1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/MemorySSAUpdater.h"
27 #include "llvm/Analysis/MustExecute.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/IR/Verifier.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/DebugCounter.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/GraphWriter.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Cloning.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 
53 #include <cassert>
54 #include <string>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "attributor"
59 
60 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
61               "Determine what attributes are manifested in the IR");
62 
63 STATISTIC(NumFnDeleted, "Number of function deleted");
64 STATISTIC(NumFnWithExactDefinition,
65           "Number of functions with exact definitions");
66 STATISTIC(NumFnWithoutExactDefinition,
67           "Number of functions without exact definitions");
68 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
69 STATISTIC(NumAttributesTimedOut,
70           "Number of abstract attributes timed out before fixpoint");
71 STATISTIC(NumAttributesValidFixpoint,
72           "Number of abstract attributes in a valid fixpoint state");
73 STATISTIC(NumAttributesManifested,
74           "Number of abstract attributes manifested in IR");
75 
76 // TODO: Determine a good default value.
77 //
78 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
79 // (when run with the first 5 abstract attributes). The results also indicate
80 // that we never reach 32 iterations but always find a fixpoint sooner.
81 //
82 // This will become more evolved once we perform two interleaved fixpoint
83 // iterations: bottom-up and top-down.
84 static cl::opt<unsigned>
85     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
86                           cl::desc("Maximal number of fixpoint iterations."),
87                           cl::init(32));
88 
89 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
90     "attributor-max-initialization-chain-length", cl::Hidden,
91     cl::desc(
92         "Maximal number of chained initializations (to avoid stack overflows)"),
93     cl::location(MaxInitializationChainLength), cl::init(1024));
94 unsigned llvm::MaxInitializationChainLength;
95 
96 static cl::opt<bool> VerifyMaxFixpointIterations(
97     "attributor-max-iterations-verify", cl::Hidden,
98     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
99     cl::init(false));
100 
101 static cl::opt<bool> AnnotateDeclarationCallSites(
102     "attributor-annotate-decl-cs", cl::Hidden,
103     cl::desc("Annotate call sites of function declarations."), cl::init(false));
104 
105 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
106                                        cl::init(true), cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
110                          cl::desc("Allow the Attributor to create shallow "
111                                   "wrappers for non-exact definitions."),
112                          cl::init(false));
113 
114 static cl::opt<bool>
115     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
116                      cl::desc("Allow the Attributor to use IP information "
117                               "derived from non-exact functions via cloning"),
118                      cl::init(false));
119 
120 // These options can only used for debug builds.
121 #ifndef NDEBUG
122 static cl::list<std::string>
123     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
124                   cl::desc("Comma seperated list of attribute names that are "
125                            "allowed to be seeded."),
126                   cl::ZeroOrMore, cl::CommaSeparated);
127 
128 static cl::list<std::string> FunctionSeedAllowList(
129     "attributor-function-seed-allow-list", cl::Hidden,
130     cl::desc("Comma seperated list of function names that are "
131              "allowed to be seeded."),
132     cl::ZeroOrMore, cl::CommaSeparated);
133 #endif
134 
135 static cl::opt<bool>
136     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
137                  cl::desc("Dump the dependency graph to dot files."),
138                  cl::init(false));
139 
140 static cl::opt<std::string> DepGraphDotFileNamePrefix(
141     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
142     cl::desc("The prefix used for the CallGraph dot file names."));
143 
144 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
145                                   cl::desc("View the dependency graph."),
146                                   cl::init(false));
147 
148 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
149                                        cl::desc("Print attribute dependencies"),
150                                        cl::init(false));
151 
152 static cl::opt<bool> EnableCallSiteSpecific(
153     "attributor-enable-call-site-specific-deduction", cl::Hidden,
154     cl::desc("Allow the Attributor to do call site specific analysis"),
155     cl::init(false));
156 
157 static cl::opt<bool>
158     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
159                    cl::desc("Print Attributor's internal call graph"),
160                    cl::init(false));
161 
162 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
163                                       cl::Hidden,
164                                       cl::desc("Try to simplify all loads."),
165                                       cl::init(true));
166 
167 /// Logic operators for the change status enum class.
168 ///
169 ///{
170 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
171   return L == ChangeStatus::CHANGED ? L : R;
172 }
173 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
174   L = L | R;
175   return L;
176 }
177 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
178   return L == ChangeStatus::UNCHANGED ? L : R;
179 }
180 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
181   L = L & R;
182   return L;
183 }
184 ///}
185 
186 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
187                              const Value &V) {
188   if (auto *C = dyn_cast<Constant>(&V))
189     return !C->isThreadDependent();
190   // TODO: Inspect and cache more complex instructions.
191   if (auto *CB = dyn_cast<CallBase>(&V))
192     return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
193            !CB->mayReadFromMemory();
194   const Function *Scope = nullptr;
195   if (auto *I = dyn_cast<Instruction>(&V))
196     Scope = I->getFunction();
197   if (auto *A = dyn_cast<Argument>(&V))
198     Scope = A->getParent();
199   if (!Scope)
200     return false;
201   auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
202       QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
203   return NoRecurseAA.isAssumedNoRecurse();
204 }
205 
206 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty,
207                                     const TargetLibraryInfo *TLI) {
208   if (isa<AllocaInst>(Obj))
209     return UndefValue::get(&Ty);
210   if (isNoAliasFn(&Obj, TLI)) {
211     if (isMallocLikeFn(&Obj, TLI) || isAlignedAllocLikeFn(&Obj, TLI))
212       return UndefValue::get(&Ty);
213     if (isCallocLikeFn(&Obj, TLI))
214       return Constant::getNullValue(&Ty);
215     return nullptr;
216   }
217   auto *GV = dyn_cast<GlobalVariable>(&Obj);
218   if (!GV || !GV->hasLocalLinkage())
219     return nullptr;
220   if (!GV->hasInitializer())
221     return UndefValue::get(&Ty);
222   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
223 }
224 
225 bool AA::isValidInScope(const Value &V, const Function *Scope) {
226   if (isa<Constant>(V))
227     return true;
228   if (auto *I = dyn_cast<Instruction>(&V))
229     return I->getFunction() == Scope;
230   if (auto *A = dyn_cast<Argument>(&V))
231     return A->getParent() == Scope;
232   return false;
233 }
234 
235 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
236                            InformationCache &InfoCache) {
237   if (isa<Constant>(V))
238     return true;
239   const Function *Scope = CtxI.getFunction();
240   if (auto *A = dyn_cast<Argument>(&V))
241     return A->getParent() == Scope;
242   if (auto *I = dyn_cast<Instruction>(&V))
243     if (I->getFunction() == Scope) {
244       const DominatorTree *DT =
245           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
246       return DT && DT->dominates(I, &CtxI);
247     }
248   return false;
249 }
250 
251 Value *AA::getWithType(Value &V, Type &Ty) {
252   if (V.getType() == &Ty)
253     return &V;
254   if (isa<PoisonValue>(V))
255     return PoisonValue::get(&Ty);
256   if (isa<UndefValue>(V))
257     return UndefValue::get(&Ty);
258   if (auto *C = dyn_cast<Constant>(&V)) {
259     if (C->isNullValue())
260       return Constant::getNullValue(&Ty);
261     if (C->getType()->isPointerTy() && Ty.isPointerTy())
262       return ConstantExpr::getPointerCast(C, &Ty);
263     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
264       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
265         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
266       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
267         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
268     }
269   }
270   return nullptr;
271 }
272 
273 Optional<Value *>
274 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
275                                          const Optional<Value *> &B, Type *Ty) {
276   if (A == B)
277     return A;
278   if (!B.hasValue())
279     return A;
280   if (*B == nullptr)
281     return nullptr;
282   if (!A.hasValue())
283     return Ty ? getWithType(**B, *Ty) : nullptr;
284   if (*A == nullptr)
285     return nullptr;
286   if (!Ty)
287     Ty = (*A)->getType();
288   if (isa_and_nonnull<UndefValue>(*A))
289     return getWithType(**B, *Ty);
290   if (isa<UndefValue>(*B))
291     return A;
292   if (*A && *B && *A == getWithType(**B, *Ty))
293     return A;
294   return nullptr;
295 }
296 
297 bool AA::getPotentialCopiesOfStoredValue(
298     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
299     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
300 
301   Value &Ptr = *SI.getPointerOperand();
302   SmallVector<Value *, 8> Objects;
303   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI)) {
304     LLVM_DEBUG(
305         dbgs() << "Underlying objects stored into could not be determined\n";);
306     return false;
307   }
308 
309   SmallVector<const AAPointerInfo *> PIs;
310   SmallVector<Value *> NewCopies;
311 
312   const auto *TLI =
313       A.getInfoCache().getTargetLibraryInfoForFunction(*SI.getFunction());
314   for (Value *Obj : Objects) {
315     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
316     if (isa<UndefValue>(Obj))
317       continue;
318     if (isa<ConstantPointerNull>(Obj)) {
319       // A null pointer access can be undefined but any offset from null may
320       // be OK. We do not try to optimize the latter.
321       if (!NullPointerIsDefined(SI.getFunction(),
322                                 Ptr.getType()->getPointerAddressSpace()) &&
323           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
324               Obj)
325         continue;
326       LLVM_DEBUG(
327           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
328       return false;
329     }
330     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
331         !isNoAliasFn(Obj, TLI)) {
332       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
333                         << "\n";);
334       return false;
335     }
336     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
337       if (!GV->hasLocalLinkage()) {
338         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
339                              "linkage, not supported yet: "
340                           << *Obj << "\n";);
341         return false;
342       }
343 
344     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
345       if (!Acc.isRead())
346         return true;
347       auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
348       if (!LI) {
349         LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
350                              "instruction not supported yet: "
351                           << *Acc.getRemoteInst() << "\n";);
352         return false;
353       }
354       NewCopies.push_back(LI);
355       return true;
356     };
357 
358     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
359                                          DepClassTy::NONE);
360     if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
361       LLVM_DEBUG(
362           dbgs()
363           << "Failed to verify all interfering accesses for underlying object: "
364           << *Obj << "\n");
365       return false;
366     }
367     PIs.push_back(&PI);
368   }
369 
370   for (auto *PI : PIs) {
371     if (!PI->getState().isAtFixpoint())
372       UsedAssumedInformation = true;
373     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
374   }
375   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
376 
377   return true;
378 }
379 
380 /// Return true if \p New is equal or worse than \p Old.
381 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
382   if (!Old.isIntAttribute())
383     return true;
384 
385   return Old.getValueAsInt() >= New.getValueAsInt();
386 }
387 
388 /// Return true if the information provided by \p Attr was added to the
389 /// attribute list \p Attrs. This is only the case if it was not already present
390 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
391 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
392                              AttributeList &Attrs, int AttrIdx,
393                              bool ForceReplace = false) {
394 
395   if (Attr.isEnumAttribute()) {
396     Attribute::AttrKind Kind = Attr.getKindAsEnum();
397     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
398       if (!ForceReplace &&
399           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
400         return false;
401     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
402     return true;
403   }
404   if (Attr.isStringAttribute()) {
405     StringRef Kind = Attr.getKindAsString();
406     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
407       if (!ForceReplace &&
408           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
409         return false;
410     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
411     return true;
412   }
413   if (Attr.isIntAttribute()) {
414     Attribute::AttrKind Kind = Attr.getKindAsEnum();
415     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
416       if (!ForceReplace &&
417           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
418         return false;
419     Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
420     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
421     return true;
422   }
423 
424   llvm_unreachable("Expected enum or string attribute!");
425 }
426 
427 Argument *IRPosition::getAssociatedArgument() const {
428   if (getPositionKind() == IRP_ARGUMENT)
429     return cast<Argument>(&getAnchorValue());
430 
431   // Not an Argument and no argument number means this is not a call site
432   // argument, thus we cannot find a callback argument to return.
433   int ArgNo = getCallSiteArgNo();
434   if (ArgNo < 0)
435     return nullptr;
436 
437   // Use abstract call sites to make the connection between the call site
438   // values and the ones in callbacks. If a callback was found that makes use
439   // of the underlying call site operand, we want the corresponding callback
440   // callee argument and not the direct callee argument.
441   Optional<Argument *> CBCandidateArg;
442   SmallVector<const Use *, 4> CallbackUses;
443   const auto &CB = cast<CallBase>(getAnchorValue());
444   AbstractCallSite::getCallbackUses(CB, CallbackUses);
445   for (const Use *U : CallbackUses) {
446     AbstractCallSite ACS(U);
447     assert(ACS && ACS.isCallbackCall());
448     if (!ACS.getCalledFunction())
449       continue;
450 
451     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
452 
453       // Test if the underlying call site operand is argument number u of the
454       // callback callee.
455       if (ACS.getCallArgOperandNo(u) != ArgNo)
456         continue;
457 
458       assert(ACS.getCalledFunction()->arg_size() > u &&
459              "ACS mapped into var-args arguments!");
460       if (CBCandidateArg.hasValue()) {
461         CBCandidateArg = nullptr;
462         break;
463       }
464       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
465     }
466   }
467 
468   // If we found a unique callback candidate argument, return it.
469   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
470     return CBCandidateArg.getValue();
471 
472   // If no callbacks were found, or none used the underlying call site operand
473   // exclusively, use the direct callee argument if available.
474   const Function *Callee = CB.getCalledFunction();
475   if (Callee && Callee->arg_size() > unsigned(ArgNo))
476     return Callee->getArg(ArgNo);
477 
478   return nullptr;
479 }
480 
481 ChangeStatus AbstractAttribute::update(Attributor &A) {
482   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
483   if (getState().isAtFixpoint())
484     return HasChanged;
485 
486   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
487 
488   HasChanged = updateImpl(A);
489 
490   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
491                     << "\n");
492 
493   return HasChanged;
494 }
495 
496 ChangeStatus
497 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
498                                    const ArrayRef<Attribute> &DeducedAttrs,
499                                    bool ForceReplace) {
500   Function *ScopeFn = IRP.getAnchorScope();
501   IRPosition::Kind PK = IRP.getPositionKind();
502 
503   // In the following some generic code that will manifest attributes in
504   // DeducedAttrs if they improve the current IR. Due to the different
505   // annotation positions we use the underlying AttributeList interface.
506 
507   AttributeList Attrs;
508   switch (PK) {
509   case IRPosition::IRP_INVALID:
510   case IRPosition::IRP_FLOAT:
511     return ChangeStatus::UNCHANGED;
512   case IRPosition::IRP_ARGUMENT:
513   case IRPosition::IRP_FUNCTION:
514   case IRPosition::IRP_RETURNED:
515     Attrs = ScopeFn->getAttributes();
516     break;
517   case IRPosition::IRP_CALL_SITE:
518   case IRPosition::IRP_CALL_SITE_RETURNED:
519   case IRPosition::IRP_CALL_SITE_ARGUMENT:
520     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
521     break;
522   }
523 
524   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
525   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
526   for (const Attribute &Attr : DeducedAttrs) {
527     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
528       continue;
529 
530     HasChanged = ChangeStatus::CHANGED;
531   }
532 
533   if (HasChanged == ChangeStatus::UNCHANGED)
534     return HasChanged;
535 
536   switch (PK) {
537   case IRPosition::IRP_ARGUMENT:
538   case IRPosition::IRP_FUNCTION:
539   case IRPosition::IRP_RETURNED:
540     ScopeFn->setAttributes(Attrs);
541     break;
542   case IRPosition::IRP_CALL_SITE:
543   case IRPosition::IRP_CALL_SITE_RETURNED:
544   case IRPosition::IRP_CALL_SITE_ARGUMENT:
545     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
546     break;
547   case IRPosition::IRP_INVALID:
548   case IRPosition::IRP_FLOAT:
549     break;
550   }
551 
552   return HasChanged;
553 }
554 
555 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
556 const IRPosition
557     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
558 
559 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
560   IRPositions.emplace_back(IRP);
561 
562   // Helper to determine if operand bundles on a call site are benin or
563   // potentially problematic. We handle only llvm.assume for now.
564   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
565     return (isa<IntrinsicInst>(CB) &&
566             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
567   };
568 
569   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
570   switch (IRP.getPositionKind()) {
571   case IRPosition::IRP_INVALID:
572   case IRPosition::IRP_FLOAT:
573   case IRPosition::IRP_FUNCTION:
574     return;
575   case IRPosition::IRP_ARGUMENT:
576   case IRPosition::IRP_RETURNED:
577     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
578     return;
579   case IRPosition::IRP_CALL_SITE:
580     assert(CB && "Expected call site!");
581     // TODO: We need to look at the operand bundles similar to the redirection
582     //       in CallBase.
583     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
584       if (const Function *Callee = CB->getCalledFunction())
585         IRPositions.emplace_back(IRPosition::function(*Callee));
586     return;
587   case IRPosition::IRP_CALL_SITE_RETURNED:
588     assert(CB && "Expected call site!");
589     // TODO: We need to look at the operand bundles similar to the redirection
590     //       in CallBase.
591     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
592       if (const Function *Callee = CB->getCalledFunction()) {
593         IRPositions.emplace_back(IRPosition::returned(*Callee));
594         IRPositions.emplace_back(IRPosition::function(*Callee));
595         for (const Argument &Arg : Callee->args())
596           if (Arg.hasReturnedAttr()) {
597             IRPositions.emplace_back(
598                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
599             IRPositions.emplace_back(
600                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
601             IRPositions.emplace_back(IRPosition::argument(Arg));
602           }
603       }
604     }
605     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
606     return;
607   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
608     assert(CB && "Expected call site!");
609     // TODO: We need to look at the operand bundles similar to the redirection
610     //       in CallBase.
611     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
612       const Function *Callee = CB->getCalledFunction();
613       if (Callee) {
614         if (Argument *Arg = IRP.getAssociatedArgument())
615           IRPositions.emplace_back(IRPosition::argument(*Arg));
616         IRPositions.emplace_back(IRPosition::function(*Callee));
617       }
618     }
619     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
620     return;
621   }
622   }
623 }
624 
625 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
626                          bool IgnoreSubsumingPositions, Attributor *A) const {
627   SmallVector<Attribute, 4> Attrs;
628   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
629     for (Attribute::AttrKind AK : AKs)
630       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
631         return true;
632     // The first position returned by the SubsumingPositionIterator is
633     // always the position itself. If we ignore subsuming positions we
634     // are done after the first iteration.
635     if (IgnoreSubsumingPositions)
636       break;
637   }
638   if (A)
639     for (Attribute::AttrKind AK : AKs)
640       if (getAttrsFromAssumes(AK, Attrs, *A))
641         return true;
642   return false;
643 }
644 
645 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
646                           SmallVectorImpl<Attribute> &Attrs,
647                           bool IgnoreSubsumingPositions, Attributor *A) const {
648   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
649     for (Attribute::AttrKind AK : AKs)
650       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
651     // The first position returned by the SubsumingPositionIterator is
652     // always the position itself. If we ignore subsuming positions we
653     // are done after the first iteration.
654     if (IgnoreSubsumingPositions)
655       break;
656   }
657   if (A)
658     for (Attribute::AttrKind AK : AKs)
659       getAttrsFromAssumes(AK, Attrs, *A);
660 }
661 
662 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
663                                     SmallVectorImpl<Attribute> &Attrs) const {
664   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
665     return false;
666 
667   AttributeList AttrList;
668   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
669     AttrList = CB->getAttributes();
670   else
671     AttrList = getAssociatedFunction()->getAttributes();
672 
673   bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
674   if (HasAttr)
675     Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
676   return HasAttr;
677 }
678 
679 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
680                                      SmallVectorImpl<Attribute> &Attrs,
681                                      Attributor &A) const {
682   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
683   Value &AssociatedValue = getAssociatedValue();
684 
685   const Assume2KnowledgeMap &A2K =
686       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
687 
688   // Check if we found any potential assume use, if not we don't need to create
689   // explorer iterators.
690   if (A2K.empty())
691     return false;
692 
693   LLVMContext &Ctx = AssociatedValue.getContext();
694   unsigned AttrsSize = Attrs.size();
695   MustBeExecutedContextExplorer &Explorer =
696       A.getInfoCache().getMustBeExecutedContextExplorer();
697   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
698   for (auto &It : A2K)
699     if (Explorer.findInContextOf(It.first, EIt, EEnd))
700       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
701   return AttrsSize != Attrs.size();
702 }
703 
704 void IRPosition::verify() {
705 #ifdef EXPENSIVE_CHECKS
706   switch (getPositionKind()) {
707   case IRP_INVALID:
708     assert((CBContext == nullptr) &&
709            "Invalid position must not have CallBaseContext!");
710     assert(!Enc.getOpaqueValue() &&
711            "Expected a nullptr for an invalid position!");
712     return;
713   case IRP_FLOAT:
714     assert((!isa<CallBase>(&getAssociatedValue()) &&
715             !isa<Argument>(&getAssociatedValue())) &&
716            "Expected specialized kind for call base and argument values!");
717     return;
718   case IRP_RETURNED:
719     assert(isa<Function>(getAsValuePtr()) &&
720            "Expected function for a 'returned' position!");
721     assert(getAsValuePtr() == &getAssociatedValue() &&
722            "Associated value mismatch!");
723     return;
724   case IRP_CALL_SITE_RETURNED:
725     assert((CBContext == nullptr) &&
726            "'call site returned' position must not have CallBaseContext!");
727     assert((isa<CallBase>(getAsValuePtr())) &&
728            "Expected call base for 'call site returned' position!");
729     assert(getAsValuePtr() == &getAssociatedValue() &&
730            "Associated value mismatch!");
731     return;
732   case IRP_CALL_SITE:
733     assert((CBContext == nullptr) &&
734            "'call site function' position must not have CallBaseContext!");
735     assert((isa<CallBase>(getAsValuePtr())) &&
736            "Expected call base for 'call site function' position!");
737     assert(getAsValuePtr() == &getAssociatedValue() &&
738            "Associated value mismatch!");
739     return;
740   case IRP_FUNCTION:
741     assert(isa<Function>(getAsValuePtr()) &&
742            "Expected function for a 'function' position!");
743     assert(getAsValuePtr() == &getAssociatedValue() &&
744            "Associated value mismatch!");
745     return;
746   case IRP_ARGUMENT:
747     assert(isa<Argument>(getAsValuePtr()) &&
748            "Expected argument for a 'argument' position!");
749     assert(getAsValuePtr() == &getAssociatedValue() &&
750            "Associated value mismatch!");
751     return;
752   case IRP_CALL_SITE_ARGUMENT: {
753     assert((CBContext == nullptr) &&
754            "'call site argument' position must not have CallBaseContext!");
755     Use *U = getAsUsePtr();
756     assert(U && "Expected use for a 'call site argument' position!");
757     assert(isa<CallBase>(U->getUser()) &&
758            "Expected call base user for a 'call site argument' position!");
759     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
760            "Expected call base argument operand for a 'call site argument' "
761            "position");
762     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
763                unsigned(getCallSiteArgNo()) &&
764            "Argument number mismatch!");
765     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
766     return;
767   }
768   }
769 #endif
770 }
771 
772 Optional<Constant *>
773 Attributor::getAssumedConstant(const IRPosition &IRP,
774                                const AbstractAttribute &AA,
775                                bool &UsedAssumedInformation) {
776   // First check all callbacks provided by outside AAs. If any of them returns
777   // a non-null value that is different from the associated value, or None, we
778   // assume it's simpliied.
779   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
780     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
781     if (!SimplifiedV.hasValue())
782       return llvm::None;
783     if (isa_and_nonnull<Constant>(*SimplifiedV))
784       return cast<Constant>(*SimplifiedV);
785     return nullptr;
786   }
787   const auto &ValueSimplifyAA =
788       getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
789   Optional<Value *> SimplifiedV =
790       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
791   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
792   UsedAssumedInformation |= !IsKnown;
793   if (!SimplifiedV.hasValue()) {
794     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
795     return llvm::None;
796   }
797   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
798     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
799     return UndefValue::get(IRP.getAssociatedType());
800   }
801   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
802   if (CI)
803     CI = dyn_cast_or_null<Constant>(
804         AA::getWithType(*CI, *IRP.getAssociatedType()));
805   if (CI)
806     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
807   return CI;
808 }
809 
810 Optional<Value *>
811 Attributor::getAssumedSimplified(const IRPosition &IRP,
812                                  const AbstractAttribute *AA,
813                                  bool &UsedAssumedInformation) {
814   // First check all callbacks provided by outside AAs. If any of them returns
815   // a non-null value that is different from the associated value, or None, we
816   // assume it's simpliied.
817   for (auto &CB : SimplificationCallbacks.lookup(IRP))
818     return CB(IRP, AA, UsedAssumedInformation);
819 
820   // If no high-level/outside simplification occured, use AAValueSimplify.
821   const auto &ValueSimplifyAA =
822       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
823   Optional<Value *> SimplifiedV =
824       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
825   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
826   UsedAssumedInformation |= !IsKnown;
827   if (!SimplifiedV.hasValue()) {
828     if (AA)
829       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
830     return llvm::None;
831   }
832   if (*SimplifiedV == nullptr)
833     return const_cast<Value *>(&IRP.getAssociatedValue());
834   if (Value *SimpleV =
835           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
836     if (AA)
837       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
838     return SimpleV;
839   }
840   return const_cast<Value *>(&IRP.getAssociatedValue());
841 }
842 
843 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
844     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
845     bool &UsedAssumedInformation) {
846   if (!V.hasValue())
847     return V;
848   if (*V == nullptr || isa<Constant>(*V))
849     return V;
850   if (auto *Arg = dyn_cast<Argument>(*V))
851     if (CB.getCalledFunction() == Arg->getParent())
852       if (!Arg->hasPointeeInMemoryValueAttr())
853         return getAssumedSimplified(
854             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
855             UsedAssumedInformation);
856   return nullptr;
857 }
858 
859 Attributor::~Attributor() {
860   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
861   // thus we cannot delete them. We can, and want to, destruct them though.
862   for (auto &DepAA : DG.SyntheticRoot.Deps) {
863     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
864     AA->~AbstractAttribute();
865   }
866 }
867 
868 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
869                                const AAIsDead *FnLivenessAA,
870                                bool &UsedAssumedInformation,
871                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
872   const IRPosition &IRP = AA.getIRPosition();
873   if (!Functions.count(IRP.getAnchorScope()))
874     return false;
875   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
876                        CheckBBLivenessOnly, DepClass);
877 }
878 
879 bool Attributor::isAssumedDead(const Use &U,
880                                const AbstractAttribute *QueryingAA,
881                                const AAIsDead *FnLivenessAA,
882                                bool &UsedAssumedInformation,
883                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
884   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
885   if (!UserI)
886     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
887                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
888 
889   if (auto *CB = dyn_cast<CallBase>(UserI)) {
890     // For call site argument uses we can check if the argument is
891     // unused/dead.
892     if (CB->isArgOperand(&U)) {
893       const IRPosition &CSArgPos =
894           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
895       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
896                            UsedAssumedInformation, CheckBBLivenessOnly,
897                            DepClass);
898     }
899   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
900     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
901     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
902                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
903   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
904     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
905     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
906                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
907   }
908 
909   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
910                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
911 }
912 
913 bool Attributor::isAssumedDead(const Instruction &I,
914                                const AbstractAttribute *QueryingAA,
915                                const AAIsDead *FnLivenessAA,
916                                bool &UsedAssumedInformation,
917                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
918   const IRPosition::CallBaseContext *CBCtx =
919       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
920 
921   if (ManifestAddedBlocks.contains(I.getParent()))
922     return false;
923 
924   if (!FnLivenessAA)
925     FnLivenessAA =
926         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
927                               QueryingAA, DepClassTy::NONE);
928 
929   // If we have a context instruction and a liveness AA we use it.
930   if (FnLivenessAA &&
931       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
932       FnLivenessAA->isAssumedDead(&I)) {
933     if (QueryingAA)
934       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
935     if (!FnLivenessAA->isKnownDead(&I))
936       UsedAssumedInformation = true;
937     return true;
938   }
939 
940   if (CheckBBLivenessOnly)
941     return false;
942 
943   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
944       IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
945   // Don't check liveness for AAIsDead.
946   if (QueryingAA == &IsDeadAA)
947     return false;
948 
949   if (IsDeadAA.isAssumedDead()) {
950     if (QueryingAA)
951       recordDependence(IsDeadAA, *QueryingAA, DepClass);
952     if (!IsDeadAA.isKnownDead())
953       UsedAssumedInformation = true;
954     return true;
955   }
956 
957   return false;
958 }
959 
960 bool Attributor::isAssumedDead(const IRPosition &IRP,
961                                const AbstractAttribute *QueryingAA,
962                                const AAIsDead *FnLivenessAA,
963                                bool &UsedAssumedInformation,
964                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
965   Instruction *CtxI = IRP.getCtxI();
966   if (CtxI &&
967       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
968                     /* CheckBBLivenessOnly */ true,
969                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
970     return true;
971 
972   if (CheckBBLivenessOnly)
973     return false;
974 
975   // If we haven't succeeded we query the specific liveness info for the IRP.
976   const AAIsDead *IsDeadAA;
977   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
978     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
979         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
980         QueryingAA, DepClassTy::NONE);
981   else
982     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
983   // Don't check liveness for AAIsDead.
984   if (QueryingAA == IsDeadAA)
985     return false;
986 
987   if (IsDeadAA->isAssumedDead()) {
988     if (QueryingAA)
989       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
990     if (!IsDeadAA->isKnownDead())
991       UsedAssumedInformation = true;
992     return true;
993   }
994 
995   return false;
996 }
997 
998 bool Attributor::isAssumedDead(const BasicBlock &BB,
999                                const AbstractAttribute *QueryingAA,
1000                                const AAIsDead *FnLivenessAA,
1001                                DepClassTy DepClass) {
1002   if (!FnLivenessAA)
1003     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
1004                                          QueryingAA, DepClassTy::NONE);
1005   if (FnLivenessAA->isAssumedDead(&BB)) {
1006     if (QueryingAA)
1007       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1008     return true;
1009   }
1010 
1011   return false;
1012 }
1013 
1014 bool Attributor::checkForAllUses(
1015     function_ref<bool(const Use &, bool &)> Pred,
1016     const AbstractAttribute &QueryingAA, const Value &V,
1017     bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1018     function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1019 
1020   // Check the trivial case first as it catches void values.
1021   if (V.use_empty())
1022     return true;
1023 
1024   const IRPosition &IRP = QueryingAA.getIRPosition();
1025   SmallVector<const Use *, 16> Worklist;
1026   SmallPtrSet<const Use *, 16> Visited;
1027 
1028   for (const Use &U : V.uses())
1029     Worklist.push_back(&U);
1030 
1031   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1032                     << " initial uses to check\n");
1033 
1034   const Function *ScopeFn = IRP.getAnchorScope();
1035   const auto *LivenessAA =
1036       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1037                                     DepClassTy::NONE)
1038               : nullptr;
1039 
1040   while (!Worklist.empty()) {
1041     const Use *U = Worklist.pop_back_val();
1042     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1043       continue;
1044     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
1045                       << *U->getUser() << "\n");
1046     bool UsedAssumedInformation = false;
1047     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1048                       CheckBBLivenessOnly, LivenessDepClass)) {
1049       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1050       continue;
1051     }
1052     if (U->getUser()->isDroppable()) {
1053       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1054       continue;
1055     }
1056 
1057     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1058       if (&SI->getOperandUse(0) == U) {
1059         if (!Visited.insert(U).second)
1060           continue;
1061         SmallSetVector<Value *, 4> PotentialCopies;
1062         if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1063                                                 QueryingAA,
1064                                                 UsedAssumedInformation)) {
1065           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1066                             << PotentialCopies.size()
1067                             << " potential copies instead!\n");
1068           for (Value *PotentialCopy : PotentialCopies)
1069             for (const Use &CopyUse : PotentialCopy->uses()) {
1070               if (EquivalentUseCB && !EquivalentUseCB(*U, CopyUse)) {
1071                 LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1072                                      "rejected by the equivalence call back: "
1073                                   << *CopyUse << "!\n");
1074                 return false;
1075               }
1076               Worklist.push_back(&CopyUse);
1077             }
1078           continue;
1079         }
1080       }
1081     }
1082 
1083     bool Follow = false;
1084     if (!Pred(*U, Follow))
1085       return false;
1086     if (!Follow)
1087       continue;
1088     for (const Use &UU : U->getUser()->uses())
1089       Worklist.push_back(&UU);
1090   }
1091 
1092   return true;
1093 }
1094 
1095 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1096                                       const AbstractAttribute &QueryingAA,
1097                                       bool RequireAllCallSites,
1098                                       bool &AllCallSitesKnown) {
1099   // We can try to determine information from
1100   // the call sites. However, this is only possible all call sites are known,
1101   // hence the function has internal linkage.
1102   const IRPosition &IRP = QueryingAA.getIRPosition();
1103   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1104   if (!AssociatedFunction) {
1105     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1106                       << "\n");
1107     AllCallSitesKnown = false;
1108     return false;
1109   }
1110 
1111   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1112                               &QueryingAA, AllCallSitesKnown);
1113 }
1114 
1115 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1116                                       const Function &Fn,
1117                                       bool RequireAllCallSites,
1118                                       const AbstractAttribute *QueryingAA,
1119                                       bool &AllCallSitesKnown) {
1120   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1121     LLVM_DEBUG(
1122         dbgs()
1123         << "[Attributor] Function " << Fn.getName()
1124         << " has no internal linkage, hence not all call sites are known\n");
1125     AllCallSitesKnown = false;
1126     return false;
1127   }
1128 
1129   // If we do not require all call sites we might not see all.
1130   AllCallSitesKnown = RequireAllCallSites;
1131 
1132   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1133   for (unsigned u = 0; u < Uses.size(); ++u) {
1134     const Use &U = *Uses[u];
1135     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
1136                       << *U.getUser() << "\n");
1137     bool UsedAssumedInformation = false;
1138     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1139                       /* CheckBBLivenessOnly */ true)) {
1140       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1141       continue;
1142     }
1143     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1144       if (CE->isCast() && CE->getType()->isPointerTy() &&
1145           CE->getType()->getPointerElementType()->isFunctionTy()) {
1146         LLVM_DEBUG(
1147             dbgs() << "[Attributor] Use, is constant cast expression, add "
1148                    << CE->getNumUses()
1149                    << " uses of that expression instead!\n");
1150         for (const Use &CEU : CE->uses())
1151           Uses.push_back(&CEU);
1152         continue;
1153       }
1154     }
1155 
1156     AbstractCallSite ACS(&U);
1157     if (!ACS) {
1158       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1159                         << " has non call site use " << *U.get() << " in "
1160                         << *U.getUser() << "\n");
1161       // BlockAddress users are allowed.
1162       if (isa<BlockAddress>(U.getUser()))
1163         continue;
1164       return false;
1165     }
1166 
1167     const Use *EffectiveUse =
1168         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1169     if (!ACS.isCallee(EffectiveUse)) {
1170       if (!RequireAllCallSites) {
1171         LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1172                           << " is not a call of " << Fn.getName()
1173                           << ", skip use\n");
1174         continue;
1175       }
1176       LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1177                         << " is an invalid use of " << Fn.getName() << "\n");
1178       return false;
1179     }
1180 
1181     // Make sure the arguments that can be matched between the call site and the
1182     // callee argee on their type. It is unlikely they do not and it doesn't
1183     // make sense for all attributes to know/care about this.
1184     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1185     unsigned MinArgsParams =
1186         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1187     for (unsigned u = 0; u < MinArgsParams; ++u) {
1188       Value *CSArgOp = ACS.getCallArgOperand(u);
1189       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1190         LLVM_DEBUG(
1191             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1192                    << u << "@" << Fn.getName() << ": "
1193                    << *Fn.getArg(u)->getType() << " vs. "
1194                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1195         return false;
1196       }
1197     }
1198 
1199     if (Pred(ACS))
1200       continue;
1201 
1202     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1203                       << *ACS.getInstruction() << "\n");
1204     return false;
1205   }
1206 
1207   return true;
1208 }
1209 
1210 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1211   // TODO: Maintain a cache of Values that are
1212   // on the pathway from a Argument to a Instruction that would effect the
1213   // liveness/return state etc.
1214   return EnableCallSiteSpecific;
1215 }
1216 
1217 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1218     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1219     const AbstractAttribute &QueryingAA) {
1220 
1221   const IRPosition &IRP = QueryingAA.getIRPosition();
1222   // Since we need to provide return instructions we have to have an exact
1223   // definition.
1224   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1225   if (!AssociatedFunction)
1226     return false;
1227 
1228   // If this is a call site query we use the call site specific return values
1229   // and liveness information.
1230   // TODO: use the function scope once we have call site AAReturnedValues.
1231   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1232   const auto &AARetVal =
1233       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1234   if (!AARetVal.getState().isValidState())
1235     return false;
1236 
1237   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1238 }
1239 
1240 bool Attributor::checkForAllReturnedValues(
1241     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1242 
1243   const IRPosition &IRP = QueryingAA.getIRPosition();
1244   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1245   if (!AssociatedFunction)
1246     return false;
1247 
1248   // TODO: use the function scope once we have call site AAReturnedValues.
1249   const IRPosition &QueryIRP = IRPosition::function(
1250       *AssociatedFunction, QueryingAA.getCallBaseContext());
1251   const auto &AARetVal =
1252       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1253   if (!AARetVal.getState().isValidState())
1254     return false;
1255 
1256   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1257       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1258         return Pred(RV);
1259       });
1260 }
1261 
1262 static bool checkForAllInstructionsImpl(
1263     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1264     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1265     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1266     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1267     bool CheckPotentiallyDead = false) {
1268   for (unsigned Opcode : Opcodes) {
1269     // Check if we have instructions with this opcode at all first.
1270     auto *Insts = OpcodeInstMap.lookup(Opcode);
1271     if (!Insts)
1272       continue;
1273 
1274     for (Instruction *I : *Insts) {
1275       // Skip dead instructions.
1276       if (A && !CheckPotentiallyDead &&
1277           A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
1278                            UsedAssumedInformation, CheckBBLivenessOnly))
1279         continue;
1280 
1281       if (!Pred(*I))
1282         return false;
1283     }
1284   }
1285   return true;
1286 }
1287 
1288 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1289                                          const AbstractAttribute &QueryingAA,
1290                                          const ArrayRef<unsigned> &Opcodes,
1291                                          bool &UsedAssumedInformation,
1292                                          bool CheckBBLivenessOnly,
1293                                          bool CheckPotentiallyDead) {
1294 
1295   const IRPosition &IRP = QueryingAA.getIRPosition();
1296   // Since we need to provide instructions we have to have an exact definition.
1297   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1298   if (!AssociatedFunction)
1299     return false;
1300 
1301   if (AssociatedFunction->isDeclaration())
1302     return false;
1303 
1304   // TODO: use the function scope once we have call site AAReturnedValues.
1305   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1306   const auto *LivenessAA =
1307       (CheckBBLivenessOnly || CheckPotentiallyDead)
1308           ? nullptr
1309           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1310 
1311   auto &OpcodeInstMap =
1312       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1313   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1314                                    LivenessAA, Opcodes, UsedAssumedInformation,
1315                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1316     return false;
1317 
1318   return true;
1319 }
1320 
1321 bool Attributor::checkForAllReadWriteInstructions(
1322     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1323     bool &UsedAssumedInformation) {
1324 
1325   const Function *AssociatedFunction =
1326       QueryingAA.getIRPosition().getAssociatedFunction();
1327   if (!AssociatedFunction)
1328     return false;
1329 
1330   // TODO: use the function scope once we have call site AAReturnedValues.
1331   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1332   const auto &LivenessAA =
1333       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1334 
1335   for (Instruction *I :
1336        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1337     // Skip dead instructions.
1338     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA,
1339                       UsedAssumedInformation))
1340       continue;
1341 
1342     if (!Pred(*I))
1343       return false;
1344   }
1345 
1346   return true;
1347 }
1348 
1349 void Attributor::runTillFixpoint() {
1350   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1351   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1352                     << DG.SyntheticRoot.Deps.size()
1353                     << " abstract attributes.\n");
1354 
1355   // Now that all abstract attributes are collected and initialized we start
1356   // the abstract analysis.
1357 
1358   unsigned IterationCounter = 1;
1359   unsigned MaxFixedPointIterations;
1360   if (MaxFixpointIterations)
1361     MaxFixedPointIterations = MaxFixpointIterations.getValue();
1362   else
1363     MaxFixedPointIterations = SetFixpointIterations;
1364 
1365   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1366   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1367   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1368 
1369   do {
1370     // Remember the size to determine new attributes.
1371     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1372     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1373                       << ", Worklist size: " << Worklist.size() << "\n");
1374 
1375     // For invalid AAs we can fix dependent AAs that have a required dependence,
1376     // thereby folding long dependence chains in a single step without the need
1377     // to run updates.
1378     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1379       AbstractAttribute *InvalidAA = InvalidAAs[u];
1380 
1381       // Check the dependences to fast track invalidation.
1382       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1383                         << InvalidAA->Deps.size()
1384                         << " required & optional dependences\n");
1385       while (!InvalidAA->Deps.empty()) {
1386         const auto &Dep = InvalidAA->Deps.back();
1387         InvalidAA->Deps.pop_back();
1388         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1389         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1390           Worklist.insert(DepAA);
1391           continue;
1392         }
1393         DepAA->getState().indicatePessimisticFixpoint();
1394         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1395         if (!DepAA->getState().isValidState())
1396           InvalidAAs.insert(DepAA);
1397         else
1398           ChangedAAs.push_back(DepAA);
1399       }
1400     }
1401 
1402     // Add all abstract attributes that are potentially dependent on one that
1403     // changed to the work list.
1404     for (AbstractAttribute *ChangedAA : ChangedAAs)
1405       while (!ChangedAA->Deps.empty()) {
1406         Worklist.insert(
1407             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1408         ChangedAA->Deps.pop_back();
1409       }
1410 
1411     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1412                       << ", Worklist+Dependent size: " << Worklist.size()
1413                       << "\n");
1414 
1415     // Reset the changed and invalid set.
1416     ChangedAAs.clear();
1417     InvalidAAs.clear();
1418 
1419     // Update all abstract attribute in the work list and record the ones that
1420     // changed.
1421     for (AbstractAttribute *AA : Worklist) {
1422       const auto &AAState = AA->getState();
1423       if (!AAState.isAtFixpoint())
1424         if (updateAA(*AA) == ChangeStatus::CHANGED)
1425           ChangedAAs.push_back(AA);
1426 
1427       // Use the InvalidAAs vector to propagate invalid states fast transitively
1428       // without requiring updates.
1429       if (!AAState.isValidState())
1430         InvalidAAs.insert(AA);
1431     }
1432 
1433     // Add attributes to the changed set if they have been created in the last
1434     // iteration.
1435     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1436                       DG.SyntheticRoot.end());
1437 
1438     // Reset the work list and repopulate with the changed abstract attributes.
1439     // Note that dependent ones are added above.
1440     Worklist.clear();
1441     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1442 
1443   } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1444                                  VerifyMaxFixpointIterations));
1445 
1446   if (IterationCounter > MaxFixedPointIterations && !Worklist.empty()) {
1447     auto Remark = [&](OptimizationRemarkMissed ORM) {
1448       return ORM << "Attributor did not reach a fixpoint after "
1449                  << ore::NV("Iterations", MaxFixedPointIterations)
1450                  << " iterations.";
1451     };
1452     Function *F = Worklist.front()->getIRPosition().getAssociatedFunction();
1453     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
1454   }
1455 
1456   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1457                     << IterationCounter << "/" << MaxFixpointIterations
1458                     << " iterations\n");
1459 
1460   // Reset abstract arguments not settled in a sound fixpoint by now. This
1461   // happens when we stopped the fixpoint iteration early. Note that only the
1462   // ones marked as "changed" *and* the ones transitively depending on them
1463   // need to be reverted to a pessimistic state. Others might not be in a
1464   // fixpoint state but we can use the optimistic results for them anyway.
1465   SmallPtrSet<AbstractAttribute *, 32> Visited;
1466   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1467     AbstractAttribute *ChangedAA = ChangedAAs[u];
1468     if (!Visited.insert(ChangedAA).second)
1469       continue;
1470 
1471     AbstractState &State = ChangedAA->getState();
1472     if (!State.isAtFixpoint()) {
1473       State.indicatePessimisticFixpoint();
1474 
1475       NumAttributesTimedOut++;
1476     }
1477 
1478     while (!ChangedAA->Deps.empty()) {
1479       ChangedAAs.push_back(
1480           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1481       ChangedAA->Deps.pop_back();
1482     }
1483   }
1484 
1485   LLVM_DEBUG({
1486     if (!Visited.empty())
1487       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1488              << " abstract attributes.\n";
1489   });
1490 
1491   if (VerifyMaxFixpointIterations &&
1492       IterationCounter != MaxFixedPointIterations) {
1493     errs() << "\n[Attributor] Fixpoint iteration done after: "
1494            << IterationCounter << "/" << MaxFixedPointIterations
1495            << " iterations\n";
1496     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1497                      "specified iterations!");
1498   }
1499 }
1500 
1501 ChangeStatus Attributor::manifestAttributes() {
1502   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1503   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1504 
1505   unsigned NumManifested = 0;
1506   unsigned NumAtFixpoint = 0;
1507   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1508   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1509     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1510     AbstractState &State = AA->getState();
1511 
1512     // If there is not already a fixpoint reached, we can now take the
1513     // optimistic state. This is correct because we enforced a pessimistic one
1514     // on abstract attributes that were transitively dependent on a changed one
1515     // already above.
1516     if (!State.isAtFixpoint())
1517       State.indicateOptimisticFixpoint();
1518 
1519     // We must not manifest Attributes that use Callbase info.
1520     if (AA->hasCallBaseContext())
1521       continue;
1522     // If the state is invalid, we do not try to manifest it.
1523     if (!State.isValidState())
1524       continue;
1525 
1526     // Skip dead code.
1527     bool UsedAssumedInformation = false;
1528     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1529                       /* CheckBBLivenessOnly */ true))
1530       continue;
1531     // Check if the manifest debug counter that allows skipping manifestation of
1532     // AAs
1533     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1534       continue;
1535     // Manifest the state and record if we changed the IR.
1536     ChangeStatus LocalChange = AA->manifest(*this);
1537     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1538       AA->trackStatistics();
1539     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1540                       << "\n");
1541 
1542     ManifestChange = ManifestChange | LocalChange;
1543 
1544     NumAtFixpoint++;
1545     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1546   }
1547 
1548   (void)NumManifested;
1549   (void)NumAtFixpoint;
1550   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1551                     << " arguments while " << NumAtFixpoint
1552                     << " were in a valid fixpoint state\n");
1553 
1554   NumAttributesManifested += NumManifested;
1555   NumAttributesValidFixpoint += NumAtFixpoint;
1556 
1557   (void)NumFinalAAs;
1558   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1559     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1560       errs() << "Unexpected abstract attribute: "
1561              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1562              << " :: "
1563              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1564                     ->getIRPosition()
1565                     .getAssociatedValue()
1566              << "\n";
1567     llvm_unreachable("Expected the final number of abstract attributes to "
1568                      "remain unchanged!");
1569   }
1570   return ManifestChange;
1571 }
1572 
1573 void Attributor::identifyDeadInternalFunctions() {
1574   // Early exit if we don't intend to delete functions.
1575   if (!DeleteFns)
1576     return;
1577 
1578   // Identify dead internal functions and delete them. This happens outside
1579   // the other fixpoint analysis as we might treat potentially dead functions
1580   // as live to lower the number of iterations. If they happen to be dead, the
1581   // below fixpoint loop will identify and eliminate them.
1582   SmallVector<Function *, 8> InternalFns;
1583   for (Function *F : Functions)
1584     if (F->hasLocalLinkage())
1585       InternalFns.push_back(F);
1586 
1587   SmallPtrSet<Function *, 8> LiveInternalFns;
1588   bool FoundLiveInternal = true;
1589   while (FoundLiveInternal) {
1590     FoundLiveInternal = false;
1591     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1592       Function *F = InternalFns[u];
1593       if (!F)
1594         continue;
1595 
1596       bool AllCallSitesKnown;
1597       if (checkForAllCallSites(
1598               [&](AbstractCallSite ACS) {
1599                 Function *Callee = ACS.getInstruction()->getFunction();
1600                 return ToBeDeletedFunctions.count(Callee) ||
1601                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1602                         !LiveInternalFns.count(Callee));
1603               },
1604               *F, true, nullptr, AllCallSitesKnown)) {
1605         continue;
1606       }
1607 
1608       LiveInternalFns.insert(F);
1609       InternalFns[u] = nullptr;
1610       FoundLiveInternal = true;
1611     }
1612   }
1613 
1614   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1615     if (Function *F = InternalFns[u])
1616       ToBeDeletedFunctions.insert(F);
1617 }
1618 
1619 ChangeStatus Attributor::cleanupIR() {
1620   TimeTraceScope TimeScope("Attributor::cleanupIR");
1621   // Delete stuff at the end to avoid invalid references and a nice order.
1622   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1623                     << ToBeDeletedFunctions.size() << " functions and "
1624                     << ToBeDeletedBlocks.size() << " blocks and "
1625                     << ToBeDeletedInsts.size() << " instructions and "
1626                     << ToBeChangedValues.size() << " values and "
1627                     << ToBeChangedUses.size() << " uses. "
1628                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1629                     << " blocks\n");
1630 
1631   SmallVector<WeakTrackingVH, 32> DeadInsts;
1632   SmallVector<Instruction *, 32> TerminatorsToFold;
1633 
1634   auto ReplaceUse = [&](Use *U, Value *NewV) {
1635     Value *OldV = U->get();
1636 
1637     // If we plan to replace NewV we need to update it at this point.
1638     do {
1639       const auto &Entry = ToBeChangedValues.lookup(NewV);
1640       if (!Entry.first)
1641         break;
1642       NewV = Entry.first;
1643     } while (true);
1644 
1645     // Do not replace uses in returns if the value is a must-tail call we will
1646     // not delete.
1647     if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1648       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1649         if (CI->isMustTailCall() &&
1650             (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1651           return;
1652       // If we rewrite a return and the new value is not an argument, strip the
1653       // `returned` attribute as it is wrong now.
1654       if (!isa<Argument>(NewV))
1655         for (auto &Arg : RI->getFunction()->args())
1656           Arg.removeAttr(Attribute::Returned);
1657     }
1658 
1659     // Do not perform call graph altering changes outside the SCC.
1660     if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1661       if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1662         return;
1663 
1664     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1665                       << " instead of " << *OldV << "\n");
1666     U->set(NewV);
1667 
1668     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1669       CGModifiedFunctions.insert(I->getFunction());
1670       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1671           isInstructionTriviallyDead(I))
1672         DeadInsts.push_back(I);
1673     }
1674     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1675       auto *CB = cast<CallBase>(U->getUser());
1676       if (CB->isArgOperand(U)) {
1677         unsigned Idx = CB->getArgOperandNo(U);
1678         CB->removeParamAttr(Idx, Attribute::NoUndef);
1679         Function *Fn = CB->getCalledFunction();
1680         if (Fn && Fn->arg_size() > Idx)
1681           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1682       }
1683     }
1684     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1685       Instruction *UserI = cast<Instruction>(U->getUser());
1686       if (isa<UndefValue>(NewV)) {
1687         ToBeChangedToUnreachableInsts.insert(UserI);
1688       } else {
1689         TerminatorsToFold.push_back(UserI);
1690       }
1691     }
1692   };
1693 
1694   for (auto &It : ToBeChangedUses) {
1695     Use *U = It.first;
1696     Value *NewV = It.second;
1697     ReplaceUse(U, NewV);
1698   }
1699 
1700   SmallVector<Use *, 4> Uses;
1701   for (auto &It : ToBeChangedValues) {
1702     Value *OldV = It.first;
1703     auto &Entry = It.second;
1704     Value *NewV = Entry.first;
1705     Uses.clear();
1706     for (auto &U : OldV->uses())
1707       if (Entry.second || !U.getUser()->isDroppable())
1708         Uses.push_back(&U);
1709     for (Use *U : Uses)
1710       ReplaceUse(U, NewV);
1711   }
1712 
1713   for (auto &V : InvokeWithDeadSuccessor)
1714     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1715       assert(isRunOn(*II->getFunction()) &&
1716              "Cannot replace an invoke outside the current SCC!");
1717       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1718       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1719       bool Invoke2CallAllowed =
1720           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1721       assert((UnwindBBIsDead || NormalBBIsDead) &&
1722              "Invoke does not have dead successors!");
1723       BasicBlock *BB = II->getParent();
1724       BasicBlock *NormalDestBB = II->getNormalDest();
1725       if (UnwindBBIsDead) {
1726         Instruction *NormalNextIP = &NormalDestBB->front();
1727         if (Invoke2CallAllowed) {
1728           changeToCall(II);
1729           NormalNextIP = BB->getTerminator();
1730         }
1731         if (NormalBBIsDead)
1732           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1733       } else {
1734         assert(NormalBBIsDead && "Broken invariant!");
1735         if (!NormalDestBB->getUniquePredecessor())
1736           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1737         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1738       }
1739     }
1740   for (Instruction *I : TerminatorsToFold) {
1741     if (!isRunOn(*I->getFunction()))
1742       continue;
1743     CGModifiedFunctions.insert(I->getFunction());
1744     ConstantFoldTerminator(I->getParent());
1745   }
1746   for (auto &V : ToBeChangedToUnreachableInsts)
1747     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1748       if (!isRunOn(*I->getFunction()))
1749         continue;
1750       CGModifiedFunctions.insert(I->getFunction());
1751       changeToUnreachable(I);
1752     }
1753 
1754   for (auto &V : ToBeDeletedInsts) {
1755     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1756       if (auto *CB = dyn_cast<CallBase>(I)) {
1757         if (!isRunOn(*I->getFunction()))
1758           continue;
1759         if (!isa<IntrinsicInst>(CB))
1760           CGUpdater.removeCallSite(*CB);
1761       }
1762       I->dropDroppableUses();
1763       CGModifiedFunctions.insert(I->getFunction());
1764       if (!I->getType()->isVoidTy())
1765         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1766       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1767         DeadInsts.push_back(I);
1768       else
1769         I->eraseFromParent();
1770     }
1771   }
1772 
1773   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1774     return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1775   });
1776 
1777   LLVM_DEBUG({
1778     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1779     for (auto &I : DeadInsts)
1780       if (I)
1781         dbgs() << "  - " << *I << "\n";
1782   });
1783 
1784   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1785 
1786   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1787     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1788     ToBeDeletedBBs.reserve(NumDeadBlocks);
1789     for (BasicBlock *BB : ToBeDeletedBlocks) {
1790       assert(isRunOn(*BB->getParent()) &&
1791              "Cannot delete a block outside the current SCC!");
1792       CGModifiedFunctions.insert(BB->getParent());
1793       // Do not delete BBs added during manifests of AAs.
1794       if (ManifestAddedBlocks.contains(BB))
1795         continue;
1796       ToBeDeletedBBs.push_back(BB);
1797     }
1798     // Actually we do not delete the blocks but squash them into a single
1799     // unreachable but untangling branches that jump here is something we need
1800     // to do in a more generic way.
1801     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1802   }
1803 
1804   identifyDeadInternalFunctions();
1805 
1806   // Rewrite the functions as requested during manifest.
1807   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1808 
1809   for (Function *Fn : CGModifiedFunctions)
1810     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1811       CGUpdater.reanalyzeFunction(*Fn);
1812 
1813   for (Function *Fn : ToBeDeletedFunctions) {
1814     if (!Functions.count(Fn))
1815       continue;
1816     CGUpdater.removeFunction(*Fn);
1817   }
1818 
1819   if (!ToBeChangedUses.empty())
1820     ManifestChange = ChangeStatus::CHANGED;
1821 
1822   if (!ToBeChangedToUnreachableInsts.empty())
1823     ManifestChange = ChangeStatus::CHANGED;
1824 
1825   if (!ToBeDeletedFunctions.empty())
1826     ManifestChange = ChangeStatus::CHANGED;
1827 
1828   if (!ToBeDeletedBlocks.empty())
1829     ManifestChange = ChangeStatus::CHANGED;
1830 
1831   if (!ToBeDeletedInsts.empty())
1832     ManifestChange = ChangeStatus::CHANGED;
1833 
1834   if (!InvokeWithDeadSuccessor.empty())
1835     ManifestChange = ChangeStatus::CHANGED;
1836 
1837   if (!DeadInsts.empty())
1838     ManifestChange = ChangeStatus::CHANGED;
1839 
1840   NumFnDeleted += ToBeDeletedFunctions.size();
1841 
1842   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1843                     << " functions after manifest.\n");
1844 
1845 #ifdef EXPENSIVE_CHECKS
1846   for (Function *F : Functions) {
1847     if (ToBeDeletedFunctions.count(F))
1848       continue;
1849     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1850   }
1851 #endif
1852 
1853   return ManifestChange;
1854 }
1855 
1856 ChangeStatus Attributor::run() {
1857   TimeTraceScope TimeScope("Attributor::run");
1858   AttributorCallGraph ACallGraph(*this);
1859 
1860   if (PrintCallGraph)
1861     ACallGraph.populateAll();
1862 
1863   Phase = AttributorPhase::UPDATE;
1864   runTillFixpoint();
1865 
1866   // dump graphs on demand
1867   if (DumpDepGraph)
1868     DG.dumpGraph();
1869 
1870   if (ViewDepGraph)
1871     DG.viewGraph();
1872 
1873   if (PrintDependencies)
1874     DG.print();
1875 
1876   Phase = AttributorPhase::MANIFEST;
1877   ChangeStatus ManifestChange = manifestAttributes();
1878 
1879   Phase = AttributorPhase::CLEANUP;
1880   ChangeStatus CleanupChange = cleanupIR();
1881 
1882   if (PrintCallGraph)
1883     ACallGraph.print();
1884 
1885   return ManifestChange | CleanupChange;
1886 }
1887 
1888 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1889   TimeTraceScope TimeScope(
1890       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1891       "::updateAA");
1892   assert(Phase == AttributorPhase::UPDATE &&
1893          "We can update AA only in the update stage!");
1894 
1895   // Use a new dependence vector for this update.
1896   DependenceVector DV;
1897   DependenceStack.push_back(&DV);
1898 
1899   auto &AAState = AA.getState();
1900   ChangeStatus CS = ChangeStatus::UNCHANGED;
1901   bool UsedAssumedInformation = false;
1902   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
1903                      /* CheckBBLivenessOnly */ true))
1904     CS = AA.update(*this);
1905 
1906   if (DV.empty()) {
1907     // If the attribute did not query any non-fix information, the state
1908     // will not change and we can indicate that right away.
1909     AAState.indicateOptimisticFixpoint();
1910   }
1911 
1912   if (!AAState.isAtFixpoint())
1913     rememberDependences();
1914 
1915   // Verify the stack was used properly, that is we pop the dependence vector we
1916   // put there earlier.
1917   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1918   (void)PoppedDV;
1919   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1920 
1921   return CS;
1922 }
1923 
1924 void Attributor::createShallowWrapper(Function &F) {
1925   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1926 
1927   Module &M = *F.getParent();
1928   LLVMContext &Ctx = M.getContext();
1929   FunctionType *FnTy = F.getFunctionType();
1930 
1931   Function *Wrapper =
1932       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1933   F.setName(""); // set the inside function anonymous
1934   M.getFunctionList().insert(F.getIterator(), Wrapper);
1935 
1936   F.setLinkage(GlobalValue::InternalLinkage);
1937 
1938   F.replaceAllUsesWith(Wrapper);
1939   assert(F.use_empty() && "Uses remained after wrapper was created!");
1940 
1941   // Move the COMDAT section to the wrapper.
1942   // TODO: Check if we need to keep it for F as well.
1943   Wrapper->setComdat(F.getComdat());
1944   F.setComdat(nullptr);
1945 
1946   // Copy all metadata and attributes but keep them on F as well.
1947   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1948   F.getAllMetadata(MDs);
1949   for (auto MDIt : MDs)
1950     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1951   Wrapper->setAttributes(F.getAttributes());
1952 
1953   // Create the call in the wrapper.
1954   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1955 
1956   SmallVector<Value *, 8> Args;
1957   Argument *FArgIt = F.arg_begin();
1958   for (Argument &Arg : Wrapper->args()) {
1959     Args.push_back(&Arg);
1960     Arg.setName((FArgIt++)->getName());
1961   }
1962 
1963   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1964   CI->setTailCall(true);
1965   CI->addFnAttr(Attribute::NoInline);
1966   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1967 
1968   NumFnShallowWrappersCreated++;
1969 }
1970 
1971 bool Attributor::isInternalizable(Function &F) {
1972   if (F.isDeclaration() || F.hasLocalLinkage() ||
1973       GlobalValue::isInterposableLinkage(F.getLinkage()))
1974     return false;
1975   return true;
1976 }
1977 
1978 Function *Attributor::internalizeFunction(Function &F, bool Force) {
1979   if (!AllowDeepWrapper && !Force)
1980     return nullptr;
1981   if (!isInternalizable(F))
1982     return nullptr;
1983 
1984   SmallPtrSet<Function *, 2> FnSet = {&F};
1985   DenseMap<Function *, Function *> InternalizedFns;
1986   internalizeFunctions(FnSet, InternalizedFns);
1987 
1988   return InternalizedFns[&F];
1989 }
1990 
1991 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
1992                                       DenseMap<Function *, Function *> &FnMap) {
1993   for (Function *F : FnSet)
1994     if (!Attributor::isInternalizable(*F))
1995       return false;
1996 
1997   FnMap.clear();
1998   // Generate the internalized version of each function.
1999   for (Function *F : FnSet) {
2000     Module &M = *F->getParent();
2001     FunctionType *FnTy = F->getFunctionType();
2002 
2003     // Create a copy of the current function
2004     Function *Copied =
2005         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2006                          F->getName() + ".internalized");
2007     ValueToValueMapTy VMap;
2008     auto *NewFArgIt = Copied->arg_begin();
2009     for (auto &Arg : F->args()) {
2010       auto ArgName = Arg.getName();
2011       NewFArgIt->setName(ArgName);
2012       VMap[&Arg] = &(*NewFArgIt++);
2013     }
2014     SmallVector<ReturnInst *, 8> Returns;
2015 
2016     // Copy the body of the original function to the new one
2017     CloneFunctionInto(Copied, F, VMap,
2018                       CloneFunctionChangeType::LocalChangesOnly, Returns);
2019 
2020     // Set the linakage and visibility late as CloneFunctionInto has some
2021     // implicit requirements.
2022     Copied->setVisibility(GlobalValue::DefaultVisibility);
2023     Copied->setLinkage(GlobalValue::PrivateLinkage);
2024 
2025     // Copy metadata
2026     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2027     F->getAllMetadata(MDs);
2028     for (auto MDIt : MDs)
2029       if (!Copied->hasMetadata())
2030         Copied->addMetadata(MDIt.first, *MDIt.second);
2031 
2032     M.getFunctionList().insert(F->getIterator(), Copied);
2033     Copied->setDSOLocal(true);
2034     FnMap[F] = Copied;
2035   }
2036 
2037   // Replace all uses of the old function with the new internalized function
2038   // unless the caller is a function that was just internalized.
2039   for (Function *F : FnSet) {
2040     auto &InternalizedFn = FnMap[F];
2041     auto IsNotInternalized = [&](Use &U) -> bool {
2042       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2043         return !FnMap.lookup(CB->getCaller());
2044       return false;
2045     };
2046     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2047   }
2048 
2049   return true;
2050 }
2051 
2052 bool Attributor::isValidFunctionSignatureRewrite(
2053     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2054 
2055   if (!RewriteSignatures)
2056     return false;
2057 
2058   Function *Fn = Arg.getParent();
2059   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2060     // Forbid the call site to cast the function return type. If we need to
2061     // rewrite these functions we need to re-create a cast for the new call site
2062     // (if the old had uses).
2063     if (!ACS.getCalledFunction() ||
2064         ACS.getInstruction()->getType() !=
2065             ACS.getCalledFunction()->getReturnType())
2066       return false;
2067     if (ACS.getCalledOperand()->getType() != Fn->getType())
2068       return false;
2069     // Forbid must-tail calls for now.
2070     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2071   };
2072 
2073   // Avoid var-arg functions for now.
2074   if (Fn->isVarArg()) {
2075     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2076     return false;
2077   }
2078 
2079   // Avoid functions with complicated argument passing semantics.
2080   AttributeList FnAttributeList = Fn->getAttributes();
2081   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2082       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2083       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2084       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2085     LLVM_DEBUG(
2086         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2087     return false;
2088   }
2089 
2090   // Avoid callbacks for now.
2091   bool AllCallSitesKnown;
2092   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2093                             AllCallSitesKnown)) {
2094     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2095     return false;
2096   }
2097 
2098   auto InstPred = [](Instruction &I) {
2099     if (auto *CI = dyn_cast<CallInst>(&I))
2100       return !CI->isMustTailCall();
2101     return true;
2102   };
2103 
2104   // Forbid must-tail calls for now.
2105   // TODO:
2106   bool UsedAssumedInformation = false;
2107   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2108   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2109                                    nullptr, {Instruction::Call},
2110                                    UsedAssumedInformation)) {
2111     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2112     return false;
2113   }
2114 
2115   return true;
2116 }
2117 
2118 bool Attributor::registerFunctionSignatureRewrite(
2119     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2120     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2121     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2122   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2123                     << Arg.getParent()->getName() << " with "
2124                     << ReplacementTypes.size() << " replacements\n");
2125   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2126          "Cannot register an invalid rewrite");
2127 
2128   Function *Fn = Arg.getParent();
2129   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2130       ArgumentReplacementMap[Fn];
2131   if (ARIs.empty())
2132     ARIs.resize(Fn->arg_size());
2133 
2134   // If we have a replacement already with less than or equal new arguments,
2135   // ignore this request.
2136   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2137   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2138     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2139     return false;
2140   }
2141 
2142   // If we have a replacement already but we like the new one better, delete
2143   // the old.
2144   ARI.reset();
2145 
2146   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2147                     << Arg.getParent()->getName() << " with "
2148                     << ReplacementTypes.size() << " replacements\n");
2149 
2150   // Remember the replacement.
2151   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2152                                         std::move(CalleeRepairCB),
2153                                         std::move(ACSRepairCB)));
2154 
2155   return true;
2156 }
2157 
2158 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2159   bool Result = true;
2160 #ifndef NDEBUG
2161   if (SeedAllowList.size() != 0)
2162     Result = llvm::is_contained(SeedAllowList, AA.getName());
2163   Function *Fn = AA.getAnchorScope();
2164   if (FunctionSeedAllowList.size() != 0 && Fn)
2165     Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2166 #endif
2167   return Result;
2168 }
2169 
2170 ChangeStatus Attributor::rewriteFunctionSignatures(
2171     SmallPtrSetImpl<Function *> &ModifiedFns) {
2172   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2173 
2174   for (auto &It : ArgumentReplacementMap) {
2175     Function *OldFn = It.getFirst();
2176 
2177     // Deleted functions do not require rewrites.
2178     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2179       continue;
2180 
2181     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2182         It.getSecond();
2183     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2184 
2185     SmallVector<Type *, 16> NewArgumentTypes;
2186     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2187 
2188     // Collect replacement argument types and copy over existing attributes.
2189     AttributeList OldFnAttributeList = OldFn->getAttributes();
2190     for (Argument &Arg : OldFn->args()) {
2191       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2192               ARIs[Arg.getArgNo()]) {
2193         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2194                                 ARI->ReplacementTypes.end());
2195         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2196                                      AttributeSet());
2197       } else {
2198         NewArgumentTypes.push_back(Arg.getType());
2199         NewArgumentAttributes.push_back(
2200             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2201       }
2202     }
2203 
2204     FunctionType *OldFnTy = OldFn->getFunctionType();
2205     Type *RetTy = OldFnTy->getReturnType();
2206 
2207     // Construct the new function type using the new arguments types.
2208     FunctionType *NewFnTy =
2209         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2210 
2211     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2212                       << "' from " << *OldFn->getFunctionType() << " to "
2213                       << *NewFnTy << "\n");
2214 
2215     // Create the new function body and insert it into the module.
2216     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2217                                        OldFn->getAddressSpace(), "");
2218     Functions.insert(NewFn);
2219     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2220     NewFn->takeName(OldFn);
2221     NewFn->copyAttributesFrom(OldFn);
2222 
2223     // Patch the pointer to LLVM function in debug info descriptor.
2224     NewFn->setSubprogram(OldFn->getSubprogram());
2225     OldFn->setSubprogram(nullptr);
2226 
2227     // Recompute the parameter attributes list based on the new arguments for
2228     // the function.
2229     LLVMContext &Ctx = OldFn->getContext();
2230     NewFn->setAttributes(AttributeList::get(
2231         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2232         NewArgumentAttributes));
2233 
2234     // Since we have now created the new function, splice the body of the old
2235     // function right into the new function, leaving the old rotting hulk of the
2236     // function empty.
2237     NewFn->getBasicBlockList().splice(NewFn->begin(),
2238                                       OldFn->getBasicBlockList());
2239 
2240     // Fixup block addresses to reference new function.
2241     SmallVector<BlockAddress *, 8u> BlockAddresses;
2242     for (User *U : OldFn->users())
2243       if (auto *BA = dyn_cast<BlockAddress>(U))
2244         BlockAddresses.push_back(BA);
2245     for (auto *BA : BlockAddresses)
2246       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2247 
2248     // Set of all "call-like" instructions that invoke the old function mapped
2249     // to their new replacements.
2250     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2251 
2252     // Callback to create a new "call-like" instruction for a given one.
2253     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2254       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2255       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2256 
2257       // Collect the new argument operands for the replacement call site.
2258       SmallVector<Value *, 16> NewArgOperands;
2259       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2260       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2261         unsigned NewFirstArgNum = NewArgOperands.size();
2262         (void)NewFirstArgNum; // only used inside assert.
2263         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2264                 ARIs[OldArgNum]) {
2265           if (ARI->ACSRepairCB)
2266             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2267           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2268                      NewArgOperands.size() &&
2269                  "ACS repair callback did not provide as many operand as new "
2270                  "types were registered!");
2271           // TODO: Exose the attribute set to the ACS repair callback
2272           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2273                                          AttributeSet());
2274         } else {
2275           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2276           NewArgOperandAttributes.push_back(
2277               OldCallAttributeList.getParamAttrs(OldArgNum));
2278         }
2279       }
2280 
2281       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2282              "Mismatch # argument operands vs. # argument operand attributes!");
2283       assert(NewArgOperands.size() == NewFn->arg_size() &&
2284              "Mismatch # argument operands vs. # function arguments!");
2285 
2286       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2287       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2288 
2289       // Create a new call or invoke instruction to replace the old one.
2290       CallBase *NewCB;
2291       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2292         NewCB =
2293             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2294                                NewArgOperands, OperandBundleDefs, "", OldCB);
2295       } else {
2296         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2297                                        "", OldCB);
2298         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2299         NewCB = NewCI;
2300       }
2301 
2302       // Copy over various properties and the new attributes.
2303       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2304       NewCB->setCallingConv(OldCB->getCallingConv());
2305       NewCB->takeName(OldCB);
2306       NewCB->setAttributes(AttributeList::get(
2307           Ctx, OldCallAttributeList.getFnAttrs(),
2308           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2309 
2310       CallSitePairs.push_back({OldCB, NewCB});
2311       return true;
2312     };
2313 
2314     // Use the CallSiteReplacementCreator to create replacement call sites.
2315     bool AllCallSitesKnown;
2316     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2317                                         true, nullptr, AllCallSitesKnown);
2318     (void)Success;
2319     assert(Success && "Assumed call site replacement to succeed!");
2320 
2321     // Rewire the arguments.
2322     Argument *OldFnArgIt = OldFn->arg_begin();
2323     Argument *NewFnArgIt = NewFn->arg_begin();
2324     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2325          ++OldArgNum, ++OldFnArgIt) {
2326       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2327               ARIs[OldArgNum]) {
2328         if (ARI->CalleeRepairCB)
2329           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2330         NewFnArgIt += ARI->ReplacementTypes.size();
2331       } else {
2332         NewFnArgIt->takeName(&*OldFnArgIt);
2333         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2334         ++NewFnArgIt;
2335       }
2336     }
2337 
2338     // Eliminate the instructions *after* we visited all of them.
2339     for (auto &CallSitePair : CallSitePairs) {
2340       CallBase &OldCB = *CallSitePair.first;
2341       CallBase &NewCB = *CallSitePair.second;
2342       assert(OldCB.getType() == NewCB.getType() &&
2343              "Cannot handle call sites with different types!");
2344       ModifiedFns.insert(OldCB.getFunction());
2345       CGUpdater.replaceCallSite(OldCB, NewCB);
2346       OldCB.replaceAllUsesWith(&NewCB);
2347       OldCB.eraseFromParent();
2348     }
2349 
2350     // Replace the function in the call graph (if any).
2351     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2352 
2353     // If the old function was modified and needed to be reanalyzed, the new one
2354     // does now.
2355     if (ModifiedFns.erase(OldFn))
2356       ModifiedFns.insert(NewFn);
2357 
2358     Changed = ChangeStatus::CHANGED;
2359   }
2360 
2361   return Changed;
2362 }
2363 
2364 void InformationCache::initializeInformationCache(const Function &CF,
2365                                                   FunctionInfo &FI) {
2366   // As we do not modify the function here we can remove the const
2367   // withouth breaking implicit assumptions. At the end of the day, we could
2368   // initialize the cache eagerly which would look the same to the users.
2369   Function &F = const_cast<Function &>(CF);
2370 
2371   // Walk all instructions to find interesting instructions that might be
2372   // queried by abstract attributes during their initialization or update.
2373   // This has to happen before we create attributes.
2374 
2375   for (Instruction &I : instructions(&F)) {
2376     bool IsInterestingOpcode = false;
2377 
2378     // To allow easy access to all instructions in a function with a given
2379     // opcode we store them in the InfoCache. As not all opcodes are interesting
2380     // to concrete attributes we only cache the ones that are as identified in
2381     // the following switch.
2382     // Note: There are no concrete attributes now so this is initially empty.
2383     switch (I.getOpcode()) {
2384     default:
2385       assert(!isa<CallBase>(&I) &&
2386              "New call base instruction type needs to be known in the "
2387              "Attributor.");
2388       break;
2389     case Instruction::Call:
2390       // Calls are interesting on their own, additionally:
2391       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2392       // For `must-tail` calls we remember the caller and callee.
2393       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2394         fillMapFromAssume(*Assume, KnowledgeMap);
2395       } else if (cast<CallInst>(I).isMustTailCall()) {
2396         FI.ContainsMustTailCall = true;
2397         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2398           getFunctionInfo(*Callee).CalledViaMustTail = true;
2399       }
2400       LLVM_FALLTHROUGH;
2401     case Instruction::CallBr:
2402     case Instruction::Invoke:
2403     case Instruction::CleanupRet:
2404     case Instruction::CatchSwitch:
2405     case Instruction::AtomicRMW:
2406     case Instruction::AtomicCmpXchg:
2407     case Instruction::Br:
2408     case Instruction::Resume:
2409     case Instruction::Ret:
2410     case Instruction::Load:
2411       // The alignment of a pointer is interesting for loads.
2412     case Instruction::Store:
2413       // The alignment of a pointer is interesting for stores.
2414     case Instruction::Alloca:
2415     case Instruction::AddrSpaceCast:
2416       IsInterestingOpcode = true;
2417     }
2418     if (IsInterestingOpcode) {
2419       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2420       if (!Insts)
2421         Insts = new (Allocator) InstructionVectorTy();
2422       Insts->push_back(&I);
2423     }
2424     if (I.mayReadOrWriteMemory())
2425       FI.RWInsts.push_back(&I);
2426   }
2427 
2428   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2429       isInlineViable(F).isSuccess())
2430     InlineableFunctions.insert(&F);
2431 }
2432 
2433 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2434   return AG.getAnalysis<AAManager>(F);
2435 }
2436 
2437 InformationCache::FunctionInfo::~FunctionInfo() {
2438   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2439   // manually destroy them.
2440   for (auto &It : OpcodeInstMap)
2441     It.getSecond()->~InstructionVectorTy();
2442 }
2443 
2444 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2445                                   const AbstractAttribute &ToAA,
2446                                   DepClassTy DepClass) {
2447   if (DepClass == DepClassTy::NONE)
2448     return;
2449   // If we are outside of an update, thus before the actual fixpoint iteration
2450   // started (= when we create AAs), we do not track dependences because we will
2451   // put all AAs into the initial worklist anyway.
2452   if (DependenceStack.empty())
2453     return;
2454   if (FromAA.getState().isAtFixpoint())
2455     return;
2456   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2457 }
2458 
2459 void Attributor::rememberDependences() {
2460   assert(!DependenceStack.empty() && "No dependences to remember!");
2461 
2462   for (DepInfo &DI : *DependenceStack.back()) {
2463     assert((DI.DepClass == DepClassTy::REQUIRED ||
2464             DI.DepClass == DepClassTy::OPTIONAL) &&
2465            "Expected required or optional dependence (1 bit)!");
2466     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2467     DepAAs.push_back(AbstractAttribute::DepTy(
2468         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2469   }
2470 }
2471 
2472 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2473   if (!VisitedFunctions.insert(&F).second)
2474     return;
2475   if (F.isDeclaration())
2476     return;
2477 
2478   // In non-module runs we need to look at the call sites of a function to
2479   // determine if it is part of a must-tail call edge. This will influence what
2480   // attributes we can derive.
2481   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2482   if (!isModulePass() && !FI.CalledViaMustTail) {
2483     for (const Use &U : F.uses())
2484       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2485         if (CB->isCallee(&U) && CB->isMustTailCall())
2486           FI.CalledViaMustTail = true;
2487   }
2488 
2489   IRPosition FPos = IRPosition::function(F);
2490 
2491   // Check for dead BasicBlocks in every function.
2492   // We need dead instruction detection because we do not want to deal with
2493   // broken IR in which SSA rules do not apply.
2494   getOrCreateAAFor<AAIsDead>(FPos);
2495 
2496   // Every function might be "will-return".
2497   getOrCreateAAFor<AAWillReturn>(FPos);
2498 
2499   // Every function might contain instructions that cause "undefined behavior".
2500   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2501 
2502   // Every function can be nounwind.
2503   getOrCreateAAFor<AANoUnwind>(FPos);
2504 
2505   // Every function might be marked "nosync"
2506   getOrCreateAAFor<AANoSync>(FPos);
2507 
2508   // Every function might be "no-free".
2509   getOrCreateAAFor<AANoFree>(FPos);
2510 
2511   // Every function might be "no-return".
2512   getOrCreateAAFor<AANoReturn>(FPos);
2513 
2514   // Every function might be "no-recurse".
2515   getOrCreateAAFor<AANoRecurse>(FPos);
2516 
2517   // Every function might be "readnone/readonly/writeonly/...".
2518   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2519 
2520   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2521   getOrCreateAAFor<AAMemoryLocation>(FPos);
2522 
2523   // Every function can track active assumptions.
2524   getOrCreateAAFor<AAAssumptionInfo>(FPos);
2525 
2526   // Every function might be applicable for Heap-To-Stack conversion.
2527   if (EnableHeapToStack)
2528     getOrCreateAAFor<AAHeapToStack>(FPos);
2529 
2530   // Return attributes are only appropriate if the return type is non void.
2531   Type *ReturnType = F.getReturnType();
2532   if (!ReturnType->isVoidTy()) {
2533     // Argument attribute "returned" --- Create only one per function even
2534     // though it is an argument attribute.
2535     getOrCreateAAFor<AAReturnedValues>(FPos);
2536 
2537     IRPosition RetPos = IRPosition::returned(F);
2538 
2539     // Every returned value might be dead.
2540     getOrCreateAAFor<AAIsDead>(RetPos);
2541 
2542     // Every function might be simplified.
2543     getOrCreateAAFor<AAValueSimplify>(RetPos);
2544 
2545     // Every returned value might be marked noundef.
2546     getOrCreateAAFor<AANoUndef>(RetPos);
2547 
2548     if (ReturnType->isPointerTy()) {
2549 
2550       // Every function with pointer return type might be marked align.
2551       getOrCreateAAFor<AAAlign>(RetPos);
2552 
2553       // Every function with pointer return type might be marked nonnull.
2554       getOrCreateAAFor<AANonNull>(RetPos);
2555 
2556       // Every function with pointer return type might be marked noalias.
2557       getOrCreateAAFor<AANoAlias>(RetPos);
2558 
2559       // Every function with pointer return type might be marked
2560       // dereferenceable.
2561       getOrCreateAAFor<AADereferenceable>(RetPos);
2562     }
2563   }
2564 
2565   for (Argument &Arg : F.args()) {
2566     IRPosition ArgPos = IRPosition::argument(Arg);
2567 
2568     // Every argument might be simplified. We have to go through the Attributor
2569     // interface though as outside AAs can register custom simplification
2570     // callbacks.
2571     bool UsedAssumedInformation = false;
2572     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2573 
2574     // Every argument might be dead.
2575     getOrCreateAAFor<AAIsDead>(ArgPos);
2576 
2577     // Every argument might be marked noundef.
2578     getOrCreateAAFor<AANoUndef>(ArgPos);
2579 
2580     if (Arg.getType()->isPointerTy()) {
2581       // Every argument with pointer type might be marked nonnull.
2582       getOrCreateAAFor<AANonNull>(ArgPos);
2583 
2584       // Every argument with pointer type might be marked noalias.
2585       getOrCreateAAFor<AANoAlias>(ArgPos);
2586 
2587       // Every argument with pointer type might be marked dereferenceable.
2588       getOrCreateAAFor<AADereferenceable>(ArgPos);
2589 
2590       // Every argument with pointer type might be marked align.
2591       getOrCreateAAFor<AAAlign>(ArgPos);
2592 
2593       // Every argument with pointer type might be marked nocapture.
2594       getOrCreateAAFor<AANoCapture>(ArgPos);
2595 
2596       // Every argument with pointer type might be marked
2597       // "readnone/readonly/writeonly/..."
2598       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2599 
2600       // Every argument with pointer type might be marked nofree.
2601       getOrCreateAAFor<AANoFree>(ArgPos);
2602 
2603       // Every argument with pointer type might be privatizable (or promotable)
2604       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2605     }
2606   }
2607 
2608   auto CallSitePred = [&](Instruction &I) -> bool {
2609     auto &CB = cast<CallBase>(I);
2610     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2611     IRPosition CBFnPos = IRPosition::callsite_function(CB);
2612 
2613     // Call sites might be dead if they do not have side effects and no live
2614     // users. The return value might be dead if there are no live users.
2615     getOrCreateAAFor<AAIsDead>(CBRetPos);
2616 
2617     Function *Callee = CB.getCalledFunction();
2618     // TODO: Even if the callee is not known now we might be able to simplify
2619     //       the call/callee.
2620     if (!Callee)
2621       return true;
2622 
2623     // Every call site can track active assumptions.
2624     getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
2625 
2626     // Skip declarations except if annotations on their call sites were
2627     // explicitly requested.
2628     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2629         !Callee->hasMetadata(LLVMContext::MD_callback))
2630       return true;
2631 
2632     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2633 
2634       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2635       getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2636     }
2637 
2638     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
2639 
2640       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2641 
2642       // Every call site argument might be dead.
2643       getOrCreateAAFor<AAIsDead>(CBArgPos);
2644 
2645       // Call site argument might be simplified. We have to go through the
2646       // Attributor interface though as outside AAs can register custom
2647       // simplification callbacks.
2648       bool UsedAssumedInformation = false;
2649       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2650 
2651       // Every call site argument might be marked "noundef".
2652       getOrCreateAAFor<AANoUndef>(CBArgPos);
2653 
2654       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2655         continue;
2656 
2657       // Call site argument attribute "non-null".
2658       getOrCreateAAFor<AANonNull>(CBArgPos);
2659 
2660       // Call site argument attribute "nocapture".
2661       getOrCreateAAFor<AANoCapture>(CBArgPos);
2662 
2663       // Call site argument attribute "no-alias".
2664       getOrCreateAAFor<AANoAlias>(CBArgPos);
2665 
2666       // Call site argument attribute "dereferenceable".
2667       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2668 
2669       // Call site argument attribute "align".
2670       getOrCreateAAFor<AAAlign>(CBArgPos);
2671 
2672       // Call site argument attribute
2673       // "readnone/readonly/writeonly/..."
2674       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2675 
2676       // Call site argument attribute "nofree".
2677       getOrCreateAAFor<AANoFree>(CBArgPos);
2678     }
2679     return true;
2680   };
2681 
2682   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2683   bool Success;
2684   bool UsedAssumedInformation = false;
2685   Success = checkForAllInstructionsImpl(
2686       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2687       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2688        (unsigned)Instruction::Call},
2689       UsedAssumedInformation);
2690   (void)Success;
2691   assert(Success && "Expected the check call to be successful!");
2692 
2693   auto LoadStorePred = [&](Instruction &I) -> bool {
2694     if (isa<LoadInst>(I)) {
2695       getOrCreateAAFor<AAAlign>(
2696           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2697       if (SimplifyAllLoads)
2698         getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2699     } else
2700       getOrCreateAAFor<AAAlign>(
2701           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2702     return true;
2703   };
2704   Success = checkForAllInstructionsImpl(
2705       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2706       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2707       UsedAssumedInformation);
2708   (void)Success;
2709   assert(Success && "Expected the check call to be successful!");
2710 }
2711 
2712 /// Helpers to ease debugging through output streams and print calls.
2713 ///
2714 ///{
2715 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2716   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2717 }
2718 
2719 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2720   switch (AP) {
2721   case IRPosition::IRP_INVALID:
2722     return OS << "inv";
2723   case IRPosition::IRP_FLOAT:
2724     return OS << "flt";
2725   case IRPosition::IRP_RETURNED:
2726     return OS << "fn_ret";
2727   case IRPosition::IRP_CALL_SITE_RETURNED:
2728     return OS << "cs_ret";
2729   case IRPosition::IRP_FUNCTION:
2730     return OS << "fn";
2731   case IRPosition::IRP_CALL_SITE:
2732     return OS << "cs";
2733   case IRPosition::IRP_ARGUMENT:
2734     return OS << "arg";
2735   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2736     return OS << "cs_arg";
2737   }
2738   llvm_unreachable("Unknown attribute position!");
2739 }
2740 
2741 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2742   const Value &AV = Pos.getAssociatedValue();
2743   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2744      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2745 
2746   if (Pos.hasCallBaseContext())
2747     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2748   return OS << "}";
2749 }
2750 
2751 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2752   OS << "range-state(" << S.getBitWidth() << ")<";
2753   S.getKnown().print(OS);
2754   OS << " / ";
2755   S.getAssumed().print(OS);
2756   OS << ">";
2757 
2758   return OS << static_cast<const AbstractState &>(S);
2759 }
2760 
2761 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2762   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2763 }
2764 
2765 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2766   AA.print(OS);
2767   return OS;
2768 }
2769 
2770 raw_ostream &llvm::operator<<(raw_ostream &OS,
2771                               const PotentialConstantIntValuesState &S) {
2772   OS << "set-state(< {";
2773   if (!S.isValidState())
2774     OS << "full-set";
2775   else {
2776     for (auto &it : S.getAssumedSet())
2777       OS << it << ", ";
2778     if (S.undefIsContained())
2779       OS << "undef ";
2780   }
2781   OS << "} >)";
2782 
2783   return OS;
2784 }
2785 
2786 void AbstractAttribute::print(raw_ostream &OS) const {
2787   OS << "[";
2788   OS << getName();
2789   OS << "] for CtxI ";
2790 
2791   if (auto *I = getCtxI()) {
2792     OS << "'";
2793     I->print(OS);
2794     OS << "'";
2795   } else
2796     OS << "<<null inst>>";
2797 
2798   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2799      << '\n';
2800 }
2801 
2802 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2803   print(OS);
2804 
2805   for (const auto &DepAA : Deps) {
2806     auto *AA = DepAA.getPointer();
2807     OS << "  updates ";
2808     AA->print(OS);
2809   }
2810 
2811   OS << '\n';
2812 }
2813 
2814 raw_ostream &llvm::operator<<(raw_ostream &OS,
2815                               const AAPointerInfo::Access &Acc) {
2816   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
2817   if (Acc.getLocalInst() != Acc.getRemoteInst())
2818     OS << " via " << *Acc.getLocalInst();
2819   if (Acc.getContent().hasValue())
2820     OS << " [" << *Acc.getContent() << "]";
2821   return OS;
2822 }
2823 ///}
2824 
2825 /// ----------------------------------------------------------------------------
2826 ///                       Pass (Manager) Boilerplate
2827 /// ----------------------------------------------------------------------------
2828 
2829 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2830                                      SetVector<Function *> &Functions,
2831                                      AnalysisGetter &AG,
2832                                      CallGraphUpdater &CGUpdater,
2833                                      bool DeleteFns) {
2834   if (Functions.empty())
2835     return false;
2836 
2837   LLVM_DEBUG({
2838     dbgs() << "[Attributor] Run on module with " << Functions.size()
2839            << " functions:\n";
2840     for (Function *Fn : Functions)
2841       dbgs() << "  - " << Fn->getName() << "\n";
2842   });
2843 
2844   // Create an Attributor and initially empty information cache that is filled
2845   // while we identify default attribute opportunities.
2846   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2847                DeleteFns);
2848 
2849   // Create shallow wrappers for all functions that are not IPO amendable
2850   if (AllowShallowWrappers)
2851     for (Function *F : Functions)
2852       if (!A.isFunctionIPOAmendable(*F))
2853         Attributor::createShallowWrapper(*F);
2854 
2855   // Internalize non-exact functions
2856   // TODO: for now we eagerly internalize functions without calculating the
2857   //       cost, we need a cost interface to determine whether internalizing
2858   //       a function is "benefitial"
2859   if (AllowDeepWrapper) {
2860     unsigned FunSize = Functions.size();
2861     for (unsigned u = 0; u < FunSize; u++) {
2862       Function *F = Functions[u];
2863       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2864           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2865         Function *NewF = Attributor::internalizeFunction(*F);
2866         assert(NewF && "Could not internalize function.");
2867         Functions.insert(NewF);
2868 
2869         // Update call graph
2870         CGUpdater.replaceFunctionWith(*F, *NewF);
2871         for (const Use &U : NewF->uses())
2872           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2873             auto *CallerF = CB->getCaller();
2874             CGUpdater.reanalyzeFunction(*CallerF);
2875           }
2876       }
2877     }
2878   }
2879 
2880   for (Function *F : Functions) {
2881     if (F->hasExactDefinition())
2882       NumFnWithExactDefinition++;
2883     else
2884       NumFnWithoutExactDefinition++;
2885 
2886     // We look at internal functions only on-demand but if any use is not a
2887     // direct call or outside the current set of analyzed functions, we have
2888     // to do it eagerly.
2889     if (F->hasLocalLinkage()) {
2890       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2891             const auto *CB = dyn_cast<CallBase>(U.getUser());
2892             return CB && CB->isCallee(&U) &&
2893                    Functions.count(const_cast<Function *>(CB->getCaller()));
2894           }))
2895         continue;
2896     }
2897 
2898     // Populate the Attributor with abstract attribute opportunities in the
2899     // function and the information cache with IR information.
2900     A.identifyDefaultAbstractAttributes(*F);
2901   }
2902 
2903   ChangeStatus Changed = A.run();
2904 
2905   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2906                     << " functions, result: " << Changed << ".\n");
2907   return Changed == ChangeStatus::CHANGED;
2908 }
2909 
2910 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2911 
2912 void AADepGraph::dumpGraph() {
2913   static std::atomic<int> CallTimes;
2914   std::string Prefix;
2915 
2916   if (!DepGraphDotFileNamePrefix.empty())
2917     Prefix = DepGraphDotFileNamePrefix;
2918   else
2919     Prefix = "dep_graph";
2920   std::string Filename =
2921       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2922 
2923   outs() << "Dependency graph dump to " << Filename << ".\n";
2924 
2925   std::error_code EC;
2926 
2927   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2928   if (!EC)
2929     llvm::WriteGraph(File, this);
2930 
2931   CallTimes++;
2932 }
2933 
2934 void AADepGraph::print() {
2935   for (auto DepAA : SyntheticRoot.Deps)
2936     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2937 }
2938 
2939 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2940   FunctionAnalysisManager &FAM =
2941       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2942   AnalysisGetter AG(FAM);
2943 
2944   SetVector<Function *> Functions;
2945   for (Function &F : M)
2946     Functions.insert(&F);
2947 
2948   CallGraphUpdater CGUpdater;
2949   BumpPtrAllocator Allocator;
2950   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2951   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2952                                /* DeleteFns */ true)) {
2953     // FIXME: Think about passes we will preserve and add them here.
2954     return PreservedAnalyses::none();
2955   }
2956   return PreservedAnalyses::all();
2957 }
2958 
2959 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2960                                            CGSCCAnalysisManager &AM,
2961                                            LazyCallGraph &CG,
2962                                            CGSCCUpdateResult &UR) {
2963   FunctionAnalysisManager &FAM =
2964       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2965   AnalysisGetter AG(FAM);
2966 
2967   SetVector<Function *> Functions;
2968   for (LazyCallGraph::Node &N : C)
2969     Functions.insert(&N.getFunction());
2970 
2971   if (Functions.empty())
2972     return PreservedAnalyses::all();
2973 
2974   Module &M = *Functions.back()->getParent();
2975   CallGraphUpdater CGUpdater;
2976   CGUpdater.initialize(CG, C, AM, UR);
2977   BumpPtrAllocator Allocator;
2978   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2979   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2980                                /* DeleteFns */ false)) {
2981     // FIXME: Think about passes we will preserve and add them here.
2982     PreservedAnalyses PA;
2983     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2984     return PA;
2985   }
2986   return PreservedAnalyses::all();
2987 }
2988 
2989 namespace llvm {
2990 
2991 template <> struct GraphTraits<AADepGraphNode *> {
2992   using NodeRef = AADepGraphNode *;
2993   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2994   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2995 
2996   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2997   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2998 
2999   using ChildIteratorType =
3000       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3001   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
3002 
3003   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
3004 
3005   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
3006 };
3007 
3008 template <>
3009 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
3010   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
3011 
3012   using nodes_iterator =
3013       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3014 
3015   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
3016 
3017   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
3018 };
3019 
3020 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
3021   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3022 
3023   static std::string getNodeLabel(const AADepGraphNode *Node,
3024                                   const AADepGraph *DG) {
3025     std::string AAString;
3026     raw_string_ostream O(AAString);
3027     Node->print(O);
3028     return AAString;
3029   }
3030 };
3031 
3032 } // end namespace llvm
3033 
3034 namespace {
3035 
3036 struct AttributorLegacyPass : public ModulePass {
3037   static char ID;
3038 
3039   AttributorLegacyPass() : ModulePass(ID) {
3040     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3041   }
3042 
3043   bool runOnModule(Module &M) override {
3044     if (skipModule(M))
3045       return false;
3046 
3047     AnalysisGetter AG;
3048     SetVector<Function *> Functions;
3049     for (Function &F : M)
3050       Functions.insert(&F);
3051 
3052     CallGraphUpdater CGUpdater;
3053     BumpPtrAllocator Allocator;
3054     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3055     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3056                                     /* DeleteFns*/ true);
3057   }
3058 
3059   void getAnalysisUsage(AnalysisUsage &AU) const override {
3060     // FIXME: Think about passes we will preserve and add them here.
3061     AU.addRequired<TargetLibraryInfoWrapperPass>();
3062   }
3063 };
3064 
3065 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3066   static char ID;
3067 
3068   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3069     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3070   }
3071 
3072   bool runOnSCC(CallGraphSCC &SCC) override {
3073     if (skipSCC(SCC))
3074       return false;
3075 
3076     SetVector<Function *> Functions;
3077     for (CallGraphNode *CGN : SCC)
3078       if (Function *Fn = CGN->getFunction())
3079         if (!Fn->isDeclaration())
3080           Functions.insert(Fn);
3081 
3082     if (Functions.empty())
3083       return false;
3084 
3085     AnalysisGetter AG;
3086     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3087     CallGraphUpdater CGUpdater;
3088     CGUpdater.initialize(CG, SCC);
3089     Module &M = *Functions.back()->getParent();
3090     BumpPtrAllocator Allocator;
3091     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3092     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3093                                     /* DeleteFns */ false);
3094   }
3095 
3096   void getAnalysisUsage(AnalysisUsage &AU) const override {
3097     // FIXME: Think about passes we will preserve and add them here.
3098     AU.addRequired<TargetLibraryInfoWrapperPass>();
3099     CallGraphSCCPass::getAnalysisUsage(AU);
3100   }
3101 };
3102 
3103 } // end anonymous namespace
3104 
3105 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3106 Pass *llvm::createAttributorCGSCCLegacyPass() {
3107   return new AttributorCGSCCLegacyPass();
3108 }
3109 
3110 char AttributorLegacyPass::ID = 0;
3111 char AttributorCGSCCLegacyPass::ID = 0;
3112 
3113 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3114                       "Deduce and propagate attributes", false, false)
3115 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3116 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3117                     "Deduce and propagate attributes", false, false)
3118 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3119                       "Deduce and propagate attributes (CGSCC pass)", false,
3120                       false)
3121 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3122 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3123 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3124                     "Deduce and propagate attributes (CGSCC pass)", false,
3125                     false)
3126