1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MustExecute.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/NoFolder.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/FileSystem.h"
34 #include "llvm/Support/GraphWriter.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 
39 #include <cassert>
40 #include <string>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "attributor"
45 
46 STATISTIC(NumFnDeleted, "Number of function deleted");
47 STATISTIC(NumFnWithExactDefinition,
48           "Number of functions with exact definitions");
49 STATISTIC(NumFnWithoutExactDefinition,
50           "Number of functions without exact definitions");
51 STATISTIC(NumFnShallowWrapperCreated, "Number of shallow wrappers created");
52 STATISTIC(NumAttributesTimedOut,
53           "Number of abstract attributes timed out before fixpoint");
54 STATISTIC(NumAttributesValidFixpoint,
55           "Number of abstract attributes in a valid fixpoint state");
56 STATISTIC(NumAttributesManifested,
57           "Number of abstract attributes manifested in IR");
58 STATISTIC(NumAttributesFixedDueToRequiredDependences,
59           "Number of abstract attributes fixed due to required dependences");
60 
61 // TODO: Determine a good default value.
62 //
63 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
64 // (when run with the first 5 abstract attributes). The results also indicate
65 // that we never reach 32 iterations but always find a fixpoint sooner.
66 //
67 // This will become more evolved once we perform two interleaved fixpoint
68 // iterations: bottom-up and top-down.
69 static cl::opt<unsigned>
70     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
71                           cl::desc("Maximal number of fixpoint iterations."),
72                           cl::init(32));
73 static cl::opt<bool> VerifyMaxFixpointIterations(
74     "attributor-max-iterations-verify", cl::Hidden,
75     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
76     cl::init(false));
77 
78 static cl::opt<bool> AnnotateDeclarationCallSites(
79     "attributor-annotate-decl-cs", cl::Hidden,
80     cl::desc("Annotate call sites of function declarations."), cl::init(false));
81 
82 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
83                                        cl::init(true), cl::Hidden);
84 
85 static cl::opt<bool>
86     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
87                          cl::desc("Allow the Attributor to create shallow "
88                                   "wrappers for non-exact definitions."),
89                          cl::init(false));
90 
91 static cl::list<std::string>
92     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
93                   cl::desc("Comma seperated list of attrbute names that are "
94                            "allowed to be seeded."),
95                   cl::ZeroOrMore, cl::CommaSeparated);
96 
97 static cl::opt<bool>
98     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
99                  cl::desc("Dump the dependency graph to dot files."),
100                  cl::init(false));
101 
102 static cl::opt<std::string> DepGraphDotFileNamePrefix(
103     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
104     cl::desc("The prefix used for the CallGraph dot file names."));
105 
106 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
107                                   cl::desc("View the dependency graph."),
108                                   cl::init(false));
109 
110 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
111                                        cl::desc("Print attribute dependencies"),
112                                        cl::init(false));
113 
114 /// Logic operators for the change status enum class.
115 ///
116 ///{
117 ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
118   return l == ChangeStatus::CHANGED ? l : r;
119 }
120 ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
121   return l == ChangeStatus::UNCHANGED ? l : r;
122 }
123 ///}
124 
125 /// Return true if \p New is equal or worse than \p Old.
126 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
127   if (!Old.isIntAttribute())
128     return true;
129 
130   return Old.getValueAsInt() >= New.getValueAsInt();
131 }
132 
133 /// Return true if the information provided by \p Attr was added to the
134 /// attribute list \p Attrs. This is only the case if it was not already present
135 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
136 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
137                              AttributeList &Attrs, int AttrIdx) {
138 
139   if (Attr.isEnumAttribute()) {
140     Attribute::AttrKind Kind = Attr.getKindAsEnum();
141     if (Attrs.hasAttribute(AttrIdx, Kind))
142       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
143         return false;
144     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
145     return true;
146   }
147   if (Attr.isStringAttribute()) {
148     StringRef Kind = Attr.getKindAsString();
149     if (Attrs.hasAttribute(AttrIdx, Kind))
150       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
151         return false;
152     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
153     return true;
154   }
155   if (Attr.isIntAttribute()) {
156     Attribute::AttrKind Kind = Attr.getKindAsEnum();
157     if (Attrs.hasAttribute(AttrIdx, Kind))
158       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
159         return false;
160     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
161     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
162     return true;
163   }
164 
165   llvm_unreachable("Expected enum or string attribute!");
166 }
167 
168 Argument *IRPosition::getAssociatedArgument() const {
169   if (getPositionKind() == IRP_ARGUMENT)
170     return cast<Argument>(&getAnchorValue());
171 
172   // Not an Argument and no argument number means this is not a call site
173   // argument, thus we cannot find a callback argument to return.
174   int ArgNo = getArgNo();
175   if (ArgNo < 0)
176     return nullptr;
177 
178   // Use abstract call sites to make the connection between the call site
179   // values and the ones in callbacks. If a callback was found that makes use
180   // of the underlying call site operand, we want the corresponding callback
181   // callee argument and not the direct callee argument.
182   Optional<Argument *> CBCandidateArg;
183   SmallVector<const Use *, 4> CallbackUses;
184   const auto &CB = cast<CallBase>(getAnchorValue());
185   AbstractCallSite::getCallbackUses(CB, CallbackUses);
186   for (const Use *U : CallbackUses) {
187     AbstractCallSite ACS(U);
188     assert(ACS && ACS.isCallbackCall());
189     if (!ACS.getCalledFunction())
190       continue;
191 
192     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
193 
194       // Test if the underlying call site operand is argument number u of the
195       // callback callee.
196       if (ACS.getCallArgOperandNo(u) != ArgNo)
197         continue;
198 
199       assert(ACS.getCalledFunction()->arg_size() > u &&
200              "ACS mapped into var-args arguments!");
201       if (CBCandidateArg.hasValue()) {
202         CBCandidateArg = nullptr;
203         break;
204       }
205       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
206     }
207   }
208 
209   // If we found a unique callback candidate argument, return it.
210   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
211     return CBCandidateArg.getValue();
212 
213   // If no callbacks were found, or none used the underlying call site operand
214   // exclusively, use the direct callee argument if available.
215   const Function *Callee = CB.getCalledFunction();
216   if (Callee && Callee->arg_size() > unsigned(ArgNo))
217     return Callee->getArg(ArgNo);
218 
219   return nullptr;
220 }
221 
222 ChangeStatus AbstractAttribute::update(Attributor &A) {
223   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
224   if (getState().isAtFixpoint())
225     return HasChanged;
226 
227   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
228 
229   HasChanged = updateImpl(A);
230 
231   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
232                     << "\n");
233 
234   return HasChanged;
235 }
236 
237 ChangeStatus
238 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
239                                    const ArrayRef<Attribute> &DeducedAttrs) {
240   Function *ScopeFn = IRP.getAnchorScope();
241   IRPosition::Kind PK = IRP.getPositionKind();
242 
243   // In the following some generic code that will manifest attributes in
244   // DeducedAttrs if they improve the current IR. Due to the different
245   // annotation positions we use the underlying AttributeList interface.
246 
247   AttributeList Attrs;
248   switch (PK) {
249   case IRPosition::IRP_INVALID:
250   case IRPosition::IRP_FLOAT:
251     return ChangeStatus::UNCHANGED;
252   case IRPosition::IRP_ARGUMENT:
253   case IRPosition::IRP_FUNCTION:
254   case IRPosition::IRP_RETURNED:
255     Attrs = ScopeFn->getAttributes();
256     break;
257   case IRPosition::IRP_CALL_SITE:
258   case IRPosition::IRP_CALL_SITE_RETURNED:
259   case IRPosition::IRP_CALL_SITE_ARGUMENT:
260     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
261     break;
262   }
263 
264   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
265   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
266   for (const Attribute &Attr : DeducedAttrs) {
267     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
268       continue;
269 
270     HasChanged = ChangeStatus::CHANGED;
271   }
272 
273   if (HasChanged == ChangeStatus::UNCHANGED)
274     return HasChanged;
275 
276   switch (PK) {
277   case IRPosition::IRP_ARGUMENT:
278   case IRPosition::IRP_FUNCTION:
279   case IRPosition::IRP_RETURNED:
280     ScopeFn->setAttributes(Attrs);
281     break;
282   case IRPosition::IRP_CALL_SITE:
283   case IRPosition::IRP_CALL_SITE_RETURNED:
284   case IRPosition::IRP_CALL_SITE_ARGUMENT:
285     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
286     break;
287   case IRPosition::IRP_INVALID:
288   case IRPosition::IRP_FLOAT:
289     break;
290   }
291 
292   return HasChanged;
293 }
294 
295 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
296 const IRPosition
297     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
298 
299 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
300   IRPositions.emplace_back(IRP);
301 
302   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
303   switch (IRP.getPositionKind()) {
304   case IRPosition::IRP_INVALID:
305   case IRPosition::IRP_FLOAT:
306   case IRPosition::IRP_FUNCTION:
307     return;
308   case IRPosition::IRP_ARGUMENT:
309   case IRPosition::IRP_RETURNED:
310     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
311     return;
312   case IRPosition::IRP_CALL_SITE:
313     assert(CB && "Expected call site!");
314     // TODO: We need to look at the operand bundles similar to the redirection
315     //       in CallBase.
316     if (!CB->hasOperandBundles())
317       if (const Function *Callee = CB->getCalledFunction())
318         IRPositions.emplace_back(IRPosition::function(*Callee));
319     return;
320   case IRPosition::IRP_CALL_SITE_RETURNED:
321     assert(CB && "Expected call site!");
322     // TODO: We need to look at the operand bundles similar to the redirection
323     //       in CallBase.
324     if (!CB->hasOperandBundles()) {
325       if (const Function *Callee = CB->getCalledFunction()) {
326         IRPositions.emplace_back(IRPosition::returned(*Callee));
327         IRPositions.emplace_back(IRPosition::function(*Callee));
328         for (const Argument &Arg : Callee->args())
329           if (Arg.hasReturnedAttr()) {
330             IRPositions.emplace_back(
331                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
332             IRPositions.emplace_back(
333                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
334             IRPositions.emplace_back(IRPosition::argument(Arg));
335           }
336       }
337     }
338     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
339     return;
340   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
341     int ArgNo = IRP.getArgNo();
342     assert(CB && ArgNo >= 0 && "Expected call site!");
343     // TODO: We need to look at the operand bundles similar to the redirection
344     //       in CallBase.
345     if (!CB->hasOperandBundles()) {
346       const Function *Callee = CB->getCalledFunction();
347       if (Callee && Callee->arg_size() > unsigned(ArgNo))
348         IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
349       if (Callee)
350         IRPositions.emplace_back(IRPosition::function(*Callee));
351     }
352     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
353     return;
354   }
355   }
356 }
357 
358 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
359                          bool IgnoreSubsumingPositions, Attributor *A) const {
360   SmallVector<Attribute, 4> Attrs;
361   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
362     for (Attribute::AttrKind AK : AKs)
363       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
364         return true;
365     // The first position returned by the SubsumingPositionIterator is
366     // always the position itself. If we ignore subsuming positions we
367     // are done after the first iteration.
368     if (IgnoreSubsumingPositions)
369       break;
370   }
371   if (A)
372     for (Attribute::AttrKind AK : AKs)
373       if (getAttrsFromAssumes(AK, Attrs, *A))
374         return true;
375   return false;
376 }
377 
378 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
379                           SmallVectorImpl<Attribute> &Attrs,
380                           bool IgnoreSubsumingPositions, Attributor *A) const {
381   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
382     for (Attribute::AttrKind AK : AKs)
383       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
384     // The first position returned by the SubsumingPositionIterator is
385     // always the position itself. If we ignore subsuming positions we
386     // are done after the first iteration.
387     if (IgnoreSubsumingPositions)
388       break;
389   }
390   if (A)
391     for (Attribute::AttrKind AK : AKs)
392       getAttrsFromAssumes(AK, Attrs, *A);
393 }
394 
395 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
396                                     SmallVectorImpl<Attribute> &Attrs) const {
397   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
398     return false;
399 
400   AttributeList AttrList;
401   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
402     AttrList = CB->getAttributes();
403   else
404     AttrList = getAssociatedFunction()->getAttributes();
405 
406   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
407   if (HasAttr)
408     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
409   return HasAttr;
410 }
411 
412 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
413                                      SmallVectorImpl<Attribute> &Attrs,
414                                      Attributor &A) const {
415   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
416   Value &AssociatedValue = getAssociatedValue();
417 
418   const Assume2KnowledgeMap &A2K =
419       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
420 
421   // Check if we found any potential assume use, if not we don't need to create
422   // explorer iterators.
423   if (A2K.empty())
424     return false;
425 
426   LLVMContext &Ctx = AssociatedValue.getContext();
427   unsigned AttrsSize = Attrs.size();
428   MustBeExecutedContextExplorer &Explorer =
429       A.getInfoCache().getMustBeExecutedContextExplorer();
430   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
431   for (auto &It : A2K)
432     if (Explorer.findInContextOf(It.first, EIt, EEnd))
433       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
434   return AttrsSize != Attrs.size();
435 }
436 
437 void IRPosition::verify() {
438 #ifdef EXPENSIVE_CHECKS
439   switch (getPositionKind()) {
440   case IRP_INVALID:
441     assert(!Enc.getOpaqueValue() &&
442            "Expected a nullptr for an invalid position!");
443     return;
444   case IRP_FLOAT:
445     assert((!isa<CallBase>(&getAssociatedValue()) &&
446             !isa<Argument>(&getAssociatedValue())) &&
447            "Expected specialized kind for call base and argument values!");
448     return;
449   case IRP_RETURNED:
450     assert(isa<Function>(getAsValuePtr()) &&
451            "Expected function for a 'returned' position!");
452     assert(getAsValuePtr() == &getAssociatedValue() &&
453            "Associated value mismatch!");
454     return;
455   case IRP_CALL_SITE_RETURNED:
456     assert((isa<CallBase>(getAsValuePtr())) &&
457            "Expected call base for 'call site returned' position!");
458     assert(getAsValuePtr() == &getAssociatedValue() &&
459            "Associated value mismatch!");
460     return;
461   case IRP_CALL_SITE:
462     assert((isa<CallBase>(getAsValuePtr())) &&
463            "Expected call base for 'call site function' position!");
464     assert(getAsValuePtr() == &getAssociatedValue() &&
465            "Associated value mismatch!");
466     return;
467   case IRP_FUNCTION:
468     assert(isa<Function>(getAsValuePtr()) &&
469            "Expected function for a 'function' position!");
470     assert(getAsValuePtr() == &getAssociatedValue() &&
471            "Associated value mismatch!");
472     return;
473   case IRP_ARGUMENT:
474     assert(isa<Argument>(getAsValuePtr()) &&
475            "Expected argument for a 'argument' position!");
476     assert(getAsValuePtr() == &getAssociatedValue() &&
477            "Associated value mismatch!");
478     return;
479   case IRP_CALL_SITE_ARGUMENT: {
480     Use *U = getAsUsePtr();
481     assert(U && "Expected use for a 'call site argument' position!");
482     assert(isa<CallBase>(U->getUser()) &&
483            "Expected call base user for a 'call site argument' position!");
484     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
485            "Expected call base argument operand for a 'call site argument' "
486            "position");
487     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
488                unsigned(getArgNo()) &&
489            "Argument number mismatch!");
490     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
491     return;
492   }
493   }
494 #endif
495 }
496 
497 Optional<Constant *>
498 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
499                                bool &UsedAssumedInformation) {
500   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
501       AA, IRPosition::value(V), /* TrackDependence */ false);
502   Optional<Value *> SimplifiedV =
503       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
504   bool IsKnown = ValueSimplifyAA.isKnown();
505   UsedAssumedInformation |= !IsKnown;
506   if (!SimplifiedV.hasValue()) {
507     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
508     return llvm::None;
509   }
510   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
511     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
512     return llvm::None;
513   }
514   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
515   if (CI && CI->getType() != V.getType()) {
516     // TODO: Check for a save conversion.
517     return nullptr;
518   }
519   if (CI)
520     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
521   return CI;
522 }
523 
524 Attributor::~Attributor() {
525   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
526   // thus we cannot delete them. We can, and want to, destruct them though.
527   for (auto &DepAA : DG.SyntheticRoot.Deps) {
528     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
529     AA->~AbstractAttribute();
530   }
531 }
532 
533 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
534                                const AAIsDead *FnLivenessAA,
535                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
536   const IRPosition &IRP = AA.getIRPosition();
537   if (!Functions.count(IRP.getAnchorScope()))
538     return false;
539   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
540 }
541 
542 bool Attributor::isAssumedDead(const Use &U,
543                                const AbstractAttribute *QueryingAA,
544                                const AAIsDead *FnLivenessAA,
545                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
546   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
547   if (!UserI)
548     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
549                          CheckBBLivenessOnly, DepClass);
550 
551   if (auto *CB = dyn_cast<CallBase>(UserI)) {
552     // For call site argument uses we can check if the argument is
553     // unused/dead.
554     if (CB->isArgOperand(&U)) {
555       const IRPosition &CSArgPos =
556           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
557       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
558                            CheckBBLivenessOnly, DepClass);
559     }
560   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
561     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
562     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
563                          DepClass);
564   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
565     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
566     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
567                          CheckBBLivenessOnly, DepClass);
568   }
569 
570   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
571                        CheckBBLivenessOnly, DepClass);
572 }
573 
574 bool Attributor::isAssumedDead(const Instruction &I,
575                                const AbstractAttribute *QueryingAA,
576                                const AAIsDead *FnLivenessAA,
577                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
578   if (!FnLivenessAA)
579     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
580                                          QueryingAA,
581                                          /* TrackDependence */ false);
582 
583   // If we have a context instruction and a liveness AA we use it.
584   if (FnLivenessAA &&
585       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
586       FnLivenessAA->isAssumedDead(&I)) {
587     if (QueryingAA)
588       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
589     return true;
590   }
591 
592   if (CheckBBLivenessOnly)
593     return false;
594 
595   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
596       IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
597   // Don't check liveness for AAIsDead.
598   if (QueryingAA == &IsDeadAA)
599     return false;
600 
601   if (IsDeadAA.isAssumedDead()) {
602     if (QueryingAA)
603       recordDependence(IsDeadAA, *QueryingAA, DepClass);
604     return true;
605   }
606 
607   return false;
608 }
609 
610 bool Attributor::isAssumedDead(const IRPosition &IRP,
611                                const AbstractAttribute *QueryingAA,
612                                const AAIsDead *FnLivenessAA,
613                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
614   Instruction *CtxI = IRP.getCtxI();
615   if (CtxI &&
616       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
617                     /* CheckBBLivenessOnly */ true,
618                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
619     return true;
620 
621   if (CheckBBLivenessOnly)
622     return false;
623 
624   // If we haven't succeeded we query the specific liveness info for the IRP.
625   const AAIsDead *IsDeadAA;
626   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
627     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
628         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
629         QueryingAA, /* TrackDependence */ false);
630   else
631     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
632                                            /* TrackDependence */ false);
633   // Don't check liveness for AAIsDead.
634   if (QueryingAA == IsDeadAA)
635     return false;
636 
637   if (IsDeadAA->isAssumedDead()) {
638     if (QueryingAA)
639       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
640     return true;
641   }
642 
643   return false;
644 }
645 
646 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
647                                  const AbstractAttribute &QueryingAA,
648                                  const Value &V, DepClassTy LivenessDepClass) {
649 
650   // Check the trivial case first as it catches void values.
651   if (V.use_empty())
652     return true;
653 
654   // If the value is replaced by another one, for now a constant, we do not have
655   // uses. Note that this requires users of `checkForAllUses` to not recurse but
656   // instead use the `follow` callback argument to look at transitive users,
657   // however, that should be clear from the presence of the argument.
658   bool UsedAssumedInformation = false;
659   Optional<Constant *> C =
660       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
661   if (C.hasValue() && C.getValue()) {
662     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
663                       << " -> " << *C.getValue() << "\n");
664     return true;
665   }
666 
667   const IRPosition &IRP = QueryingAA.getIRPosition();
668   SmallVector<const Use *, 16> Worklist;
669   SmallPtrSet<const Use *, 16> Visited;
670 
671   for (const Use &U : V.uses())
672     Worklist.push_back(&U);
673 
674   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
675                     << " initial uses to check\n");
676 
677   const Function *ScopeFn = IRP.getAnchorScope();
678   const auto *LivenessAA =
679       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
680                                     /* TrackDependence */ false)
681               : nullptr;
682 
683   while (!Worklist.empty()) {
684     const Use *U = Worklist.pop_back_val();
685     if (!Visited.insert(U).second)
686       continue;
687     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
688                       << *U->getUser() << "\n");
689     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
690                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
691       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
692       continue;
693     }
694     if (U->getUser()->isDroppable()) {
695       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
696       continue;
697     }
698 
699     bool Follow = false;
700     if (!Pred(*U, Follow))
701       return false;
702     if (!Follow)
703       continue;
704     for (const Use &UU : U->getUser()->uses())
705       Worklist.push_back(&UU);
706   }
707 
708   return true;
709 }
710 
711 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
712                                       const AbstractAttribute &QueryingAA,
713                                       bool RequireAllCallSites,
714                                       bool &AllCallSitesKnown) {
715   // We can try to determine information from
716   // the call sites. However, this is only possible all call sites are known,
717   // hence the function has internal linkage.
718   const IRPosition &IRP = QueryingAA.getIRPosition();
719   const Function *AssociatedFunction = IRP.getAssociatedFunction();
720   if (!AssociatedFunction) {
721     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
722                       << "\n");
723     AllCallSitesKnown = false;
724     return false;
725   }
726 
727   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
728                               &QueryingAA, AllCallSitesKnown);
729 }
730 
731 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
732                                       const Function &Fn,
733                                       bool RequireAllCallSites,
734                                       const AbstractAttribute *QueryingAA,
735                                       bool &AllCallSitesKnown) {
736   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
737     LLVM_DEBUG(
738         dbgs()
739         << "[Attributor] Function " << Fn.getName()
740         << " has no internal linkage, hence not all call sites are known\n");
741     AllCallSitesKnown = false;
742     return false;
743   }
744 
745   // If we do not require all call sites we might not see all.
746   AllCallSitesKnown = RequireAllCallSites;
747 
748   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
749   for (unsigned u = 0; u < Uses.size(); ++u) {
750     const Use &U = *Uses[u];
751     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
752                       << *U.getUser() << "\n");
753     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
754       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
755       continue;
756     }
757     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
758       if (CE->isCast() && CE->getType()->isPointerTy() &&
759           CE->getType()->getPointerElementType()->isFunctionTy()) {
760         for (const Use &CEU : CE->uses())
761           Uses.push_back(&CEU);
762         continue;
763       }
764     }
765 
766     AbstractCallSite ACS(&U);
767     if (!ACS) {
768       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
769                         << " has non call site use " << *U.get() << " in "
770                         << *U.getUser() << "\n");
771       // BlockAddress users are allowed.
772       if (isa<BlockAddress>(U.getUser()))
773         continue;
774       return false;
775     }
776 
777     const Use *EffectiveUse =
778         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
779     if (!ACS.isCallee(EffectiveUse)) {
780       if (!RequireAllCallSites)
781         continue;
782       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
783                         << " is an invalid use of " << Fn.getName() << "\n");
784       return false;
785     }
786 
787     // Make sure the arguments that can be matched between the call site and the
788     // callee argee on their type. It is unlikely they do not and it doesn't
789     // make sense for all attributes to know/care about this.
790     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
791     unsigned MinArgsParams =
792         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
793     for (unsigned u = 0; u < MinArgsParams; ++u) {
794       Value *CSArgOp = ACS.getCallArgOperand(u);
795       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
796         LLVM_DEBUG(
797             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
798                    << u << "@" << Fn.getName() << ": "
799                    << *Fn.getArg(u)->getType() << " vs. "
800                    << *ACS.getCallArgOperand(u)->getType() << "\n");
801         return false;
802       }
803     }
804 
805     if (Pred(ACS))
806       continue;
807 
808     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
809                       << *ACS.getInstruction() << "\n");
810     return false;
811   }
812 
813   return true;
814 }
815 
816 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
817     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
818     const AbstractAttribute &QueryingAA) {
819 
820   const IRPosition &IRP = QueryingAA.getIRPosition();
821   // Since we need to provide return instructions we have to have an exact
822   // definition.
823   const Function *AssociatedFunction = IRP.getAssociatedFunction();
824   if (!AssociatedFunction)
825     return false;
826 
827   // If this is a call site query we use the call site specific return values
828   // and liveness information.
829   // TODO: use the function scope once we have call site AAReturnedValues.
830   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
831   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
832   if (!AARetVal.getState().isValidState())
833     return false;
834 
835   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
836 }
837 
838 bool Attributor::checkForAllReturnedValues(
839     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
840 
841   const IRPosition &IRP = QueryingAA.getIRPosition();
842   const Function *AssociatedFunction = IRP.getAssociatedFunction();
843   if (!AssociatedFunction)
844     return false;
845 
846   // TODO: use the function scope once we have call site AAReturnedValues.
847   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
848   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
849   if (!AARetVal.getState().isValidState())
850     return false;
851 
852   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
853       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
854         return Pred(RV);
855       });
856 }
857 
858 static bool checkForAllInstructionsImpl(
859     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
860     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
861     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
862     bool CheckBBLivenessOnly = false) {
863   for (unsigned Opcode : Opcodes) {
864     // Check if we have instructions with this opcode at all first.
865     auto *Insts = OpcodeInstMap.lookup(Opcode);
866     if (!Insts)
867       continue;
868 
869     for (Instruction *I : *Insts) {
870       // Skip dead instructions.
871       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
872                                 CheckBBLivenessOnly))
873         continue;
874 
875       if (!Pred(*I))
876         return false;
877     }
878   }
879   return true;
880 }
881 
882 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
883                                          const AbstractAttribute &QueryingAA,
884                                          const ArrayRef<unsigned> &Opcodes,
885                                          bool CheckBBLivenessOnly) {
886 
887   const IRPosition &IRP = QueryingAA.getIRPosition();
888   // Since we need to provide instructions we have to have an exact definition.
889   const Function *AssociatedFunction = IRP.getAssociatedFunction();
890   if (!AssociatedFunction)
891     return false;
892 
893   // TODO: use the function scope once we have call site AAReturnedValues.
894   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
895   const auto &LivenessAA =
896       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
897 
898   auto &OpcodeInstMap =
899       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
900   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
901                                    &LivenessAA, Opcodes, CheckBBLivenessOnly))
902     return false;
903 
904   return true;
905 }
906 
907 bool Attributor::checkForAllReadWriteInstructions(
908     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
909 
910   const Function *AssociatedFunction =
911       QueryingAA.getIRPosition().getAssociatedFunction();
912   if (!AssociatedFunction)
913     return false;
914 
915   // TODO: use the function scope once we have call site AAReturnedValues.
916   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
917   const auto &LivenessAA =
918       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
919 
920   for (Instruction *I :
921        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
922     // Skip dead instructions.
923     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
924       continue;
925 
926     if (!Pred(*I))
927       return false;
928   }
929 
930   return true;
931 }
932 
933 void Attributor::runTillFixpoint() {
934   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
935   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
936                     << DG.SyntheticRoot.Deps.size()
937                     << " abstract attributes.\n");
938 
939   // Now that all abstract attributes are collected and initialized we start
940   // the abstract analysis.
941 
942   unsigned IterationCounter = 1;
943 
944   SmallVector<AbstractAttribute *, 32> ChangedAAs;
945   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
946   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
947 
948   do {
949     // Remember the size to determine new attributes.
950     size_t NumAAs = DG.SyntheticRoot.Deps.size();
951     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
952                       << ", Worklist size: " << Worklist.size() << "\n");
953 
954     // For invalid AAs we can fix dependent AAs that have a required dependence,
955     // thereby folding long dependence chains in a single step without the need
956     // to run updates.
957     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
958       AbstractAttribute *InvalidAA = InvalidAAs[u];
959 
960       // Check the dependences to fast track invalidation.
961       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
962                         << InvalidAA->Deps.size()
963                         << " required & optional dependences\n");
964       while (!InvalidAA->Deps.empty()) {
965         const auto &Dep = InvalidAA->Deps.back();
966         InvalidAA->Deps.pop_back();
967         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
968         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
969           Worklist.insert(DepAA);
970           continue;
971         }
972         DepAA->getState().indicatePessimisticFixpoint();
973         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
974         if (!DepAA->getState().isValidState())
975           InvalidAAs.insert(DepAA);
976         else
977           ChangedAAs.push_back(DepAA);
978       }
979     }
980 
981     // Add all abstract attributes that are potentially dependent on one that
982     // changed to the work list.
983     for (AbstractAttribute *ChangedAA : ChangedAAs)
984       while (!ChangedAA->Deps.empty()) {
985         Worklist.insert(
986             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
987         ChangedAA->Deps.pop_back();
988       }
989 
990     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
991                       << ", Worklist+Dependent size: " << Worklist.size()
992                       << "\n");
993 
994     // Reset the changed and invalid set.
995     ChangedAAs.clear();
996     InvalidAAs.clear();
997 
998     // Update all abstract attribute in the work list and record the ones that
999     // changed.
1000     for (AbstractAttribute *AA : Worklist) {
1001       const auto &AAState = AA->getState();
1002       if (!AAState.isAtFixpoint())
1003         if (updateAA(*AA) == ChangeStatus::CHANGED)
1004           ChangedAAs.push_back(AA);
1005 
1006       // Use the InvalidAAs vector to propagate invalid states fast transitively
1007       // without requiring updates.
1008       if (!AAState.isValidState())
1009         InvalidAAs.insert(AA);
1010     }
1011 
1012     // Add attributes to the changed set if they have been created in the last
1013     // iteration.
1014     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1015                       DG.SyntheticRoot.end());
1016 
1017     // Reset the work list and repopulate with the changed abstract attributes.
1018     // Note that dependent ones are added above.
1019     Worklist.clear();
1020     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1021 
1022   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1023                                  VerifyMaxFixpointIterations));
1024 
1025   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1026                     << IterationCounter << "/" << MaxFixpointIterations
1027                     << " iterations\n");
1028 
1029   // Reset abstract arguments not settled in a sound fixpoint by now. This
1030   // happens when we stopped the fixpoint iteration early. Note that only the
1031   // ones marked as "changed" *and* the ones transitively depending on them
1032   // need to be reverted to a pessimistic state. Others might not be in a
1033   // fixpoint state but we can use the optimistic results for them anyway.
1034   SmallPtrSet<AbstractAttribute *, 32> Visited;
1035   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1036     AbstractAttribute *ChangedAA = ChangedAAs[u];
1037     if (!Visited.insert(ChangedAA).second)
1038       continue;
1039 
1040     AbstractState &State = ChangedAA->getState();
1041     if (!State.isAtFixpoint()) {
1042       State.indicatePessimisticFixpoint();
1043 
1044       NumAttributesTimedOut++;
1045     }
1046 
1047     while (!ChangedAA->Deps.empty()) {
1048       ChangedAAs.push_back(
1049           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1050       ChangedAA->Deps.pop_back();
1051     }
1052   }
1053 
1054   LLVM_DEBUG({
1055     if (!Visited.empty())
1056       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1057              << " abstract attributes.\n";
1058   });
1059 
1060   if (VerifyMaxFixpointIterations &&
1061       IterationCounter != MaxFixpointIterations) {
1062     errs() << "\n[Attributor] Fixpoint iteration done after: "
1063            << IterationCounter << "/" << MaxFixpointIterations
1064            << " iterations\n";
1065     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1066                      "specified iterations!");
1067   }
1068 }
1069 
1070 ChangeStatus Attributor::manifestAttributes() {
1071   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1072   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1073 
1074   unsigned NumManifested = 0;
1075   unsigned NumAtFixpoint = 0;
1076   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1077   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1078     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1079     AbstractState &State = AA->getState();
1080 
1081     // If there is not already a fixpoint reached, we can now take the
1082     // optimistic state. This is correct because we enforced a pessimistic one
1083     // on abstract attributes that were transitively dependent on a changed one
1084     // already above.
1085     if (!State.isAtFixpoint())
1086       State.indicateOptimisticFixpoint();
1087 
1088     // If the state is invalid, we do not try to manifest it.
1089     if (!State.isValidState())
1090       continue;
1091 
1092     // Skip dead code.
1093     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1094       continue;
1095     // Manifest the state and record if we changed the IR.
1096     ChangeStatus LocalChange = AA->manifest(*this);
1097     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1098       AA->trackStatistics();
1099     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1100                       << "\n");
1101 
1102     ManifestChange = ManifestChange | LocalChange;
1103 
1104     NumAtFixpoint++;
1105     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1106   }
1107 
1108   (void)NumManifested;
1109   (void)NumAtFixpoint;
1110   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1111                     << " arguments while " << NumAtFixpoint
1112                     << " were in a valid fixpoint state\n");
1113 
1114   NumAttributesManifested += NumManifested;
1115   NumAttributesValidFixpoint += NumAtFixpoint;
1116 
1117   (void)NumFinalAAs;
1118   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1119     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1120       errs() << "Unexpected abstract attribute: "
1121              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1122              << " :: "
1123              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1124                     ->getIRPosition()
1125                     .getAssociatedValue()
1126              << "\n";
1127     llvm_unreachable("Expected the final number of abstract attributes to "
1128                      "remain unchanged!");
1129   }
1130   return ManifestChange;
1131 }
1132 
1133 ChangeStatus Attributor::cleanupIR() {
1134   TimeTraceScope TimeScope("Attributor::cleanupIR");
1135   // Delete stuff at the end to avoid invalid references and a nice order.
1136   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1137                     << ToBeDeletedFunctions.size() << " functions and "
1138                     << ToBeDeletedBlocks.size() << " blocks and "
1139                     << ToBeDeletedInsts.size() << " instructions and "
1140                     << ToBeChangedUses.size() << " uses\n");
1141 
1142   SmallVector<WeakTrackingVH, 32> DeadInsts;
1143   SmallVector<Instruction *, 32> TerminatorsToFold;
1144 
1145   for (auto &It : ToBeChangedUses) {
1146     Use *U = It.first;
1147     Value *NewV = It.second;
1148     Value *OldV = U->get();
1149 
1150     // Do not replace uses in returns if the value is a must-tail call we will
1151     // not delete.
1152     if (isa<ReturnInst>(U->getUser()))
1153       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1154         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1155           continue;
1156 
1157     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1158                       << " instead of " << *OldV << "\n");
1159     U->set(NewV);
1160     // Do not modify call instructions outside the SCC.
1161     if (auto *CB = dyn_cast<CallBase>(OldV))
1162       if (!Functions.count(CB->getCaller()))
1163         continue;
1164     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1165       CGModifiedFunctions.insert(I->getFunction());
1166       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1167           isInstructionTriviallyDead(I))
1168         DeadInsts.push_back(I);
1169     }
1170     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1171       Instruction *UserI = cast<Instruction>(U->getUser());
1172       if (isa<UndefValue>(NewV)) {
1173         ToBeChangedToUnreachableInsts.insert(UserI);
1174       } else {
1175         TerminatorsToFold.push_back(UserI);
1176       }
1177     }
1178   }
1179   for (auto &V : InvokeWithDeadSuccessor)
1180     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1181       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1182       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1183       bool Invoke2CallAllowed =
1184           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1185       assert((UnwindBBIsDead || NormalBBIsDead) &&
1186              "Invoke does not have dead successors!");
1187       BasicBlock *BB = II->getParent();
1188       BasicBlock *NormalDestBB = II->getNormalDest();
1189       if (UnwindBBIsDead) {
1190         Instruction *NormalNextIP = &NormalDestBB->front();
1191         if (Invoke2CallAllowed) {
1192           changeToCall(II);
1193           NormalNextIP = BB->getTerminator();
1194         }
1195         if (NormalBBIsDead)
1196           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1197       } else {
1198         assert(NormalBBIsDead && "Broken invariant!");
1199         if (!NormalDestBB->getUniquePredecessor())
1200           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1201         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1202       }
1203     }
1204   for (Instruction *I : TerminatorsToFold) {
1205     CGModifiedFunctions.insert(I->getFunction());
1206     ConstantFoldTerminator(I->getParent());
1207   }
1208   for (auto &V : ToBeChangedToUnreachableInsts)
1209     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1210       CGModifiedFunctions.insert(I->getFunction());
1211       changeToUnreachable(I, /* UseLLVMTrap */ false);
1212     }
1213 
1214   for (auto &V : ToBeDeletedInsts) {
1215     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1216       I->dropDroppableUses();
1217       CGModifiedFunctions.insert(I->getFunction());
1218       if (!I->getType()->isVoidTy())
1219         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1220       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1221         DeadInsts.push_back(I);
1222       else
1223         I->eraseFromParent();
1224     }
1225   }
1226 
1227   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1228                     << "\n");
1229 
1230   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1231 
1232   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1233     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1234     ToBeDeletedBBs.reserve(NumDeadBlocks);
1235     for (BasicBlock *BB : ToBeDeletedBlocks) {
1236       CGModifiedFunctions.insert(BB->getParent());
1237       ToBeDeletedBBs.push_back(BB);
1238     }
1239     // Actually we do not delete the blocks but squash them into a single
1240     // unreachable but untangling branches that jump here is something we need
1241     // to do in a more generic way.
1242     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1243   }
1244 
1245   // Identify dead internal functions and delete them. This happens outside
1246   // the other fixpoint analysis as we might treat potentially dead functions
1247   // as live to lower the number of iterations. If they happen to be dead, the
1248   // below fixpoint loop will identify and eliminate them.
1249   SmallVector<Function *, 8> InternalFns;
1250   for (Function *F : Functions)
1251     if (F->hasLocalLinkage())
1252       InternalFns.push_back(F);
1253 
1254   bool FoundDeadFn = true;
1255   while (FoundDeadFn) {
1256     FoundDeadFn = false;
1257     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1258       Function *F = InternalFns[u];
1259       if (!F)
1260         continue;
1261 
1262       bool AllCallSitesKnown;
1263       if (!checkForAllCallSites(
1264               [this](AbstractCallSite ACS) {
1265                 return ToBeDeletedFunctions.count(
1266                     ACS.getInstruction()->getFunction());
1267               },
1268               *F, true, nullptr, AllCallSitesKnown))
1269         continue;
1270 
1271       ToBeDeletedFunctions.insert(F);
1272       InternalFns[u] = nullptr;
1273       FoundDeadFn = true;
1274     }
1275   }
1276 
1277   // Rewrite the functions as requested during manifest.
1278   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1279 
1280   for (Function *Fn : CGModifiedFunctions)
1281     CGUpdater.reanalyzeFunction(*Fn);
1282 
1283   for (Function *Fn : ToBeDeletedFunctions)
1284     CGUpdater.removeFunction(*Fn);
1285 
1286   NumFnDeleted += ToBeDeletedFunctions.size();
1287 
1288   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << NumFnDeleted
1289                     << " functions after manifest.\n");
1290 
1291 #ifdef EXPENSIVE_CHECKS
1292   for (Function *F : Functions) {
1293     if (ToBeDeletedFunctions.count(F))
1294       continue;
1295     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1296   }
1297 #endif
1298 
1299   return ManifestChange;
1300 }
1301 
1302 ChangeStatus Attributor::run() {
1303   TimeTraceScope TimeScope("Attributor::run");
1304 
1305   SeedingPeriod = false;
1306   runTillFixpoint();
1307 
1308   // dump graphs on demand
1309   if (DumpDepGraph)
1310     DG.dumpGraph();
1311 
1312   if (ViewDepGraph)
1313     DG.viewGraph();
1314 
1315   if (PrintDependencies)
1316     DG.print();
1317 
1318   ChangeStatus ManifestChange = manifestAttributes();
1319   ChangeStatus CleanupChange = cleanupIR();
1320   return ManifestChange | CleanupChange;
1321 }
1322 
1323 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1324   TimeTraceScope TimeScope(AA.getName() + "::updateAA");
1325 
1326   // Use a new dependence vector for this update.
1327   DependenceVector DV;
1328   DependenceStack.push_back(&DV);
1329 
1330   auto &AAState = AA.getState();
1331   ChangeStatus CS = ChangeStatus::UNCHANGED;
1332   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1333     CS = AA.update(*this);
1334 
1335   if (DV.empty()) {
1336     // If the attribute did not query any non-fix information, the state
1337     // will not change and we can indicate that right away.
1338     AAState.indicateOptimisticFixpoint();
1339   }
1340 
1341   if (!AAState.isAtFixpoint())
1342     rememberDependences();
1343 
1344   // Verify the stack was used properly, that is we pop the dependence vector we
1345   // put there earlier.
1346   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1347   (void)PoppedDV;
1348   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1349 
1350   return CS;
1351 }
1352 
1353 /// Create a shallow wrapper for \p F such that \p F has internal linkage
1354 /// afterwards. It also sets the original \p F 's name to anonymous
1355 ///
1356 /// A wrapper is a function with the same type (and attributes) as \p F
1357 /// that will only call \p F and return the result, if any.
1358 ///
1359 /// Assuming the declaration of looks like:
1360 ///   rty F(aty0 arg0, ..., atyN argN);
1361 ///
1362 /// The wrapper will then look as follows:
1363 ///   rty wrapper(aty0 arg0, ..., atyN argN) {
1364 ///     return F(arg0, ..., argN);
1365 ///   }
1366 ///
1367 static void createShallowWrapper(Function &F) {
1368   assert(AllowShallowWrappers &&
1369          "Cannot create a wrapper if it is not allowed!");
1370   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1371 
1372   Module &M = *F.getParent();
1373   LLVMContext &Ctx = M.getContext();
1374   FunctionType *FnTy = F.getFunctionType();
1375 
1376   Function *Wrapper =
1377       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1378   F.setName(""); // set the inside function anonymous
1379   M.getFunctionList().insert(F.getIterator(), Wrapper);
1380 
1381   F.setLinkage(GlobalValue::InternalLinkage);
1382 
1383   F.replaceAllUsesWith(Wrapper);
1384   assert(F.use_empty() && "Uses remained after wrapper was created!");
1385 
1386   // Move the COMDAT section to the wrapper.
1387   // TODO: Check if we need to keep it for F as well.
1388   Wrapper->setComdat(F.getComdat());
1389   F.setComdat(nullptr);
1390 
1391   // Copy all metadata and attributes but keep them on F as well.
1392   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1393   F.getAllMetadata(MDs);
1394   for (auto MDIt : MDs)
1395     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1396   Wrapper->setAttributes(F.getAttributes());
1397 
1398   // Create the call in the wrapper.
1399   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1400 
1401   SmallVector<Value *, 8> Args;
1402   auto FArgIt = F.arg_begin();
1403   for (Argument &Arg : Wrapper->args()) {
1404     Args.push_back(&Arg);
1405     Arg.setName((FArgIt++)->getName());
1406   }
1407 
1408   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1409   CI->setTailCall(true);
1410   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1411   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1412 
1413   NumFnShallowWrapperCreated++;
1414 }
1415 
1416 bool Attributor::isValidFunctionSignatureRewrite(
1417     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1418 
1419   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1420     // Forbid the call site to cast the function return type. If we need to
1421     // rewrite these functions we need to re-create a cast for the new call site
1422     // (if the old had uses).
1423     if (!ACS.getCalledFunction() ||
1424         ACS.getInstruction()->getType() !=
1425             ACS.getCalledFunction()->getReturnType())
1426       return false;
1427     // Forbid must-tail calls for now.
1428     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1429   };
1430 
1431   Function *Fn = Arg.getParent();
1432   // Avoid var-arg functions for now.
1433   if (Fn->isVarArg()) {
1434     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1435     return false;
1436   }
1437 
1438   // Avoid functions with complicated argument passing semantics.
1439   AttributeList FnAttributeList = Fn->getAttributes();
1440   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1441       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1442       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1443       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1444     LLVM_DEBUG(
1445         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1446     return false;
1447   }
1448 
1449   // Avoid callbacks for now.
1450   bool AllCallSitesKnown;
1451   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1452                             AllCallSitesKnown)) {
1453     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1454     return false;
1455   }
1456 
1457   auto InstPred = [](Instruction &I) {
1458     if (auto *CI = dyn_cast<CallInst>(&I))
1459       return !CI->isMustTailCall();
1460     return true;
1461   };
1462 
1463   // Forbid must-tail calls for now.
1464   // TODO:
1465   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1466   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1467                                    nullptr, {Instruction::Call})) {
1468     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1469     return false;
1470   }
1471 
1472   return true;
1473 }
1474 
1475 bool Attributor::registerFunctionSignatureRewrite(
1476     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1477     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1478     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1479   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1480                     << Arg.getParent()->getName() << " with "
1481                     << ReplacementTypes.size() << " replacements\n");
1482   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1483          "Cannot register an invalid rewrite");
1484 
1485   Function *Fn = Arg.getParent();
1486   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1487       ArgumentReplacementMap[Fn];
1488   if (ARIs.empty())
1489     ARIs.resize(Fn->arg_size());
1490 
1491   // If we have a replacement already with less than or equal new arguments,
1492   // ignore this request.
1493   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1494   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1495     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1496     return false;
1497   }
1498 
1499   // If we have a replacement already but we like the new one better, delete
1500   // the old.
1501   ARI.reset();
1502 
1503   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1504                     << Arg.getParent()->getName() << " with "
1505                     << ReplacementTypes.size() << " replacements\n");
1506 
1507   // Remember the replacement.
1508   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1509                                         std::move(CalleeRepairCB),
1510                                         std::move(ACSRepairCB)));
1511 
1512   return true;
1513 }
1514 
1515 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1516   if (SeedAllowList.size() == 0)
1517     return true;
1518   return std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1519 }
1520 
1521 ChangeStatus Attributor::rewriteFunctionSignatures(
1522     SmallPtrSetImpl<Function *> &ModifiedFns) {
1523   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1524 
1525   for (auto &It : ArgumentReplacementMap) {
1526     Function *OldFn = It.getFirst();
1527 
1528     // Deleted functions do not require rewrites.
1529     if (ToBeDeletedFunctions.count(OldFn))
1530       continue;
1531 
1532     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1533         It.getSecond();
1534     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1535 
1536     SmallVector<Type *, 16> NewArgumentTypes;
1537     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1538 
1539     // Collect replacement argument types and copy over existing attributes.
1540     AttributeList OldFnAttributeList = OldFn->getAttributes();
1541     for (Argument &Arg : OldFn->args()) {
1542       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1543               ARIs[Arg.getArgNo()]) {
1544         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1545                                 ARI->ReplacementTypes.end());
1546         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1547                                      AttributeSet());
1548       } else {
1549         NewArgumentTypes.push_back(Arg.getType());
1550         NewArgumentAttributes.push_back(
1551             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1552       }
1553     }
1554 
1555     FunctionType *OldFnTy = OldFn->getFunctionType();
1556     Type *RetTy = OldFnTy->getReturnType();
1557 
1558     // Construct the new function type using the new arguments types.
1559     FunctionType *NewFnTy =
1560         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1561 
1562     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1563                       << "' from " << *OldFn->getFunctionType() << " to "
1564                       << *NewFnTy << "\n");
1565 
1566     // Create the new function body and insert it into the module.
1567     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1568                                        OldFn->getAddressSpace(), "");
1569     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1570     NewFn->takeName(OldFn);
1571     NewFn->copyAttributesFrom(OldFn);
1572 
1573     // Patch the pointer to LLVM function in debug info descriptor.
1574     NewFn->setSubprogram(OldFn->getSubprogram());
1575     OldFn->setSubprogram(nullptr);
1576 
1577     // Recompute the parameter attributes list based on the new arguments for
1578     // the function.
1579     LLVMContext &Ctx = OldFn->getContext();
1580     NewFn->setAttributes(AttributeList::get(
1581         Ctx, OldFnAttributeList.getFnAttributes(),
1582         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1583 
1584     // Since we have now created the new function, splice the body of the old
1585     // function right into the new function, leaving the old rotting hulk of the
1586     // function empty.
1587     NewFn->getBasicBlockList().splice(NewFn->begin(),
1588                                       OldFn->getBasicBlockList());
1589 
1590     // Fixup block addresses to reference new function.
1591     SmallVector<BlockAddress *, 8u> BlockAddresses;
1592     for (User *U : OldFn->users())
1593       if (auto *BA = dyn_cast<BlockAddress>(U))
1594         BlockAddresses.push_back(BA);
1595     for (auto *BA : BlockAddresses)
1596       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1597 
1598     // Set of all "call-like" instructions that invoke the old function mapped
1599     // to their new replacements.
1600     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1601 
1602     // Callback to create a new "call-like" instruction for a given one.
1603     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1604       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1605       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1606 
1607       // Collect the new argument operands for the replacement call site.
1608       SmallVector<Value *, 16> NewArgOperands;
1609       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1610       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1611         unsigned NewFirstArgNum = NewArgOperands.size();
1612         (void)NewFirstArgNum; // only used inside assert.
1613         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1614                 ARIs[OldArgNum]) {
1615           if (ARI->ACSRepairCB)
1616             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1617           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1618                      NewArgOperands.size() &&
1619                  "ACS repair callback did not provide as many operand as new "
1620                  "types were registered!");
1621           // TODO: Exose the attribute set to the ACS repair callback
1622           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1623                                          AttributeSet());
1624         } else {
1625           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1626           NewArgOperandAttributes.push_back(
1627               OldCallAttributeList.getParamAttributes(OldArgNum));
1628         }
1629       }
1630 
1631       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1632              "Mismatch # argument operands vs. # argument operand attributes!");
1633       assert(NewArgOperands.size() == NewFn->arg_size() &&
1634              "Mismatch # argument operands vs. # function arguments!");
1635 
1636       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1637       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1638 
1639       // Create a new call or invoke instruction to replace the old one.
1640       CallBase *NewCB;
1641       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1642         NewCB =
1643             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1644                                NewArgOperands, OperandBundleDefs, "", OldCB);
1645       } else {
1646         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1647                                        "", OldCB);
1648         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1649         NewCB = NewCI;
1650       }
1651 
1652       // Copy over various properties and the new attributes.
1653       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1654       NewCB->setCallingConv(OldCB->getCallingConv());
1655       NewCB->takeName(OldCB);
1656       NewCB->setAttributes(AttributeList::get(
1657           Ctx, OldCallAttributeList.getFnAttributes(),
1658           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1659 
1660       CallSitePairs.push_back({OldCB, NewCB});
1661       return true;
1662     };
1663 
1664     // Use the CallSiteReplacementCreator to create replacement call sites.
1665     bool AllCallSitesKnown;
1666     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1667                                         true, nullptr, AllCallSitesKnown);
1668     (void)Success;
1669     assert(Success && "Assumed call site replacement to succeed!");
1670 
1671     // Rewire the arguments.
1672     auto OldFnArgIt = OldFn->arg_begin();
1673     auto NewFnArgIt = NewFn->arg_begin();
1674     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1675          ++OldArgNum, ++OldFnArgIt) {
1676       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1677               ARIs[OldArgNum]) {
1678         if (ARI->CalleeRepairCB)
1679           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1680         NewFnArgIt += ARI->ReplacementTypes.size();
1681       } else {
1682         NewFnArgIt->takeName(&*OldFnArgIt);
1683         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1684         ++NewFnArgIt;
1685       }
1686     }
1687 
1688     // Eliminate the instructions *after* we visited all of them.
1689     for (auto &CallSitePair : CallSitePairs) {
1690       CallBase &OldCB = *CallSitePair.first;
1691       CallBase &NewCB = *CallSitePair.second;
1692       assert(OldCB.getType() == NewCB.getType() &&
1693              "Cannot handle call sites with different types!");
1694       ModifiedFns.insert(OldCB.getFunction());
1695       CGUpdater.replaceCallSite(OldCB, NewCB);
1696       OldCB.replaceAllUsesWith(&NewCB);
1697       OldCB.eraseFromParent();
1698     }
1699 
1700     // Replace the function in the call graph (if any).
1701     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1702 
1703     // If the old function was modified and needed to be reanalyzed, the new one
1704     // does now.
1705     if (ModifiedFns.erase(OldFn))
1706       ModifiedFns.insert(NewFn);
1707 
1708     Changed = ChangeStatus::CHANGED;
1709   }
1710 
1711   return Changed;
1712 }
1713 
1714 void InformationCache::initializeInformationCache(const Function &CF,
1715                                                   FunctionInfo &FI) {
1716   // As we do not modify the function here we can remove the const
1717   // withouth breaking implicit assumptions. At the end of the day, we could
1718   // initialize the cache eagerly which would look the same to the users.
1719   Function &F = const_cast<Function &>(CF);
1720 
1721   // Walk all instructions to find interesting instructions that might be
1722   // queried by abstract attributes during their initialization or update.
1723   // This has to happen before we create attributes.
1724 
1725   for (Instruction &I : instructions(&F)) {
1726     bool IsInterestingOpcode = false;
1727 
1728     // To allow easy access to all instructions in a function with a given
1729     // opcode we store them in the InfoCache. As not all opcodes are interesting
1730     // to concrete attributes we only cache the ones that are as identified in
1731     // the following switch.
1732     // Note: There are no concrete attributes now so this is initially empty.
1733     switch (I.getOpcode()) {
1734     default:
1735       assert(!isa<CallBase>(&I) &&
1736              "New call base instruction type needs to be known in the "
1737              "Attributor.");
1738       break;
1739     case Instruction::Call:
1740       // Calls are interesting on their own, additionally:
1741       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1742       // For `must-tail` calls we remember the caller and callee.
1743       if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) {
1744         if (Assume->getIntrinsicID() == Intrinsic::assume)
1745           fillMapFromAssume(*Assume, KnowledgeMap);
1746       } else if (cast<CallInst>(I).isMustTailCall()) {
1747         FI.ContainsMustTailCall = true;
1748         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1749           getFunctionInfo(*Callee).CalledViaMustTail = true;
1750       }
1751       LLVM_FALLTHROUGH;
1752     case Instruction::CallBr:
1753     case Instruction::Invoke:
1754     case Instruction::CleanupRet:
1755     case Instruction::CatchSwitch:
1756     case Instruction::AtomicRMW:
1757     case Instruction::AtomicCmpXchg:
1758     case Instruction::Br:
1759     case Instruction::Resume:
1760     case Instruction::Ret:
1761     case Instruction::Load:
1762       // The alignment of a pointer is interesting for loads.
1763     case Instruction::Store:
1764       // The alignment of a pointer is interesting for stores.
1765       IsInterestingOpcode = true;
1766     }
1767     if (IsInterestingOpcode) {
1768       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1769       if (!Insts)
1770         Insts = new (Allocator) InstructionVectorTy();
1771       Insts->push_back(&I);
1772     }
1773     if (I.mayReadOrWriteMemory())
1774       FI.RWInsts.push_back(&I);
1775   }
1776 
1777   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1778       isInlineViable(F).isSuccess())
1779     InlineableFunctions.insert(&F);
1780 }
1781 
1782 InformationCache::FunctionInfo::~FunctionInfo() {
1783   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1784   // manually destroy them.
1785   for (auto &It : OpcodeInstMap)
1786     It.getSecond()->~InstructionVectorTy();
1787 }
1788 
1789 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1790                                   const AbstractAttribute &ToAA,
1791                                   DepClassTy DepClass) {
1792   // If we are outside of an update, thus before the actual fixpoint iteration
1793   // started (= when we create AAs), we do not track dependences because we will
1794   // put all AAs into the initial worklist anyway.
1795   if (DependenceStack.empty())
1796     return;
1797   if (FromAA.getState().isAtFixpoint())
1798     return;
1799   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1800 }
1801 
1802 void Attributor::rememberDependences() {
1803   assert(!DependenceStack.empty() && "No dependences to remember!");
1804 
1805   for (DepInfo &DI : *DependenceStack.back()) {
1806     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1807     DepAAs.push_back(AbstractAttribute::DepTy(
1808         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1809   }
1810 }
1811 
1812 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1813   if (!VisitedFunctions.insert(&F).second)
1814     return;
1815   if (F.isDeclaration())
1816     return;
1817 
1818   // In non-module runs we need to look at the call sites of a function to
1819   // determine if it is part of a must-tail call edge. This will influence what
1820   // attributes we can derive.
1821   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
1822   if (!isModulePass() && !FI.CalledViaMustTail) {
1823     for (const Use &U : F.uses())
1824       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
1825         if (CB->isCallee(&U) && CB->isMustTailCall())
1826           FI.CalledViaMustTail = true;
1827   }
1828 
1829   IRPosition FPos = IRPosition::function(F);
1830 
1831   // Check for dead BasicBlocks in every function.
1832   // We need dead instruction detection because we do not want to deal with
1833   // broken IR in which SSA rules do not apply.
1834   getOrCreateAAFor<AAIsDead>(FPos);
1835 
1836   // Every function might be "will-return".
1837   getOrCreateAAFor<AAWillReturn>(FPos);
1838 
1839   // Every function might contain instructions that cause "undefined behavior".
1840   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
1841 
1842   // Every function can be nounwind.
1843   getOrCreateAAFor<AANoUnwind>(FPos);
1844 
1845   // Every function might be marked "nosync"
1846   getOrCreateAAFor<AANoSync>(FPos);
1847 
1848   // Every function might be "no-free".
1849   getOrCreateAAFor<AANoFree>(FPos);
1850 
1851   // Every function might be "no-return".
1852   getOrCreateAAFor<AANoReturn>(FPos);
1853 
1854   // Every function might be "no-recurse".
1855   getOrCreateAAFor<AANoRecurse>(FPos);
1856 
1857   // Every function might be "readnone/readonly/writeonly/...".
1858   getOrCreateAAFor<AAMemoryBehavior>(FPos);
1859 
1860   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
1861   getOrCreateAAFor<AAMemoryLocation>(FPos);
1862 
1863   // Every function might be applicable for Heap-To-Stack conversion.
1864   if (EnableHeapToStack)
1865     getOrCreateAAFor<AAHeapToStack>(FPos);
1866 
1867   // Return attributes are only appropriate if the return type is non void.
1868   Type *ReturnType = F.getReturnType();
1869   if (!ReturnType->isVoidTy()) {
1870     // Argument attribute "returned" --- Create only one per function even
1871     // though it is an argument attribute.
1872     getOrCreateAAFor<AAReturnedValues>(FPos);
1873 
1874     IRPosition RetPos = IRPosition::returned(F);
1875 
1876     // Every returned value might be dead.
1877     getOrCreateAAFor<AAIsDead>(RetPos);
1878 
1879     // Every function might be simplified.
1880     getOrCreateAAFor<AAValueSimplify>(RetPos);
1881 
1882     if (ReturnType->isPointerTy()) {
1883 
1884       // Every function with pointer return type might be marked align.
1885       getOrCreateAAFor<AAAlign>(RetPos);
1886 
1887       // Every function with pointer return type might be marked nonnull.
1888       getOrCreateAAFor<AANonNull>(RetPos);
1889 
1890       // Every function with pointer return type might be marked noalias.
1891       getOrCreateAAFor<AANoAlias>(RetPos);
1892 
1893       // Every function with pointer return type might be marked
1894       // dereferenceable.
1895       getOrCreateAAFor<AADereferenceable>(RetPos);
1896     }
1897   }
1898 
1899   for (Argument &Arg : F.args()) {
1900     IRPosition ArgPos = IRPosition::argument(Arg);
1901 
1902     // Every argument might be simplified.
1903     getOrCreateAAFor<AAValueSimplify>(ArgPos);
1904 
1905     // Every argument might be dead.
1906     getOrCreateAAFor<AAIsDead>(ArgPos);
1907 
1908     if (Arg.getType()->isPointerTy()) {
1909       // Every argument with pointer type might be marked nonnull.
1910       getOrCreateAAFor<AANonNull>(ArgPos);
1911 
1912       // Every argument with pointer type might be marked noalias.
1913       getOrCreateAAFor<AANoAlias>(ArgPos);
1914 
1915       // Every argument with pointer type might be marked dereferenceable.
1916       getOrCreateAAFor<AADereferenceable>(ArgPos);
1917 
1918       // Every argument with pointer type might be marked align.
1919       getOrCreateAAFor<AAAlign>(ArgPos);
1920 
1921       // Every argument with pointer type might be marked nocapture.
1922       getOrCreateAAFor<AANoCapture>(ArgPos);
1923 
1924       // Every argument with pointer type might be marked
1925       // "readnone/readonly/writeonly/..."
1926       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
1927 
1928       // Every argument with pointer type might be marked nofree.
1929       getOrCreateAAFor<AANoFree>(ArgPos);
1930 
1931       // Every argument with pointer type might be privatizable (or promotable)
1932       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
1933     }
1934   }
1935 
1936   auto CallSitePred = [&](Instruction &I) -> bool {
1937     auto &CB = cast<CallBase>(I);
1938     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
1939 
1940     // Call sites might be dead if they do not have side effects and no live
1941     // users. The return value might be dead if there are no live users.
1942     getOrCreateAAFor<AAIsDead>(CBRetPos);
1943 
1944     Function *Callee = CB.getCalledFunction();
1945     // TODO: Even if the callee is not known now we might be able to simplify
1946     //       the call/callee.
1947     if (!Callee)
1948       return true;
1949 
1950     // Skip declarations except if annotations on their call sites were
1951     // explicitly requested.
1952     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
1953         !Callee->hasMetadata(LLVMContext::MD_callback))
1954       return true;
1955 
1956     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
1957 
1958       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
1959 
1960       // Call site return integer values might be limited by a constant range.
1961       if (Callee->getReturnType()->isIntegerTy())
1962         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
1963     }
1964 
1965     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
1966 
1967       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
1968 
1969       // Every call site argument might be dead.
1970       getOrCreateAAFor<AAIsDead>(CBArgPos);
1971 
1972       // Call site argument might be simplified.
1973       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
1974 
1975       if (!CB.getArgOperand(I)->getType()->isPointerTy())
1976         continue;
1977 
1978       // Call site argument attribute "non-null".
1979       getOrCreateAAFor<AANonNull>(CBArgPos);
1980 
1981       // Call site argument attribute "nocapture".
1982       getOrCreateAAFor<AANoCapture>(CBArgPos);
1983 
1984       // Call site argument attribute "no-alias".
1985       getOrCreateAAFor<AANoAlias>(CBArgPos);
1986 
1987       // Call site argument attribute "dereferenceable".
1988       getOrCreateAAFor<AADereferenceable>(CBArgPos);
1989 
1990       // Call site argument attribute "align".
1991       getOrCreateAAFor<AAAlign>(CBArgPos);
1992 
1993       // Call site argument attribute
1994       // "readnone/readonly/writeonly/..."
1995       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
1996 
1997       // Call site argument attribute "nofree".
1998       getOrCreateAAFor<AANoFree>(CBArgPos);
1999     }
2000     return true;
2001   };
2002 
2003   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2004   bool Success;
2005   Success = checkForAllInstructionsImpl(
2006       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2007       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2008        (unsigned)Instruction::Call});
2009   (void)Success;
2010   assert(Success && "Expected the check call to be successful!");
2011 
2012   auto LoadStorePred = [&](Instruction &I) -> bool {
2013     if (isa<LoadInst>(I))
2014       getOrCreateAAFor<AAAlign>(
2015           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2016     else
2017       getOrCreateAAFor<AAAlign>(
2018           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2019     return true;
2020   };
2021   Success = checkForAllInstructionsImpl(
2022       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2023       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2024   (void)Success;
2025   assert(Success && "Expected the check call to be successful!");
2026 }
2027 
2028 /// Helpers to ease debugging through output streams and print calls.
2029 ///
2030 ///{
2031 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2032   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2033 }
2034 
2035 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2036   switch (AP) {
2037   case IRPosition::IRP_INVALID:
2038     return OS << "inv";
2039   case IRPosition::IRP_FLOAT:
2040     return OS << "flt";
2041   case IRPosition::IRP_RETURNED:
2042     return OS << "fn_ret";
2043   case IRPosition::IRP_CALL_SITE_RETURNED:
2044     return OS << "cs_ret";
2045   case IRPosition::IRP_FUNCTION:
2046     return OS << "fn";
2047   case IRPosition::IRP_CALL_SITE:
2048     return OS << "cs";
2049   case IRPosition::IRP_ARGUMENT:
2050     return OS << "arg";
2051   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2052     return OS << "cs_arg";
2053   }
2054   llvm_unreachable("Unknown attribute position!");
2055 }
2056 
2057 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2058   const Value &AV = Pos.getAssociatedValue();
2059   return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2060             << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
2061 }
2062 
2063 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2064   OS << "range-state(" << S.getBitWidth() << ")<";
2065   S.getKnown().print(OS);
2066   OS << " / ";
2067   S.getAssumed().print(OS);
2068   OS << ">";
2069 
2070   return OS << static_cast<const AbstractState &>(S);
2071 }
2072 
2073 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2074   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2075 }
2076 
2077 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2078   AA.print(OS);
2079   return OS;
2080 }
2081 
2082 raw_ostream &llvm::operator<<(raw_ostream &OS,
2083                               const PotentialConstantIntValuesState &S) {
2084   OS << "set-state(< {";
2085   if (!S.isValidState())
2086     OS << "full-set";
2087   else
2088     for (auto &it : S.getAssumedSet())
2089       OS << it << ", ";
2090   OS << "} >)";
2091 
2092   return OS;
2093 }
2094 
2095 void AbstractAttribute::print(raw_ostream &OS) const {
2096   OS << "[";
2097   OS << getName();
2098   OS << "] for CtxI ";
2099 
2100   if (auto *I = getCtxI()) {
2101     OS << "'";
2102     I->print(OS);
2103     OS << "'";
2104   } else
2105     OS << "<<null inst>>";
2106 
2107   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2108      << '\n';
2109 }
2110 
2111 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2112   print(OS);
2113 
2114   for (const auto &DepAA : Deps) {
2115     auto *AA = DepAA.getPointer();
2116     OS << "  updates ";
2117     AA->print(OS);
2118   }
2119 
2120   OS << '\n';
2121 }
2122 ///}
2123 
2124 /// ----------------------------------------------------------------------------
2125 ///                       Pass (Manager) Boilerplate
2126 /// ----------------------------------------------------------------------------
2127 
2128 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2129                                      SetVector<Function *> &Functions,
2130                                      AnalysisGetter &AG,
2131                                      CallGraphUpdater &CGUpdater) {
2132   if (Functions.empty())
2133     return false;
2134 
2135   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2136                     << " functions.\n");
2137 
2138   // Create an Attributor and initially empty information cache that is filled
2139   // while we identify default attribute opportunities.
2140   Attributor A(Functions, InfoCache, CGUpdater);
2141 
2142   // Create shallow wrappers for all functions that are not IPO amendable
2143   if (AllowShallowWrappers)
2144     for (Function *F : Functions)
2145       if (!A.isFunctionIPOAmendable(*F))
2146         createShallowWrapper(*F);
2147 
2148   for (Function *F : Functions) {
2149     if (F->hasExactDefinition())
2150       NumFnWithExactDefinition++;
2151     else
2152       NumFnWithoutExactDefinition++;
2153 
2154     // We look at internal functions only on-demand but if any use is not a
2155     // direct call or outside the current set of analyzed functions, we have
2156     // to do it eagerly.
2157     if (F->hasLocalLinkage()) {
2158       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2159             const auto *CB = dyn_cast<CallBase>(U.getUser());
2160             return CB && CB->isCallee(&U) &&
2161                    Functions.count(const_cast<Function *>(CB->getCaller()));
2162           }))
2163         continue;
2164     }
2165 
2166     // Populate the Attributor with abstract attribute opportunities in the
2167     // function and the information cache with IR information.
2168     A.identifyDefaultAbstractAttributes(*F);
2169   }
2170 
2171   ChangeStatus Changed = A.run();
2172 
2173   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2174                     << " functions, result: " << Changed << ".\n");
2175   return Changed == ChangeStatus::CHANGED;
2176 }
2177 
2178 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2179 
2180 void AADepGraph::dumpGraph() {
2181   static std::atomic<int> CallTimes;
2182   std::string Prefix;
2183 
2184   if (!DepGraphDotFileNamePrefix.empty())
2185     Prefix = DepGraphDotFileNamePrefix;
2186   else
2187     Prefix = "dep_graph";
2188   std::string Filename =
2189       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2190 
2191   outs() << "Dependency graph dump to " << Filename << ".\n";
2192 
2193   std::error_code EC;
2194 
2195   raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
2196   if (!EC)
2197     llvm::WriteGraph(File, this);
2198 
2199   CallTimes++;
2200 }
2201 
2202 void AADepGraph::print() {
2203   for (auto DepAA : SyntheticRoot.Deps)
2204     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2205 }
2206 
2207 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2208   FunctionAnalysisManager &FAM =
2209       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2210   AnalysisGetter AG(FAM);
2211 
2212   SetVector<Function *> Functions;
2213   for (Function &F : M)
2214     Functions.insert(&F);
2215 
2216   CallGraphUpdater CGUpdater;
2217   BumpPtrAllocator Allocator;
2218   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2219   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2220     // FIXME: Think about passes we will preserve and add them here.
2221     return PreservedAnalyses::none();
2222   }
2223   return PreservedAnalyses::all();
2224 }
2225 
2226 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2227                                            CGSCCAnalysisManager &AM,
2228                                            LazyCallGraph &CG,
2229                                            CGSCCUpdateResult &UR) {
2230   FunctionAnalysisManager &FAM =
2231       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2232   AnalysisGetter AG(FAM);
2233 
2234   SetVector<Function *> Functions;
2235   for (LazyCallGraph::Node &N : C)
2236     Functions.insert(&N.getFunction());
2237 
2238   if (Functions.empty())
2239     return PreservedAnalyses::all();
2240 
2241   Module &M = *Functions.back()->getParent();
2242   CallGraphUpdater CGUpdater;
2243   CGUpdater.initialize(CG, C, AM, UR);
2244   BumpPtrAllocator Allocator;
2245   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2246   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2247     // FIXME: Think about passes we will preserve and add them here.
2248     return PreservedAnalyses::none();
2249   }
2250   return PreservedAnalyses::all();
2251 }
2252 
2253 namespace llvm {
2254 
2255 template <> struct GraphTraits<AADepGraphNode *> {
2256   using NodeRef = AADepGraphNode *;
2257   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2258   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2259 
2260   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2261   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2262 
2263   using ChildIteratorType =
2264       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2265   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2266 
2267   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2268 
2269   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2270 };
2271 
2272 template <>
2273 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2274   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2275 
2276   using nodes_iterator =
2277       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2278 
2279   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2280 
2281   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2282 };
2283 
2284 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2285   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2286 
2287   static std::string getNodeLabel(const AADepGraphNode *Node,
2288                                   const AADepGraph *DG) {
2289     std::string AAString = "";
2290     raw_string_ostream O(AAString);
2291     Node->print(O);
2292     return AAString;
2293   }
2294 };
2295 
2296 } // end namespace llvm
2297 
2298 namespace {
2299 
2300 struct AttributorLegacyPass : public ModulePass {
2301   static char ID;
2302 
2303   AttributorLegacyPass() : ModulePass(ID) {
2304     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2305   }
2306 
2307   bool runOnModule(Module &M) override {
2308     if (skipModule(M))
2309       return false;
2310 
2311     AnalysisGetter AG;
2312     SetVector<Function *> Functions;
2313     for (Function &F : M)
2314       Functions.insert(&F);
2315 
2316     CallGraphUpdater CGUpdater;
2317     BumpPtrAllocator Allocator;
2318     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2319     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2320   }
2321 
2322   void getAnalysisUsage(AnalysisUsage &AU) const override {
2323     // FIXME: Think about passes we will preserve and add them here.
2324     AU.addRequired<TargetLibraryInfoWrapperPass>();
2325   }
2326 };
2327 
2328 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2329   CallGraphUpdater CGUpdater;
2330   static char ID;
2331 
2332   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2333     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2334   }
2335 
2336   bool runOnSCC(CallGraphSCC &SCC) override {
2337     if (skipSCC(SCC))
2338       return false;
2339 
2340     SetVector<Function *> Functions;
2341     for (CallGraphNode *CGN : SCC)
2342       if (Function *Fn = CGN->getFunction())
2343         if (!Fn->isDeclaration())
2344           Functions.insert(Fn);
2345 
2346     if (Functions.empty())
2347       return false;
2348 
2349     AnalysisGetter AG;
2350     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2351     CGUpdater.initialize(CG, SCC);
2352     Module &M = *Functions.back()->getParent();
2353     BumpPtrAllocator Allocator;
2354     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2355     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2356   }
2357 
2358   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
2359 
2360   void getAnalysisUsage(AnalysisUsage &AU) const override {
2361     // FIXME: Think about passes we will preserve and add them here.
2362     AU.addRequired<TargetLibraryInfoWrapperPass>();
2363     CallGraphSCCPass::getAnalysisUsage(AU);
2364   }
2365 };
2366 
2367 } // end anonymous namespace
2368 
2369 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2370 Pass *llvm::createAttributorCGSCCLegacyPass() {
2371   return new AttributorCGSCCLegacyPass();
2372 }
2373 
2374 char AttributorLegacyPass::ID = 0;
2375 char AttributorCGSCCLegacyPass::ID = 0;
2376 
2377 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2378                       "Deduce and propagate attributes", false, false)
2379 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2380 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2381                     "Deduce and propagate attributes", false, false)
2382 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2383                       "Deduce and propagate attributes (CGSCC pass)", false,
2384                       false)
2385 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2386 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2387 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2388                     "Deduce and propagate attributes (CGSCC pass)", false,
2389                     false)
2390