1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/FileSystem.h"
36 #include "llvm/Support/GraphWriter.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 
42 #include <cassert>
43 #include <string>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "attributor"
48 
49 STATISTIC(NumFnDeleted, "Number of function deleted");
50 STATISTIC(NumFnWithExactDefinition,
51           "Number of functions with exact definitions");
52 STATISTIC(NumFnWithoutExactDefinition,
53           "Number of functions without exact definitions");
54 STATISTIC(NumFnShallowWrapperCreated, "Number of shallow wrappers created");
55 STATISTIC(NumAttributesTimedOut,
56           "Number of abstract attributes timed out before fixpoint");
57 STATISTIC(NumAttributesValidFixpoint,
58           "Number of abstract attributes in a valid fixpoint state");
59 STATISTIC(NumAttributesManifested,
60           "Number of abstract attributes manifested in IR");
61 STATISTIC(NumAttributesFixedDueToRequiredDependences,
62           "Number of abstract attributes fixed due to required dependences");
63 
64 // TODO: Determine a good default value.
65 //
66 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
67 // (when run with the first 5 abstract attributes). The results also indicate
68 // that we never reach 32 iterations but always find a fixpoint sooner.
69 //
70 // This will become more evolved once we perform two interleaved fixpoint
71 // iterations: bottom-up and top-down.
72 static cl::opt<unsigned>
73     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
74                           cl::desc("Maximal number of fixpoint iterations."),
75                           cl::init(32));
76 
77 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
78     "attributor-max-initialization-chain-length", cl::Hidden,
79     cl::desc(
80         "Maximal number of chained initializations (to avoid stack overflows)"),
81     cl::location(MaxInitializationChainLength), cl::init(1024));
82 unsigned llvm::MaxInitializationChainLength;
83 
84 static cl::opt<bool> VerifyMaxFixpointIterations(
85     "attributor-max-iterations-verify", cl::Hidden,
86     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
87     cl::init(false));
88 
89 static cl::opt<bool> AnnotateDeclarationCallSites(
90     "attributor-annotate-decl-cs", cl::Hidden,
91     cl::desc("Annotate call sites of function declarations."), cl::init(false));
92 
93 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
94                                        cl::init(true), cl::Hidden);
95 
96 static cl::opt<bool>
97     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
98                          cl::desc("Allow the Attributor to create shallow "
99                                   "wrappers for non-exact definitions."),
100                          cl::init(false));
101 
102 static cl::opt<bool>
103     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
104                      cl::desc("Allow the Attributor to use IP information "
105                               "derived from non-exact functions via cloning"),
106                      cl::init(false));
107 
108 // These options can only used for debug builds.
109 #ifndef NDEBUG
110 static cl::list<std::string>
111     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
112                   cl::desc("Comma seperated list of attribute names that are "
113                            "allowed to be seeded."),
114                   cl::ZeroOrMore, cl::CommaSeparated);
115 
116 static cl::list<std::string> FunctionSeedAllowList(
117     "attributor-function-seed-allow-list", cl::Hidden,
118     cl::desc("Comma seperated list of function names that are "
119              "allowed to be seeded."),
120     cl::ZeroOrMore, cl::CommaSeparated);
121 #endif
122 
123 static cl::opt<bool>
124     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
125                  cl::desc("Dump the dependency graph to dot files."),
126                  cl::init(false));
127 
128 static cl::opt<std::string> DepGraphDotFileNamePrefix(
129     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
130     cl::desc("The prefix used for the CallGraph dot file names."));
131 
132 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
133                                   cl::desc("View the dependency graph."),
134                                   cl::init(false));
135 
136 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
137                                        cl::desc("Print attribute dependencies"),
138                                        cl::init(false));
139 
140 /// Logic operators for the change status enum class.
141 ///
142 ///{
143 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
144   return L == ChangeStatus::CHANGED ? L : R;
145 }
146 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
147   return L == ChangeStatus::UNCHANGED ? L : R;
148 }
149 ///}
150 
151 /// Return true if \p New is equal or worse than \p Old.
152 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
153   if (!Old.isIntAttribute())
154     return true;
155 
156   return Old.getValueAsInt() >= New.getValueAsInt();
157 }
158 
159 /// Return true if the information provided by \p Attr was added to the
160 /// attribute list \p Attrs. This is only the case if it was not already present
161 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
162 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
163                              AttributeList &Attrs, int AttrIdx) {
164 
165   if (Attr.isEnumAttribute()) {
166     Attribute::AttrKind Kind = Attr.getKindAsEnum();
167     if (Attrs.hasAttribute(AttrIdx, Kind))
168       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
169         return false;
170     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
171     return true;
172   }
173   if (Attr.isStringAttribute()) {
174     StringRef Kind = Attr.getKindAsString();
175     if (Attrs.hasAttribute(AttrIdx, Kind))
176       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
177         return false;
178     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
179     return true;
180   }
181   if (Attr.isIntAttribute()) {
182     Attribute::AttrKind Kind = Attr.getKindAsEnum();
183     if (Attrs.hasAttribute(AttrIdx, Kind))
184       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
185         return false;
186     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
187     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
188     return true;
189   }
190 
191   llvm_unreachable("Expected enum or string attribute!");
192 }
193 
194 Argument *IRPosition::getAssociatedArgument() const {
195   if (getPositionKind() == IRP_ARGUMENT)
196     return cast<Argument>(&getAnchorValue());
197 
198   // Not an Argument and no argument number means this is not a call site
199   // argument, thus we cannot find a callback argument to return.
200   int ArgNo = getCallSiteArgNo();
201   if (ArgNo < 0)
202     return nullptr;
203 
204   // Use abstract call sites to make the connection between the call site
205   // values and the ones in callbacks. If a callback was found that makes use
206   // of the underlying call site operand, we want the corresponding callback
207   // callee argument and not the direct callee argument.
208   Optional<Argument *> CBCandidateArg;
209   SmallVector<const Use *, 4> CallbackUses;
210   const auto &CB = cast<CallBase>(getAnchorValue());
211   AbstractCallSite::getCallbackUses(CB, CallbackUses);
212   for (const Use *U : CallbackUses) {
213     AbstractCallSite ACS(U);
214     assert(ACS && ACS.isCallbackCall());
215     if (!ACS.getCalledFunction())
216       continue;
217 
218     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
219 
220       // Test if the underlying call site operand is argument number u of the
221       // callback callee.
222       if (ACS.getCallArgOperandNo(u) != ArgNo)
223         continue;
224 
225       assert(ACS.getCalledFunction()->arg_size() > u &&
226              "ACS mapped into var-args arguments!");
227       if (CBCandidateArg.hasValue()) {
228         CBCandidateArg = nullptr;
229         break;
230       }
231       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
232     }
233   }
234 
235   // If we found a unique callback candidate argument, return it.
236   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
237     return CBCandidateArg.getValue();
238 
239   // If no callbacks were found, or none used the underlying call site operand
240   // exclusively, use the direct callee argument if available.
241   const Function *Callee = CB.getCalledFunction();
242   if (Callee && Callee->arg_size() > unsigned(ArgNo))
243     return Callee->getArg(ArgNo);
244 
245   return nullptr;
246 }
247 
248 ChangeStatus AbstractAttribute::update(Attributor &A) {
249   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
250   if (getState().isAtFixpoint())
251     return HasChanged;
252 
253   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
254 
255   HasChanged = updateImpl(A);
256 
257   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
258                     << "\n");
259 
260   return HasChanged;
261 }
262 
263 ChangeStatus
264 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
265                                    const ArrayRef<Attribute> &DeducedAttrs) {
266   Function *ScopeFn = IRP.getAnchorScope();
267   IRPosition::Kind PK = IRP.getPositionKind();
268 
269   // In the following some generic code that will manifest attributes in
270   // DeducedAttrs if they improve the current IR. Due to the different
271   // annotation positions we use the underlying AttributeList interface.
272 
273   AttributeList Attrs;
274   switch (PK) {
275   case IRPosition::IRP_INVALID:
276   case IRPosition::IRP_FLOAT:
277     return ChangeStatus::UNCHANGED;
278   case IRPosition::IRP_ARGUMENT:
279   case IRPosition::IRP_FUNCTION:
280   case IRPosition::IRP_RETURNED:
281     Attrs = ScopeFn->getAttributes();
282     break;
283   case IRPosition::IRP_CALL_SITE:
284   case IRPosition::IRP_CALL_SITE_RETURNED:
285   case IRPosition::IRP_CALL_SITE_ARGUMENT:
286     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
287     break;
288   }
289 
290   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
291   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
292   for (const Attribute &Attr : DeducedAttrs) {
293     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
294       continue;
295 
296     HasChanged = ChangeStatus::CHANGED;
297   }
298 
299   if (HasChanged == ChangeStatus::UNCHANGED)
300     return HasChanged;
301 
302   switch (PK) {
303   case IRPosition::IRP_ARGUMENT:
304   case IRPosition::IRP_FUNCTION:
305   case IRPosition::IRP_RETURNED:
306     ScopeFn->setAttributes(Attrs);
307     break;
308   case IRPosition::IRP_CALL_SITE:
309   case IRPosition::IRP_CALL_SITE_RETURNED:
310   case IRPosition::IRP_CALL_SITE_ARGUMENT:
311     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
312     break;
313   case IRPosition::IRP_INVALID:
314   case IRPosition::IRP_FLOAT:
315     break;
316   }
317 
318   return HasChanged;
319 }
320 
321 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
322 const IRPosition
323     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
324 
325 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
326   IRPositions.emplace_back(IRP);
327 
328   // Helper to determine if operand bundles on a call site are benin or
329   // potentially problematic. We handle only llvm.assume for now.
330   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
331     return (isa<IntrinsicInst>(CB) &&
332             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
333   };
334 
335   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
336   switch (IRP.getPositionKind()) {
337   case IRPosition::IRP_INVALID:
338   case IRPosition::IRP_FLOAT:
339   case IRPosition::IRP_FUNCTION:
340     return;
341   case IRPosition::IRP_ARGUMENT:
342   case IRPosition::IRP_RETURNED:
343     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
344     return;
345   case IRPosition::IRP_CALL_SITE:
346     assert(CB && "Expected call site!");
347     // TODO: We need to look at the operand bundles similar to the redirection
348     //       in CallBase.
349     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
350       if (const Function *Callee = CB->getCalledFunction())
351         IRPositions.emplace_back(IRPosition::function(*Callee));
352     return;
353   case IRPosition::IRP_CALL_SITE_RETURNED:
354     assert(CB && "Expected call site!");
355     // TODO: We need to look at the operand bundles similar to the redirection
356     //       in CallBase.
357     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
358       if (const Function *Callee = CB->getCalledFunction()) {
359         IRPositions.emplace_back(IRPosition::returned(*Callee));
360         IRPositions.emplace_back(IRPosition::function(*Callee));
361         for (const Argument &Arg : Callee->args())
362           if (Arg.hasReturnedAttr()) {
363             IRPositions.emplace_back(
364                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
365             IRPositions.emplace_back(
366                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
367             IRPositions.emplace_back(IRPosition::argument(Arg));
368           }
369       }
370     }
371     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
372     return;
373   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
374     assert(CB && "Expected call site!");
375     // TODO: We need to look at the operand bundles similar to the redirection
376     //       in CallBase.
377     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
378       const Function *Callee = CB->getCalledFunction();
379       if (Callee) {
380         if (Argument *Arg = IRP.getAssociatedArgument())
381           IRPositions.emplace_back(IRPosition::argument(*Arg));
382         IRPositions.emplace_back(IRPosition::function(*Callee));
383     }
384     }
385     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
386     return;
387   }
388   }
389 }
390 
391 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
392                          bool IgnoreSubsumingPositions, Attributor *A) const {
393   SmallVector<Attribute, 4> Attrs;
394   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
395     for (Attribute::AttrKind AK : AKs)
396       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
397         return true;
398     // The first position returned by the SubsumingPositionIterator is
399     // always the position itself. If we ignore subsuming positions we
400     // are done after the first iteration.
401     if (IgnoreSubsumingPositions)
402       break;
403   }
404   if (A)
405     for (Attribute::AttrKind AK : AKs)
406       if (getAttrsFromAssumes(AK, Attrs, *A))
407         return true;
408   return false;
409 }
410 
411 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
412                           SmallVectorImpl<Attribute> &Attrs,
413                           bool IgnoreSubsumingPositions, Attributor *A) const {
414   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
415     for (Attribute::AttrKind AK : AKs)
416       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
417     // The first position returned by the SubsumingPositionIterator is
418     // always the position itself. If we ignore subsuming positions we
419     // are done after the first iteration.
420     if (IgnoreSubsumingPositions)
421       break;
422   }
423   if (A)
424     for (Attribute::AttrKind AK : AKs)
425       getAttrsFromAssumes(AK, Attrs, *A);
426 }
427 
428 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
429                                     SmallVectorImpl<Attribute> &Attrs) const {
430   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
431     return false;
432 
433   AttributeList AttrList;
434   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
435     AttrList = CB->getAttributes();
436   else
437     AttrList = getAssociatedFunction()->getAttributes();
438 
439   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
440   if (HasAttr)
441     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
442   return HasAttr;
443 }
444 
445 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
446                                      SmallVectorImpl<Attribute> &Attrs,
447                                      Attributor &A) const {
448   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
449   Value &AssociatedValue = getAssociatedValue();
450 
451   const Assume2KnowledgeMap &A2K =
452       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
453 
454   // Check if we found any potential assume use, if not we don't need to create
455   // explorer iterators.
456   if (A2K.empty())
457     return false;
458 
459   LLVMContext &Ctx = AssociatedValue.getContext();
460   unsigned AttrsSize = Attrs.size();
461   MustBeExecutedContextExplorer &Explorer =
462       A.getInfoCache().getMustBeExecutedContextExplorer();
463   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
464   for (auto &It : A2K)
465     if (Explorer.findInContextOf(It.first, EIt, EEnd))
466       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
467   return AttrsSize != Attrs.size();
468 }
469 
470 void IRPosition::verify() {
471 #ifdef EXPENSIVE_CHECKS
472   switch (getPositionKind()) {
473   case IRP_INVALID:
474     assert(!Enc.getOpaqueValue() &&
475            "Expected a nullptr for an invalid position!");
476     return;
477   case IRP_FLOAT:
478     assert((!isa<CallBase>(&getAssociatedValue()) &&
479             !isa<Argument>(&getAssociatedValue())) &&
480            "Expected specialized kind for call base and argument values!");
481     return;
482   case IRP_RETURNED:
483     assert(isa<Function>(getAsValuePtr()) &&
484            "Expected function for a 'returned' position!");
485     assert(getAsValuePtr() == &getAssociatedValue() &&
486            "Associated value mismatch!");
487     return;
488   case IRP_CALL_SITE_RETURNED:
489     assert((isa<CallBase>(getAsValuePtr())) &&
490            "Expected call base for 'call site returned' position!");
491     assert(getAsValuePtr() == &getAssociatedValue() &&
492            "Associated value mismatch!");
493     return;
494   case IRP_CALL_SITE:
495     assert((isa<CallBase>(getAsValuePtr())) &&
496            "Expected call base for 'call site function' position!");
497     assert(getAsValuePtr() == &getAssociatedValue() &&
498            "Associated value mismatch!");
499     return;
500   case IRP_FUNCTION:
501     assert(isa<Function>(getAsValuePtr()) &&
502            "Expected function for a 'function' position!");
503     assert(getAsValuePtr() == &getAssociatedValue() &&
504            "Associated value mismatch!");
505     return;
506   case IRP_ARGUMENT:
507     assert(isa<Argument>(getAsValuePtr()) &&
508            "Expected argument for a 'argument' position!");
509     assert(getAsValuePtr() == &getAssociatedValue() &&
510            "Associated value mismatch!");
511     return;
512   case IRP_CALL_SITE_ARGUMENT: {
513     Use *U = getAsUsePtr();
514     assert(U && "Expected use for a 'call site argument' position!");
515     assert(isa<CallBase>(U->getUser()) &&
516            "Expected call base user for a 'call site argument' position!");
517     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
518            "Expected call base argument operand for a 'call site argument' "
519            "position");
520     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
521                unsigned(getCallSiteArgNo()) &&
522            "Argument number mismatch!");
523     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
524     return;
525   }
526   }
527 #endif
528 }
529 
530 Optional<Constant *>
531 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
532                                bool &UsedAssumedInformation) {
533   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
534       AA, IRPosition::value(V), /* TrackDependence */ false);
535   Optional<Value *> SimplifiedV =
536       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
537   bool IsKnown = ValueSimplifyAA.isKnown();
538   UsedAssumedInformation |= !IsKnown;
539   if (!SimplifiedV.hasValue()) {
540     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
541     return llvm::None;
542   }
543   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
544     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
545     return llvm::None;
546   }
547   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
548   if (CI && CI->getType() != V.getType()) {
549     // TODO: Check for a save conversion.
550     return nullptr;
551   }
552   if (CI)
553     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
554   return CI;
555 }
556 
557 Attributor::~Attributor() {
558   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
559   // thus we cannot delete them. We can, and want to, destruct them though.
560   for (auto &DepAA : DG.SyntheticRoot.Deps) {
561     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
562     AA->~AbstractAttribute();
563   }
564 }
565 
566 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
567                                const AAIsDead *FnLivenessAA,
568                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
569   const IRPosition &IRP = AA.getIRPosition();
570   if (!Functions.count(IRP.getAnchorScope()))
571     return false;
572   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
573 }
574 
575 bool Attributor::isAssumedDead(const Use &U,
576                                const AbstractAttribute *QueryingAA,
577                                const AAIsDead *FnLivenessAA,
578                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
579   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
580   if (!UserI)
581     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
582                          CheckBBLivenessOnly, DepClass);
583 
584   if (auto *CB = dyn_cast<CallBase>(UserI)) {
585     // For call site argument uses we can check if the argument is
586     // unused/dead.
587     if (CB->isArgOperand(&U)) {
588       const IRPosition &CSArgPos =
589           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
590       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
591                            CheckBBLivenessOnly, DepClass);
592     }
593   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
594     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
595     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
596                          DepClass);
597   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
598     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
599     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
600                          CheckBBLivenessOnly, DepClass);
601   }
602 
603   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
604                        CheckBBLivenessOnly, DepClass);
605 }
606 
607 bool Attributor::isAssumedDead(const Instruction &I,
608                                const AbstractAttribute *QueryingAA,
609                                const AAIsDead *FnLivenessAA,
610                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
611   if (!FnLivenessAA)
612     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
613                                          QueryingAA,
614                                          /* TrackDependence */ false);
615 
616   // If we have a context instruction and a liveness AA we use it.
617   if (FnLivenessAA &&
618       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
619       FnLivenessAA->isAssumedDead(&I)) {
620     if (QueryingAA)
621       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
622     return true;
623   }
624 
625   if (CheckBBLivenessOnly)
626     return false;
627 
628   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
629       IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
630   // Don't check liveness for AAIsDead.
631   if (QueryingAA == &IsDeadAA)
632     return false;
633 
634   if (IsDeadAA.isAssumedDead()) {
635     if (QueryingAA)
636       recordDependence(IsDeadAA, *QueryingAA, DepClass);
637     return true;
638   }
639 
640   return false;
641 }
642 
643 bool Attributor::isAssumedDead(const IRPosition &IRP,
644                                const AbstractAttribute *QueryingAA,
645                                const AAIsDead *FnLivenessAA,
646                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
647   Instruction *CtxI = IRP.getCtxI();
648   if (CtxI &&
649       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
650                     /* CheckBBLivenessOnly */ true,
651                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
652     return true;
653 
654   if (CheckBBLivenessOnly)
655     return false;
656 
657   // If we haven't succeeded we query the specific liveness info for the IRP.
658   const AAIsDead *IsDeadAA;
659   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
660     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
661         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
662         QueryingAA, /* TrackDependence */ false);
663   else
664     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
665                                            /* TrackDependence */ false);
666   // Don't check liveness for AAIsDead.
667   if (QueryingAA == IsDeadAA)
668     return false;
669 
670   if (IsDeadAA->isAssumedDead()) {
671     if (QueryingAA)
672       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
673     return true;
674   }
675 
676   return false;
677 }
678 
679 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
680                                  const AbstractAttribute &QueryingAA,
681                                  const Value &V, DepClassTy LivenessDepClass) {
682 
683   // Check the trivial case first as it catches void values.
684   if (V.use_empty())
685     return true;
686 
687   // If the value is replaced by another one, for now a constant, we do not have
688   // uses. Note that this requires users of `checkForAllUses` to not recurse but
689   // instead use the `follow` callback argument to look at transitive users,
690   // however, that should be clear from the presence of the argument.
691   bool UsedAssumedInformation = false;
692   Optional<Constant *> C =
693       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
694   if (C.hasValue() && C.getValue()) {
695     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
696                       << " -> " << *C.getValue() << "\n");
697     return true;
698   }
699 
700   const IRPosition &IRP = QueryingAA.getIRPosition();
701   SmallVector<const Use *, 16> Worklist;
702   SmallPtrSet<const Use *, 16> Visited;
703 
704   for (const Use &U : V.uses())
705     Worklist.push_back(&U);
706 
707   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
708                     << " initial uses to check\n");
709 
710   const Function *ScopeFn = IRP.getAnchorScope();
711   const auto *LivenessAA =
712       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
713                                     /* TrackDependence */ false)
714               : nullptr;
715 
716   while (!Worklist.empty()) {
717     const Use *U = Worklist.pop_back_val();
718     if (!Visited.insert(U).second)
719       continue;
720     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
721                       << *U->getUser() << "\n");
722     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
723                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
724       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
725       continue;
726     }
727     if (U->getUser()->isDroppable()) {
728       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
729       continue;
730     }
731 
732     bool Follow = false;
733     if (!Pred(*U, Follow))
734       return false;
735     if (!Follow)
736       continue;
737     for (const Use &UU : U->getUser()->uses())
738       Worklist.push_back(&UU);
739   }
740 
741   return true;
742 }
743 
744 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
745                                       const AbstractAttribute &QueryingAA,
746                                       bool RequireAllCallSites,
747                                       bool &AllCallSitesKnown) {
748   // We can try to determine information from
749   // the call sites. However, this is only possible all call sites are known,
750   // hence the function has internal linkage.
751   const IRPosition &IRP = QueryingAA.getIRPosition();
752   const Function *AssociatedFunction = IRP.getAssociatedFunction();
753   if (!AssociatedFunction) {
754     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
755                       << "\n");
756     AllCallSitesKnown = false;
757     return false;
758   }
759 
760   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
761                               &QueryingAA, AllCallSitesKnown);
762 }
763 
764 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
765                                       const Function &Fn,
766                                       bool RequireAllCallSites,
767                                       const AbstractAttribute *QueryingAA,
768                                       bool &AllCallSitesKnown) {
769   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
770     LLVM_DEBUG(
771         dbgs()
772         << "[Attributor] Function " << Fn.getName()
773         << " has no internal linkage, hence not all call sites are known\n");
774     AllCallSitesKnown = false;
775     return false;
776   }
777 
778   // If we do not require all call sites we might not see all.
779   AllCallSitesKnown = RequireAllCallSites;
780 
781   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
782   for (unsigned u = 0; u < Uses.size(); ++u) {
783     const Use &U = *Uses[u];
784     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
785                       << *U.getUser() << "\n");
786     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
787       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
788       continue;
789     }
790     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
791       if (CE->isCast() && CE->getType()->isPointerTy() &&
792           CE->getType()->getPointerElementType()->isFunctionTy()) {
793         for (const Use &CEU : CE->uses())
794           Uses.push_back(&CEU);
795         continue;
796       }
797     }
798 
799     AbstractCallSite ACS(&U);
800     if (!ACS) {
801       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
802                         << " has non call site use " << *U.get() << " in "
803                         << *U.getUser() << "\n");
804       // BlockAddress users are allowed.
805       if (isa<BlockAddress>(U.getUser()))
806         continue;
807       return false;
808     }
809 
810     const Use *EffectiveUse =
811         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
812     if (!ACS.isCallee(EffectiveUse)) {
813       if (!RequireAllCallSites)
814         continue;
815       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
816                         << " is an invalid use of " << Fn.getName() << "\n");
817       return false;
818     }
819 
820     // Make sure the arguments that can be matched between the call site and the
821     // callee argee on their type. It is unlikely they do not and it doesn't
822     // make sense for all attributes to know/care about this.
823     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
824     unsigned MinArgsParams =
825         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
826     for (unsigned u = 0; u < MinArgsParams; ++u) {
827       Value *CSArgOp = ACS.getCallArgOperand(u);
828       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
829         LLVM_DEBUG(
830             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
831                    << u << "@" << Fn.getName() << ": "
832                    << *Fn.getArg(u)->getType() << " vs. "
833                    << *ACS.getCallArgOperand(u)->getType() << "\n");
834         return false;
835       }
836     }
837 
838     if (Pred(ACS))
839       continue;
840 
841     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
842                       << *ACS.getInstruction() << "\n");
843     return false;
844   }
845 
846   return true;
847 }
848 
849 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
850     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
851     const AbstractAttribute &QueryingAA) {
852 
853   const IRPosition &IRP = QueryingAA.getIRPosition();
854   // Since we need to provide return instructions we have to have an exact
855   // definition.
856   const Function *AssociatedFunction = IRP.getAssociatedFunction();
857   if (!AssociatedFunction)
858     return false;
859 
860   // If this is a call site query we use the call site specific return values
861   // and liveness information.
862   // TODO: use the function scope once we have call site AAReturnedValues.
863   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
864   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
865   if (!AARetVal.getState().isValidState())
866     return false;
867 
868   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
869 }
870 
871 bool Attributor::checkForAllReturnedValues(
872     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
873 
874   const IRPosition &IRP = QueryingAA.getIRPosition();
875   const Function *AssociatedFunction = IRP.getAssociatedFunction();
876   if (!AssociatedFunction)
877     return false;
878 
879   // TODO: use the function scope once we have call site AAReturnedValues.
880   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
881   const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
882   if (!AARetVal.getState().isValidState())
883     return false;
884 
885   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
886       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
887         return Pred(RV);
888       });
889 }
890 
891 static bool checkForAllInstructionsImpl(
892     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
893     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
894     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
895     bool CheckBBLivenessOnly = false) {
896   for (unsigned Opcode : Opcodes) {
897     // Check if we have instructions with this opcode at all first.
898     auto *Insts = OpcodeInstMap.lookup(Opcode);
899     if (!Insts)
900       continue;
901 
902     for (Instruction *I : *Insts) {
903       // Skip dead instructions.
904       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
905                                 CheckBBLivenessOnly))
906         continue;
907 
908       if (!Pred(*I))
909         return false;
910     }
911   }
912   return true;
913 }
914 
915 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
916                                          const AbstractAttribute &QueryingAA,
917                                          const ArrayRef<unsigned> &Opcodes,
918                                          bool CheckBBLivenessOnly) {
919 
920   const IRPosition &IRP = QueryingAA.getIRPosition();
921   // Since we need to provide instructions we have to have an exact definition.
922   const Function *AssociatedFunction = IRP.getAssociatedFunction();
923   if (!AssociatedFunction)
924     return false;
925 
926   // TODO: use the function scope once we have call site AAReturnedValues.
927   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
928   const auto *LivenessAA =
929       CheckBBLivenessOnly ? nullptr
930                           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP,
931                                                  /* TrackDependence */ false));
932 
933   auto &OpcodeInstMap =
934       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
935   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
936                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
937     return false;
938 
939   return true;
940 }
941 
942 bool Attributor::checkForAllReadWriteInstructions(
943     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
944 
945   const Function *AssociatedFunction =
946       QueryingAA.getIRPosition().getAssociatedFunction();
947   if (!AssociatedFunction)
948     return false;
949 
950   // TODO: use the function scope once we have call site AAReturnedValues.
951   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
952   const auto &LivenessAA =
953       getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
954 
955   for (Instruction *I :
956        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
957     // Skip dead instructions.
958     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
959       continue;
960 
961     if (!Pred(*I))
962       return false;
963   }
964 
965   return true;
966 }
967 
968 void Attributor::runTillFixpoint() {
969   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
970   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
971                     << DG.SyntheticRoot.Deps.size()
972                     << " abstract attributes.\n");
973 
974   // Now that all abstract attributes are collected and initialized we start
975   // the abstract analysis.
976 
977   unsigned IterationCounter = 1;
978 
979   SmallVector<AbstractAttribute *, 32> ChangedAAs;
980   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
981   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
982 
983   do {
984     // Remember the size to determine new attributes.
985     size_t NumAAs = DG.SyntheticRoot.Deps.size();
986     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
987                       << ", Worklist size: " << Worklist.size() << "\n");
988 
989     // For invalid AAs we can fix dependent AAs that have a required dependence,
990     // thereby folding long dependence chains in a single step without the need
991     // to run updates.
992     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
993       AbstractAttribute *InvalidAA = InvalidAAs[u];
994 
995       // Check the dependences to fast track invalidation.
996       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
997                         << InvalidAA->Deps.size()
998                         << " required & optional dependences\n");
999       while (!InvalidAA->Deps.empty()) {
1000         const auto &Dep = InvalidAA->Deps.back();
1001         InvalidAA->Deps.pop_back();
1002         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1003         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1004           Worklist.insert(DepAA);
1005           continue;
1006         }
1007         DepAA->getState().indicatePessimisticFixpoint();
1008         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1009         if (!DepAA->getState().isValidState())
1010           InvalidAAs.insert(DepAA);
1011         else
1012           ChangedAAs.push_back(DepAA);
1013       }
1014     }
1015 
1016     // Add all abstract attributes that are potentially dependent on one that
1017     // changed to the work list.
1018     for (AbstractAttribute *ChangedAA : ChangedAAs)
1019       while (!ChangedAA->Deps.empty()) {
1020         Worklist.insert(
1021             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1022         ChangedAA->Deps.pop_back();
1023       }
1024 
1025     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1026                       << ", Worklist+Dependent size: " << Worklist.size()
1027                       << "\n");
1028 
1029     // Reset the changed and invalid set.
1030     ChangedAAs.clear();
1031     InvalidAAs.clear();
1032 
1033     // Update all abstract attribute in the work list and record the ones that
1034     // changed.
1035     for (AbstractAttribute *AA : Worklist) {
1036       const auto &AAState = AA->getState();
1037       if (!AAState.isAtFixpoint())
1038         if (updateAA(*AA) == ChangeStatus::CHANGED)
1039           ChangedAAs.push_back(AA);
1040 
1041       // Use the InvalidAAs vector to propagate invalid states fast transitively
1042       // without requiring updates.
1043       if (!AAState.isValidState())
1044         InvalidAAs.insert(AA);
1045     }
1046 
1047     // Add attributes to the changed set if they have been created in the last
1048     // iteration.
1049     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1050                       DG.SyntheticRoot.end());
1051 
1052     // Reset the work list and repopulate with the changed abstract attributes.
1053     // Note that dependent ones are added above.
1054     Worklist.clear();
1055     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1056 
1057   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1058                                  VerifyMaxFixpointIterations));
1059 
1060   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1061                     << IterationCounter << "/" << MaxFixpointIterations
1062                     << " iterations\n");
1063 
1064   // Reset abstract arguments not settled in a sound fixpoint by now. This
1065   // happens when we stopped the fixpoint iteration early. Note that only the
1066   // ones marked as "changed" *and* the ones transitively depending on them
1067   // need to be reverted to a pessimistic state. Others might not be in a
1068   // fixpoint state but we can use the optimistic results for them anyway.
1069   SmallPtrSet<AbstractAttribute *, 32> Visited;
1070   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1071     AbstractAttribute *ChangedAA = ChangedAAs[u];
1072     if (!Visited.insert(ChangedAA).second)
1073       continue;
1074 
1075     AbstractState &State = ChangedAA->getState();
1076     if (!State.isAtFixpoint()) {
1077       State.indicatePessimisticFixpoint();
1078 
1079       NumAttributesTimedOut++;
1080     }
1081 
1082     while (!ChangedAA->Deps.empty()) {
1083       ChangedAAs.push_back(
1084           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1085       ChangedAA->Deps.pop_back();
1086     }
1087   }
1088 
1089   LLVM_DEBUG({
1090     if (!Visited.empty())
1091       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1092              << " abstract attributes.\n";
1093   });
1094 
1095   if (VerifyMaxFixpointIterations &&
1096       IterationCounter != MaxFixpointIterations) {
1097     errs() << "\n[Attributor] Fixpoint iteration done after: "
1098            << IterationCounter << "/" << MaxFixpointIterations
1099            << " iterations\n";
1100     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1101                      "specified iterations!");
1102   }
1103 }
1104 
1105 ChangeStatus Attributor::manifestAttributes() {
1106   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1107   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1108 
1109   unsigned NumManifested = 0;
1110   unsigned NumAtFixpoint = 0;
1111   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1112   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1113     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1114     AbstractState &State = AA->getState();
1115 
1116     // If there is not already a fixpoint reached, we can now take the
1117     // optimistic state. This is correct because we enforced a pessimistic one
1118     // on abstract attributes that were transitively dependent on a changed one
1119     // already above.
1120     if (!State.isAtFixpoint())
1121       State.indicateOptimisticFixpoint();
1122 
1123     // If the state is invalid, we do not try to manifest it.
1124     if (!State.isValidState())
1125       continue;
1126 
1127     // Skip dead code.
1128     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1129       continue;
1130     // Manifest the state and record if we changed the IR.
1131     ChangeStatus LocalChange = AA->manifest(*this);
1132     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1133       AA->trackStatistics();
1134     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1135                       << "\n");
1136 
1137     ManifestChange = ManifestChange | LocalChange;
1138 
1139     NumAtFixpoint++;
1140     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1141   }
1142 
1143   (void)NumManifested;
1144   (void)NumAtFixpoint;
1145   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1146                     << " arguments while " << NumAtFixpoint
1147                     << " were in a valid fixpoint state\n");
1148 
1149   NumAttributesManifested += NumManifested;
1150   NumAttributesValidFixpoint += NumAtFixpoint;
1151 
1152   (void)NumFinalAAs;
1153   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1154     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1155       errs() << "Unexpected abstract attribute: "
1156              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1157              << " :: "
1158              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1159                     ->getIRPosition()
1160                     .getAssociatedValue()
1161              << "\n";
1162     llvm_unreachable("Expected the final number of abstract attributes to "
1163                      "remain unchanged!");
1164   }
1165   return ManifestChange;
1166 }
1167 
1168 ChangeStatus Attributor::cleanupIR() {
1169   TimeTraceScope TimeScope("Attributor::cleanupIR");
1170   // Delete stuff at the end to avoid invalid references and a nice order.
1171   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1172                     << ToBeDeletedFunctions.size() << " functions and "
1173                     << ToBeDeletedBlocks.size() << " blocks and "
1174                     << ToBeDeletedInsts.size() << " instructions and "
1175                     << ToBeChangedUses.size() << " uses\n");
1176 
1177   SmallVector<WeakTrackingVH, 32> DeadInsts;
1178   SmallVector<Instruction *, 32> TerminatorsToFold;
1179 
1180   for (auto &It : ToBeChangedUses) {
1181     Use *U = It.first;
1182     Value *NewV = It.second;
1183     Value *OldV = U->get();
1184 
1185     // Do not replace uses in returns if the value is a must-tail call we will
1186     // not delete.
1187     if (isa<ReturnInst>(U->getUser()))
1188       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1189         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1190           continue;
1191 
1192     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1193                       << " instead of " << *OldV << "\n");
1194     U->set(NewV);
1195     // Do not modify call instructions outside the SCC.
1196     if (auto *CB = dyn_cast<CallBase>(OldV))
1197       if (!Functions.count(CB->getCaller()))
1198         continue;
1199     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1200       CGModifiedFunctions.insert(I->getFunction());
1201       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1202           isInstructionTriviallyDead(I))
1203         DeadInsts.push_back(I);
1204     }
1205     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1206       Instruction *UserI = cast<Instruction>(U->getUser());
1207       if (isa<UndefValue>(NewV)) {
1208         ToBeChangedToUnreachableInsts.insert(UserI);
1209       } else {
1210         TerminatorsToFold.push_back(UserI);
1211       }
1212     }
1213   }
1214   for (auto &V : InvokeWithDeadSuccessor)
1215     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1216       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1217       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1218       bool Invoke2CallAllowed =
1219           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1220       assert((UnwindBBIsDead || NormalBBIsDead) &&
1221              "Invoke does not have dead successors!");
1222       BasicBlock *BB = II->getParent();
1223       BasicBlock *NormalDestBB = II->getNormalDest();
1224       if (UnwindBBIsDead) {
1225         Instruction *NormalNextIP = &NormalDestBB->front();
1226         if (Invoke2CallAllowed) {
1227           changeToCall(II);
1228           NormalNextIP = BB->getTerminator();
1229         }
1230         if (NormalBBIsDead)
1231           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1232       } else {
1233         assert(NormalBBIsDead && "Broken invariant!");
1234         if (!NormalDestBB->getUniquePredecessor())
1235           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1236         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1237       }
1238     }
1239   for (Instruction *I : TerminatorsToFold) {
1240     CGModifiedFunctions.insert(I->getFunction());
1241     ConstantFoldTerminator(I->getParent());
1242   }
1243   for (auto &V : ToBeChangedToUnreachableInsts)
1244     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1245       CGModifiedFunctions.insert(I->getFunction());
1246       changeToUnreachable(I, /* UseLLVMTrap */ false);
1247     }
1248 
1249   for (auto &V : ToBeDeletedInsts) {
1250     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1251       I->dropDroppableUses();
1252       CGModifiedFunctions.insert(I->getFunction());
1253       if (!I->getType()->isVoidTy())
1254         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1255       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1256         DeadInsts.push_back(I);
1257       else
1258         I->eraseFromParent();
1259     }
1260   }
1261 
1262   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1263                     << "\n");
1264 
1265   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1266 
1267   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1268     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1269     ToBeDeletedBBs.reserve(NumDeadBlocks);
1270     for (BasicBlock *BB : ToBeDeletedBlocks) {
1271       CGModifiedFunctions.insert(BB->getParent());
1272       ToBeDeletedBBs.push_back(BB);
1273     }
1274     // Actually we do not delete the blocks but squash them into a single
1275     // unreachable but untangling branches that jump here is something we need
1276     // to do in a more generic way.
1277     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1278   }
1279 
1280   // Identify dead internal functions and delete them. This happens outside
1281   // the other fixpoint analysis as we might treat potentially dead functions
1282   // as live to lower the number of iterations. If they happen to be dead, the
1283   // below fixpoint loop will identify and eliminate them.
1284   SmallVector<Function *, 8> InternalFns;
1285   for (Function *F : Functions)
1286     if (F->hasLocalLinkage())
1287       InternalFns.push_back(F);
1288 
1289   bool FoundDeadFn = true;
1290   while (FoundDeadFn) {
1291     FoundDeadFn = false;
1292     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1293       Function *F = InternalFns[u];
1294       if (!F)
1295         continue;
1296 
1297       bool AllCallSitesKnown;
1298       if (!checkForAllCallSites(
1299               [this](AbstractCallSite ACS) {
1300                 return ToBeDeletedFunctions.count(
1301                     ACS.getInstruction()->getFunction());
1302               },
1303               *F, true, nullptr, AllCallSitesKnown))
1304         continue;
1305 
1306       ToBeDeletedFunctions.insert(F);
1307       InternalFns[u] = nullptr;
1308       FoundDeadFn = true;
1309     }
1310   }
1311 
1312   // Rewrite the functions as requested during manifest.
1313   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1314 
1315   for (Function *Fn : CGModifiedFunctions)
1316     CGUpdater.reanalyzeFunction(*Fn);
1317 
1318   for (Function *Fn : ToBeDeletedFunctions) {
1319     if (!Functions.count(Fn))
1320       continue;
1321     CGUpdater.removeFunction(*Fn);
1322   }
1323 
1324   if (!ToBeChangedUses.empty())
1325     ManifestChange = ChangeStatus::CHANGED;
1326 
1327   if (!ToBeChangedToUnreachableInsts.empty())
1328     ManifestChange = ChangeStatus::CHANGED;
1329 
1330   if (!ToBeDeletedFunctions.empty())
1331     ManifestChange = ChangeStatus::CHANGED;
1332 
1333   if (!ToBeDeletedBlocks.empty())
1334     ManifestChange = ChangeStatus::CHANGED;
1335 
1336   if (!ToBeDeletedInsts.empty())
1337     ManifestChange = ChangeStatus::CHANGED;
1338 
1339   if (!InvokeWithDeadSuccessor.empty())
1340     ManifestChange = ChangeStatus::CHANGED;
1341 
1342   if (!DeadInsts.empty())
1343     ManifestChange = ChangeStatus::CHANGED;
1344 
1345   NumFnDeleted += ToBeDeletedFunctions.size();
1346 
1347   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << NumFnDeleted
1348                     << " functions after manifest.\n");
1349 
1350 #ifdef EXPENSIVE_CHECKS
1351   for (Function *F : Functions) {
1352     if (ToBeDeletedFunctions.count(F))
1353       continue;
1354     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1355   }
1356 #endif
1357 
1358   return ManifestChange;
1359 }
1360 
1361 ChangeStatus Attributor::run() {
1362   TimeTraceScope TimeScope("Attributor::run");
1363 
1364   Phase = AttributorPhase::UPDATE;
1365   runTillFixpoint();
1366 
1367   // dump graphs on demand
1368   if (DumpDepGraph)
1369     DG.dumpGraph();
1370 
1371   if (ViewDepGraph)
1372     DG.viewGraph();
1373 
1374   if (PrintDependencies)
1375     DG.print();
1376 
1377   Phase = AttributorPhase::MANIFEST;
1378   ChangeStatus ManifestChange = manifestAttributes();
1379 
1380   Phase = AttributorPhase::CLEANUP;
1381   ChangeStatus CleanupChange = cleanupIR();
1382 
1383   return ManifestChange | CleanupChange;
1384 }
1385 
1386 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1387   TimeTraceScope TimeScope(AA.getName() + "::updateAA");
1388   assert(Phase == AttributorPhase::UPDATE &&
1389          "We can update AA only in the update stage!");
1390 
1391   // Use a new dependence vector for this update.
1392   DependenceVector DV;
1393   DependenceStack.push_back(&DV);
1394 
1395   auto &AAState = AA.getState();
1396   ChangeStatus CS = ChangeStatus::UNCHANGED;
1397   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1398     CS = AA.update(*this);
1399 
1400   if (DV.empty()) {
1401     // If the attribute did not query any non-fix information, the state
1402     // will not change and we can indicate that right away.
1403     AAState.indicateOptimisticFixpoint();
1404   }
1405 
1406   if (!AAState.isAtFixpoint())
1407     rememberDependences();
1408 
1409   // Verify the stack was used properly, that is we pop the dependence vector we
1410   // put there earlier.
1411   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1412   (void)PoppedDV;
1413   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1414 
1415   return CS;
1416 }
1417 
1418 /// Create a shallow wrapper for \p F such that \p F has internal linkage
1419 /// afterwards. It also sets the original \p F 's name to anonymous
1420 ///
1421 /// A wrapper is a function with the same type (and attributes) as \p F
1422 /// that will only call \p F and return the result, if any.
1423 ///
1424 /// Assuming the declaration of looks like:
1425 ///   rty F(aty0 arg0, ..., atyN argN);
1426 ///
1427 /// The wrapper will then look as follows:
1428 ///   rty wrapper(aty0 arg0, ..., atyN argN) {
1429 ///     return F(arg0, ..., argN);
1430 ///   }
1431 ///
1432 static void createShallowWrapper(Function &F) {
1433   assert(AllowShallowWrappers &&
1434          "Cannot create a wrapper if it is not allowed!");
1435   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1436 
1437   Module &M = *F.getParent();
1438   LLVMContext &Ctx = M.getContext();
1439   FunctionType *FnTy = F.getFunctionType();
1440 
1441   Function *Wrapper =
1442       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1443   F.setName(""); // set the inside function anonymous
1444   M.getFunctionList().insert(F.getIterator(), Wrapper);
1445 
1446   F.setLinkage(GlobalValue::InternalLinkage);
1447 
1448   F.replaceAllUsesWith(Wrapper);
1449   assert(F.use_empty() && "Uses remained after wrapper was created!");
1450 
1451   // Move the COMDAT section to the wrapper.
1452   // TODO: Check if we need to keep it for F as well.
1453   Wrapper->setComdat(F.getComdat());
1454   F.setComdat(nullptr);
1455 
1456   // Copy all metadata and attributes but keep them on F as well.
1457   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1458   F.getAllMetadata(MDs);
1459   for (auto MDIt : MDs)
1460     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1461   Wrapper->setAttributes(F.getAttributes());
1462 
1463   // Create the call in the wrapper.
1464   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1465 
1466   SmallVector<Value *, 8> Args;
1467   Argument *FArgIt = F.arg_begin();
1468   for (Argument &Arg : Wrapper->args()) {
1469     Args.push_back(&Arg);
1470     Arg.setName((FArgIt++)->getName());
1471   }
1472 
1473   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1474   CI->setTailCall(true);
1475   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1476   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1477 
1478   NumFnShallowWrapperCreated++;
1479 }
1480 
1481 /// Make another copy of the function \p F such that the copied version has
1482 /// internal linkage afterwards and can be analysed. Then we replace all uses
1483 /// of the original function to the copied one
1484 ///
1485 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1486 /// linkage can be internalized because these linkages guarantee that other
1487 /// definitions with the same name have the same semantics as this one
1488 ///
1489 static Function *internalizeFunction(Function &F) {
1490   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1491   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1492          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1493          "Trying to internalize function which cannot be internalized.");
1494 
1495   Module &M = *F.getParent();
1496   FunctionType *FnTy = F.getFunctionType();
1497 
1498   // create a copy of the current function
1499   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1500                                       F.getName() + ".internalized");
1501   ValueToValueMapTy VMap;
1502   auto *NewFArgIt = Copied->arg_begin();
1503   for (auto &Arg : F.args()) {
1504     auto ArgName = Arg.getName();
1505     NewFArgIt->setName(ArgName);
1506     VMap[&Arg] = &(*NewFArgIt++);
1507   }
1508   SmallVector<ReturnInst *, 8> Returns;
1509 
1510   // Copy the body of the original function to the new one
1511   CloneFunctionInto(Copied, &F, VMap, /* ModuleLevelChanges */ false, Returns);
1512 
1513   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1514   // requirements.
1515   Copied->setVisibility(GlobalValue::DefaultVisibility);
1516   Copied->setLinkage(GlobalValue::PrivateLinkage);
1517 
1518   // Copy metadata
1519   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1520   F.getAllMetadata(MDs);
1521   for (auto MDIt : MDs)
1522     Copied->addMetadata(MDIt.first, *MDIt.second);
1523 
1524   M.getFunctionList().insert(F.getIterator(), Copied);
1525   F.replaceAllUsesWith(Copied);
1526   Copied->setDSOLocal(true);
1527 
1528   return Copied;
1529 }
1530 
1531 bool Attributor::isValidFunctionSignatureRewrite(
1532     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1533 
1534   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1535     // Forbid the call site to cast the function return type. If we need to
1536     // rewrite these functions we need to re-create a cast for the new call site
1537     // (if the old had uses).
1538     if (!ACS.getCalledFunction() ||
1539         ACS.getInstruction()->getType() !=
1540             ACS.getCalledFunction()->getReturnType())
1541       return false;
1542     // Forbid must-tail calls for now.
1543     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1544   };
1545 
1546   Function *Fn = Arg.getParent();
1547   // Avoid var-arg functions for now.
1548   if (Fn->isVarArg()) {
1549     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1550     return false;
1551   }
1552 
1553   // Avoid functions with complicated argument passing semantics.
1554   AttributeList FnAttributeList = Fn->getAttributes();
1555   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1556       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1557       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1558       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1559     LLVM_DEBUG(
1560         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1561     return false;
1562   }
1563 
1564   // Avoid callbacks for now.
1565   bool AllCallSitesKnown;
1566   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1567                             AllCallSitesKnown)) {
1568     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1569     return false;
1570   }
1571 
1572   auto InstPred = [](Instruction &I) {
1573     if (auto *CI = dyn_cast<CallInst>(&I))
1574       return !CI->isMustTailCall();
1575     return true;
1576   };
1577 
1578   // Forbid must-tail calls for now.
1579   // TODO:
1580   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1581   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1582                                    nullptr, {Instruction::Call})) {
1583     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1584     return false;
1585   }
1586 
1587   return true;
1588 }
1589 
1590 bool Attributor::registerFunctionSignatureRewrite(
1591     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1592     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1593     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1594   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1595                     << Arg.getParent()->getName() << " with "
1596                     << ReplacementTypes.size() << " replacements\n");
1597   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1598          "Cannot register an invalid rewrite");
1599 
1600   Function *Fn = Arg.getParent();
1601   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1602       ArgumentReplacementMap[Fn];
1603   if (ARIs.empty())
1604     ARIs.resize(Fn->arg_size());
1605 
1606   // If we have a replacement already with less than or equal new arguments,
1607   // ignore this request.
1608   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1609   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1610     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1611     return false;
1612   }
1613 
1614   // If we have a replacement already but we like the new one better, delete
1615   // the old.
1616   ARI.reset();
1617 
1618   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1619                     << Arg.getParent()->getName() << " with "
1620                     << ReplacementTypes.size() << " replacements\n");
1621 
1622   // Remember the replacement.
1623   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1624                                         std::move(CalleeRepairCB),
1625                                         std::move(ACSRepairCB)));
1626 
1627   return true;
1628 }
1629 
1630 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1631   bool Result = true;
1632 #ifndef NDEBUG
1633   if (SeedAllowList.size() != 0)
1634     Result =
1635         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1636   Function *Fn = AA.getAnchorScope();
1637   if (FunctionSeedAllowList.size() != 0 && Fn)
1638     Result &= std::count(FunctionSeedAllowList.begin(),
1639                          FunctionSeedAllowList.end(), Fn->getName());
1640 #endif
1641   return Result;
1642 }
1643 
1644 ChangeStatus Attributor::rewriteFunctionSignatures(
1645     SmallPtrSetImpl<Function *> &ModifiedFns) {
1646   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1647 
1648   for (auto &It : ArgumentReplacementMap) {
1649     Function *OldFn = It.getFirst();
1650 
1651     // Deleted functions do not require rewrites.
1652     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1653       continue;
1654 
1655     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1656         It.getSecond();
1657     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1658 
1659     SmallVector<Type *, 16> NewArgumentTypes;
1660     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1661 
1662     // Collect replacement argument types and copy over existing attributes.
1663     AttributeList OldFnAttributeList = OldFn->getAttributes();
1664     for (Argument &Arg : OldFn->args()) {
1665       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1666               ARIs[Arg.getArgNo()]) {
1667         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1668                                 ARI->ReplacementTypes.end());
1669         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1670                                      AttributeSet());
1671       } else {
1672         NewArgumentTypes.push_back(Arg.getType());
1673         NewArgumentAttributes.push_back(
1674             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1675       }
1676     }
1677 
1678     FunctionType *OldFnTy = OldFn->getFunctionType();
1679     Type *RetTy = OldFnTy->getReturnType();
1680 
1681     // Construct the new function type using the new arguments types.
1682     FunctionType *NewFnTy =
1683         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1684 
1685     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1686                       << "' from " << *OldFn->getFunctionType() << " to "
1687                       << *NewFnTy << "\n");
1688 
1689     // Create the new function body and insert it into the module.
1690     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1691                                        OldFn->getAddressSpace(), "");
1692     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1693     NewFn->takeName(OldFn);
1694     NewFn->copyAttributesFrom(OldFn);
1695 
1696     // Patch the pointer to LLVM function in debug info descriptor.
1697     NewFn->setSubprogram(OldFn->getSubprogram());
1698     OldFn->setSubprogram(nullptr);
1699 
1700     // Recompute the parameter attributes list based on the new arguments for
1701     // the function.
1702     LLVMContext &Ctx = OldFn->getContext();
1703     NewFn->setAttributes(AttributeList::get(
1704         Ctx, OldFnAttributeList.getFnAttributes(),
1705         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1706 
1707     // Since we have now created the new function, splice the body of the old
1708     // function right into the new function, leaving the old rotting hulk of the
1709     // function empty.
1710     NewFn->getBasicBlockList().splice(NewFn->begin(),
1711                                       OldFn->getBasicBlockList());
1712 
1713     // Fixup block addresses to reference new function.
1714     SmallVector<BlockAddress *, 8u> BlockAddresses;
1715     for (User *U : OldFn->users())
1716       if (auto *BA = dyn_cast<BlockAddress>(U))
1717         BlockAddresses.push_back(BA);
1718     for (auto *BA : BlockAddresses)
1719       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1720 
1721     // Set of all "call-like" instructions that invoke the old function mapped
1722     // to their new replacements.
1723     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1724 
1725     // Callback to create a new "call-like" instruction for a given one.
1726     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1727       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1728       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1729 
1730       // Collect the new argument operands for the replacement call site.
1731       SmallVector<Value *, 16> NewArgOperands;
1732       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1733       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1734         unsigned NewFirstArgNum = NewArgOperands.size();
1735         (void)NewFirstArgNum; // only used inside assert.
1736         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1737                 ARIs[OldArgNum]) {
1738           if (ARI->ACSRepairCB)
1739             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1740           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1741                      NewArgOperands.size() &&
1742                  "ACS repair callback did not provide as many operand as new "
1743                  "types were registered!");
1744           // TODO: Exose the attribute set to the ACS repair callback
1745           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1746                                          AttributeSet());
1747         } else {
1748           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1749           NewArgOperandAttributes.push_back(
1750               OldCallAttributeList.getParamAttributes(OldArgNum));
1751         }
1752       }
1753 
1754       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1755              "Mismatch # argument operands vs. # argument operand attributes!");
1756       assert(NewArgOperands.size() == NewFn->arg_size() &&
1757              "Mismatch # argument operands vs. # function arguments!");
1758 
1759       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1760       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1761 
1762       // Create a new call or invoke instruction to replace the old one.
1763       CallBase *NewCB;
1764       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1765         NewCB =
1766             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1767                                NewArgOperands, OperandBundleDefs, "", OldCB);
1768       } else {
1769         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1770                                        "", OldCB);
1771         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1772         NewCB = NewCI;
1773       }
1774 
1775       // Copy over various properties and the new attributes.
1776       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1777       NewCB->setCallingConv(OldCB->getCallingConv());
1778       NewCB->takeName(OldCB);
1779       NewCB->setAttributes(AttributeList::get(
1780           Ctx, OldCallAttributeList.getFnAttributes(),
1781           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1782 
1783       CallSitePairs.push_back({OldCB, NewCB});
1784       return true;
1785     };
1786 
1787     // Use the CallSiteReplacementCreator to create replacement call sites.
1788     bool AllCallSitesKnown;
1789     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1790                                         true, nullptr, AllCallSitesKnown);
1791     (void)Success;
1792     assert(Success && "Assumed call site replacement to succeed!");
1793 
1794     // Rewire the arguments.
1795     Argument *OldFnArgIt = OldFn->arg_begin();
1796     Argument *NewFnArgIt = NewFn->arg_begin();
1797     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1798          ++OldArgNum, ++OldFnArgIt) {
1799       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1800               ARIs[OldArgNum]) {
1801         if (ARI->CalleeRepairCB)
1802           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1803         NewFnArgIt += ARI->ReplacementTypes.size();
1804       } else {
1805         NewFnArgIt->takeName(&*OldFnArgIt);
1806         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1807         ++NewFnArgIt;
1808       }
1809     }
1810 
1811     // Eliminate the instructions *after* we visited all of them.
1812     for (auto &CallSitePair : CallSitePairs) {
1813       CallBase &OldCB = *CallSitePair.first;
1814       CallBase &NewCB = *CallSitePair.second;
1815       assert(OldCB.getType() == NewCB.getType() &&
1816              "Cannot handle call sites with different types!");
1817       ModifiedFns.insert(OldCB.getFunction());
1818       CGUpdater.replaceCallSite(OldCB, NewCB);
1819       OldCB.replaceAllUsesWith(&NewCB);
1820       OldCB.eraseFromParent();
1821     }
1822 
1823     // Replace the function in the call graph (if any).
1824     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1825 
1826     // If the old function was modified and needed to be reanalyzed, the new one
1827     // does now.
1828     if (ModifiedFns.erase(OldFn))
1829       ModifiedFns.insert(NewFn);
1830 
1831     Changed = ChangeStatus::CHANGED;
1832   }
1833 
1834   return Changed;
1835 }
1836 
1837 void InformationCache::initializeInformationCache(const Function &CF,
1838                                                   FunctionInfo &FI) {
1839   // As we do not modify the function here we can remove the const
1840   // withouth breaking implicit assumptions. At the end of the day, we could
1841   // initialize the cache eagerly which would look the same to the users.
1842   Function &F = const_cast<Function &>(CF);
1843 
1844   // Walk all instructions to find interesting instructions that might be
1845   // queried by abstract attributes during their initialization or update.
1846   // This has to happen before we create attributes.
1847 
1848   for (Instruction &I : instructions(&F)) {
1849     bool IsInterestingOpcode = false;
1850 
1851     // To allow easy access to all instructions in a function with a given
1852     // opcode we store them in the InfoCache. As not all opcodes are interesting
1853     // to concrete attributes we only cache the ones that are as identified in
1854     // the following switch.
1855     // Note: There are no concrete attributes now so this is initially empty.
1856     switch (I.getOpcode()) {
1857     default:
1858       assert(!isa<CallBase>(&I) &&
1859              "New call base instruction type needs to be known in the "
1860              "Attributor.");
1861       break;
1862     case Instruction::Call:
1863       // Calls are interesting on their own, additionally:
1864       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1865       // For `must-tail` calls we remember the caller and callee.
1866       if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) {
1867         if (Assume->getIntrinsicID() == Intrinsic::assume)
1868           fillMapFromAssume(*Assume, KnowledgeMap);
1869       } else if (cast<CallInst>(I).isMustTailCall()) {
1870         FI.ContainsMustTailCall = true;
1871         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1872           getFunctionInfo(*Callee).CalledViaMustTail = true;
1873       }
1874       LLVM_FALLTHROUGH;
1875     case Instruction::CallBr:
1876     case Instruction::Invoke:
1877     case Instruction::CleanupRet:
1878     case Instruction::CatchSwitch:
1879     case Instruction::AtomicRMW:
1880     case Instruction::AtomicCmpXchg:
1881     case Instruction::Br:
1882     case Instruction::Resume:
1883     case Instruction::Ret:
1884     case Instruction::Load:
1885       // The alignment of a pointer is interesting for loads.
1886     case Instruction::Store:
1887       // The alignment of a pointer is interesting for stores.
1888       IsInterestingOpcode = true;
1889     }
1890     if (IsInterestingOpcode) {
1891       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1892       if (!Insts)
1893         Insts = new (Allocator) InstructionVectorTy();
1894       Insts->push_back(&I);
1895     }
1896     if (I.mayReadOrWriteMemory())
1897       FI.RWInsts.push_back(&I);
1898   }
1899 
1900   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1901       isInlineViable(F).isSuccess())
1902     InlineableFunctions.insert(&F);
1903 }
1904 
1905 InformationCache::FunctionInfo::~FunctionInfo() {
1906   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1907   // manually destroy them.
1908   for (auto &It : OpcodeInstMap)
1909     It.getSecond()->~InstructionVectorTy();
1910 }
1911 
1912 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1913                                   const AbstractAttribute &ToAA,
1914                                   DepClassTy DepClass) {
1915   // If we are outside of an update, thus before the actual fixpoint iteration
1916   // started (= when we create AAs), we do not track dependences because we will
1917   // put all AAs into the initial worklist anyway.
1918   if (DependenceStack.empty())
1919     return;
1920   if (FromAA.getState().isAtFixpoint())
1921     return;
1922   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1923 }
1924 
1925 void Attributor::rememberDependences() {
1926   assert(!DependenceStack.empty() && "No dependences to remember!");
1927 
1928   for (DepInfo &DI : *DependenceStack.back()) {
1929     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1930     DepAAs.push_back(AbstractAttribute::DepTy(
1931         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1932   }
1933 }
1934 
1935 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1936   if (!VisitedFunctions.insert(&F).second)
1937     return;
1938   if (F.isDeclaration())
1939     return;
1940 
1941   // In non-module runs we need to look at the call sites of a function to
1942   // determine if it is part of a must-tail call edge. This will influence what
1943   // attributes we can derive.
1944   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
1945   if (!isModulePass() && !FI.CalledViaMustTail) {
1946     for (const Use &U : F.uses())
1947       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
1948         if (CB->isCallee(&U) && CB->isMustTailCall())
1949           FI.CalledViaMustTail = true;
1950   }
1951 
1952   IRPosition FPos = IRPosition::function(F);
1953 
1954   // Check for dead BasicBlocks in every function.
1955   // We need dead instruction detection because we do not want to deal with
1956   // broken IR in which SSA rules do not apply.
1957   getOrCreateAAFor<AAIsDead>(FPos);
1958 
1959   // Every function might be "will-return".
1960   getOrCreateAAFor<AAWillReturn>(FPos);
1961 
1962   // Every function might contain instructions that cause "undefined behavior".
1963   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
1964 
1965   // Every function can be nounwind.
1966   getOrCreateAAFor<AANoUnwind>(FPos);
1967 
1968   // Every function might be marked "nosync"
1969   getOrCreateAAFor<AANoSync>(FPos);
1970 
1971   // Every function might be "no-free".
1972   getOrCreateAAFor<AANoFree>(FPos);
1973 
1974   // Every function might be "no-return".
1975   getOrCreateAAFor<AANoReturn>(FPos);
1976 
1977   // Every function might be "no-recurse".
1978   getOrCreateAAFor<AANoRecurse>(FPos);
1979 
1980   // Every function might be "readnone/readonly/writeonly/...".
1981   getOrCreateAAFor<AAMemoryBehavior>(FPos);
1982 
1983   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
1984   getOrCreateAAFor<AAMemoryLocation>(FPos);
1985 
1986   // Every function might be applicable for Heap-To-Stack conversion.
1987   if (EnableHeapToStack)
1988     getOrCreateAAFor<AAHeapToStack>(FPos);
1989 
1990   // Return attributes are only appropriate if the return type is non void.
1991   Type *ReturnType = F.getReturnType();
1992   if (!ReturnType->isVoidTy()) {
1993     // Argument attribute "returned" --- Create only one per function even
1994     // though it is an argument attribute.
1995     getOrCreateAAFor<AAReturnedValues>(FPos);
1996 
1997     IRPosition RetPos = IRPosition::returned(F);
1998 
1999     // Every returned value might be dead.
2000     getOrCreateAAFor<AAIsDead>(RetPos);
2001 
2002     // Every function might be simplified.
2003     getOrCreateAAFor<AAValueSimplify>(RetPos);
2004 
2005     // Every returned value might be marked noundef.
2006     getOrCreateAAFor<AANoUndef>(RetPos);
2007 
2008     if (ReturnType->isPointerTy()) {
2009 
2010       // Every function with pointer return type might be marked align.
2011       getOrCreateAAFor<AAAlign>(RetPos);
2012 
2013       // Every function with pointer return type might be marked nonnull.
2014       getOrCreateAAFor<AANonNull>(RetPos);
2015 
2016       // Every function with pointer return type might be marked noalias.
2017       getOrCreateAAFor<AANoAlias>(RetPos);
2018 
2019       // Every function with pointer return type might be marked
2020       // dereferenceable.
2021       getOrCreateAAFor<AADereferenceable>(RetPos);
2022     }
2023   }
2024 
2025   for (Argument &Arg : F.args()) {
2026     IRPosition ArgPos = IRPosition::argument(Arg);
2027 
2028     // Every argument might be simplified.
2029     getOrCreateAAFor<AAValueSimplify>(ArgPos);
2030 
2031     // Every argument might be dead.
2032     getOrCreateAAFor<AAIsDead>(ArgPos);
2033 
2034     // Every argument might be marked noundef.
2035     getOrCreateAAFor<AANoUndef>(ArgPos);
2036 
2037     if (Arg.getType()->isPointerTy()) {
2038       // Every argument with pointer type might be marked nonnull.
2039       getOrCreateAAFor<AANonNull>(ArgPos);
2040 
2041       // Every argument with pointer type might be marked noalias.
2042       getOrCreateAAFor<AANoAlias>(ArgPos);
2043 
2044       // Every argument with pointer type might be marked dereferenceable.
2045       getOrCreateAAFor<AADereferenceable>(ArgPos);
2046 
2047       // Every argument with pointer type might be marked align.
2048       getOrCreateAAFor<AAAlign>(ArgPos);
2049 
2050       // Every argument with pointer type might be marked nocapture.
2051       getOrCreateAAFor<AANoCapture>(ArgPos);
2052 
2053       // Every argument with pointer type might be marked
2054       // "readnone/readonly/writeonly/..."
2055       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2056 
2057       // Every argument with pointer type might be marked nofree.
2058       getOrCreateAAFor<AANoFree>(ArgPos);
2059 
2060       // Every argument with pointer type might be privatizable (or promotable)
2061       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2062     }
2063   }
2064 
2065   auto CallSitePred = [&](Instruction &I) -> bool {
2066     auto &CB = cast<CallBase>(I);
2067     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2068 
2069     // Call sites might be dead if they do not have side effects and no live
2070     // users. The return value might be dead if there are no live users.
2071     getOrCreateAAFor<AAIsDead>(CBRetPos);
2072 
2073     Function *Callee = CB.getCalledFunction();
2074     // TODO: Even if the callee is not known now we might be able to simplify
2075     //       the call/callee.
2076     if (!Callee)
2077       return true;
2078 
2079     // Skip declarations except if annotations on their call sites were
2080     // explicitly requested.
2081     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2082         !Callee->hasMetadata(LLVMContext::MD_callback))
2083       return true;
2084 
2085     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2086 
2087       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2088 
2089       // Call site return integer values might be limited by a constant range.
2090       if (Callee->getReturnType()->isIntegerTy())
2091         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2092     }
2093 
2094     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2095 
2096       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2097 
2098       // Every call site argument might be dead.
2099       getOrCreateAAFor<AAIsDead>(CBArgPos);
2100 
2101       // Call site argument might be simplified.
2102       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2103 
2104       // Every call site argument might be marked "noundef".
2105       getOrCreateAAFor<AANoUndef>(CBArgPos);
2106 
2107       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2108         continue;
2109 
2110       // Call site argument attribute "non-null".
2111       getOrCreateAAFor<AANonNull>(CBArgPos);
2112 
2113       // Call site argument attribute "nocapture".
2114       getOrCreateAAFor<AANoCapture>(CBArgPos);
2115 
2116       // Call site argument attribute "no-alias".
2117       getOrCreateAAFor<AANoAlias>(CBArgPos);
2118 
2119       // Call site argument attribute "dereferenceable".
2120       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2121 
2122       // Call site argument attribute "align".
2123       getOrCreateAAFor<AAAlign>(CBArgPos);
2124 
2125       // Call site argument attribute
2126       // "readnone/readonly/writeonly/..."
2127       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2128 
2129       // Call site argument attribute "nofree".
2130       getOrCreateAAFor<AANoFree>(CBArgPos);
2131     }
2132     return true;
2133   };
2134 
2135   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2136   bool Success;
2137   Success = checkForAllInstructionsImpl(
2138       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2139       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2140        (unsigned)Instruction::Call});
2141   (void)Success;
2142   assert(Success && "Expected the check call to be successful!");
2143 
2144   auto LoadStorePred = [&](Instruction &I) -> bool {
2145     if (isa<LoadInst>(I))
2146       getOrCreateAAFor<AAAlign>(
2147           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2148     else
2149       getOrCreateAAFor<AAAlign>(
2150           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2151     return true;
2152   };
2153   Success = checkForAllInstructionsImpl(
2154       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2155       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2156   (void)Success;
2157   assert(Success && "Expected the check call to be successful!");
2158 }
2159 
2160 /// Helpers to ease debugging through output streams and print calls.
2161 ///
2162 ///{
2163 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2164   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2165 }
2166 
2167 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2168   switch (AP) {
2169   case IRPosition::IRP_INVALID:
2170     return OS << "inv";
2171   case IRPosition::IRP_FLOAT:
2172     return OS << "flt";
2173   case IRPosition::IRP_RETURNED:
2174     return OS << "fn_ret";
2175   case IRPosition::IRP_CALL_SITE_RETURNED:
2176     return OS << "cs_ret";
2177   case IRPosition::IRP_FUNCTION:
2178     return OS << "fn";
2179   case IRPosition::IRP_CALL_SITE:
2180     return OS << "cs";
2181   case IRPosition::IRP_ARGUMENT:
2182     return OS << "arg";
2183   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2184     return OS << "cs_arg";
2185   }
2186   llvm_unreachable("Unknown attribute position!");
2187 }
2188 
2189 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2190   const Value &AV = Pos.getAssociatedValue();
2191   return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2192             << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo()
2193             << "]}";
2194 }
2195 
2196 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2197   OS << "range-state(" << S.getBitWidth() << ")<";
2198   S.getKnown().print(OS);
2199   OS << " / ";
2200   S.getAssumed().print(OS);
2201   OS << ">";
2202 
2203   return OS << static_cast<const AbstractState &>(S);
2204 }
2205 
2206 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2207   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2208 }
2209 
2210 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2211   AA.print(OS);
2212   return OS;
2213 }
2214 
2215 raw_ostream &llvm::operator<<(raw_ostream &OS,
2216                               const PotentialConstantIntValuesState &S) {
2217   OS << "set-state(< {";
2218   if (!S.isValidState())
2219     OS << "full-set";
2220   else {
2221     for (auto &it : S.getAssumedSet())
2222       OS << it << ", ";
2223     if (S.undefIsContained())
2224       OS << "undef ";
2225   }
2226   OS << "} >)";
2227 
2228   return OS;
2229 }
2230 
2231 void AbstractAttribute::print(raw_ostream &OS) const {
2232   OS << "[";
2233   OS << getName();
2234   OS << "] for CtxI ";
2235 
2236   if (auto *I = getCtxI()) {
2237     OS << "'";
2238     I->print(OS);
2239     OS << "'";
2240   } else
2241     OS << "<<null inst>>";
2242 
2243   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2244      << '\n';
2245 }
2246 
2247 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2248   print(OS);
2249 
2250   for (const auto &DepAA : Deps) {
2251     auto *AA = DepAA.getPointer();
2252     OS << "  updates ";
2253     AA->print(OS);
2254   }
2255 
2256   OS << '\n';
2257 }
2258 ///}
2259 
2260 /// ----------------------------------------------------------------------------
2261 ///                       Pass (Manager) Boilerplate
2262 /// ----------------------------------------------------------------------------
2263 
2264 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2265                                      SetVector<Function *> &Functions,
2266                                      AnalysisGetter &AG,
2267                                      CallGraphUpdater &CGUpdater) {
2268   if (Functions.empty())
2269     return false;
2270 
2271   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2272                     << " functions.\n");
2273 
2274   // Create an Attributor and initially empty information cache that is filled
2275   // while we identify default attribute opportunities.
2276   Attributor A(Functions, InfoCache, CGUpdater);
2277 
2278   // Create shallow wrappers for all functions that are not IPO amendable
2279   if (AllowShallowWrappers)
2280     for (Function *F : Functions)
2281       if (!A.isFunctionIPOAmendable(*F))
2282         createShallowWrapper(*F);
2283 
2284   // Internalize non-exact functions
2285   // TODO: for now we eagerly internalize functions without calculating the
2286   //       cost, we need a cost interface to determine whether internalizing
2287   //       a function is "benefitial"
2288   if (AllowDeepWrapper) {
2289     unsigned FunSize = Functions.size();
2290     for (unsigned u = 0; u < FunSize; u++) {
2291       Function *F = Functions[u];
2292       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2293           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2294         Function *NewF = internalizeFunction(*F);
2295         Functions.insert(NewF);
2296 
2297         // Update call graph
2298         CGUpdater.replaceFunctionWith(*F, *NewF);
2299         for (const Use &U : NewF->uses())
2300           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2301             auto *CallerF = CB->getCaller();
2302             CGUpdater.reanalyzeFunction(*CallerF);
2303           }
2304       }
2305     }
2306   }
2307 
2308   for (Function *F : Functions) {
2309     if (F->hasExactDefinition())
2310       NumFnWithExactDefinition++;
2311     else
2312       NumFnWithoutExactDefinition++;
2313 
2314     // We look at internal functions only on-demand but if any use is not a
2315     // direct call or outside the current set of analyzed functions, we have
2316     // to do it eagerly.
2317     if (F->hasLocalLinkage()) {
2318       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2319             const auto *CB = dyn_cast<CallBase>(U.getUser());
2320             return CB && CB->isCallee(&U) &&
2321                    Functions.count(const_cast<Function *>(CB->getCaller()));
2322           }))
2323         continue;
2324     }
2325 
2326     // Populate the Attributor with abstract attribute opportunities in the
2327     // function and the information cache with IR information.
2328     A.identifyDefaultAbstractAttributes(*F);
2329   }
2330 
2331   ChangeStatus Changed = A.run();
2332 
2333   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2334                     << " functions, result: " << Changed << ".\n");
2335   return Changed == ChangeStatus::CHANGED;
2336 }
2337 
2338 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2339 
2340 void AADepGraph::dumpGraph() {
2341   static std::atomic<int> CallTimes;
2342   std::string Prefix;
2343 
2344   if (!DepGraphDotFileNamePrefix.empty())
2345     Prefix = DepGraphDotFileNamePrefix;
2346   else
2347     Prefix = "dep_graph";
2348   std::string Filename =
2349       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2350 
2351   outs() << "Dependency graph dump to " << Filename << ".\n";
2352 
2353   std::error_code EC;
2354 
2355   raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
2356   if (!EC)
2357     llvm::WriteGraph(File, this);
2358 
2359   CallTimes++;
2360 }
2361 
2362 void AADepGraph::print() {
2363   for (auto DepAA : SyntheticRoot.Deps)
2364     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2365 }
2366 
2367 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2368   FunctionAnalysisManager &FAM =
2369       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2370   AnalysisGetter AG(FAM);
2371 
2372   SetVector<Function *> Functions;
2373   for (Function &F : M)
2374     Functions.insert(&F);
2375 
2376   CallGraphUpdater CGUpdater;
2377   BumpPtrAllocator Allocator;
2378   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2379   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2380     // FIXME: Think about passes we will preserve and add them here.
2381     return PreservedAnalyses::none();
2382   }
2383   return PreservedAnalyses::all();
2384 }
2385 
2386 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2387                                            CGSCCAnalysisManager &AM,
2388                                            LazyCallGraph &CG,
2389                                            CGSCCUpdateResult &UR) {
2390   FunctionAnalysisManager &FAM =
2391       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2392   AnalysisGetter AG(FAM);
2393 
2394   SetVector<Function *> Functions;
2395   for (LazyCallGraph::Node &N : C)
2396     Functions.insert(&N.getFunction());
2397 
2398   if (Functions.empty())
2399     return PreservedAnalyses::all();
2400 
2401   Module &M = *Functions.back()->getParent();
2402   CallGraphUpdater CGUpdater;
2403   CGUpdater.initialize(CG, C, AM, UR);
2404   BumpPtrAllocator Allocator;
2405   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2406   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
2407     // FIXME: Think about passes we will preserve and add them here.
2408     PreservedAnalyses PA;
2409     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2410     return PA;
2411   }
2412   return PreservedAnalyses::all();
2413 }
2414 
2415 namespace llvm {
2416 
2417 template <> struct GraphTraits<AADepGraphNode *> {
2418   using NodeRef = AADepGraphNode *;
2419   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2420   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2421 
2422   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2423   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2424 
2425   using ChildIteratorType =
2426       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2427   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2428 
2429   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2430 
2431   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2432 };
2433 
2434 template <>
2435 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2436   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2437 
2438   using nodes_iterator =
2439       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2440 
2441   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2442 
2443   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2444 };
2445 
2446 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2447   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2448 
2449   static std::string getNodeLabel(const AADepGraphNode *Node,
2450                                   const AADepGraph *DG) {
2451     std::string AAString = "";
2452     raw_string_ostream O(AAString);
2453     Node->print(O);
2454     return AAString;
2455   }
2456 };
2457 
2458 } // end namespace llvm
2459 
2460 namespace {
2461 
2462 struct AttributorLegacyPass : public ModulePass {
2463   static char ID;
2464 
2465   AttributorLegacyPass() : ModulePass(ID) {
2466     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2467   }
2468 
2469   bool runOnModule(Module &M) override {
2470     if (skipModule(M))
2471       return false;
2472 
2473     AnalysisGetter AG;
2474     SetVector<Function *> Functions;
2475     for (Function &F : M)
2476       Functions.insert(&F);
2477 
2478     CallGraphUpdater CGUpdater;
2479     BumpPtrAllocator Allocator;
2480     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2481     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2482   }
2483 
2484   void getAnalysisUsage(AnalysisUsage &AU) const override {
2485     // FIXME: Think about passes we will preserve and add them here.
2486     AU.addRequired<TargetLibraryInfoWrapperPass>();
2487   }
2488 };
2489 
2490 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2491   CallGraphUpdater CGUpdater;
2492   static char ID;
2493 
2494   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2495     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2496   }
2497 
2498   bool runOnSCC(CallGraphSCC &SCC) override {
2499     if (skipSCC(SCC))
2500       return false;
2501 
2502     SetVector<Function *> Functions;
2503     for (CallGraphNode *CGN : SCC)
2504       if (Function *Fn = CGN->getFunction())
2505         if (!Fn->isDeclaration())
2506           Functions.insert(Fn);
2507 
2508     if (Functions.empty())
2509       return false;
2510 
2511     AnalysisGetter AG;
2512     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2513     CGUpdater.initialize(CG, SCC);
2514     Module &M = *Functions.back()->getParent();
2515     BumpPtrAllocator Allocator;
2516     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2517     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
2518   }
2519 
2520   bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
2521 
2522   void getAnalysisUsage(AnalysisUsage &AU) const override {
2523     // FIXME: Think about passes we will preserve and add them here.
2524     AU.addRequired<TargetLibraryInfoWrapperPass>();
2525     CallGraphSCCPass::getAnalysisUsage(AU);
2526   }
2527 };
2528 
2529 } // end anonymous namespace
2530 
2531 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2532 Pass *llvm::createAttributorCGSCCLegacyPass() {
2533   return new AttributorCGSCCLegacyPass();
2534 }
2535 
2536 char AttributorLegacyPass::ID = 0;
2537 char AttributorCGSCCLegacyPass::ID = 0;
2538 
2539 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2540                       "Deduce and propagate attributes", false, false)
2541 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2542 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2543                     "Deduce and propagate attributes", false, false)
2544 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2545                       "Deduce and propagate attributes (CGSCC pass)", false,
2546                       false)
2547 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2548 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2549 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2550                     "Deduce and propagate attributes (CGSCC pass)", false,
2551                     false)
2552