ARGUMENT)
179     return cast<Argument>(&getAnchorValue());
180 
181   // Not an Argument and no argument number means this is not a call site
182   // argument, thus we cannot find a callback argument to return.
183   int ArgNo = getArgNo();
184   if (ArgNo < 0)
185     return nullptr;
186 
187   // Use abstract call sites to make the connection between the call site
188   // values and the ones in callbacks. If a callback was found that makes use
189   // of the underlying call site operand, we want the corresponding callback
190   // callee argument and not the direct callee argument.
191   Optional<Argument *> CBCandidateArg;
192   SmallVector<const Use *, 4> CallbackUses;
193   const auto &CB = cast<CallBase>(getAnchorValue());
194   AbstractCallSite::getCallbackUses(CB, CallbackUses);
195   for (const Use *U : CallbackUses) {
196     AbstractCallSite ACS(U);
197     assert(ACS && ACS.isCallbackCall());
198     if (!ACS.getCalledFunction())
199       continue;
200 
201     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
202 
203       // Test if the underlying call site operand is argument number u of the
204       // callback callee.
205       if (ACS.getCallArgOperandNo(u) != ArgNo)
206         continue;
207 
208       assert(ACS.getCalledFunction()->arg_size() > u &&
209              "ACS mapped into var-args arguments!");
210       if (CBCandidateArg.hasValue()) {
211         CBCandidateArg = nullptr;
212         break;
213       }
214       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
215     }
216   }
217 
218   // If we found a unique callback candidate argument, return it.
219   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
220     return CBCandidateArg.getValue();
221 
222   // If no callbacks were found, or none used the underlying call site operand
223   // exclusively, use the direct callee argument if available.
224   const Function *Callee = CB.getCalledFunction();
225   if (Callee && Callee->arg_size() > unsigned(ArgNo))
226     return Callee->getArg(ArgNo);
227 
228   return nullptr;
229 }
230 
231 ChangeStatus AbstractAttribute::update(Attributor &A) {
232   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
233   if (getState().isAtFixpoint())
234     return HasChanged;
235 
236   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
237 
238   HasChanged = updateImpl(A);
239 
240   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
241                     << "\n");
242 
243   return HasChanged;
244 }
245 
246 ChangeStatus
247 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
248                                    const ArrayRef<Attribute> &DeducedAttrs) {
249   Function *ScopeFn = IRP.getAnchorScope();
250   IRPosition::Kind PK = IRP.getPositionKind();
251 
252   // In the following some generic code that will manifest attributes in
253   // DeducedAttrs if they improve the current IR. Due to the different
254   // annotation positions we use the underlying AttributeList interface.
255 
256   AttributeList Attrs;
257   switch (PK) {
258   case IRPosition::IRP_INVALID:
259   case IRPosition::IRP_FLOAT:
260     return ChangeStatus::UNCHANGED;
261   case IRPosition::IRP_ARGUMENT:
262   case IRPosition::IRP_FUNCTION:
263   case IRPosition::IRP_RETURNED:
264     Attrs = ScopeFn->getAttributes();
265     break;
266   case IRPosition::IRP_CALL_SITE:
267   case IRPosition::IRP_CALL_SITE_RETURNED:
268   case IRPosition::IRP_CALL_SITE_ARGUMENT:
269     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
270     break;
271   }
272 
273   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
274   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
275   for (const Attribute &Attr : DeducedAttrs) {
276     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
277       continue;
278 
279     HasChanged = ChangeStatus::CHANGED;
280   }
281 
282   if (HasChanged == ChangeStatus::UNCHANGED)
283     return HasChanged;
284 
285   switch (PK) {
286   case IRPosition::IRP_ARGUMENT:
287   case IRPosition::IRP_FUNCTION:
288   case IRPosition::IRP_RETURNED:
289     ScopeFn->setAttributes(Attrs);
290     break;
291   case IRPosition::IRP_CALL_SITE:
292   case IRPosition::IRP_CALL_SITE_RETURNED:
293   case IRPosition::IRP_CALL_SITE_ARGUMENT:
294     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
295     break;
296   case IRPosition::IRP_INVALID:
297   case IRPosition::IRP_FLOAT:
298     break;
299   }
300 
301   return HasChanged;
302 }
303 
304 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
305 const IRPosition
306     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
307 
308 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
309   IRPositions.emplace_back(IRP);
310 
311   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
312   switch (IRP.getPositionKind()) {
313   case IRPosition::IRP_INVALID:
314   case IRPosition::IRP_FLOAT:
315   case IRPosition::IRP_FUNCTION:
316     return;
317   case IRPosition::IRP_ARGUMENT:
318   case IRPosition::IRP_RETURNED:
319     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
320     return;
321   case IRPosition::IRP_CALL_SITE:
322     assert(CB && "Expected call site!");
323     // TODO: We need to look at the operand bundles similar to the redirection
324     //       in CallBase.
325     if (!CB->hasOperandBundles())
326       if (const Function *Callee = CB->getCalledFunction())
327         IRPositions.emplace_back(IRPosition::function(*Callee));
328     return;
329   case IRPosition::IRP_CALL_SITE_RETURNED:
330     assert(CB && "Expected call site!");
331     // TODO: We need to look at the operand bundles similar to the redirection
332     //       in CallBase.
333     if (!CB->hasOperandBundles()) {
334       if (const Function *Callee = CB->getCalledFunction()) {
335         IRPositions.emplace_back(IRPosition::returned(*Callee));
336         IRPositions.emplace_back(IRPosition::function(*Callee));
337         for (const Argument &Arg : Callee->args())
338           if (Arg.hasReturnedAttr()) {
339             IRPositions.emplace_back(
340                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
341             IRPositions.emplace_back(
342                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
343             IRPositions.emplace_back(IRPosition::argument(Arg));
344           }
345       }
346     }
347     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
348     return;
349   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
350     int ArgNo = IRP.getArgNo();
351     assert(CB && ArgNo >= 0 && "Expected call site!");
352     // TODO: We need to look at the operand bundles similar to the redirection
353     //       in CallBase.
354     if (!CB->hasOperandBundles()) {
355       const Function *Callee = CB->getCalledFunction();
356       if (Callee && Callee->arg_size() > unsigned(ArgNo))
357         IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
358       if (Callee)
359         IRPositions.emplace_back(IRPosition::function(*Callee));
360     }
361     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
362     return;
363   }
364   }
365 }
366 
367 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
368                          bool IgnoreSubsumingPositions, Attributor *A) const {
369   SmallVector<Attribute, 4> Attrs;
370   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
371     for (Attribute::AttrKind AK : AKs)
372       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
373         return true;
374     // The first position returned by the SubsumingPositionIterator is
375     // always the position itself. If we ignore subsuming positions we
376     // are done after the first iteration.
377     if (IgnoreSubsumingPositions)
378       break;
379   }
380   if (A)
381     for (Attribute::AttrKind AK : AKs)
382       if (getAttrsFromAssumes(AK, Attrs, *A))
383         return true;
384   return false;
385 }
386 
387 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
388                           SmallVectorImpl<Attribute> &Attrs,
389                           bool IgnoreSubsumingPositions, Attributor *A) const {
390   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
391     for (Attribute::AttrKind AK : AKs)
392       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
393     // The first position returned by the SubsumingPositionIterator is
394     // always the position itself. If we ignore subsuming positions we
395     // are done after the first iteration.
396     if (IgnoreSubsumingPositions)
397       break;
398   }
399   if (A)
400     for (Attribute::AttrKind AK : AKs)
401       getAttrsFromAssumes(AK, Attrs, *A);
402 }
403 
404 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
405                                     SmallVectorImpl<Attribute> &Attrs) const {
406   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
407     return false;
408 
409   AttributeList AttrList;
410   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
411     AttrList = CB->getAttributes();
412   else
413     AttrList = getAssociatedFunction()->getAttributes();
414 
415   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
416   if (HasAttr)
417     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
418   return HasAttr;
419 }
420 
421 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
422                                      SmallVectorImpl<Attribute> &Attrs,
423                                      Attributor &A) const {
424   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
425   Value &AssociatedValue = getAssociatedValue();
426 
427   const Assume2KnowledgeMap &A2K =
428       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
429 
430   // Check if we found any potential assume use, if not we don't need to create
431   // explorer iterators.
432   if (A2K.empty())
433     return false;
434 
435   LLVMContext &Ctx = AssociatedValue.getContext();
436   unsigned AttrsSize = Attrs.size();
437   MustBeExecutedContextExplorer &Explorer =
438       A.getInfoCache().getMustBeExecutedContextExplorer();
439   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
440   for (auto &It : A2K)
441     if (Explorer.findInContextOf(It.first, EIt, EEnd))
442       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
443   return AttrsSize != Attrs.size();
444 }
445 
446 void IRPosition::verify() {
447 #ifdef EXPENSIVE_CHECKS
448   switch (getPositionKind()) {
449   case IRP_INVALID:
450     assert(!Enc.getOpaqueValue() &&
451            "Expected a nullptr for an invalid position!");
452     return;
453   case IRP_FLOAT:
454     assert((!isa<CallBase>(&getAssociatedValue()) &&
455             !isa<Argument>(&getAssociatedValue())) &&
456            "Expected specialized kind for call base and argument values!");
457     return;
458   case IRP_RETURNED:
459     assert(isa<Function>(getAsValuePtr()) &&
460            "Expected function for a 'returned' position!");
461     assert(getAsValuePtr() == &getAssociatedValue() &&
462            "Associated value mismatch!");
463     return;
464   case IRP_CALL_SITE_RETURNED:
465     assert((isa<CallBase>(getAsValuePtr())) &&
466            "Expected call base for 'call site returned' position!");
467     assert(getAsValuePtr() == &getAssociatedValue() &&
468            "Associated value mismatch!");
469     return;
470   case IRP_CALL_SITE:
471     assert((isa<CallBase>(getAsValuePtr())) &&
472            "Expected call base for 'call site function' position!");
473     assert(getAsValuePtr() == &getAssociatedValue() &&
474            "Associated value mismatch!");
475     return;
476   case IRP_FUNCTION:
477     assert(isa<Function>(getAsValuePtr()) &&
478            "Expected function for a 'function' position!");
479     assert(getAsValuePtr() == &getAssociatedValue() &&
480            "Associated value mismatch!");
481     return;
482   case IRP_ARGUMENT:
483     assert(isa<Argument>(getAsValuePtr()) &&
484            "Expected argument for a 'argument' position!");
485     assert(getAsValuePtr() == &getAssociatedValue() &&
486            "Associated value mismatch!");
487     return;
488   case IRP_CALL_SITE_ARGUMENT: {
489     Use *U = getAsUsePtr();
490     assert(U && "Expected use for a 'call site argument' position!");
491     assert(isa<CallBase>(U->getUser()) &&
492            "Expected call base user for a 'call site argument' position!");
493     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
494            "Expected call base argument operand for a 'call site argument' "
495            "position");
496     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
497                unsigned(getArgNo()) &&
498            "Argument number mismatch!");
499     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
500     return;
501   }
502   }
503 #endif
504 }
505 
506 Optional<Constant *>
507 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
508                                bool &UsedAssumedInformation) {
509   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
510       AA, IRPosition::value(V), /* TrackDependence */ false);
511   Optional<Value *> SimplifiedV =
512       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
513   bool IsKnown = ValueSimplifyAA.isKnown();
514   UsedAssumedInformation |= !IsKnown;
515   if (!SimplifiedV.hasValue()) {
516     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
517     return llvm::None;
518   }
519   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
520     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
521     return llvm::None;
522   }
523   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
524   if (CI && CI->getType() != V.getType()) {
525     // TODO: Check for a save conversion.
526     return nullptr;
527   }
528   if (CI)
529     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
530   return CI;
531 }
532 
533 Attributor::~Attributor() {
534   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
535   // thus we cannot delete them. We can, and want to, destruct them though.
536   for (auto &DepAA : DG.SyntheticRoot.Deps) {
537     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
538     AA->~AbstractAttribute();
539   }
540 }
541 
542 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
543                                const AAIsDead *FnLivenessAA,
544                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
545   const IRPosition &IRP = AA.getIRPosition();
546   if (!Functions.count(IRP.getAnchorScope()))
547     return false;
548   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
549 }
550 
551 bool Attributor::isAssumedDead(const Use &U,
552                                const AbstractAttribute *QueryingAA,
553                                const AAIsDead *FnLivenessAA,
554                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
555   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
556   if (!UserI)
557     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
558                          CheckBBLivenessOnly, DepClass);
559 
560   if (auto *CB = dyn_cast<CallBase>(UserI)) {
561     // For call site argument uses we can check if the argument is
562     // unused/dead.
563     if (CB->isArgOperand(&U)) {
564       const IRPosition &CSArgPos =
565           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
566       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
567                            CheckBBLivenessOnly, DepClass);
568     }
569   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
570     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
571     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
572                          DepClass);
573   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
574     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
575     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
576                          CheckBBLivenessOnly, DepClass);
577   }
578 
579   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
580                        CheckBBLivenessOnly, DepClass);
581 }
582 
583 bool Attributor::isAssumedDead(const Instruction &I,
584                                const AbstractAttribute *QueryingAA,
585                                const AAIsDead *FnLivenessAA,
586                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
587   if (!FnLivenessAA)
588     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
589                                          QueryingAA,
590                                          /* TrackDependence */ false);
591 
592   // If we have a context instruction and a liveness AA we use it.
593   if (FnLivenessAA &&
594       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
595       FnLivenessAA->isAssumedDead(&I)) {
596     if (QueryingAA)
597       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
598     return true;
599   }
600 
601   if (CheckBBLivenessOnly)
602     return false;
603 
604   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
605       IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
606   // Don't check liveness for AAIsDead.
607   if (QueryingAA == &IsDeadAA)
608     return false;
609 
610   if (IsDeadAA.isAssumedDead()) {
611     if (QueryingAA)
612       recordDependence(IsDeadAA, *QueryingAA, DepClass);
613     return true;
614   }
615 
616   return false;
617 }
618 
619 bool Attributor::isAssumedDead(const IRPosition &IRP,
620                                const AbstractAttribute *QueryingAA,
621                                const AAIsDead *FnLivenessAA,
622                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
623   Instruction *CtxI = IRP.getCtxI();
624   if (CtxI &&
625       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
626                     /* CheckBBLivenessOnly */ true,
627                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
628     return true;
629 
630   if (CheckBBLivenessOnly)
631     return false;
632 
633   // If we haven't succeeded we query the specific liveness info for the IRP.
634   const AAIsDead *IsDeadAA;
635   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
636     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
637         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
638         QueryingAA, /* TrackDependence */ false);
639   else
640     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
641                                            /* TrackDependence */ false);
642   // Don't check liveness for AAIsDead.
643   if (QueryingAA == IsDeadAA)
644     return false;
645 
646   if (IsDeadAA->isAssumedDead()) {
647     if (QueryingAA)
648       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
649     return true;
650   }
651 
652   return false;
653 }
654 
655 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
656                                  const AbstractAttribute &QueryingAA,
657                                  const Value &V, DepClassTy LivenessDepClass) {
658 
659   // Check the trivial case first as it catches void values.
660   if (V.use_empty())
661     return true;
662 
663   // If the value is replaced by another one, for now a constant, we do not have
664   // uses. Note that this requires users of `checkForAllUses` to not recurse but
665   // instead use the `follow` callback argument to look at transitive users,
666   // however, that should be clear from the presence of the argument.
667   bool UsedAssumedInformation = false;
668   Optional<Constant *> C =
669       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
670   if (C.hasValue() && C.getValue()) {
671     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
672                       << " -> " << *C.getValue() << "\n");
673     return true;
674   }
675 
676   const IRPosition &IRP = QueryingAA.getIRPosition();
677   SmallVector<const Use *, 16> Worklist;
678   SmallPtrSet<const Use *, 16> Visited;
679 
680   for (const Use &U : V.uses())
681     Worklist.push_back(&U);
682 
683   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
684                     << " initial uses to check\n");
685 
686   const Function *ScopeFn = IRP.getAnchorScope();
687   const auto *LivenessAA =
688       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
689                                     /* TrackDependence */ false)
690               : nullptr;
691 
692   while (!Worklist.empty()) {
693     const Use *U = Worklist.pop_back_val();
694     if (!Visited.insert(U).second)
695       continue;
696     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
697                       << *U->getUser() << "\n");
698     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
699                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
700       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
701       continue;
702     }
703     if (U->getUser()->isDroppable()) {
704       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
705       continue;
706     }
707 
708     bool Follow = false;
709     if (!Pred(*U, Follow))
710       return false;
711     if (!Follow)
712       continue;
713     for (const Use &UU : U->getUser()->uses())
714       Worklist.push_back(&UU);
715   }
716 
717   return true;
718 }
719 
720 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
721                                       const AbstractAttribute &QueryingAA,
722                                       bool RequireAllCallSites,
723                                       bool &AllCallSitesKnown) {
724   // We can try to determine information from
725   // the call sites. However, this is only possible all call sites are known,
726   // hence the function has internal linkage.
727   const IRPosition &IRP = QueryingAA.getIRPosition();
728   const Function *AssociatedFunction = IRP.getAssociatedFunction();
729   if (!AssociatedFunction) {
730     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
731                       << "\n");
732     AllCallSitesKnown = false;
733     return false;
734   }
735 
736   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
737                               &QueryingAA, AllCallSitesKnown);
738 }
739 
740 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
741                                       const Function &Fn,
742                                       bool RequireAllCallSites,
743                                       const AbstractAttribute *QueryingAA,
744                                       bool &AllCallSitesKnown) {
745   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
746     LLVM_DEBUG(
747         dbgs()
748         << "[Attributor] Function " << Fn.getName()
749         << " has no internal linkage, hence not all call sites are known\n");
750     AllCallSitesKnown = false;
751     return false;
752   }
753 
754   // If we do not require all call sites we might not see all.
755   AllCallSitesKnown = RequireAllCallSites;
756 
757   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
758   for (unsigned u = 0; u < Uses.size(); ++u) {
759     const Use &U = *Uses[u];
760     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
761                       << *U.getUser() << "\n");
762     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
763       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
764       continue;
765     }
766     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
767       if (CE->isCast() && CE->getType()->isPointerTy() &&
768           CE->getType()->getPointerElementType()->isFunctionTy()) {
769         for (const Use &CEU : CE->uses())
770           Uses.push_back(&CEU);
771         continue;
772       }
773     }
774 
775     AbstractCallSite ACS(&U);
776     if (!ACS) {
777       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
778                         << " has non call site use " << *U.get() << " in "
779                         << *U.getUser() << "\n");
780       // BlockAddress users are allowed.
781       if (isa<BlockAddress>(U.getUser()))
782         continue;
783       return false;
784     }
785 
786     const Use *EffectiveUse =
787         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
788     if (!ACS.isCallee(EffectiveUse)) {
789       if (!RequireAllCallSites)
790         continue;
791       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
792                         << " is an invalid use of " << Fn.getName() << "\n");
793       return false;
794     }
795 
796     // Make sure the arguments that can be matched between the call site and the
797     // callee argee on their type. It is unlikely they do not and it doesn't
798     // make sense for all attributes to know/care about this.
799     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
800     unsigned MinArgsParams =
801         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
802     for (unsigned u = 0; u < MinArgsParams; ++u) {
803       Value *CSArgOp = ACS.getCallArgOperand(u);
804       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
805         LLVM_DEBUG(
806             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
807                    << u << "@" << Fn.getName() << ": "
808                    << *Fn.getArg(u)->getType() << " vs. "
809                    << *ACS.getCallArgOperand(u)->getType() << "\n");
810         return false;
811       }
812     }
813 
814     if (Pred(ACS))
815       continue;
816 
817     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
818                       << *ACS.getInstruction() << "\n");
819     return false;
820   }
821 
822   return true;
823 }
824 
825 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
826     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
827     const AbstractAttribute &QueryingAA) {
828 
829   const IRPosition &IRP = QueryingAA.getIRPosition();
830   // Since we need to provide return instructions we have to have an exact
831   // definition.
832   const Function *AssociatedFunction = IRP.getAssociatedFunction();
833   if (!AssociatedFunction)
834     return false;
835 
836   // If this is a call site query we use the call site specific return values
837   // and liveness information.
838   // TODO: use the function scope once we have call site AAReturnedValues.
839   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
840   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
841   if (!AARetVal.getState().isValidState())
842     return false;
843 
844   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
845 }
846 
847 bool Attributor::checkForAllReturnedValues(
848     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
849 
850   const IRPosition &IRP = QueryingAA.getIRPosition();
851   const Function *AssociatedFunction = IRP.getAssociatedFunction();
852   if (!AssociatedFunction)
853     return false;
854 
855   // TODO: use the function scope once we have call site AAReturnedValues.
856   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
857   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
858   if (!AARetVal.getState().isValidState())
859     return false;
860 
861   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
862       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
863         return Pred(RV);
864       });
865 }
866 
867 static bool checkForAllInstructionsImpl(
868     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
869     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
870     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
871     bool CheckBBLivenessOnly = false) {
872   for (unsigned Opcode : Opcodes) {
873     // Check if we have instructions with this opcode at all first.
874     auto *Insts = OpcodeInstMap.lookup(Opcode);
875     if (!Insts)
876       continue;
877 
878     for (Instruction *I : *Insts) {
879       // Skip dead instructions.
880       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
881                                 CheckBBLivenessOnly))
882         continue;
883 
884       if (!Pred(*I))
885         return false;
886     }
887   }
888   return true;
889 }
890 
891 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
892                                          const AbstractAttribute &QueryingAA,
893                                          const ArrayRef<unsigned> &Opcodes,
894                                          bool CheckBBLivenessOnly) {
895 
896   const IRPosition &IRP = QueryingAA.getIRPosition();
897   // Since we need to provide instructions we have to have an exact definition.
898   const Function *AssociatedFunction = IRP.getAssociatedFunction();
899   if (!AssociatedFunction)
900     return false;
901 
902   // TODO: use the function scope once we have call site AAReturnedValues.
903   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
904   const auto &LivenessAA =
905       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
906 
907   auto &OpcodeInstMap =
908       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
909   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
910                                    &LivenessAA, Opcodes, CheckBBLivenessOnly))
911     return false;
912 
913   return true;
914 }
915 
916 bool Attributor::checkForAllReadWriteInstructions(
917     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
918 
919   const Function *AssociatedFunction =
920       QueryingAA.getIRPosition().getAssociatedFunction();
921   if (!AssociatedFunction)
922     return false;
923 
924   // TODO: use the function scope once we have call site AAReturnedValues.
925   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
926   const auto &LivenessAA =
927       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
928 
929   for (Instruction *I :
930        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
931     // Skip dead instructions.
932     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
933       continue;
934 
935     if (!Pred(*I))
936       return false;
937   }
938 
939   return true;
940 }
941 
942 void Attributor::runTillFixpoint() {
943   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
944   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
945                     << DG.SyntheticRoot.Deps.size()
946                     << " abstract attributes.\n");
947 
948   // Now that all abstract attributes are collected and initialized we start
949   // the abstract analysis.
950 
951   unsigned IterationCounter = 1;
952 
953   SmallVector<AbstractAttribute *, 32> ChangedAAs;
954   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
955   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
956 
957   do {
958     // Remember the size to determine new attributes.
959     size_t NumAAs = DG.SyntheticRoot.Deps.size();
960     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
961                       << ", Worklist size: " << Worklist.size() << "\n");
962 
963     // For invalid AAs we can fix dependent AAs that have a required dependence,
964     // thereby folding long dependence chains in a single step without the need
965     // to run updates.
966     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
967       AbstractAttribute *InvalidAA = InvalidAAs[u];
968 
969       // Check the dependences to fast track invalidation.
970       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
971                         << InvalidAA->Deps.size()
972                         << " required & optional dependences\n");
973       while (!InvalidAA->Deps.empty()) {
974         const auto &Dep = InvalidAA->Deps.back();
975         InvalidAA->Deps.pop_back();
976         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
977         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
978           Worklist.insert(DepAA);
979           continue;
980         }
981         DepAA->getState().indicatePessimisticFixpoint();
982         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
983         if (!DepAA->getState().isValidState())
984           InvalidAAs.insert(DepAA);
985         else
986           ChangedAAs.push_back(DepAA);
987       }
988     }
989 
990     // Add all abstract attributes that are potentially dependent on one that
991     // changed to the work list.
992     for (AbstractAttribute *ChangedAA : ChangedAAs)
993       while (!ChangedAA->Deps.empty()) {
994         Worklist.insert(
995             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
996         ChangedAA->Deps.pop_back();
997       }
998 
999     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1000                       << ", Worklist+Dependent size: " << Worklist.size()
1001                       << "\n");
1002 
1003     // Reset the changed and invalid set.
1004     ChangedAAs.clear();
1005     InvalidAAs.clear();
1006 
1007     // Update all abstract attribute in the work list and record the ones that
1008     // changed.
1009     for (AbstractAttribute *AA : Worklist) {
1010       const auto &AAState = AA->getState();
1011       if (!AAState.isAtFixpoint())
1012         if (updateAA(*AA) == ChangeStatus::CHANGED)
1013           ChangedAAs.push_back(AA);
1014 
1015       // Use the InvalidAAs vector to propagate invalid states fast transitively
1016       // without requiring updates.
1017       if (!AAState.isValidState())
1018         InvalidAAs.insert(AA);
1019     }
1020 
1021     // Add attributes to the changed set if they have been created in the last
1022     // iteration.
1023     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1024                       DG.SyntheticRoot.end());
1025 
1026     // Reset the work list and repopulate with the changed abstract attributes.
1027     // Note that dependent ones are added above.
1028     Worklist.clear();
1029     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1030 
1031   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1032                                  VerifyMaxFixpointIterations));
1033 
1034   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1035                     << IterationCounter << "/" << MaxFixpointIterations
1036                     << " iterations\n");
1037 
1038   // Reset abstract arguments not settled in a sound fixpoint by now. This
1039   // happens when we stopped the fixpoint iteration early. Note that only the
1040   // ones marked as "changed" *and* the ones transitively depending on them
1041   // need to be reverted to a pessimistic state. Others might not be in a
1042   // fixpoint state but we can use the optimistic results for them anyway.
1043   SmallPtrSet<AbstractAttribute *, 32> Visited;
1044   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1045     AbstractAttribute *ChangedAA = ChangedAAs[u];
1046     if (!Visited.insert(ChangedAA).second)
1047       continue;
1048 
1049     AbstractState &State = ChangedAA->getState();
1050     if (!State.isAtFixpoint()) {
1051       State.indicatePessimisticFixpoint();
1052 
1053       NumAttributesTimedOut++;
1054     }
1055 
1056     while (!ChangedAA->Deps.empty()) {
1057       ChangedAAs.push_back(
1058           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1059       ChangedAA->Deps.pop_back();
1060     }
1061   }
1062 
1063   LLVM_DEBUG({
1064     if (!Visited.empty())
1065       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1066              << " abstract attributes.\n";
1067   });
1068 
1069   if (VerifyMaxFixpointIterations &&
1070       IterationCounter != MaxFixpointIterations) {
1071     errs() << "\n[Attributor] Fixpoint iteration done after: "
1072            << IterationCounter << "/" << MaxFixpointIterations
1073            << " iterations\n";
1074     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1075                      "specified iterations!");
1076   }
1077 }
1078 
1079 ChangeStatus Attributor::manifestAttributes() {
1080   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1081   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1082 
1083   unsigned NumManifested = 0;
1084   unsigned NumAtFixpoint = 0;
1085   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1086   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1087     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1088     AbstractState &State = AA->getState();
1089 
1090     // If there is not already a fixpoint reached, we can now take the
1091     // optimistic state. This is correct because we enforced a pessimistic one
1092     // on abstract attributes that were transitively dependent on a changed one
1093     // already above.
1094     if (!State.isAtFixpoint())
1095       State.indicateOptimisticFixpoint();
1096 
1097     // If the state is invalid, we do not try to manifest it.
1098     if (!State.isValidState())
1099       continue;
1100 
1101     // Skip dead code.
1102     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1103       continue;
1104     // Manifest the state and record if we changed the IR.
1105     ChangeStatus LocalChange = AA->manifest(*this);
1106     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1107       AA->trackStatistics();
1108     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1109                       << "\n");
1110 
1111     ManifestChange = ManifestChange | LocalChange;
1112 
1113     NumAtFixpoint++;
1114     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1115   }
1116 
1117   (void)NumManifested;
1118   (void)NumAtFixpoint;
1119   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1120                     << " arguments while " << NumAtFixpoint
1121                     << " were in a valid fixpoint state\n");
1122 
1123   NumAttributesManifested += NumManifested;
1124   NumAttributesValidFixpoint += NumAtFixpoint;
1125 
1126   (void)NumFinalAAs;
1127   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1128     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1129       errs() << "Unexpected abstract attribute: "
1130              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1131              << " :: "
1132              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1133                     ->getIRPosition()
1134                     .getAssociatedValue()
1135              << "\n";
1136     llvm_unreachable("Expected the final number of abstract attributes to "
1137                      "remain unchanged!");
1138   }
1139   return ManifestChange;
1140 }
1141 
1142 ChangeStatus Attributor::cleanupIR() {
1143   TimeTraceScope TimeScope("Attributor::cleanupIR");
1144   // Delete stuff at the end to avoid invalid references and a nice order.
1145   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1146                     << ToBeDeletedFunctions.size() << " functions and "
1147                     << ToBeDeletedBlocks.size() << " blocks and "
1148                     << ToBeDeletedInsts.size() << " instructions and "
1149                     << ToBeChangedUses.size() << " uses\n");
1150 
1151   SmallVector<WeakTrackingVH, 32> DeadInsts;
1152   SmallVector<Instruction *, 32> TerminatorsToFold;
1153 
1154   for (auto &It : ToBeChangedUses) {
1155     Use *U = It.first;
1156     Value *NewV = It.second;
1157     Value *OldV = U->get();
1158 
1159     // Do not replace uses in returns if the value is a must-tail call we will
1160     // not delete.
1161     if (isa<ReturnInst>(U->getUser()))
1162       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1163         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1164           continue;
1165 
1166     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1167                       << " instead of " << *OldV << "\n");
1168     U->set(NewV);
1169     // Do not modify call instructions outside the SCC.
1170     if (auto *CB = dyn_cast<CallBase>(OldV))
1171       if (!Functions.count(CB->getCaller()))
1172         continue;
1173     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1174       CGModifiedFunctions.insert(I->getFunction());
1175       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1176           isInstructionTriviallyDead(I))
1177         DeadInsts.push_back(I);
1178     }
1179     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1180       Instruction *UserI = cast<Instruction>(U->getUser());
1181       if (isa<UndefValue>(NewV)) {
1182         ToBeChangedToUnreachableInsts.insert(UserI);
1183       } else {
1184         TerminatorsToFold.push_back(UserI);
1185       }
1186     }
1187   }
1188   for (auto &V : InvokeWithDeadSuccessor)
1189     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1190       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1191       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1192       bool Invoke2CallAllowed =
1193           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1194       assert((UnwindBBIsDead || NormalBBIsDead) &&
1195              "Invoke does not have dead successors!");
1196       BasicBlock *BB = II->getParent();
1197       BasicBlock *NormalDestBB = II->getNormalDest();
1198       if (UnwindBBIsDead) {
1199         Instruction *NormalNextIP = &NormalDestBB->front();
1200         if (Invoke2CallAllowed) {
1201           changeToCall(II);
1202           NormalNextIP = BB->getTerminator();
1203         }
1204         if (NormalBBIsDead)
1205           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1206       } else {
1207         assert(NormalBBIsDead && "Broken invariant!");
1208         if (!NormalDestBB->getUniquePredecessor())
1209           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1210         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1211       }
1212     }
1213   for (Instruction *I : TerminatorsToFold) {
1214     CGModifiedFunctions.insert(I->getFunction());
1215     ConstantFoldTerminator(I->getParent());
1216   }
1217   for (auto &V : ToBeChangedToUnreachableInsts)
1218     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1219       CGModifiedFunctions.insert(I->getFunction());
1220       changeToUnreachable(I, /* UseLLVMTrap */ false);
1221     }
1222 
1223   for (auto &V : ToBeDeletedInsts) {
1224     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1225       I->dropDroppableUses();
1226       CGModifiedFunctions.insert(I->getFunction());
1227       if (!I->getType()->isVoidTy())
1228         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1229       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1230         DeadInsts.push_back(I);
1231       else
1232         I->eraseFromParent();
1233     }
1234   }
1235 
1236   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1237                     << "\n");
1238 
1239   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1240 
1241   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1242     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1243     ToBeDeletedBBs.reserve(NumDeadBlocks);
1244     for (BasicBlock *BB : ToBeDeletedBlocks) {
1245       CGModifiedFunctions.insert(BB->getParent());
1246       ToBeDeletedBBs.push_back(BB);
1247     }
1248     // Actually we do not delete the blocks but squash them into a single
1249     // unreachable but untangling branches that jump here is something we need
1250     // to do in a more generic way.
1251     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1252   }
1253 
1254   // Identify dead internal functions and delete them. This happens outside
1255   // the other fixpoint analysis as we might treat potentially dead functions
1256   // as live to lower the number of iterations. If they happen to be dead, the
1257   // below fixpoint loop will identify and eliminate them.
1258   SmallVector<Function *, 8> InternalFns;
1259   for (Function *F : Functions)
1260     if (F->hasLocalLinkage())
1261       InternalFns.push_back(F);
1262 
1263   bool FoundDeadFn = true;
1264   while (FoundDeadFn) {
1265     FoundDeadFn = false;
1266     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1267       Function *F = InternalFns[u];
1268       if (!F)
1269         continue;
1270 
1271       bool AllCallSitesKnown;
1272       if (!checkForAllCallSites(
1273               [this](AbstractCallSite ACS) {
1274                 return ToBeDeletedFunctions.count(
1275                     ACS.getInstruction()->getFunction());
1276               },
1277               *F, true, nullptr, AllCallSitesKnown))
1278         continue;
1279 
1280       ToBeDeletedFunctions.insert(F);
1281       InternalFns[u] = nullptr;
1282       FoundDeadFn = true;
1283     }
1284   }
1285 
1286   // Rewrite the functions as requested during manifest.
1287   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1288 
1289   for (Function *Fn : CGModifiedFunctions)
1290     CGUpdater.reanalyzeFunction(*Fn);
1291 
1292   for (Function *Fn : ToBeDeletedFunctions)
1293     CGUpdater.removeFunction(*Fn);
1294 
1295   NumFnDeleted += ToBeDeletedFunctions.size();
1296 
1297   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << NumFnDeleted
1298                     << " functions after manifest.\n");
1299 
1300 #ifdef EXPENSIVE_CHECKS
1301   for (Function *F : Functions) {
1302     if (ToBeDeletedFunctions.count(F))
1303       continue;
1304     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1305   }
1306 #endif
1307 
1308   return ManifestChange;
1309 }
1310 
1311 ChangeStatus Attributor::run() {
1312   TimeTraceScope TimeScope("Attributor::run");
1313 
1314   SeedingPeriod = false;
1315   runTillFixpoint();
1316 
1317   // dump graphs on demand
1318   if (DumpDepGraph)
1319     DG.dumpGraph();
1320 
1321   if (ViewDepGraph)
1322     DG.viewGraph();
1323 
1324   if (PrintDependencies)
1325     DG.print();
1326 
1327   ChangeStatus ManifestChange = manifestAttributes();
1328   ChangeStatus CleanupChange = cleanupIR();
1329   return ManifestChange | CleanupChange;
1330 }
1331 
1332 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1333   TimeTraceScope TimeScope(AA.getName() + "::updateAA");
1334 
1335   // Use a new dependence vector for this update.
1336   DependenceVector DV;
1337   DependenceStack.push_back(&DV);
1338 
1339   auto &AAState = AA.getState();
1340   ChangeStatus CS = ChangeStatus::UNCHANGED;
1341   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1342     CS = AA.update(*this);
1343 
1344   if (DV.empty()) {
1345     // If the attribute did not query any non-fix information, the state
1346     // will not change and we can indicate that right away.
1347     AAState.indicateOptimisticFixpoint();
1348   }
1349 
1350   if (!AAState.isAtFixpoint())
1351     rememberDependences();
1352 
1353   // Verify the stack was used properly, that is we pop the dependence vector we
1354   // put there earlier.
1355   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1356   (void)PoppedDV;
1357   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1358 
1359   return CS;
1360 }
1361 
1362 /// Create a shallow wrapper for \p F such that \p F has internal linkage
1363 /// afterwards. It also sets the original \p F 's name to anonymous
1364 ///
1365 /// A wrapper is a function with the same type (and attributes) as \p F
1366 /// that will only call \p F and return the result, if any.
1367 ///
1368 /// Assuming the declaration of looks like:
1369 ///   rty F(aty0 arg0, ..., atyN argN);
1370 ///
1371 /// The wrapper will then look as follows:
1372 ///   rty wrapper(aty0 arg0, ..., atyN argN) {
1373 ///     return F(arg0, ..., argN);
1374 ///   }
1375 ///
1376 static void createShallowWrapper(Function &F) {
1377   assert(AllowShallowWrappers &&
1378          "Cannot create a wrapper if it is not allowed!");
1379   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1380 
1381   Module &M = *F.getParent();
1382   LLVMContext &Ctx = M.getContext();
1383   FunctionType *FnTy = F.getFunctionType();
1384 
1385   Function *Wrapper =
1386       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1387   F.setName(""); // set the inside function anonymous
1388   M.getFunctionList().insert(F.getIterator(), Wrapper);
1389 
1390   F.setLinkage(GlobalValue::InternalLinkage);
1391 
1392   F.replaceAllUsesWith(Wrapper);
1393   assert(F.use_empty() && "Uses remained after wrapper was created!");
1394 
1395   // Move the COMDAT section to the wrapper.
1396   // TODO: Check if we need to keep it for F as well.
1397   Wrapper->setComdat(F.getComdat());
1398   F.setComdat(nullptr);
1399 
1400   // Copy all metadata and attributes but keep them on F as well.
1401   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1402   F.getAllMetadata(MDs);
1403   for (auto MDIt : MDs)
1404     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1405   Wrapper->setAttributes(F.getAttributes());
1406 
1407   // Create the call in the wrapper.
1408   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1409 
1410   SmallVector<Value *, 8> Args;
1411   auto FArgIt = F.arg_begin();
1412   for (Argument &Arg : Wrapper->args()) {
1413     Args.push_back(&Arg);
1414     Arg.setName((FArgIt++)->getName());
1415   }
1416 
1417   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1418   CI->setTailCall(true);
1419   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1420   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1421 
1422   NumFnShallowWrapperCreated++;
1423 }
1424 
1425 /// Make another copy of the function \p F such that the copied version has
1426 /// internal linkage afterwards and can be analysed. Then we replace all uses
1427 /// of the original function to the copied one
1428 ///
1429 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1430 /// linkage can be internalized because these linkages guarantee that other
1431 /// definitions with the same name have the same semantics as this one
1432 ///
1433 static Function *internalizeFunction(Function &F) {
1434   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1435   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1436          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1437          "Trying to internalize function which cannot be internalized.");
1438 
1439   Module &M = *F.getParent();
1440   FunctionType *FnTy = F.getFunctionType();
1441 
1442   // create a copy of the current function
1443   Function *Copied =
1444       Function::Create(FnTy, GlobalValue::PrivateLinkage, F.getAddressSpace(),
1445                        F.getName() + ".internalized");
1446   ValueToValueMapTy VMap;
1447   auto *NewFArgIt = Copied->arg_begin();
1448   for (auto &Arg : F.args()) {
1449     auto ArgName = Arg.getName();
1450     NewFArgIt->setName(ArgName);
1451     VMap[&Arg] = &(*NewFArgIt++);
1452   }
1453   SmallVector<ReturnInst *, 8> Returns;
1454 
1455   // Copy the body of the original function to the new one
1456   CloneFunctionInto(Copied, &F, VMap, /* ModuleLevelChanges */ false, Returns);
1457 
1458   // Copy metadata
1459   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1460   F.getAllMetadata(MDs);
1461   for (auto MDIt : MDs)
1462     Copied->addMetadata(MDIt.first, *MDIt.second);
1463 
1464   M.getFunctionList().insert(F.getIterator(), Copied);
1465   F.replaceAllUsesWith(Copied);
1466   Copied->setDSOLocal(true);
1467 
1468   return Copied;
1469 }
1470 
1471 bool Attributor::isValidFunctionSignatureRewrite(
1472     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1473 
1474   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1475     // Forbid the call site to cast the function return type. If we need to
1476     // rewrite these functions we need to re-create a cast for the new call site
1477     // (if the old had uses).
1478     if (!ACS.getCalledFunction() ||
1479         ACS.getInstruction()->getType() !=
1480             ACS.getCalledFunction()->getReturnType())
1481       return false;
1482     // Forbid must-tail calls for now.
1483     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1484   };
1485 
1486   Function *Fn = Arg.getParent();
1487   // Avoid var-arg functions for now.
1488   if (Fn->isVarArg()) {
1489     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1490     return false;
1491   }
1492 
1493   // Avoid functions with complicated argument passing semantics.
1494   AttributeList FnAttributeList = Fn->getAttributes();
1495   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1496       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1497       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1498       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1499     LLVM_DEBUG(
1500         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1501     return false;
1502   }
1503 
1504   // Avoid callbacks for now.
1505   bool AllCallSitesKnown;
1506   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1507                             AllCallSitesKnown)) {
1508     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1509     return false;
1510   }
1511 
1512   auto InstPred = [](Instruction &I) {
1513     if (auto *CI = dyn_cast<CallInst>(&I))
1514       return !CI->isMustTailCall();
1515     return true;
1516   };
1517 
1518   // Forbid must-tail calls for now.
1519   // TODO:
1520   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1521   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1522                                    nullptr, {Instruction::Call})) {
1523     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1524     return false;
1525   }
1526 
1527   return true;
1528 }
1529 
1530 bool Attributor::registerFunctionSignatureRewrite(
1531     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1532     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1533     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1534   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1535                     << Arg.getParent()->getName() << " with "
1536                     << ReplacementTypes.size() << " replacements\n");
1537   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1538          "Cannot register an invalid rewrite");
1539 
1540   Function *Fn = Arg.getParent();
1541   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1542       ArgumentReplacementMap[Fn];
1543   if (ARIs.empty())
1544     ARIs.resize(Fn->arg_size());
1545 
1546   // If we have a replacement already with less than or equal new arguments,
1547   // ignore this request.
1548   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1549   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1550     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1551     return false;
1552   }
1553 
1554   // If we have a replacement already but we like the new one better, delete
1555   // the old.
1556   ARI.reset();
1557 
1558   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1559                     << Arg.getParent()->getName() << " with "
1560                     << ReplacementTypes.size() << " replacements\n");
1561 
1562   // Remember the replacement.
1563   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1564                                         std::move(CalleeRepairCB),
1565                                         std::move(ACSRepairCB)));
1566 
1567   return true;
1568 }
1569 
1570 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1571   if (SeedAllowList.size() == 0)
1572     return true;
1573   return std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1574 }
1575 
1576 ChangeStatus Attributor::rewriteFunctionSignatures(
1577     SmallPtrSetImpl<Function *> &ModifiedFns) {
1578   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1579 
1580   for (auto &It : ArgumentReplacementMap) {
1581     Function *OldFn = It.getFirst();
1582 
1583     // Deleted functions do not require rewrites.
1584     if (ToBeDeletedFunctions.count(OldFn))
1585       continue;
1586 
1587     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1588         It.getSecond();
1589     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1590 
1591     SmallVector<Type *, 16> NewArgumentTypes;
1592     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1593 
1594     // Collect replacement argument types and copy over existing attributes.
1595     AttributeList OldFnAttributeList = OldFn->getAttributes();
1596     for (Argument &Arg : OldFn->args()) {
1597       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1598               ARIs[Arg.getArgNo()]) {
1599         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1600                                 ARI->ReplacementTypes.end());
1601         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1602                                      AttributeSet());
1603       } else {
1604         NewArgumentTypes.push_back(Arg.getType());
1605         NewArgumentAttributes.push_back(
1606             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1607       }
1608     }
1609 
1610     FunctionType *OldFnTy = OldFn->getFunctionType();
1611     Type *RetTy = OldFnTy->getReturnType();
1612 
1613     // Construct the new function type using the new arguments types.
1614     FunctionType *NewFnTy =
1615         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1616 
1617     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1618                       << "' from " << *OldFn->getFunctionType() << " to "
1619                       << *NewFnTy << "\n");
1620 
1621     // Create the new function body and insert it into the module.
1622     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1623                                        OldFn->getAddressSpace(), "");
1624     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1625     NewFn->takeName(OldFn);
1626     NewFn->copyAttributesFrom(OldFn);
1627 
1628     // Patch the pointer to LLVM function in debug info descriptor.
1629     NewFn->setSubprogram(OldFn->getSubprogram());
1630     OldFn->setSubprogram(nullptr);
1631 
1632     // Recompute the parameter attributes list based on the new arguments for
1633     // the function.
1634     LLVMContext &Ctx = OldFn->getContext();
1635     NewFn->setAttributes(AttributeList::get(
1636         Ctx, OldFnAttributeList.getFnAttributes(),
1637         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1638 
1639     // Since we have now created the new function, splice the body of the old
1640     // function right into the new function, leaving the old rotting hulk of the
1641     // function empty.
1642     NewFn->getBasicBlockList().splice(NewFn->begin(),
1643                                       OldFn->getBasicBlockList());
1644 
1645     // Fixup block addresses to reference new function.
1646     SmallVector<BlockAddress *, 8u> BlockAddresses;
1647     for (User *U : OldFn->users())
1648       if (auto *BA = dyn_cast<BlockAddress>(U))
1649         BlockAddresses.push_back(BA);
1650     for (auto *BA : BlockAddresses)
1651       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1652 
1653     // Set of all "call-like" instructions that invoke the old function mapped
1654     // to their new replacements.
1655     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1656 
1657     // Callback to create a new "call-like" instruction for a given one.
1658     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1659       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1660       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1661 
1662       // Collect the new argument operands for the replacement call site.
1663       SmallVector<Value *, 16> NewArgOperands;
1664       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1665       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1666         unsigned NewFirstArgNum = NewArgOperands.size();
1667         (void)NewFirstArgNum; // only used inside assert.
1668         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1669                 ARIs[OldArgNum]) {
1670           if (ARI->ACSRepairCB)
1671             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1672           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1673                      NewArgOperands.size() &&
1674                  "ACS repair callback did not provide as many operand as new "
1675                  "types were registered!");
1676           // TODO: Exose the attribute set to the ACS repair callback
1677           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1678                                          AttributeSet());
1679         } else {
1680           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1681           NewArgOperandAttributes.push_back(
1682               OldCallAttributeList.getParamAttributes(OldArgNum));
1683         }
1684       }
1685 
1686       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1687              "Mismatch # argument operands vs. # argument operand attributes!");
1688       assert(NewArgOperands.size() == NewFn->arg_size() &&
1689              "Mismatch # argument operands vs. # function arguments!");
1690 
1691       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1692       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1693 
1694       // Create a new call or invoke instruction to replace the old one.
1695       CallBase *NewCB;
1696       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1697         NewCB =
1698             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1699                                NewArgOperands, OperandBundleDefs, "", OldCB);
1700       } else {
1701         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1702                                        "", OldCB);
1703         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1704         NewCB = NewCI;
1705       }
1706 
1707       // Copy over various properties and the new attributes.
1708       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1709       NewCB->setCallingConv(OldCB->getCallingConv());
1710       NewCB->takeName(OldCB);
1711       NewCB->setAttributes(AttributeList::get(
1712           Ctx, OldCallAttributeList.getFnAttributes(),
1713           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1714 
1715       CallSitePairs.push_back({OldCB, NewCB});
1716       return true;
1717     };
1718 
1719     // Use the CallSiteReplacementCreator to create replacement call sites.
1720     bool AllCallSitesKnown;
1721     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1722                                         true, nullptr, AllCallSitesKnown);
1723     (void)Success;
1724     assert(Success && "Assumed call site replacement to succeed!");
1725 
1726     // Rewire the arguments.
1727     auto OldFnArgIt = OldFn->arg_begin();
1728     auto NewFnArgIt = NewFn->arg_begin();
1729     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1730          ++OldArgNum, ++OldFnArgIt) {
1731       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1732               ARIs[OldArgNum]) {
1733         if (ARI->CalleeRepairCB)
1734           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1735         NewFnArgIt += ARI->ReplacementTypes.size();
1736       } else {
1737         NewFnArgIt->takeName(&*OldFnArgIt);
1738         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1739         ++NewFnArgIt;
1740       }
1741     }
1742 
1743     // Eliminate the instructions *after* we visited all of them.
1744     for (auto &CallSitePair : CallSitePairs) {
1745       CallBase &OldCB = *CallSitePair.first;
1746       CallBase &NewCB = *CallSitePair.second;
1747       assert(OldCB.getType() == NewCB.getType() &&
1748              "Cannot handle call sites with different types!");
1749       ModifiedFns.insert(OldCB.getFunction());
1750       CGUpdater.replaceCallSite(OldCB, NewCB);
1751       OldCB.replaceAllUsesWith(&NewCB);
1752       OldCB.eraseFromParent();
1753     }
1754 
1755     // Replace the function in the call graph (if any).
1756     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1757 
1758     // If the old function was modified and needed to be reanalyzed, the new one
1759     // does now.
1760     if (ModifiedFns.erase(OldFn))
1761       ModifiedFns.insert(NewFn);
1762 
1763     Changed = ChangeStatus::CHANGED;
1764   }
1765 
1766   return Changed;
1767 }
1768 
1769 void InformationCache::initializeInformationCache(const Function &CF,
1770                                                   FunctionInfo &FI) {
1771   // As we do not modify the function here we can remove the const
1772   // withouth breaking implicit assumptions. At the end of the day, we could
1773   // initialize the cache eagerly which would look the same to the users.
1774   Function &F = const_cast<Function &>(CF);
1775 
1776   // Walk all instructions to find interesting instructions that might be
1777   // queried by abstract attributes during their initialization or update.
1778   // This has to happen before we create attributes.
1779 
1780   for (Instruction &I : instructions(&F)) {
1781     bool IsInterestingOpcode = false;
1782 
1783     // To allow easy access to all instructions in a function with a given
1784     // opcode we store them in the InfoCache. As not all opcodes are interesting
1785     // to concrete attributes we only cache the ones that are as identified in
1786     // the following switch.
1787     // Note: There are no concrete attributes now so this is initially empty.
1788     switch (I.getOpcode()) {
1789     default:
1790       assert(!isa<CallBase>(&I) &&
1791              "New call base instruction type needs to be known in the "
1792              "Attributor.");
1793       break;
1794     case Instruction::Call:
1795       // Calls are interesting on their own, additionally:
1796       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1797       // For `must-tail` calls we remember the caller and callee.
1798       if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) {
1799         if (Assume->getIntrinsicID() == Intrinsic::assume)
1800           fillMapFromAssume(*Assume, KnowledgeMap);
1801       } else if (cast<CallInst>(I).isMustTailCall()) {
1802         FI.ContainsMustTailCall = true;
1803         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1804           getFunctionInfo(*Callee).CalledViaMustTail = true;
1805       }
1806       LLVM_FALLTHROUGH;
1807     case Instruction::CallBr:
1808     case Instruction::Invoke:
1809     case Instruction::CleanupRet:
1810     case Instruction::CatchSwitch:
1811     case Instruction::AtomicRMW:
1812     case Instruction::AtomicCmpXchg:
1813     case Instruction::Br:
1814     case Instruction::Resume:
1815     case Instruction::Ret:
1816     case Instruction::Load:
1817       // The alignment of a pointer is interesting for loads.
1818     case Instruction::Store:
1819       // The alignment of a pointer is interesting for stores.
1820       IsInterestingOpcode = true;
1821     }
1822     if (IsInterestingOpcode) {
1823       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1824       if (!Insts)
1825         Insts = new (Allocator) InstructionVectorTy();
1826       Insts->push_back(&I);
1827     }
1828     if (I.mayReadOrWriteMemory())
1829       FI.RWInsts.push_back(&I);
1830   }
1831 
1832   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1833       isInlineViable(F).isSuccess())
1834     InlineableFunctions.insert(&F);
1835 }
1836 
1837 InformationCache::FunctionInfo::~FunctionInfo() {
1838   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1839   // manually destroy them.
1840   for (auto &It : OpcodeInstMap)
1841     It.getSecond()->~InstructionVectorTy();
1842 }
1843 
1844 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1845                                   const AbstractAttribute &ToAA,
1846                                   DepClassTy DepClass) {
1847   // If we are outside of an update, thus before the actual fixpoint iteration
1848   // started (= when we create AAs), we do not track dependences because we will
1849   // put all AAs into the initial worklist anyway.
1850   if (DependenceStack.empty())
1851     return;
1852   if (FromAA.getState().isAtFixpoint())
1853     return;
1854   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1855 }
1856 
1857 void Attributor::rememberDependences() {
1858   assert(!DependenceStack.empty() && "No dependences to remember!");
1859 
1860   for (DepInfo &DI : *DependenceStack.back()) {
1861     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1862     DepAAs.push_back(AbstractAttribute::DepTy(
1863         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1864   }
1865 }
1866 
1867 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1868   if (!VisitedFunctions.insert(&F).second)
1869     return;
1870   if (F.isDeclaration())
1871     return;
1872 
1873   // In non-module runs we need to look at the call sites of a function to
1874   // determine if it is part of a must-tail call edge. This will influence what
1875   // attributes we can derive.
1876   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
1877   if (!isModulePass() && !FI.CalledViaMustTail) {
1878     for (const Use &U : F.uses())
1879       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
1880         if (CB->isCallee(&U) && CB->isMustTailCall())
1881           FI.CalledViaMustTail = true;
1882   }
1883 
1884   IRPosition FPos = IRPosition::function(F);
1885 
1886   // Check for dead BasicBlocks in every function.
1887   // We need dead instruction detection because we do not want to deal with
1888   // broken IR in which SSA rules do not apply.
1889   getOrCreateAAFor<AAIsDead>(FPos);
1890 
1891   // Every function might be "will-return".
1892   getOrCreateAAFor<AAWillReturn>(FPos);
1893 
1894   // Every function might contain instructions that cause "undefined behavior".
1895   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
1896 
1897   // Every function can be nounwind.
1898   getOrCreateAAFor<AANoUnwind>(FPos);
1899 
1900   // Every function might be marked "nosync"
1901   getOrCreateAAFor<AANoSync>(FPos);
1902 
1903   // Every function might be "no-free".
1904   getOrCreateAAFor<AANoFree>(FPos);
1905 
1906   // Every function might be "no-return".
1907   getOrCreateAAFor<AANoReturn>(FPos);
1908 
1909   // Every function might be "no-recurse".
1910   getOrCreateAAFor<AANoRecurse>(FPos);
1911 
1912   // Every function might be "readnone/readonly/writeonly/...".
1913   getOrCreateAAFor<AAMemoryBehavior>(FPos);
1914 
1915   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
1916   getOrCreateAAFor<AAMemoryLocation>(FPos);
1917 
1918   // Every function might be applicable for Heap-To-Stack conversion.
1919   if (EnableHeapToStack)
1920     getOrCreateAAFor<AAHeapToStack>(FPos);
1921 
1922   // Return attributes are only appropriate if the return type is non void.
1923   Type *ReturnType = F.getReturnType();
1924   if (!ReturnType->isVoidTy()) {
1925     // Argument attribute "returned" --- Create only one per function even
1926     // though it is an argument attribute.
1927     getOrCreateAAFor<AAReturnedValues>(FPos);
1928 
1929     IRPosition RetPos = IRPosition::returned(F);
1930 
1931     // Every returned value might be dead.
1932     getOrCreateAAFor<AAIsDead>(RetPos);
1933 
1934     // Every function might be simplified.
1935     getOrCreateAAFor<AAValueSimplify>(RetPos);
1936 
1937     if (ReturnType->isPointerTy()) {
1938 
1939       // Every function with pointer return type might be marked align.
1940       getOrCreateAAFor<AAAlign>(RetPos);
1941 
1942       // Every function with pointer return type might be marked nonnull.
1943       getOrCreateAAFor<AANonNull>(RetPos);
1944 
1945       // Every function with pointer return type might be marked noalias.
1946       getOrCreateAAFor<AANoAlias>(RetPos);
1947 
1948       // Every function with pointer return type might be marked
1949       // dereferenceable.
1950       getOrCreateAAFor<AADereferenceable>(RetPos);
1951     }
1952   }
1953 
1954   for (Argument &Arg : F.args()) {
1955     IRPosition ArgPos = IRPosition::argument(Arg);
1956 
1957     // Every argument might be simplified.
1958     getOrCreateAAFor<AAValueSimplify>(ArgPos);
1959 
1960     // Every argument might be dead.
1961     getOrCreateAAFor<AAIsDead>(ArgPos);
1962 
1963     if (Arg.getType()->isPointerTy()) {
1964       // Every argument with pointer type might be marked nonnull.
1965       getOrCreateAAFor<AANonNull>(ArgPos);
1966 
1967       // Every argument with pointer type might be marked noalias.
1968       getOrCreateAAFor<AANoAlias>(ArgPos);
1969 
1970       // Every argument with pointer type might be marked dereferenceable.
1971       getOrCreateAAFor<AADereferenceable>(ArgPos);
1972 
1973       // Every argument with pointer type might be marked align.
1974       getOrCreateAAFor<AAAlign>(ArgPos);
1975 
1976       // Every argument with pointer type might be marked nocapture.
1977       getOrCreateAAFor<AANoCapture>(ArgPos);
1978 
1979       // Every argument with pointer type might be marked
1980       // "readnone/readonly/writeonly/..."
1981       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
1982 
1983       // Every argument with pointer type might be marked nofree.
1984       getOrCreateAAFor<AANoFree>(ArgPos);
1985 
1986       // Every argument with pointer type might be privatizable (or promotable)
1987       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
1988     }
1989   }
1990 
1991   auto CallSitePred = [&](Instruction &I) -> bool {
1992     auto &CB = cast<CallBase>(I);
1993     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
1994 
1995     // Call sites might be dead if they do not have side effects and no live
1996     // users. The return value might be dead if there are no live users.
1997     getOrCreateAAFor<AAIsDead>(CBRetPos);
1998 
1999     Function *Callee = CB.getCalledFunction();
2000     // TODO: Even if the callee is not known now we might be able to simplify
2001     //       the call/callee.
2002     if (!Callee)
2003       return true;
2004 
2005     // Skip declarations except if annotations on their call sites were
2006     // explicitly requested.
2007     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2008         !Callee->hasMetadata(LLVMContext::MD_callback))
2009       return true;
2010 
2011     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2012 
2013       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2014 
2015       // Call site return integer values might be limited by a constant range.
2016       if (Callee->getReturnType()->isIntegerTy())
2017         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2018     }
2019 
2020     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2021 
2022       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2023 
2024       // Every call site argument might be dead.
2025       getOrCreateAAFor<AAIsDead>(CBArgPos);
2026 
2027       // Call site argument might be simplified.
2028       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2029 
2030       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2031         continue;
2032 
2033       // Call site argument attribute "non-null".
2034       getOrCreateAAFor<AANonNull>(CBArgPos);
2035 
2036       // Call site argument attribute "nocapture".
2037       getOrCreateAAFor<AANoCapture>(CBArgPos);
2038 
2039       // Call site argument attribute "no-alias".
2040       getOrCreateAAFor<AANoAlias>(CBArgPos);
2041 
2042       // Call site argument attribute "dereferenceable".
2043       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2044 
2045       // Call site argument attribute "align".
2046       getOrCreateAAFor<AAAlign>(CBArgPos);
2047 
2048       // Call site argument attribute
2049       // "readnone/readonly/writeonly/..."
2050       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2051 
2052       // Call site argument attribute "nofree".
2053       getOrCreateAAFor<AANoFree>(CBArgPos);
2054     }
2055     return true;
2056   };
2057 
2058   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2059   bool Success;
2060   Success = checkForAllInstructionsImpl(
2061       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2062       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2063        (unsigned)Instruction::Call});
2064   (void)Success;
2065   assert(Success && "Expected the check call to be successful!");
2066 
2067   auto LoadStorePred = [&](Instruction &I) -> bool {
2068     if (isa<LoadInst>(I))
2069       getOrCreateAAFor<AAAlign>(
2070           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2071     else
2072       getOrCreateAAFor<AAAlign>(
2073           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2074     return true;
2075   };
2076   Success = checkForAllInstructionsImpl(
2077       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2078       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2079   (void)Success;
2080   assert(Success && "Expected the check call to be successful!");
2081 }
2082 
2083 /// Helpers to ease debugging through output streams and print calls.
2084 ///
2085 ///{
2086 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2087   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2088 }
2089 
2090 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2091   switch (AP) {
2092   case IRPosition::IRP_INVALID:
2093     return OS << "inv";
2094   case IRPosition::IRP_FLOAT:
2095     return OS << "flt";
2096   case IRPosition::IRP_RETURNED:
2097     return OS << "fn_ret";
2098   case IRPosition::IRP_CALL_SITE_RETURNED:
2099     return OS << "cs_ret";
2100   case IRPosition::IRP_FUNCTION:
2101     return OS << "fn";
2102   case IRPosition::IRP_CALL_SITE:
2103     return OS << "cs";
2104   case IRPosition::IRP_ARGUMENT:
2105     return OS << "arg";
2106   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2107     return OS << "cs_arg";
2108   }
2109   llvm_unreachable("Unknown attribute position!");
2110 }
2111 
2112 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2113   const Value &AV = Pos.getAssociatedValue();
2114   return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2115             << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
2116 }
2117 
2118 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2119   OS << "range-state(" << S.getBitWidth() << ")<";
2120   S.getKnown().print(OS);
2121   OS << " / ";
2122   S.getAssumed().print(OS);
2123   OS << ">";
2124 
2125   return OS << static_cast<const AbstractState &>(S);
2126 }
2127 
2128 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2129   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2130 }
2131 
2132 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2133   AA.print(OS);
2134   return OS;
2135 }
2136 
2137 raw_ostream &llvm::operator<<(raw_ostream &OS,
2138                               const PotentialConstantIntValuesState &S) {
2139   OS << "set-state(< {";
2140   if (!S.isValidState())
2141     OS << "full-set";
2142   else
2143     for (auto &it : S.getAssumedSet())
2144       OS << it << ", ";
2145   OS << "} >)";
2146 
2147   return OS;
2148 }
2149 
2150 void AbstractAttribute::print(raw_ostream &OS) const {
2151   OS << "[";
2152   OS << getName();
2153   OS << "] for CtxI ";
2154 
2155   if (auto *I = getCtxI()) {
2156     OS << "'";
2157     I->print(OS);
2158     OS << "'";
2159   } else
2160     OS << "<<null inst>>";
2161 
2162   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2163      << '\n';
2164 }
2165 
2166 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2167   print(OS);
2168 
2169   for (const auto &DepAA : Deps) {
2170     auto *AA = DepAA.getPointer();
2171     OS << "  updates ";
2172     AA->print(OS);
2173   }
2174 
2175   OS << '\n';
2176 }
2177 ///}
2178 
2179 /// ----------------------------------------------------------------------------
2180 ///                       Pass (Manager) Boilerplate
2181 /// ----------------------------------------------------------------------------
2182 
2183 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2184                                      SetVector<Function *> &Functions,
2185                                      AnalysisGetter &AG,
2186                                      CallGraphUpdater &CGUpdater) {
2187   if (Functions.empty())
2188     return false;
2189 
2190   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2191                     << " functions.\n");
2192 
2193   // Create an Attributor and initially empty information cache that is filled
2194   // while we identify default attribute opportunities.
2195   Attributor A(Functions, InfoCache, CGUpdater);
2196 
2197   // Create shallow wrappers for all functions that are not IPO amendable
2198   if (AllowShallowWrappers)
2199     for (Function *F : Functions)
2200       if (!A.isFunctionIPOAmendable(*F))
2201         createShallowWrapper(*F);
2202 
2203   // Internalize non-exact functions
2204   // TODO: for now we eagerly internalize functions without calculating the
2205   //       cost, we need a cost interface to determine whether internalizing
2206   //       a function is "benefitial"
2207   if (AllowDeepWrapper) {
2208     unsigned FunSize = Functions.size();
2209     for (unsigned u = 0; u < FunSize; u++) {
2210       Function *F = Functions[u];
2211       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2212           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2213         Function *NewF = internalizeFunction(*F);
2214         Functions.insert(NewF);
2215 
2216         // Update call graph
2217         CGUpdater.registerOutlinedFunction(*NewF);
2218         for (const Use &U : NewF->uses())
2219           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2220             auto *CallerF = CB->getCaller();
2221             CGUpdater.reanalyzeFunction(*CallerF);
2222           }
2223       }
2224     }
2225   }
2226 
2227   for (Function *F : Functions) {
2228     if (F->hasExactDefinition())
2229       NumFnWithExactDefinition++;
2230     else
2231       NumFnWithoutExactDefinition++;
2232 
2233     // We look at internal functions only on-demand but if any use is not a
2234     // direct call or outside the current set of analyzed functions, we have
2235     // to do it eagerly.
2236     if (F->hasLocalLinkage()) {
2237       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2238             const auto *CB = dyn_cast<CallBase>(U.getUser());
2239             return CB && CB->isCallee(&U) &&
2240                    Functions.count(const_cast<Function *>(CB->getCaller()));
2241           }))
2242         continue;
2243     }
2244 
2245     // Populate the Attributor with abstract attribute opportunities in the
2246     // function and the information cache with IR information.
2247     A.identifyDefaultAbstractAttributes(*F);
2248   }
2249 
2250   ChangeStatus Changed = A.run();
2251 
2252   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2253                     << " functions, result: " << Changed << ".\n");
2254   return Changed == ChangeStatus::CHANGED;
2255 }
2256 
2257 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2258 
2259 void AADepGraph::dumpGraph() {
2260   static std::atomic<int> CallTimes;
2261   std::string Prefix;
2262 
2263   if (!DepGraphDotFileNamePrefix.empty())
2264     Prefix = DepGraphDotFileNamePrefix;
2265   else
2266     Prefix = "dep_graph";
2267   std::string Filename =
2268       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2269 
2270   outs() << "Dependency graph dump to " << Filename << ".\n";
2271 
2272   std::error_code EC;
2273 
2274   raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
2275   if (!EC)
2276     llvm::WriteGraph(File, this);
2277 
2278   CallTimes++;
2279 }
2280 
2281 void AADepGraph::print() {
2282   for (auto DepAA : SyntheticRoot.Deps)
2283     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2284 }
2285 
2286 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2287   FunctionAnalysisManager &FAM =
2288       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2289   AnalysisGetter AG(FAM);
2290 
2291   SetVector<Function *> Functions;
2292   for (Function &F : M)
2293     Functions.insert(&F);
2294 
2295   CallGraphUpdater CGUpdater;
2296   BumpPtrAllocator Allocator;
2297   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2298   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2299     // FIXME: Think about passes we will preserve and add them here.
2300     return PreservedAnalyses::none();
2301   }
2302   return PreservedAnalyses::all();
2303 }
2304 
2305 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2306                                            CGSCCAnalysisManager &AM,
2307                                            LazyCallGraph &CG,
2308                                            CGSCCUpdateResult &UR) {
2309   FunctionAnalysisManager &FAM =
2310       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2311   AnalysisGetter AG(FAM);
2312 
2313   SetVector<Function *> Functions;
2314   for (LazyCallGraph::Node &N : C)
2315     Functions.insert(&N.getFunction());
2316 
2317   if (Functions.empty())
2318     return PreservedAnalyses::all();
2319 
2320   Module &M = *Functions.back()->getParent();
2321   CallGraphUpdater CGUpdater;
2322   CGUpdater.initialize(CG, C, AM, UR);
2323   BumpPtrAllocator Allocator;
2324   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2325   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2326     // FIXME: Think about passes we will preserve and add them here.
2327     return PreservedAnalyses::none();
2328   }
2329   return PreservedAnalyses::all();
2330 }
2331 
2332 namespace llvm {
2333 
2334 template <> struct GraphTraits<AADepGraphNode *> {
2335   using NodeRef = AADepGraphNode *;
2336   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2337   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2338 
2339   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2340   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2341 
2342   using ChildIteratorType =
2343       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2344   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2345 
2346   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2347 
2348   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2349 };
2350 
2351 template <>
2352 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2353   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2354 
2355   using nodes_iterator =
2356       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2357 
2358   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2359 
2360   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2361 };
2362 
2363 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2364   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2365 
2366   static std::string getNodeLabel(const AADepGraphNode *Node,
2367                                   const AADepGraph *DG) {
2368     std::string AAString = "";
2369     raw_string_ostream O(AAString);
2370     Node->print(O);
2371     return AAString;
2372   }
2373 };
2374 
2375 } // end namespace llvm
2376 
2377 namespace {
2378 
2379 struct AttributorLegacyPass : public ModulePass {
2380   static char ID;
2381 
2382   AttributorLegacyPass() : ModulePass(ID) {
2383     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2384   }
2385 
2386   bool runOnModule(Module &M) override {
2387     if (skipModule(M))
2388       return false;
2389 
2390     AnalysisGetter AG;
2391     SetVector<Function *> Functions;
2392     for (Function &F : M)
2393       Functions.insert(&F);
2394 
2395     CallGraphUpdater CGUpdater;
2396     BumpPtrAllocator Allocator;
2397     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2398     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2399   }
2400 
2401   void getAnalysisUsage(AnalysisUsage &AU) const override {
2402     // FIXME: Think about passes we will preserve and add them here.
2403     AU.addRequired<TargetLibraryInfoWrapperPass>();
2404   }
2405 };
2406 
2407 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2408   CallGraphUpdater CGUpdater;
2409   static char ID;
2410 
2411   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2412     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2413   }
2414 
2415   bool runOnSCC(CallGraphSCC &SCC) override {
2416     if (skipSCC(SCC))
2417       return false;
2418 
2419     SetVector<Function *> Functions;
2420     for (CallGraphNode *CGN : SCC)
2421       if (Function *Fn = CGN->getFunction())
2422         if (!Fn->isDeclaration())
2423           Functions.insert(Fn);
2424 
2425     if (Functions.empty())
2426       return false;
2427 
2428     AnalysisGetter AG;
2429     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2430     CGUpdater.initialize(CG, SCC);
2431     Module &M = *Functions.back()->getParent();
2432     BumpPtrAllocator Allocator;
2433     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2434     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2435   }
2436 
2437   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
2438 
2439   void getAnalysisUsage(AnalysisUsage &AU) const override {
2440     // FIXME: Think about passes we will preserve and add them here.
2441     AU.addRequired<TargetLibraryInfoWrapperPass>();
2442     CallGraphSCCPass::getAnalysisUsage(AU);
2443   }
2444 };
2445 
2446 } // end anonymous namespace
2447 
2448 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2449 Pass *llvm::createAttributorCGSCCLegacyPass() {
2450   return new AttributorCGSCCLegacyPass();
2451 }
2452 
2453 char AttributorLegacyPass::ID = 0;
2454 char AttributorCGSCCLegacyPass::ID = 0;
2455 
2456 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2457                       "Deduce and propagate attributes", false, false)
2458 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2459 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2460                     "Deduce and propagate attributes", false, false)
2461 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2462                       "Deduce and propagate attributes (CGSCC pass)", false,
2463                       false)
2464 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2465 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2466 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2467                     "Deduce and propagate attributes (CGSCC pass)", false,
2468                     false)
2469