1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an inter procedural pass that deduces and/or propagating 10 // attributes. This is done in an abstract interpretation style fixpoint 11 // iteration. See the Attributor.h file comment and the class descriptions in 12 // that file for more information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Attributor.h" 17 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/CallGraphSCCPass.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 50 #include <cassert> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "attributor" 55 56 STATISTIC(NumFnWithExactDefinition, 57 "Number of function with exact definitions"); 58 STATISTIC(NumFnWithoutExactDefinition, 59 "Number of function without exact definitions"); 60 STATISTIC(NumAttributesTimedOut, 61 "Number of abstract attributes timed out before fixpoint"); 62 STATISTIC(NumAttributesValidFixpoint, 63 "Number of abstract attributes in a valid fixpoint state"); 64 STATISTIC(NumAttributesManifested, 65 "Number of abstract attributes manifested in IR"); 66 STATISTIC(NumAttributesFixedDueToRequiredDependences, 67 "Number of abstract attributes fixed due to required dependences"); 68 69 // Some helper macros to deal with statistics tracking. 70 // 71 // Usage: 72 // For simple IR attribute tracking overload trackStatistics in the abstract 73 // attribute and choose the right STATS_DECLTRACK_********* macro, 74 // e.g.,: 75 // void trackStatistics() const override { 76 // STATS_DECLTRACK_ARG_ATTR(returned) 77 // } 78 // If there is a single "increment" side one can use the macro 79 // STATS_DECLTRACK with a custom message. If there are multiple increment 80 // sides, STATS_DECL and STATS_TRACK can also be used separatly. 81 // 82 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \ 83 ("Number of " #TYPE " marked '" #NAME "'") 84 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME 85 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); 86 #define STATS_DECL(NAME, TYPE, MSG) \ 87 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); 88 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); 89 #define STATS_DECLTRACK(NAME, TYPE, MSG) \ 90 { \ 91 STATS_DECL(NAME, TYPE, MSG) \ 92 STATS_TRACK(NAME, TYPE) \ 93 } 94 #define STATS_DECLTRACK_ARG_ATTR(NAME) \ 95 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) 96 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \ 97 STATS_DECLTRACK(NAME, CSArguments, \ 98 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) 99 #define STATS_DECLTRACK_FN_ATTR(NAME) \ 100 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) 101 #define STATS_DECLTRACK_CS_ATTR(NAME) \ 102 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) 103 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \ 104 STATS_DECLTRACK(NAME, FunctionReturn, \ 105 BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) 106 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \ 107 STATS_DECLTRACK(NAME, CSReturn, \ 108 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) 109 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \ 110 STATS_DECLTRACK(NAME, Floating, \ 111 ("Number of floating values known to be '" #NAME "'")) 112 113 // Specialization of the operator<< for abstract attributes subclasses. This 114 // disambiguates situations where multiple operators are applicable. 115 namespace llvm { 116 #define PIPE_OPERATOR(CLASS) \ 117 raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \ 118 return OS << static_cast<const AbstractAttribute &>(AA); \ 119 } 120 121 PIPE_OPERATOR(AAIsDead) 122 PIPE_OPERATOR(AANoUnwind) 123 PIPE_OPERATOR(AANoSync) 124 PIPE_OPERATOR(AANoRecurse) 125 PIPE_OPERATOR(AAWillReturn) 126 PIPE_OPERATOR(AANoReturn) 127 PIPE_OPERATOR(AAReturnedValues) 128 PIPE_OPERATOR(AANonNull) 129 PIPE_OPERATOR(AANoAlias) 130 PIPE_OPERATOR(AADereferenceable) 131 PIPE_OPERATOR(AAAlign) 132 PIPE_OPERATOR(AANoCapture) 133 PIPE_OPERATOR(AAValueSimplify) 134 PIPE_OPERATOR(AANoFree) 135 PIPE_OPERATOR(AAHeapToStack) 136 PIPE_OPERATOR(AAReachability) 137 PIPE_OPERATOR(AAMemoryBehavior) 138 PIPE_OPERATOR(AAMemoryLocation) 139 PIPE_OPERATOR(AAValueConstantRange) 140 PIPE_OPERATOR(AAPrivatizablePtr) 141 142 #undef PIPE_OPERATOR 143 } // namespace llvm 144 145 // TODO: Determine a good default value. 146 // 147 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads 148 // (when run with the first 5 abstract attributes). The results also indicate 149 // that we never reach 32 iterations but always find a fixpoint sooner. 150 // 151 // This will become more evolved once we perform two interleaved fixpoint 152 // iterations: bottom-up and top-down. 153 static cl::opt<unsigned> 154 MaxFixpointIterations("attributor-max-iterations", cl::Hidden, 155 cl::desc("Maximal number of fixpoint iterations."), 156 cl::init(32)); 157 static cl::opt<bool> VerifyMaxFixpointIterations( 158 "attributor-max-iterations-verify", cl::Hidden, 159 cl::desc("Verify that max-iterations is a tight bound for a fixpoint"), 160 cl::init(false)); 161 162 static cl::opt<bool> DisableAttributor( 163 "attributor-disable", cl::Hidden, 164 cl::desc("Disable the attributor inter-procedural deduction pass."), 165 cl::init(true)); 166 167 static cl::opt<bool> AnnotateDeclarationCallSites( 168 "attributor-annotate-decl-cs", cl::Hidden, 169 cl::desc("Annotate call sites of function declarations."), cl::init(false)); 170 171 static cl::opt<bool> ManifestInternal( 172 "attributor-manifest-internal", cl::Hidden, 173 cl::desc("Manifest Attributor internal string attributes."), 174 cl::init(false)); 175 176 static cl::opt<unsigned> DepRecInterval( 177 "attributor-dependence-recompute-interval", cl::Hidden, 178 cl::desc("Number of iterations until dependences are recomputed."), 179 cl::init(4)); 180 181 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion", 182 cl::init(true), cl::Hidden); 183 184 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128), 185 cl::Hidden); 186 187 /// Logic operators for the change status enum class. 188 /// 189 ///{ 190 ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) { 191 return l == ChangeStatus::CHANGED ? l : r; 192 } 193 ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) { 194 return l == ChangeStatus::UNCHANGED ? l : r; 195 } 196 ///} 197 198 Argument *IRPosition::getAssociatedArgument() const { 199 if (getPositionKind() == IRP_ARGUMENT) 200 return cast<Argument>(&getAnchorValue()); 201 202 // Not an Argument and no argument number means this is not a call site 203 // argument, thus we cannot find a callback argument to return. 204 int ArgNo = getArgNo(); 205 if (ArgNo < 0) 206 return nullptr; 207 208 // Use abstract call sites to make the connection between the call site 209 // values and the ones in callbacks. If a callback was found that makes use 210 // of the underlying call site operand, we want the corresponding callback 211 // callee argument and not the direct callee argument. 212 Optional<Argument *> CBCandidateArg; 213 SmallVector<const Use *, 4> CBUses; 214 ImmutableCallSite ICS(&getAnchorValue()); 215 AbstractCallSite::getCallbackUses(ICS, CBUses); 216 for (const Use *U : CBUses) { 217 AbstractCallSite ACS(U); 218 assert(ACS && ACS.isCallbackCall()); 219 if (!ACS.getCalledFunction()) 220 continue; 221 222 for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) { 223 224 // Test if the underlying call site operand is argument number u of the 225 // callback callee. 226 if (ACS.getCallArgOperandNo(u) != ArgNo) 227 continue; 228 229 assert(ACS.getCalledFunction()->arg_size() > u && 230 "ACS mapped into var-args arguments!"); 231 if (CBCandidateArg.hasValue()) { 232 CBCandidateArg = nullptr; 233 break; 234 } 235 CBCandidateArg = ACS.getCalledFunction()->getArg(u); 236 } 237 } 238 239 // If we found a unique callback candidate argument, return it. 240 if (CBCandidateArg.hasValue() && CBCandidateArg.getValue()) 241 return CBCandidateArg.getValue(); 242 243 // If no callbacks were found, or none used the underlying call site operand 244 // exclusively, use the direct callee argument if available. 245 const Function *Callee = ICS.getCalledFunction(); 246 if (Callee && Callee->arg_size() > unsigned(ArgNo)) 247 return Callee->getArg(ArgNo); 248 249 return nullptr; 250 } 251 252 static Optional<Constant *> getAssumedConstant(Attributor &A, const Value &V, 253 const AbstractAttribute &AA, 254 bool &UsedAssumedInformation) { 255 const auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>( 256 AA, IRPosition::value(V), /* TrackDependence */ false); 257 Optional<Value *> SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(A); 258 bool IsKnown = ValueSimplifyAA.isKnown(); 259 UsedAssumedInformation |= !IsKnown; 260 if (!SimplifiedV.hasValue()) { 261 A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 262 return llvm::None; 263 } 264 if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) { 265 A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 266 return llvm::None; 267 } 268 Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue()); 269 if (CI && CI->getType() != V.getType()) { 270 // TODO: Check for a save conversion. 271 return nullptr; 272 } 273 if (CI) 274 A.recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 275 return CI; 276 } 277 278 static Optional<ConstantInt *> 279 getAssumedConstantInt(Attributor &A, const Value &V, 280 const AbstractAttribute &AA, 281 bool &UsedAssumedInformation) { 282 Optional<Constant *> C = getAssumedConstant(A, V, AA, UsedAssumedInformation); 283 if (C.hasValue()) 284 return dyn_cast_or_null<ConstantInt>(C.getValue()); 285 return llvm::None; 286 } 287 288 /// Get pointer operand of memory accessing instruction. If \p I is 289 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, 290 /// is set to false and the instruction is volatile, return nullptr. 291 static const Value *getPointerOperand(const Instruction *I, 292 bool AllowVolatile) { 293 if (auto *LI = dyn_cast<LoadInst>(I)) { 294 if (!AllowVolatile && LI->isVolatile()) 295 return nullptr; 296 return LI->getPointerOperand(); 297 } 298 299 if (auto *SI = dyn_cast<StoreInst>(I)) { 300 if (!AllowVolatile && SI->isVolatile()) 301 return nullptr; 302 return SI->getPointerOperand(); 303 } 304 305 if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) { 306 if (!AllowVolatile && CXI->isVolatile()) 307 return nullptr; 308 return CXI->getPointerOperand(); 309 } 310 311 if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) { 312 if (!AllowVolatile && RMWI->isVolatile()) 313 return nullptr; 314 return RMWI->getPointerOperand(); 315 } 316 317 return nullptr; 318 } 319 320 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and 321 /// advanced by \p Offset bytes. To aid later analysis the method tries to build 322 /// getelement pointer instructions that traverse the natural type of \p Ptr if 323 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence 324 /// through a cast to i8*. 325 /// 326 /// TODO: This could probably live somewhere more prominantly if it doesn't 327 /// already exist. 328 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset, 329 IRBuilder<NoFolder> &IRB, const DataLayout &DL) { 330 assert(Offset >= 0 && "Negative offset not supported yet!"); 331 LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset 332 << "-bytes as " << *ResTy << "\n"); 333 334 // The initial type we are trying to traverse to get nice GEPs. 335 Type *Ty = Ptr->getType(); 336 337 SmallVector<Value *, 4> Indices; 338 std::string GEPName = Ptr->getName().str(); 339 while (Offset) { 340 uint64_t Idx, Rem; 341 342 if (auto *STy = dyn_cast<StructType>(Ty)) { 343 const StructLayout *SL = DL.getStructLayout(STy); 344 if (int64_t(SL->getSizeInBytes()) < Offset) 345 break; 346 Idx = SL->getElementContainingOffset(Offset); 347 assert(Idx < STy->getNumElements() && "Offset calculation error!"); 348 Rem = Offset - SL->getElementOffset(Idx); 349 Ty = STy->getElementType(Idx); 350 } else if (auto *PTy = dyn_cast<PointerType>(Ty)) { 351 Ty = PTy->getElementType(); 352 if (!Ty->isSized()) 353 break; 354 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 355 assert(ElementSize && "Expected type with size!"); 356 Idx = Offset / ElementSize; 357 Rem = Offset % ElementSize; 358 } else { 359 // Non-aggregate type, we cast and make byte-wise progress now. 360 break; 361 } 362 363 LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset 364 << " Idx: " << Idx << " Rem: " << Rem << "\n"); 365 366 GEPName += "." + std::to_string(Idx); 367 Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx)); 368 Offset = Rem; 369 } 370 371 // Create a GEP if we collected indices above. 372 if (Indices.size()) 373 Ptr = IRB.CreateGEP(Ptr, Indices, GEPName); 374 375 // If an offset is left we use byte-wise adjustment. 376 if (Offset) { 377 Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy()); 378 Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset), 379 GEPName + ".b" + Twine(Offset)); 380 } 381 382 // Ensure the result has the requested type. 383 Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast"); 384 385 LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n"); 386 return Ptr; 387 } 388 389 /// Recursively visit all values that might become \p IRP at some point. This 390 /// will be done by looking through cast instructions, selects, phis, and calls 391 /// with the "returned" attribute. Once we cannot look through the value any 392 /// further, the callback \p VisitValueCB is invoked and passed the current 393 /// value, the \p State, and a flag to indicate if we stripped anything. 394 /// Stripped means that we unpacked the value associated with \p IRP at least 395 /// once. Note that the value used for the callback may still be the value 396 /// associated with \p IRP (due to PHIs). To limit how much effort is invested, 397 /// we will never visit more values than specified by \p MaxValues. 398 template <typename AAType, typename StateTy> 399 static bool genericValueTraversal( 400 Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State, 401 function_ref<bool(Value &, StateTy &, bool)> VisitValueCB, 402 int MaxValues = 8, function_ref<Value *(Value *)> StripCB = nullptr) { 403 404 const AAIsDead *LivenessAA = nullptr; 405 if (IRP.getAnchorScope()) 406 LivenessAA = &A.getAAFor<AAIsDead>( 407 QueryingAA, IRPosition::function(*IRP.getAnchorScope()), 408 /* TrackDependence */ false); 409 bool AnyDead = false; 410 411 // TODO: Use Positions here to allow context sensitivity in VisitValueCB 412 SmallPtrSet<Value *, 16> Visited; 413 SmallVector<Value *, 16> Worklist; 414 Worklist.push_back(&IRP.getAssociatedValue()); 415 416 int Iteration = 0; 417 do { 418 Value *V = Worklist.pop_back_val(); 419 if (StripCB) 420 V = StripCB(V); 421 422 // Check if we should process the current value. To prevent endless 423 // recursion keep a record of the values we followed! 424 if (!Visited.insert(V).second) 425 continue; 426 427 // Make sure we limit the compile time for complex expressions. 428 if (Iteration++ >= MaxValues) 429 return false; 430 431 // Explicitly look through calls with a "returned" attribute if we do 432 // not have a pointer as stripPointerCasts only works on them. 433 Value *NewV = nullptr; 434 if (V->getType()->isPointerTy()) { 435 NewV = V->stripPointerCasts(); 436 } else { 437 CallSite CS(V); 438 if (CS && CS.getCalledFunction()) { 439 for (Argument &Arg : CS.getCalledFunction()->args()) 440 if (Arg.hasReturnedAttr()) { 441 NewV = CS.getArgOperand(Arg.getArgNo()); 442 break; 443 } 444 } 445 } 446 if (NewV && NewV != V) { 447 Worklist.push_back(NewV); 448 continue; 449 } 450 451 // Look through select instructions, visit both potential values. 452 if (auto *SI = dyn_cast<SelectInst>(V)) { 453 Worklist.push_back(SI->getTrueValue()); 454 Worklist.push_back(SI->getFalseValue()); 455 continue; 456 } 457 458 // Look through phi nodes, visit all live operands. 459 if (auto *PHI = dyn_cast<PHINode>(V)) { 460 assert(LivenessAA && 461 "Expected liveness in the presence of instructions!"); 462 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { 463 const BasicBlock *IncomingBB = PHI->getIncomingBlock(u); 464 if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA, 465 LivenessAA, 466 /* CheckBBLivenessOnly */ true)) { 467 AnyDead = true; 468 continue; 469 } 470 Worklist.push_back(PHI->getIncomingValue(u)); 471 } 472 continue; 473 } 474 475 // Once a leaf is reached we inform the user through the callback. 476 if (!VisitValueCB(*V, State, Iteration > 1)) 477 return false; 478 } while (!Worklist.empty()); 479 480 // If we actually used liveness information so we have to record a dependence. 481 if (AnyDead) 482 A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); 483 484 // All values have been visited. 485 return true; 486 } 487 488 /// Return true if \p New is equal or worse than \p Old. 489 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { 490 if (!Old.isIntAttribute()) 491 return true; 492 493 return Old.getValueAsInt() >= New.getValueAsInt(); 494 } 495 496 /// Return true if the information provided by \p Attr was added to the 497 /// attribute list \p Attrs. This is only the case if it was not already present 498 /// in \p Attrs at the position describe by \p PK and \p AttrIdx. 499 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, 500 AttributeList &Attrs, int AttrIdx) { 501 502 if (Attr.isEnumAttribute()) { 503 Attribute::AttrKind Kind = Attr.getKindAsEnum(); 504 if (Attrs.hasAttribute(AttrIdx, Kind)) 505 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 506 return false; 507 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 508 return true; 509 } 510 if (Attr.isStringAttribute()) { 511 StringRef Kind = Attr.getKindAsString(); 512 if (Attrs.hasAttribute(AttrIdx, Kind)) 513 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 514 return false; 515 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 516 return true; 517 } 518 if (Attr.isIntAttribute()) { 519 Attribute::AttrKind Kind = Attr.getKindAsEnum(); 520 if (Attrs.hasAttribute(AttrIdx, Kind)) 521 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 522 return false; 523 Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind); 524 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 525 return true; 526 } 527 528 llvm_unreachable("Expected enum or string attribute!"); 529 } 530 531 static const Value * 532 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset, 533 const DataLayout &DL, 534 bool AllowNonInbounds = false) { 535 const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); 536 if (!Ptr) 537 return nullptr; 538 539 return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL, 540 AllowNonInbounds); 541 } 542 543 ChangeStatus AbstractAttribute::update(Attributor &A) { 544 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 545 if (getState().isAtFixpoint()) 546 return HasChanged; 547 548 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n"); 549 550 HasChanged = updateImpl(A); 551 552 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this 553 << "\n"); 554 555 return HasChanged; 556 } 557 558 ChangeStatus 559 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP, 560 const ArrayRef<Attribute> &DeducedAttrs) { 561 Function *ScopeFn = IRP.getAnchorScope(); 562 IRPosition::Kind PK = IRP.getPositionKind(); 563 564 // In the following some generic code that will manifest attributes in 565 // DeducedAttrs if they improve the current IR. Due to the different 566 // annotation positions we use the underlying AttributeList interface. 567 568 AttributeList Attrs; 569 switch (PK) { 570 case IRPosition::IRP_INVALID: 571 case IRPosition::IRP_FLOAT: 572 return ChangeStatus::UNCHANGED; 573 case IRPosition::IRP_ARGUMENT: 574 case IRPosition::IRP_FUNCTION: 575 case IRPosition::IRP_RETURNED: 576 Attrs = ScopeFn->getAttributes(); 577 break; 578 case IRPosition::IRP_CALL_SITE: 579 case IRPosition::IRP_CALL_SITE_RETURNED: 580 case IRPosition::IRP_CALL_SITE_ARGUMENT: 581 Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes(); 582 break; 583 } 584 585 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 586 LLVMContext &Ctx = IRP.getAnchorValue().getContext(); 587 for (const Attribute &Attr : DeducedAttrs) { 588 if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx())) 589 continue; 590 591 HasChanged = ChangeStatus::CHANGED; 592 } 593 594 if (HasChanged == ChangeStatus::UNCHANGED) 595 return HasChanged; 596 597 switch (PK) { 598 case IRPosition::IRP_ARGUMENT: 599 case IRPosition::IRP_FUNCTION: 600 case IRPosition::IRP_RETURNED: 601 ScopeFn->setAttributes(Attrs); 602 break; 603 case IRPosition::IRP_CALL_SITE: 604 case IRPosition::IRP_CALL_SITE_RETURNED: 605 case IRPosition::IRP_CALL_SITE_ARGUMENT: 606 CallSite(&IRP.getAnchorValue()).setAttributes(Attrs); 607 break; 608 case IRPosition::IRP_INVALID: 609 case IRPosition::IRP_FLOAT: 610 break; 611 } 612 613 return HasChanged; 614 } 615 616 const IRPosition IRPosition::EmptyKey(255); 617 const IRPosition IRPosition::TombstoneKey(256); 618 619 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) { 620 IRPositions.emplace_back(IRP); 621 622 ImmutableCallSite ICS(&IRP.getAnchorValue()); 623 switch (IRP.getPositionKind()) { 624 case IRPosition::IRP_INVALID: 625 case IRPosition::IRP_FLOAT: 626 case IRPosition::IRP_FUNCTION: 627 return; 628 case IRPosition::IRP_ARGUMENT: 629 case IRPosition::IRP_RETURNED: 630 IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope())); 631 return; 632 case IRPosition::IRP_CALL_SITE: 633 assert(ICS && "Expected call site!"); 634 // TODO: We need to look at the operand bundles similar to the redirection 635 // in CallBase. 636 if (!ICS.hasOperandBundles()) 637 if (const Function *Callee = ICS.getCalledFunction()) 638 IRPositions.emplace_back(IRPosition::function(*Callee)); 639 return; 640 case IRPosition::IRP_CALL_SITE_RETURNED: 641 assert(ICS && "Expected call site!"); 642 // TODO: We need to look at the operand bundles similar to the redirection 643 // in CallBase. 644 if (!ICS.hasOperandBundles()) { 645 if (const Function *Callee = ICS.getCalledFunction()) { 646 IRPositions.emplace_back(IRPosition::returned(*Callee)); 647 IRPositions.emplace_back(IRPosition::function(*Callee)); 648 for (const Argument &Arg : Callee->args()) 649 if (Arg.hasReturnedAttr()) { 650 IRPositions.emplace_back( 651 IRPosition::callsite_argument(ICS, Arg.getArgNo())); 652 IRPositions.emplace_back( 653 IRPosition::value(*ICS.getArgOperand(Arg.getArgNo()))); 654 IRPositions.emplace_back(IRPosition::argument(Arg)); 655 } 656 } 657 } 658 IRPositions.emplace_back( 659 IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction()))); 660 return; 661 case IRPosition::IRP_CALL_SITE_ARGUMENT: { 662 int ArgNo = IRP.getArgNo(); 663 assert(ICS && ArgNo >= 0 && "Expected call site!"); 664 // TODO: We need to look at the operand bundles similar to the redirection 665 // in CallBase. 666 if (!ICS.hasOperandBundles()) { 667 const Function *Callee = ICS.getCalledFunction(); 668 if (Callee && Callee->arg_size() > unsigned(ArgNo)) 669 IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo))); 670 if (Callee) 671 IRPositions.emplace_back(IRPosition::function(*Callee)); 672 } 673 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue())); 674 return; 675 } 676 } 677 } 678 679 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs, 680 bool IgnoreSubsumingPositions, Attributor *A) const { 681 SmallVector<Attribute, 4> Attrs; 682 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { 683 for (Attribute::AttrKind AK : AKs) 684 if (EquivIRP.getAttrsFromIRAttr(AK, Attrs)) 685 return true; 686 // The first position returned by the SubsumingPositionIterator is 687 // always the position itself. If we ignore subsuming positions we 688 // are done after the first iteration. 689 if (IgnoreSubsumingPositions) 690 break; 691 } 692 if (A) 693 for (Attribute::AttrKind AK : AKs) 694 if (getAttrsFromAssumes(AK, Attrs, *A)) 695 return true; 696 return false; 697 } 698 699 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs, 700 SmallVectorImpl<Attribute> &Attrs, 701 bool IgnoreSubsumingPositions, Attributor *A) const { 702 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { 703 for (Attribute::AttrKind AK : AKs) 704 EquivIRP.getAttrsFromIRAttr(AK, Attrs); 705 // The first position returned by the SubsumingPositionIterator is 706 // always the position itself. If we ignore subsuming positions we 707 // are done after the first iteration. 708 if (IgnoreSubsumingPositions) 709 break; 710 } 711 if (A) 712 for (Attribute::AttrKind AK : AKs) 713 getAttrsFromAssumes(AK, Attrs, *A); 714 } 715 716 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK, 717 SmallVectorImpl<Attribute> &Attrs) const { 718 if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) 719 return false; 720 721 AttributeList AttrList; 722 if (ImmutableCallSite ICS = ImmutableCallSite(&getAnchorValue())) 723 AttrList = ICS.getAttributes(); 724 else 725 AttrList = getAssociatedFunction()->getAttributes(); 726 727 bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK); 728 if (HasAttr) 729 Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK)); 730 return HasAttr; 731 } 732 733 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK, 734 SmallVectorImpl<Attribute> &Attrs, 735 Attributor &A) const { 736 assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!"); 737 Value &AssociatedValue = getAssociatedValue(); 738 739 const Assume2KnowledgeMap &A2K = 740 A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK}); 741 742 // Check if we found any potential assume use, if not we don't need to create 743 // explorer iterators. 744 if (A2K.empty()) 745 return false; 746 747 LLVMContext &Ctx = AssociatedValue.getContext(); 748 unsigned AttrsSize = Attrs.size(); 749 MustBeExecutedContextExplorer &Explorer = 750 A.getInfoCache().getMustBeExecutedContextExplorer(); 751 auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI()); 752 for (auto &It : A2K) 753 if (Explorer.findInContextOf(It.first, EIt, EEnd)) 754 Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max)); 755 return AttrsSize != Attrs.size(); 756 } 757 758 void IRPosition::verify() { 759 switch (KindOrArgNo) { 760 default: 761 assert(KindOrArgNo >= 0 && "Expected argument or call site argument!"); 762 assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) && 763 "Expected call base or argument for positive attribute index!"); 764 if (isa<Argument>(AnchorVal)) { 765 assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) && 766 "Argument number mismatch!"); 767 assert(cast<Argument>(AnchorVal) == &getAssociatedValue() && 768 "Associated value mismatch!"); 769 } else { 770 assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) && 771 "Call site argument number mismatch!"); 772 assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) == 773 &getAssociatedValue() && 774 "Associated value mismatch!"); 775 } 776 break; 777 case IRP_INVALID: 778 assert(!AnchorVal && "Expected no value for an invalid position!"); 779 break; 780 case IRP_FLOAT: 781 assert((!isa<CallBase>(&getAssociatedValue()) && 782 !isa<Argument>(&getAssociatedValue())) && 783 "Expected specialized kind for call base and argument values!"); 784 break; 785 case IRP_RETURNED: 786 assert(isa<Function>(AnchorVal) && 787 "Expected function for a 'returned' position!"); 788 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); 789 break; 790 case IRP_CALL_SITE_RETURNED: 791 assert((isa<CallBase>(AnchorVal)) && 792 "Expected call base for 'call site returned' position!"); 793 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); 794 break; 795 case IRP_CALL_SITE: 796 assert((isa<CallBase>(AnchorVal)) && 797 "Expected call base for 'call site function' position!"); 798 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); 799 break; 800 case IRP_FUNCTION: 801 assert(isa<Function>(AnchorVal) && 802 "Expected function for a 'function' position!"); 803 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!"); 804 break; 805 } 806 } 807 808 namespace { 809 810 /// Helper function to clamp a state \p S of type \p StateType with the 811 /// information in \p R and indicate/return if \p S did change (as-in update is 812 /// required to be run again). 813 template <typename StateType> 814 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) { 815 auto Assumed = S.getAssumed(); 816 S ^= R; 817 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 818 : ChangeStatus::CHANGED; 819 } 820 821 /// Clamp the information known for all returned values of a function 822 /// (identified by \p QueryingAA) into \p S. 823 template <typename AAType, typename StateType = typename AAType::StateType> 824 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA, 825 StateType &S) { 826 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " 827 << QueryingAA << " into " << S << "\n"); 828 829 assert((QueryingAA.getIRPosition().getPositionKind() == 830 IRPosition::IRP_RETURNED || 831 QueryingAA.getIRPosition().getPositionKind() == 832 IRPosition::IRP_CALL_SITE_RETURNED) && 833 "Can only clamp returned value states for a function returned or call " 834 "site returned position!"); 835 836 // Use an optional state as there might not be any return values and we want 837 // to join (IntegerState::operator&) the state of all there are. 838 Optional<StateType> T; 839 840 // Callback for each possibly returned value. 841 auto CheckReturnValue = [&](Value &RV) -> bool { 842 const IRPosition &RVPos = IRPosition::value(RV); 843 const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos); 844 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr() 845 << " @ " << RVPos << "\n"); 846 const StateType &AAS = static_cast<const StateType &>(AA.getState()); 847 if (T.hasValue()) 848 *T &= AAS; 849 else 850 T = AAS; 851 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T 852 << "\n"); 853 return T->isValidState(); 854 }; 855 856 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA)) 857 S.indicatePessimisticFixpoint(); 858 else if (T.hasValue()) 859 S ^= *T; 860 } 861 862 /// Helper class to compose two generic deduction 863 template <typename AAType, typename Base, typename StateType, 864 template <typename...> class F, template <typename...> class G> 865 struct AAComposeTwoGenericDeduction 866 : public F<AAType, G<AAType, Base, StateType>, StateType> { 867 AAComposeTwoGenericDeduction(const IRPosition &IRP) 868 : F<AAType, G<AAType, Base, StateType>, StateType>(IRP) {} 869 870 void initialize(Attributor &A) override { 871 F<AAType, G<AAType, Base, StateType>, StateType>::initialize(A); 872 G<AAType, Base, StateType>::initialize(A); 873 } 874 875 /// See AbstractAttribute::updateImpl(...). 876 ChangeStatus updateImpl(Attributor &A) override { 877 ChangeStatus ChangedF = 878 F<AAType, G<AAType, Base, StateType>, StateType>::updateImpl(A); 879 ChangeStatus ChangedG = G<AAType, Base, StateType>::updateImpl(A); 880 return ChangedF | ChangedG; 881 } 882 }; 883 884 /// Helper class for generic deduction: return value -> returned position. 885 template <typename AAType, typename Base, 886 typename StateType = typename Base::StateType> 887 struct AAReturnedFromReturnedValues : public Base { 888 AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {} 889 890 /// See AbstractAttribute::updateImpl(...). 891 ChangeStatus updateImpl(Attributor &A) override { 892 StateType S(StateType::getBestState(this->getState())); 893 clampReturnedValueStates<AAType, StateType>(A, *this, S); 894 // TODO: If we know we visited all returned values, thus no are assumed 895 // dead, we can take the known information from the state T. 896 return clampStateAndIndicateChange<StateType>(this->getState(), S); 897 } 898 }; 899 900 /// Clamp the information known at all call sites for a given argument 901 /// (identified by \p QueryingAA) into \p S. 902 template <typename AAType, typename StateType = typename AAType::StateType> 903 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, 904 StateType &S) { 905 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " 906 << QueryingAA << " into " << S << "\n"); 907 908 assert(QueryingAA.getIRPosition().getPositionKind() == 909 IRPosition::IRP_ARGUMENT && 910 "Can only clamp call site argument states for an argument position!"); 911 912 // Use an optional state as there might not be any return values and we want 913 // to join (IntegerState::operator&) the state of all there are. 914 Optional<StateType> T; 915 916 // The argument number which is also the call site argument number. 917 unsigned ArgNo = QueryingAA.getIRPosition().getArgNo(); 918 919 auto CallSiteCheck = [&](AbstractCallSite ACS) { 920 const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 921 // Check if a coresponding argument was found or if it is on not associated 922 // (which can happen for callback calls). 923 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 924 return false; 925 926 const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos); 927 LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() 928 << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n"); 929 const StateType &AAS = static_cast<const StateType &>(AA.getState()); 930 if (T.hasValue()) 931 *T &= AAS; 932 else 933 T = AAS; 934 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T 935 << "\n"); 936 return T->isValidState(); 937 }; 938 939 bool AllCallSitesKnown; 940 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true, 941 AllCallSitesKnown)) 942 S.indicatePessimisticFixpoint(); 943 else if (T.hasValue()) 944 S ^= *T; 945 } 946 947 /// Helper class for generic deduction: call site argument -> argument position. 948 template <typename AAType, typename Base, 949 typename StateType = typename AAType::StateType> 950 struct AAArgumentFromCallSiteArguments : public Base { 951 AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {} 952 953 /// See AbstractAttribute::updateImpl(...). 954 ChangeStatus updateImpl(Attributor &A) override { 955 StateType S(StateType::getBestState(this->getState())); 956 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S); 957 // TODO: If we know we visited all incoming values, thus no are assumed 958 // dead, we can take the known information from the state T. 959 return clampStateAndIndicateChange<StateType>(this->getState(), S); 960 } 961 }; 962 963 /// Helper class for generic replication: function returned -> cs returned. 964 template <typename AAType, typename Base, 965 typename StateType = typename Base::StateType> 966 struct AACallSiteReturnedFromReturned : public Base { 967 AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {} 968 969 /// See AbstractAttribute::updateImpl(...). 970 ChangeStatus updateImpl(Attributor &A) override { 971 assert(this->getIRPosition().getPositionKind() == 972 IRPosition::IRP_CALL_SITE_RETURNED && 973 "Can only wrap function returned positions for call site returned " 974 "positions!"); 975 auto &S = this->getState(); 976 977 const Function *AssociatedFunction = 978 this->getIRPosition().getAssociatedFunction(); 979 if (!AssociatedFunction) 980 return S.indicatePessimisticFixpoint(); 981 982 IRPosition FnPos = IRPosition::returned(*AssociatedFunction); 983 const AAType &AA = A.getAAFor<AAType>(*this, FnPos); 984 return clampStateAndIndicateChange( 985 S, static_cast<const StateType &>(AA.getState())); 986 } 987 }; 988 989 /// Helper class for generic deduction using must-be-executed-context 990 /// Base class is required to have `followUse` method. 991 992 /// bool followUse(Attributor &A, const Use *U, const Instruction *I) 993 /// U - Underlying use. 994 /// I - The user of the \p U. 995 /// `followUse` returns true if the value should be tracked transitively. 996 997 template <typename AAType, typename Base, 998 typename StateType = typename AAType::StateType> 999 struct AAFromMustBeExecutedContext : public Base { 1000 AAFromMustBeExecutedContext(const IRPosition &IRP) : Base(IRP) {} 1001 1002 void initialize(Attributor &A) override { 1003 Base::initialize(A); 1004 const IRPosition &IRP = this->getIRPosition(); 1005 Instruction *CtxI = IRP.getCtxI(); 1006 1007 if (!CtxI) 1008 return; 1009 1010 for (const Use &U : IRP.getAssociatedValue().uses()) 1011 Uses.insert(&U); 1012 } 1013 1014 /// Helper function to accumulate uses. 1015 void followUsesInContext(Attributor &A, 1016 MustBeExecutedContextExplorer &Explorer, 1017 const Instruction *CtxI, 1018 SetVector<const Use *> &Uses, StateType &State) { 1019 auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI); 1020 for (unsigned u = 0; u < Uses.size(); ++u) { 1021 const Use *U = Uses[u]; 1022 if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) { 1023 bool Found = Explorer.findInContextOf(UserI, EIt, EEnd); 1024 if (Found && Base::followUse(A, U, UserI, State)) 1025 for (const Use &Us : UserI->uses()) 1026 Uses.insert(&Us); 1027 } 1028 } 1029 } 1030 1031 /// See AbstractAttribute::updateImpl(...). 1032 ChangeStatus updateImpl(Attributor &A) override { 1033 auto BeforeState = this->getState(); 1034 auto &S = this->getState(); 1035 Instruction *CtxI = this->getIRPosition().getCtxI(); 1036 if (!CtxI) 1037 return ChangeStatus::UNCHANGED; 1038 1039 MustBeExecutedContextExplorer &Explorer = 1040 A.getInfoCache().getMustBeExecutedContextExplorer(); 1041 1042 followUsesInContext(A, Explorer, CtxI, Uses, S); 1043 1044 if (this->isAtFixpoint()) 1045 return ChangeStatus::CHANGED; 1046 1047 SmallVector<const BranchInst *, 4> BrInsts; 1048 auto Pred = [&](const Instruction *I) { 1049 if (const BranchInst *Br = dyn_cast<BranchInst>(I)) 1050 if (Br->isConditional()) 1051 BrInsts.push_back(Br); 1052 return true; 1053 }; 1054 1055 // Here, accumulate conditional branch instructions in the context. We 1056 // explore the child paths and collect the known states. The disjunction of 1057 // those states can be merged to its own state. Let ParentState_i be a state 1058 // to indicate the known information for an i-th branch instruction in the 1059 // context. ChildStates are created for its successors respectively. 1060 // 1061 // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1} 1062 // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2} 1063 // ... 1064 // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m} 1065 // 1066 // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m 1067 // 1068 // FIXME: Currently, recursive branches are not handled. For example, we 1069 // can't deduce that ptr must be dereferenced in below function. 1070 // 1071 // void f(int a, int c, int *ptr) { 1072 // if(a) 1073 // if (b) { 1074 // *ptr = 0; 1075 // } else { 1076 // *ptr = 1; 1077 // } 1078 // else { 1079 // if (b) { 1080 // *ptr = 0; 1081 // } else { 1082 // *ptr = 1; 1083 // } 1084 // } 1085 // } 1086 1087 Explorer.checkForAllContext(CtxI, Pred); 1088 for (const BranchInst *Br : BrInsts) { 1089 StateType ParentState; 1090 1091 // The known state of the parent state is a conjunction of children's 1092 // known states so it is initialized with a best state. 1093 ParentState.indicateOptimisticFixpoint(); 1094 1095 for (const BasicBlock *BB : Br->successors()) { 1096 StateType ChildState; 1097 1098 size_t BeforeSize = Uses.size(); 1099 followUsesInContext(A, Explorer, &BB->front(), Uses, ChildState); 1100 1101 // Erase uses which only appear in the child. 1102 for (auto It = Uses.begin() + BeforeSize; It != Uses.end();) 1103 It = Uses.erase(It); 1104 1105 ParentState &= ChildState; 1106 } 1107 1108 // Use only known state. 1109 S += ParentState; 1110 } 1111 1112 return BeforeState == S ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; 1113 } 1114 1115 private: 1116 /// Container for (transitive) uses of the associated value. 1117 SetVector<const Use *> Uses; 1118 }; 1119 1120 template <typename AAType, typename Base, 1121 typename StateType = typename AAType::StateType> 1122 using AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext = 1123 AAComposeTwoGenericDeduction<AAType, Base, StateType, 1124 AAFromMustBeExecutedContext, 1125 AAArgumentFromCallSiteArguments>; 1126 1127 template <typename AAType, typename Base, 1128 typename StateType = typename AAType::StateType> 1129 using AACallSiteReturnedFromReturnedAndMustBeExecutedContext = 1130 AAComposeTwoGenericDeduction<AAType, Base, StateType, 1131 AAFromMustBeExecutedContext, 1132 AACallSiteReturnedFromReturned>; 1133 1134 /// -----------------------NoUnwind Function Attribute-------------------------- 1135 1136 struct AANoUnwindImpl : AANoUnwind { 1137 AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {} 1138 1139 const std::string getAsStr() const override { 1140 return getAssumed() ? "nounwind" : "may-unwind"; 1141 } 1142 1143 /// See AbstractAttribute::updateImpl(...). 1144 ChangeStatus updateImpl(Attributor &A) override { 1145 auto Opcodes = { 1146 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, 1147 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet, 1148 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; 1149 1150 auto CheckForNoUnwind = [&](Instruction &I) { 1151 if (!I.mayThrow()) 1152 return true; 1153 1154 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { 1155 const auto &NoUnwindAA = 1156 A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS)); 1157 return NoUnwindAA.isAssumedNoUnwind(); 1158 } 1159 return false; 1160 }; 1161 1162 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes)) 1163 return indicatePessimisticFixpoint(); 1164 1165 return ChangeStatus::UNCHANGED; 1166 } 1167 }; 1168 1169 struct AANoUnwindFunction final : public AANoUnwindImpl { 1170 AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {} 1171 1172 /// See AbstractAttribute::trackStatistics() 1173 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } 1174 }; 1175 1176 /// NoUnwind attribute deduction for a call sites. 1177 struct AANoUnwindCallSite final : AANoUnwindImpl { 1178 AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {} 1179 1180 /// See AbstractAttribute::initialize(...). 1181 void initialize(Attributor &A) override { 1182 AANoUnwindImpl::initialize(A); 1183 Function *F = getAssociatedFunction(); 1184 if (!F) 1185 indicatePessimisticFixpoint(); 1186 } 1187 1188 /// See AbstractAttribute::updateImpl(...). 1189 ChangeStatus updateImpl(Attributor &A) override { 1190 // TODO: Once we have call site specific value information we can provide 1191 // call site specific liveness information and then it makes 1192 // sense to specialize attributes for call sites arguments instead of 1193 // redirecting requests to the callee argument. 1194 Function *F = getAssociatedFunction(); 1195 const IRPosition &FnPos = IRPosition::function(*F); 1196 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos); 1197 return clampStateAndIndicateChange( 1198 getState(), 1199 static_cast<const AANoUnwind::StateType &>(FnAA.getState())); 1200 } 1201 1202 /// See AbstractAttribute::trackStatistics() 1203 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } 1204 }; 1205 1206 /// --------------------- Function Return Values ------------------------------- 1207 1208 /// "Attribute" that collects all potential returned values and the return 1209 /// instructions that they arise from. 1210 /// 1211 /// If there is a unique returned value R, the manifest method will: 1212 /// - mark R with the "returned" attribute, if R is an argument. 1213 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState { 1214 1215 /// Mapping of values potentially returned by the associated function to the 1216 /// return instructions that might return them. 1217 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues; 1218 1219 /// Mapping to remember the number of returned values for a call site such 1220 /// that we can avoid updates if nothing changed. 1221 DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA; 1222 1223 /// Set of unresolved calls returned by the associated function. 1224 SmallSetVector<CallBase *, 4> UnresolvedCalls; 1225 1226 /// State flags 1227 /// 1228 ///{ 1229 bool IsFixed = false; 1230 bool IsValidState = true; 1231 ///} 1232 1233 public: 1234 AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {} 1235 1236 /// See AbstractAttribute::initialize(...). 1237 void initialize(Attributor &A) override { 1238 // Reset the state. 1239 IsFixed = false; 1240 IsValidState = true; 1241 ReturnedValues.clear(); 1242 1243 Function *F = getAssociatedFunction(); 1244 if (!F) { 1245 indicatePessimisticFixpoint(); 1246 return; 1247 } 1248 assert(!F->getReturnType()->isVoidTy() && 1249 "Did not expect a void return type!"); 1250 1251 // The map from instruction opcodes to those instructions in the function. 1252 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F); 1253 1254 // Look through all arguments, if one is marked as returned we are done. 1255 for (Argument &Arg : F->args()) { 1256 if (Arg.hasReturnedAttr()) { 1257 auto &ReturnInstSet = ReturnedValues[&Arg]; 1258 for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) 1259 ReturnInstSet.insert(cast<ReturnInst>(RI)); 1260 1261 indicateOptimisticFixpoint(); 1262 return; 1263 } 1264 } 1265 1266 if (!A.isFunctionIPOAmendable(*F)) 1267 indicatePessimisticFixpoint(); 1268 } 1269 1270 /// See AbstractAttribute::manifest(...). 1271 ChangeStatus manifest(Attributor &A) override; 1272 1273 /// See AbstractAttribute::getState(...). 1274 AbstractState &getState() override { return *this; } 1275 1276 /// See AbstractAttribute::getState(...). 1277 const AbstractState &getState() const override { return *this; } 1278 1279 /// See AbstractAttribute::updateImpl(Attributor &A). 1280 ChangeStatus updateImpl(Attributor &A) override; 1281 1282 llvm::iterator_range<iterator> returned_values() override { 1283 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 1284 } 1285 1286 llvm::iterator_range<const_iterator> returned_values() const override { 1287 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); 1288 } 1289 1290 const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override { 1291 return UnresolvedCalls; 1292 } 1293 1294 /// Return the number of potential return values, -1 if unknown. 1295 size_t getNumReturnValues() const override { 1296 return isValidState() ? ReturnedValues.size() : -1; 1297 } 1298 1299 /// Return an assumed unique return value if a single candidate is found. If 1300 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1301 /// Optional::NoneType. 1302 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; 1303 1304 /// See AbstractState::checkForAllReturnedValues(...). 1305 bool checkForAllReturnedValuesAndReturnInsts( 1306 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 1307 const override; 1308 1309 /// Pretty print the attribute similar to the IR representation. 1310 const std::string getAsStr() const override; 1311 1312 /// See AbstractState::isAtFixpoint(). 1313 bool isAtFixpoint() const override { return IsFixed; } 1314 1315 /// See AbstractState::isValidState(). 1316 bool isValidState() const override { return IsValidState; } 1317 1318 /// See AbstractState::indicateOptimisticFixpoint(...). 1319 ChangeStatus indicateOptimisticFixpoint() override { 1320 IsFixed = true; 1321 return ChangeStatus::UNCHANGED; 1322 } 1323 1324 ChangeStatus indicatePessimisticFixpoint() override { 1325 IsFixed = true; 1326 IsValidState = false; 1327 return ChangeStatus::CHANGED; 1328 } 1329 }; 1330 1331 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { 1332 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1333 1334 // Bookkeeping. 1335 assert(isValidState()); 1336 STATS_DECLTRACK(KnownReturnValues, FunctionReturn, 1337 "Number of function with known return values"); 1338 1339 // Check if we have an assumed unique return value that we could manifest. 1340 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A); 1341 1342 if (!UniqueRV.hasValue() || !UniqueRV.getValue()) 1343 return Changed; 1344 1345 // Bookkeeping. 1346 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, 1347 "Number of function with unique return"); 1348 1349 // Callback to replace the uses of CB with the constant C. 1350 auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) { 1351 if (CB.getNumUses() == 0) 1352 return ChangeStatus::UNCHANGED; 1353 if (A.changeValueAfterManifest(CB, C)) 1354 return ChangeStatus::CHANGED; 1355 return ChangeStatus::UNCHANGED; 1356 }; 1357 1358 // If the assumed unique return value is an argument, annotate it. 1359 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { 1360 // TODO: This should be handled differently! 1361 this->AnchorVal = UniqueRVArg; 1362 this->KindOrArgNo = UniqueRVArg->getArgNo(); 1363 Changed = IRAttribute::manifest(A); 1364 } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) { 1365 // We can replace the returned value with the unique returned constant. 1366 Value &AnchorValue = getAnchorValue(); 1367 if (Function *F = dyn_cast<Function>(&AnchorValue)) { 1368 for (const Use &U : F->uses()) 1369 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) 1370 if (CB->isCallee(&U)) { 1371 Constant *RVCCast = 1372 CB->getType() == RVC->getType() 1373 ? RVC 1374 : ConstantExpr::getTruncOrBitCast(RVC, CB->getType()); 1375 Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed; 1376 } 1377 } else { 1378 assert(isa<CallBase>(AnchorValue) && 1379 "Expcected a function or call base anchor!"); 1380 Constant *RVCCast = 1381 AnchorValue.getType() == RVC->getType() 1382 ? RVC 1383 : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType()); 1384 Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast); 1385 } 1386 if (Changed == ChangeStatus::CHANGED) 1387 STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn, 1388 "Number of function returns replaced by constant return"); 1389 } 1390 1391 return Changed; 1392 } 1393 1394 const std::string AAReturnedValuesImpl::getAsStr() const { 1395 return (isAtFixpoint() ? "returns(#" : "may-return(#") + 1396 (isValidState() ? std::to_string(getNumReturnValues()) : "?") + 1397 ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]"; 1398 } 1399 1400 Optional<Value *> 1401 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const { 1402 // If checkForAllReturnedValues provides a unique value, ignoring potential 1403 // undef values that can also be present, it is assumed to be the actual 1404 // return value and forwarded to the caller of this method. If there are 1405 // multiple, a nullptr is returned indicating there cannot be a unique 1406 // returned value. 1407 Optional<Value *> UniqueRV; 1408 1409 auto Pred = [&](Value &RV) -> bool { 1410 // If we found a second returned value and neither the current nor the saved 1411 // one is an undef, there is no unique returned value. Undefs are special 1412 // since we can pretend they have any value. 1413 if (UniqueRV.hasValue() && UniqueRV != &RV && 1414 !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) { 1415 UniqueRV = nullptr; 1416 return false; 1417 } 1418 1419 // Do not overwrite a value with an undef. 1420 if (!UniqueRV.hasValue() || !isa<UndefValue>(RV)) 1421 UniqueRV = &RV; 1422 1423 return true; 1424 }; 1425 1426 if (!A.checkForAllReturnedValues(Pred, *this)) 1427 UniqueRV = nullptr; 1428 1429 return UniqueRV; 1430 } 1431 1432 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts( 1433 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) 1434 const { 1435 if (!isValidState()) 1436 return false; 1437 1438 // Check all returned values but ignore call sites as long as we have not 1439 // encountered an overdefined one during an update. 1440 for (auto &It : ReturnedValues) { 1441 Value *RV = It.first; 1442 1443 CallBase *CB = dyn_cast<CallBase>(RV); 1444 if (CB && !UnresolvedCalls.count(CB)) 1445 continue; 1446 1447 if (!Pred(*RV, It.second)) 1448 return false; 1449 } 1450 1451 return true; 1452 } 1453 1454 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { 1455 size_t NumUnresolvedCalls = UnresolvedCalls.size(); 1456 bool Changed = false; 1457 1458 // State used in the value traversals starting in returned values. 1459 struct RVState { 1460 // The map in which we collect return values -> return instrs. 1461 decltype(ReturnedValues) &RetValsMap; 1462 // The flag to indicate a change. 1463 bool &Changed; 1464 // The return instrs we come from. 1465 SmallSetVector<ReturnInst *, 4> RetInsts; 1466 }; 1467 1468 // Callback for a leaf value returned by the associated function. 1469 auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool { 1470 auto Size = RVS.RetValsMap[&Val].size(); 1471 RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end()); 1472 bool Inserted = RVS.RetValsMap[&Val].size() != Size; 1473 RVS.Changed |= Inserted; 1474 LLVM_DEBUG({ 1475 if (Inserted) 1476 dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val 1477 << " => " << RVS.RetInsts.size() << "\n"; 1478 }); 1479 return true; 1480 }; 1481 1482 // Helper method to invoke the generic value traversal. 1483 auto VisitReturnedValue = [&](Value &RV, RVState &RVS) { 1484 IRPosition RetValPos = IRPosition::value(RV); 1485 return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this, 1486 RVS, VisitValueCB); 1487 }; 1488 1489 // Callback for all "return intructions" live in the associated function. 1490 auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) { 1491 ReturnInst &Ret = cast<ReturnInst>(I); 1492 RVState RVS({ReturnedValues, Changed, {}}); 1493 RVS.RetInsts.insert(&Ret); 1494 return VisitReturnedValue(*Ret.getReturnValue(), RVS); 1495 }; 1496 1497 // Start by discovering returned values from all live returned instructions in 1498 // the associated function. 1499 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret})) 1500 return indicatePessimisticFixpoint(); 1501 1502 // Once returned values "directly" present in the code are handled we try to 1503 // resolve returned calls. 1504 decltype(ReturnedValues) NewRVsMap; 1505 for (auto &It : ReturnedValues) { 1506 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first 1507 << " by #" << It.second.size() << " RIs\n"); 1508 CallBase *CB = dyn_cast<CallBase>(It.first); 1509 if (!CB || UnresolvedCalls.count(CB)) 1510 continue; 1511 1512 if (!CB->getCalledFunction()) { 1513 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1514 << "\n"); 1515 UnresolvedCalls.insert(CB); 1516 continue; 1517 } 1518 1519 // TODO: use the function scope once we have call site AAReturnedValues. 1520 const auto &RetValAA = A.getAAFor<AAReturnedValues>( 1521 *this, IRPosition::function(*CB->getCalledFunction())); 1522 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: " 1523 << RetValAA << "\n"); 1524 1525 // Skip dead ends, thus if we do not know anything about the returned 1526 // call we mark it as unresolved and it will stay that way. 1527 if (!RetValAA.getState().isValidState()) { 1528 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB 1529 << "\n"); 1530 UnresolvedCalls.insert(CB); 1531 continue; 1532 } 1533 1534 // Do not try to learn partial information. If the callee has unresolved 1535 // return values we will treat the call as unresolved/opaque. 1536 auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls(); 1537 if (!RetValAAUnresolvedCalls.empty()) { 1538 UnresolvedCalls.insert(CB); 1539 continue; 1540 } 1541 1542 // Now check if we can track transitively returned values. If possible, thus 1543 // if all return value can be represented in the current scope, do so. 1544 bool Unresolved = false; 1545 for (auto &RetValAAIt : RetValAA.returned_values()) { 1546 Value *RetVal = RetValAAIt.first; 1547 if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) || 1548 isa<Constant>(RetVal)) 1549 continue; 1550 // Anything that did not fit in the above categories cannot be resolved, 1551 // mark the call as unresolved. 1552 LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value " 1553 "cannot be translated: " 1554 << *RetVal << "\n"); 1555 UnresolvedCalls.insert(CB); 1556 Unresolved = true; 1557 break; 1558 } 1559 1560 if (Unresolved) 1561 continue; 1562 1563 // Now track transitively returned values. 1564 unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB]; 1565 if (NumRetAA == RetValAA.getNumReturnValues()) { 1566 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not " 1567 "changed since it was seen last\n"); 1568 continue; 1569 } 1570 NumRetAA = RetValAA.getNumReturnValues(); 1571 1572 for (auto &RetValAAIt : RetValAA.returned_values()) { 1573 Value *RetVal = RetValAAIt.first; 1574 if (Argument *Arg = dyn_cast<Argument>(RetVal)) { 1575 // Arguments are mapped to call site operands and we begin the traversal 1576 // again. 1577 bool Unused = false; 1578 RVState RVS({NewRVsMap, Unused, RetValAAIt.second}); 1579 VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS); 1580 continue; 1581 } else if (isa<CallBase>(RetVal)) { 1582 // Call sites are resolved by the callee attribute over time, no need to 1583 // do anything for us. 1584 continue; 1585 } else if (isa<Constant>(RetVal)) { 1586 // Constants are valid everywhere, we can simply take them. 1587 NewRVsMap[RetVal].insert(It.second.begin(), It.second.end()); 1588 continue; 1589 } 1590 } 1591 } 1592 1593 // To avoid modifications to the ReturnedValues map while we iterate over it 1594 // we kept record of potential new entries in a copy map, NewRVsMap. 1595 for (auto &It : NewRVsMap) { 1596 assert(!It.second.empty() && "Entry does not add anything."); 1597 auto &ReturnInsts = ReturnedValues[It.first]; 1598 for (ReturnInst *RI : It.second) 1599 if (ReturnInsts.insert(RI)) { 1600 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value " 1601 << *It.first << " => " << *RI << "\n"); 1602 Changed = true; 1603 } 1604 } 1605 1606 Changed |= (NumUnresolvedCalls != UnresolvedCalls.size()); 1607 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 1608 } 1609 1610 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl { 1611 AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {} 1612 1613 /// See AbstractAttribute::trackStatistics() 1614 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) } 1615 }; 1616 1617 /// Returned values information for a call sites. 1618 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl { 1619 AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {} 1620 1621 /// See AbstractAttribute::initialize(...). 1622 void initialize(Attributor &A) override { 1623 // TODO: Once we have call site specific value information we can provide 1624 // call site specific liveness information and then it makes 1625 // sense to specialize attributes for call sites instead of 1626 // redirecting requests to the callee. 1627 llvm_unreachable("Abstract attributes for returned values are not " 1628 "supported for call sites yet!"); 1629 } 1630 1631 /// See AbstractAttribute::updateImpl(...). 1632 ChangeStatus updateImpl(Attributor &A) override { 1633 return indicatePessimisticFixpoint(); 1634 } 1635 1636 /// See AbstractAttribute::trackStatistics() 1637 void trackStatistics() const override {} 1638 }; 1639 1640 /// ------------------------ NoSync Function Attribute ------------------------- 1641 1642 struct AANoSyncImpl : AANoSync { 1643 AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {} 1644 1645 const std::string getAsStr() const override { 1646 return getAssumed() ? "nosync" : "may-sync"; 1647 } 1648 1649 /// See AbstractAttribute::updateImpl(...). 1650 ChangeStatus updateImpl(Attributor &A) override; 1651 1652 /// Helper function used to determine whether an instruction is non-relaxed 1653 /// atomic. In other words, if an atomic instruction does not have unordered 1654 /// or monotonic ordering 1655 static bool isNonRelaxedAtomic(Instruction *I); 1656 1657 /// Helper function used to determine whether an instruction is volatile. 1658 static bool isVolatile(Instruction *I); 1659 1660 /// Helper function uset to check if intrinsic is volatile (memcpy, memmove, 1661 /// memset). 1662 static bool isNoSyncIntrinsic(Instruction *I); 1663 }; 1664 1665 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) { 1666 if (!I->isAtomic()) 1667 return false; 1668 1669 AtomicOrdering Ordering; 1670 switch (I->getOpcode()) { 1671 case Instruction::AtomicRMW: 1672 Ordering = cast<AtomicRMWInst>(I)->getOrdering(); 1673 break; 1674 case Instruction::Store: 1675 Ordering = cast<StoreInst>(I)->getOrdering(); 1676 break; 1677 case Instruction::Load: 1678 Ordering = cast<LoadInst>(I)->getOrdering(); 1679 break; 1680 case Instruction::Fence: { 1681 auto *FI = cast<FenceInst>(I); 1682 if (FI->getSyncScopeID() == SyncScope::SingleThread) 1683 return false; 1684 Ordering = FI->getOrdering(); 1685 break; 1686 } 1687 case Instruction::AtomicCmpXchg: { 1688 AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering(); 1689 AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering(); 1690 // Only if both are relaxed, than it can be treated as relaxed. 1691 // Otherwise it is non-relaxed. 1692 if (Success != AtomicOrdering::Unordered && 1693 Success != AtomicOrdering::Monotonic) 1694 return true; 1695 if (Failure != AtomicOrdering::Unordered && 1696 Failure != AtomicOrdering::Monotonic) 1697 return true; 1698 return false; 1699 } 1700 default: 1701 llvm_unreachable( 1702 "New atomic operations need to be known in the attributor."); 1703 } 1704 1705 // Relaxed. 1706 if (Ordering == AtomicOrdering::Unordered || 1707 Ordering == AtomicOrdering::Monotonic) 1708 return false; 1709 return true; 1710 } 1711 1712 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics. 1713 /// FIXME: We should ipmrove the handling of intrinsics. 1714 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) { 1715 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1716 switch (II->getIntrinsicID()) { 1717 /// Element wise atomic memory intrinsics are can only be unordered, 1718 /// therefore nosync. 1719 case Intrinsic::memset_element_unordered_atomic: 1720 case Intrinsic::memmove_element_unordered_atomic: 1721 case Intrinsic::memcpy_element_unordered_atomic: 1722 return true; 1723 case Intrinsic::memset: 1724 case Intrinsic::memmove: 1725 case Intrinsic::memcpy: 1726 if (!cast<MemIntrinsic>(II)->isVolatile()) 1727 return true; 1728 return false; 1729 default: 1730 return false; 1731 } 1732 } 1733 return false; 1734 } 1735 1736 bool AANoSyncImpl::isVolatile(Instruction *I) { 1737 assert(!ImmutableCallSite(I) && !isa<CallBase>(I) && 1738 "Calls should not be checked here"); 1739 1740 switch (I->getOpcode()) { 1741 case Instruction::AtomicRMW: 1742 return cast<AtomicRMWInst>(I)->isVolatile(); 1743 case Instruction::Store: 1744 return cast<StoreInst>(I)->isVolatile(); 1745 case Instruction::Load: 1746 return cast<LoadInst>(I)->isVolatile(); 1747 case Instruction::AtomicCmpXchg: 1748 return cast<AtomicCmpXchgInst>(I)->isVolatile(); 1749 default: 1750 return false; 1751 } 1752 } 1753 1754 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { 1755 1756 auto CheckRWInstForNoSync = [&](Instruction &I) { 1757 /// We are looking for volatile instructions or Non-Relaxed atomics. 1758 /// FIXME: We should improve the handling of intrinsics. 1759 1760 if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I)) 1761 return true; 1762 1763 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { 1764 if (ICS.hasFnAttr(Attribute::NoSync)) 1765 return true; 1766 1767 const auto &NoSyncAA = 1768 A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS)); 1769 if (NoSyncAA.isAssumedNoSync()) 1770 return true; 1771 return false; 1772 } 1773 1774 if (!isVolatile(&I) && !isNonRelaxedAtomic(&I)) 1775 return true; 1776 1777 return false; 1778 }; 1779 1780 auto CheckForNoSync = [&](Instruction &I) { 1781 // At this point we handled all read/write effects and they are all 1782 // nosync, so they can be skipped. 1783 if (I.mayReadOrWriteMemory()) 1784 return true; 1785 1786 // non-convergent and readnone imply nosync. 1787 return !ImmutableCallSite(&I).isConvergent(); 1788 }; 1789 1790 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) || 1791 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this)) 1792 return indicatePessimisticFixpoint(); 1793 1794 return ChangeStatus::UNCHANGED; 1795 } 1796 1797 struct AANoSyncFunction final : public AANoSyncImpl { 1798 AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {} 1799 1800 /// See AbstractAttribute::trackStatistics() 1801 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } 1802 }; 1803 1804 /// NoSync attribute deduction for a call sites. 1805 struct AANoSyncCallSite final : AANoSyncImpl { 1806 AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {} 1807 1808 /// See AbstractAttribute::initialize(...). 1809 void initialize(Attributor &A) override { 1810 AANoSyncImpl::initialize(A); 1811 Function *F = getAssociatedFunction(); 1812 if (!F) 1813 indicatePessimisticFixpoint(); 1814 } 1815 1816 /// See AbstractAttribute::updateImpl(...). 1817 ChangeStatus updateImpl(Attributor &A) override { 1818 // TODO: Once we have call site specific value information we can provide 1819 // call site specific liveness information and then it makes 1820 // sense to specialize attributes for call sites arguments instead of 1821 // redirecting requests to the callee argument. 1822 Function *F = getAssociatedFunction(); 1823 const IRPosition &FnPos = IRPosition::function(*F); 1824 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos); 1825 return clampStateAndIndicateChange( 1826 getState(), static_cast<const AANoSync::StateType &>(FnAA.getState())); 1827 } 1828 1829 /// See AbstractAttribute::trackStatistics() 1830 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } 1831 }; 1832 1833 /// ------------------------ No-Free Attributes ---------------------------- 1834 1835 struct AANoFreeImpl : public AANoFree { 1836 AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {} 1837 1838 /// See AbstractAttribute::updateImpl(...). 1839 ChangeStatus updateImpl(Attributor &A) override { 1840 auto CheckForNoFree = [&](Instruction &I) { 1841 ImmutableCallSite ICS(&I); 1842 if (ICS.hasFnAttr(Attribute::NoFree)) 1843 return true; 1844 1845 const auto &NoFreeAA = 1846 A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS)); 1847 return NoFreeAA.isAssumedNoFree(); 1848 }; 1849 1850 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this)) 1851 return indicatePessimisticFixpoint(); 1852 return ChangeStatus::UNCHANGED; 1853 } 1854 1855 /// See AbstractAttribute::getAsStr(). 1856 const std::string getAsStr() const override { 1857 return getAssumed() ? "nofree" : "may-free"; 1858 } 1859 }; 1860 1861 struct AANoFreeFunction final : public AANoFreeImpl { 1862 AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {} 1863 1864 /// See AbstractAttribute::trackStatistics() 1865 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } 1866 }; 1867 1868 /// NoFree attribute deduction for a call sites. 1869 struct AANoFreeCallSite final : AANoFreeImpl { 1870 AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {} 1871 1872 /// See AbstractAttribute::initialize(...). 1873 void initialize(Attributor &A) override { 1874 AANoFreeImpl::initialize(A); 1875 Function *F = getAssociatedFunction(); 1876 if (!F) 1877 indicatePessimisticFixpoint(); 1878 } 1879 1880 /// See AbstractAttribute::updateImpl(...). 1881 ChangeStatus updateImpl(Attributor &A) override { 1882 // TODO: Once we have call site specific value information we can provide 1883 // call site specific liveness information and then it makes 1884 // sense to specialize attributes for call sites arguments instead of 1885 // redirecting requests to the callee argument. 1886 Function *F = getAssociatedFunction(); 1887 const IRPosition &FnPos = IRPosition::function(*F); 1888 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos); 1889 return clampStateAndIndicateChange( 1890 getState(), static_cast<const AANoFree::StateType &>(FnAA.getState())); 1891 } 1892 1893 /// See AbstractAttribute::trackStatistics() 1894 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } 1895 }; 1896 1897 /// NoFree attribute for floating values. 1898 struct AANoFreeFloating : AANoFreeImpl { 1899 AANoFreeFloating(const IRPosition &IRP) : AANoFreeImpl(IRP) {} 1900 1901 /// See AbstractAttribute::trackStatistics() 1902 void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} 1903 1904 /// See Abstract Attribute::updateImpl(...). 1905 ChangeStatus updateImpl(Attributor &A) override { 1906 const IRPosition &IRP = getIRPosition(); 1907 1908 const auto &NoFreeAA = 1909 A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP)); 1910 if (NoFreeAA.isAssumedNoFree()) 1911 return ChangeStatus::UNCHANGED; 1912 1913 Value &AssociatedValue = getIRPosition().getAssociatedValue(); 1914 auto Pred = [&](const Use &U, bool &Follow) -> bool { 1915 Instruction *UserI = cast<Instruction>(U.getUser()); 1916 if (auto *CB = dyn_cast<CallBase>(UserI)) { 1917 if (CB->isBundleOperand(&U)) 1918 return false; 1919 if (!CB->isArgOperand(&U)) 1920 return true; 1921 unsigned ArgNo = CB->getArgOperandNo(&U); 1922 1923 const auto &NoFreeArg = A.getAAFor<AANoFree>( 1924 *this, IRPosition::callsite_argument(*CB, ArgNo)); 1925 return NoFreeArg.isAssumedNoFree(); 1926 } 1927 1928 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 1929 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 1930 Follow = true; 1931 return true; 1932 } 1933 if (isa<ReturnInst>(UserI)) 1934 return true; 1935 1936 // Unknown user. 1937 return false; 1938 }; 1939 if (!A.checkForAllUses(Pred, *this, AssociatedValue)) 1940 return indicatePessimisticFixpoint(); 1941 1942 return ChangeStatus::UNCHANGED; 1943 } 1944 }; 1945 1946 /// NoFree attribute for a call site argument. 1947 struct AANoFreeArgument final : AANoFreeFloating { 1948 AANoFreeArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {} 1949 1950 /// See AbstractAttribute::trackStatistics() 1951 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } 1952 }; 1953 1954 /// NoFree attribute for call site arguments. 1955 struct AANoFreeCallSiteArgument final : AANoFreeFloating { 1956 AANoFreeCallSiteArgument(const IRPosition &IRP) : AANoFreeFloating(IRP) {} 1957 1958 /// See AbstractAttribute::updateImpl(...). 1959 ChangeStatus updateImpl(Attributor &A) override { 1960 // TODO: Once we have call site specific value information we can provide 1961 // call site specific liveness information and then it makes 1962 // sense to specialize attributes for call sites arguments instead of 1963 // redirecting requests to the callee argument. 1964 Argument *Arg = getAssociatedArgument(); 1965 if (!Arg) 1966 return indicatePessimisticFixpoint(); 1967 const IRPosition &ArgPos = IRPosition::argument(*Arg); 1968 auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos); 1969 return clampStateAndIndicateChange( 1970 getState(), static_cast<const AANoFree::StateType &>(ArgAA.getState())); 1971 } 1972 1973 /// See AbstractAttribute::trackStatistics() 1974 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)}; 1975 }; 1976 1977 /// NoFree attribute for function return value. 1978 struct AANoFreeReturned final : AANoFreeFloating { 1979 AANoFreeReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) { 1980 llvm_unreachable("NoFree is not applicable to function returns!"); 1981 } 1982 1983 /// See AbstractAttribute::initialize(...). 1984 void initialize(Attributor &A) override { 1985 llvm_unreachable("NoFree is not applicable to function returns!"); 1986 } 1987 1988 /// See AbstractAttribute::updateImpl(...). 1989 ChangeStatus updateImpl(Attributor &A) override { 1990 llvm_unreachable("NoFree is not applicable to function returns!"); 1991 } 1992 1993 /// See AbstractAttribute::trackStatistics() 1994 void trackStatistics() const override {} 1995 }; 1996 1997 /// NoFree attribute deduction for a call site return value. 1998 struct AANoFreeCallSiteReturned final : AANoFreeFloating { 1999 AANoFreeCallSiteReturned(const IRPosition &IRP) : AANoFreeFloating(IRP) {} 2000 2001 ChangeStatus manifest(Attributor &A) override { 2002 return ChangeStatus::UNCHANGED; 2003 } 2004 /// See AbstractAttribute::trackStatistics() 2005 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } 2006 }; 2007 2008 /// ------------------------ NonNull Argument Attribute ------------------------ 2009 static int64_t getKnownNonNullAndDerefBytesForUse( 2010 Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue, 2011 const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { 2012 TrackUse = false; 2013 2014 const Value *UseV = U->get(); 2015 if (!UseV->getType()->isPointerTy()) 2016 return 0; 2017 2018 Type *PtrTy = UseV->getType(); 2019 const Function *F = I->getFunction(); 2020 bool NullPointerIsDefined = 2021 F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true; 2022 const DataLayout &DL = A.getInfoCache().getDL(); 2023 if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 2024 if (ICS.isBundleOperand(U)) 2025 return 0; 2026 2027 if (ICS.isCallee(U)) { 2028 IsNonNull |= !NullPointerIsDefined; 2029 return 0; 2030 } 2031 2032 unsigned ArgNo = ICS.getArgumentNo(U); 2033 IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo); 2034 // As long as we only use known information there is no need to track 2035 // dependences here. 2036 auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP, 2037 /* TrackDependence */ false); 2038 IsNonNull |= DerefAA.isKnownNonNull(); 2039 return DerefAA.getKnownDereferenceableBytes(); 2040 } 2041 2042 // We need to follow common pointer manipulation uses to the accesses they 2043 // feed into. We can try to be smart to avoid looking through things we do not 2044 // like for now, e.g., non-inbounds GEPs. 2045 if (isa<CastInst>(I)) { 2046 TrackUse = true; 2047 return 0; 2048 } 2049 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 2050 if (GEP->hasAllConstantIndices()) { 2051 TrackUse = true; 2052 return 0; 2053 } 2054 2055 int64_t Offset; 2056 if (const Value *Base = getBasePointerOfAccessPointerOperand(I, Offset, DL)) { 2057 if (Base == &AssociatedValue && 2058 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 2059 int64_t DerefBytes = 2060 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset; 2061 2062 IsNonNull |= !NullPointerIsDefined; 2063 return std::max(int64_t(0), DerefBytes); 2064 } 2065 } 2066 2067 /// Corner case when an offset is 0. 2068 if (const Value *Base = getBasePointerOfAccessPointerOperand( 2069 I, Offset, DL, /*AllowNonInbounds*/ true)) { 2070 if (Offset == 0 && Base == &AssociatedValue && 2071 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 2072 int64_t DerefBytes = 2073 (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()); 2074 IsNonNull |= !NullPointerIsDefined; 2075 return std::max(int64_t(0), DerefBytes); 2076 } 2077 } 2078 2079 return 0; 2080 } 2081 2082 struct AANonNullImpl : AANonNull { 2083 AANonNullImpl(const IRPosition &IRP) 2084 : AANonNull(IRP), 2085 NullIsDefined(NullPointerIsDefined( 2086 getAnchorScope(), 2087 getAssociatedValue().getType()->getPointerAddressSpace())) {} 2088 2089 /// See AbstractAttribute::initialize(...). 2090 void initialize(Attributor &A) override { 2091 if (!NullIsDefined && 2092 hasAttr({Attribute::NonNull, Attribute::Dereferenceable}, 2093 /* IgnoreSubsumingPositions */ false, &A)) 2094 indicateOptimisticFixpoint(); 2095 else if (isa<ConstantPointerNull>(getAssociatedValue())) 2096 indicatePessimisticFixpoint(); 2097 else 2098 AANonNull::initialize(A); 2099 } 2100 2101 /// See AAFromMustBeExecutedContext 2102 bool followUse(Attributor &A, const Use *U, const Instruction *I, 2103 AANonNull::StateType &State) { 2104 bool IsNonNull = false; 2105 bool TrackUse = false; 2106 getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I, 2107 IsNonNull, TrackUse); 2108 State.setKnown(IsNonNull); 2109 return TrackUse; 2110 } 2111 2112 /// See AbstractAttribute::getAsStr(). 2113 const std::string getAsStr() const override { 2114 return getAssumed() ? "nonnull" : "may-null"; 2115 } 2116 2117 /// Flag to determine if the underlying value can be null and still allow 2118 /// valid accesses. 2119 const bool NullIsDefined; 2120 }; 2121 2122 /// NonNull attribute for a floating value. 2123 struct AANonNullFloating 2124 : AAFromMustBeExecutedContext<AANonNull, AANonNullImpl> { 2125 using Base = AAFromMustBeExecutedContext<AANonNull, AANonNullImpl>; 2126 AANonNullFloating(const IRPosition &IRP) : Base(IRP) {} 2127 2128 /// See AbstractAttribute::updateImpl(...). 2129 ChangeStatus updateImpl(Attributor &A) override { 2130 ChangeStatus Change = Base::updateImpl(A); 2131 if (isKnownNonNull()) 2132 return Change; 2133 2134 if (!NullIsDefined) { 2135 const auto &DerefAA = 2136 A.getAAFor<AADereferenceable>(*this, getIRPosition()); 2137 if (DerefAA.getAssumedDereferenceableBytes()) 2138 return Change; 2139 } 2140 2141 const DataLayout &DL = A.getDataLayout(); 2142 2143 DominatorTree *DT = nullptr; 2144 AssumptionCache *AC = nullptr; 2145 InformationCache &InfoCache = A.getInfoCache(); 2146 if (const Function *Fn = getAnchorScope()) { 2147 DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn); 2148 AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn); 2149 } 2150 2151 auto VisitValueCB = [&](Value &V, AANonNull::StateType &T, 2152 bool Stripped) -> bool { 2153 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V)); 2154 if (!Stripped && this == &AA) { 2155 if (!isKnownNonZero(&V, DL, 0, AC, getCtxI(), DT)) 2156 T.indicatePessimisticFixpoint(); 2157 } else { 2158 // Use abstract attribute information. 2159 const AANonNull::StateType &NS = 2160 static_cast<const AANonNull::StateType &>(AA.getState()); 2161 T ^= NS; 2162 } 2163 return T.isValidState(); 2164 }; 2165 2166 StateType T; 2167 if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this, 2168 T, VisitValueCB)) 2169 return indicatePessimisticFixpoint(); 2170 2171 return clampStateAndIndicateChange(getState(), T); 2172 } 2173 2174 /// See AbstractAttribute::trackStatistics() 2175 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 2176 }; 2177 2178 /// NonNull attribute for function return value. 2179 struct AANonNullReturned final 2180 : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> { 2181 AANonNullReturned(const IRPosition &IRP) 2182 : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {} 2183 2184 /// See AbstractAttribute::trackStatistics() 2185 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } 2186 }; 2187 2188 /// NonNull attribute for function argument. 2189 struct AANonNullArgument final 2190 : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull, 2191 AANonNullImpl> { 2192 AANonNullArgument(const IRPosition &IRP) 2193 : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AANonNull, 2194 AANonNullImpl>( 2195 IRP) {} 2196 2197 /// See AbstractAttribute::trackStatistics() 2198 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } 2199 }; 2200 2201 struct AANonNullCallSiteArgument final : AANonNullFloating { 2202 AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {} 2203 2204 /// See AbstractAttribute::trackStatistics() 2205 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } 2206 }; 2207 2208 /// NonNull attribute for a call site return position. 2209 struct AANonNullCallSiteReturned final 2210 : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull, 2211 AANonNullImpl> { 2212 AANonNullCallSiteReturned(const IRPosition &IRP) 2213 : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AANonNull, 2214 AANonNullImpl>( 2215 IRP) {} 2216 2217 /// See AbstractAttribute::trackStatistics() 2218 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } 2219 }; 2220 2221 /// ------------------------ No-Recurse Attributes ---------------------------- 2222 2223 struct AANoRecurseImpl : public AANoRecurse { 2224 AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {} 2225 2226 /// See AbstractAttribute::getAsStr() 2227 const std::string getAsStr() const override { 2228 return getAssumed() ? "norecurse" : "may-recurse"; 2229 } 2230 }; 2231 2232 struct AANoRecurseFunction final : AANoRecurseImpl { 2233 AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {} 2234 2235 /// See AbstractAttribute::initialize(...). 2236 void initialize(Attributor &A) override { 2237 AANoRecurseImpl::initialize(A); 2238 if (const Function *F = getAnchorScope()) 2239 if (A.getInfoCache().getSccSize(*F) != 1) 2240 indicatePessimisticFixpoint(); 2241 } 2242 2243 /// See AbstractAttribute::updateImpl(...). 2244 ChangeStatus updateImpl(Attributor &A) override { 2245 2246 // If all live call sites are known to be no-recurse, we are as well. 2247 auto CallSitePred = [&](AbstractCallSite ACS) { 2248 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>( 2249 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2250 /* TrackDependence */ false, DepClassTy::OPTIONAL); 2251 return NoRecurseAA.isKnownNoRecurse(); 2252 }; 2253 bool AllCallSitesKnown; 2254 if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) { 2255 // If we know all call sites and all are known no-recurse, we are done. 2256 // If all known call sites, which might not be all that exist, are known 2257 // to be no-recurse, we are not done but we can continue to assume 2258 // no-recurse. If one of the call sites we have not visited will become 2259 // live, another update is triggered. 2260 if (AllCallSitesKnown) 2261 indicateOptimisticFixpoint(); 2262 return ChangeStatus::UNCHANGED; 2263 } 2264 2265 // If the above check does not hold anymore we look at the calls. 2266 auto CheckForNoRecurse = [&](Instruction &I) { 2267 ImmutableCallSite ICS(&I); 2268 if (ICS.hasFnAttr(Attribute::NoRecurse)) 2269 return true; 2270 2271 const auto &NoRecurseAA = 2272 A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(ICS)); 2273 if (!NoRecurseAA.isAssumedNoRecurse()) 2274 return false; 2275 2276 // Recursion to the same function 2277 if (ICS.getCalledFunction() == getAnchorScope()) 2278 return false; 2279 2280 return true; 2281 }; 2282 2283 if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this)) 2284 return indicatePessimisticFixpoint(); 2285 return ChangeStatus::UNCHANGED; 2286 } 2287 2288 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } 2289 }; 2290 2291 /// NoRecurse attribute deduction for a call sites. 2292 struct AANoRecurseCallSite final : AANoRecurseImpl { 2293 AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {} 2294 2295 /// See AbstractAttribute::initialize(...). 2296 void initialize(Attributor &A) override { 2297 AANoRecurseImpl::initialize(A); 2298 Function *F = getAssociatedFunction(); 2299 if (!F) 2300 indicatePessimisticFixpoint(); 2301 } 2302 2303 /// See AbstractAttribute::updateImpl(...). 2304 ChangeStatus updateImpl(Attributor &A) override { 2305 // TODO: Once we have call site specific value information we can provide 2306 // call site specific liveness information and then it makes 2307 // sense to specialize attributes for call sites arguments instead of 2308 // redirecting requests to the callee argument. 2309 Function *F = getAssociatedFunction(); 2310 const IRPosition &FnPos = IRPosition::function(*F); 2311 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos); 2312 return clampStateAndIndicateChange( 2313 getState(), 2314 static_cast<const AANoRecurse::StateType &>(FnAA.getState())); 2315 } 2316 2317 /// See AbstractAttribute::trackStatistics() 2318 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } 2319 }; 2320 2321 /// -------------------- Undefined-Behavior Attributes ------------------------ 2322 2323 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior { 2324 AAUndefinedBehaviorImpl(const IRPosition &IRP) : AAUndefinedBehavior(IRP) {} 2325 2326 /// See AbstractAttribute::updateImpl(...). 2327 // through a pointer (i.e. also branches etc.) 2328 ChangeStatus updateImpl(Attributor &A) override { 2329 const size_t UBPrevSize = KnownUBInsts.size(); 2330 const size_t NoUBPrevSize = AssumedNoUBInsts.size(); 2331 2332 auto InspectMemAccessInstForUB = [&](Instruction &I) { 2333 // Skip instructions that are already saved. 2334 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 2335 return true; 2336 2337 // If we reach here, we know we have an instruction 2338 // that accesses memory through a pointer operand, 2339 // for which getPointerOperand() should give it to us. 2340 const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true); 2341 assert(PtrOp && 2342 "Expected pointer operand of memory accessing instruction"); 2343 2344 // A memory access through a pointer is considered UB 2345 // only if the pointer has constant null value. 2346 // TODO: Expand it to not only check constant values. 2347 if (!isa<ConstantPointerNull>(PtrOp)) { 2348 AssumedNoUBInsts.insert(&I); 2349 return true; 2350 } 2351 const Type *PtrTy = PtrOp->getType(); 2352 2353 // Because we only consider instructions inside functions, 2354 // assume that a parent function exists. 2355 const Function *F = I.getFunction(); 2356 2357 // A memory access using constant null pointer is only considered UB 2358 // if null pointer is _not_ defined for the target platform. 2359 if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace())) 2360 AssumedNoUBInsts.insert(&I); 2361 else 2362 KnownUBInsts.insert(&I); 2363 return true; 2364 }; 2365 2366 auto InspectBrInstForUB = [&](Instruction &I) { 2367 // A conditional branch instruction is considered UB if it has `undef` 2368 // condition. 2369 2370 // Skip instructions that are already saved. 2371 if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) 2372 return true; 2373 2374 // We know we have a branch instruction. 2375 auto BrInst = cast<BranchInst>(&I); 2376 2377 // Unconditional branches are never considered UB. 2378 if (BrInst->isUnconditional()) 2379 return true; 2380 2381 // Either we stopped and the appropriate action was taken, 2382 // or we got back a simplified value to continue. 2383 Optional<Value *> SimplifiedCond = 2384 stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst); 2385 if (!SimplifiedCond.hasValue()) 2386 return true; 2387 AssumedNoUBInsts.insert(&I); 2388 return true; 2389 }; 2390 2391 A.checkForAllInstructions(InspectMemAccessInstForUB, *this, 2392 {Instruction::Load, Instruction::Store, 2393 Instruction::AtomicCmpXchg, 2394 Instruction::AtomicRMW}, 2395 /* CheckBBLivenessOnly */ true); 2396 A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br}, 2397 /* CheckBBLivenessOnly */ true); 2398 if (NoUBPrevSize != AssumedNoUBInsts.size() || 2399 UBPrevSize != KnownUBInsts.size()) 2400 return ChangeStatus::CHANGED; 2401 return ChangeStatus::UNCHANGED; 2402 } 2403 2404 bool isKnownToCauseUB(Instruction *I) const override { 2405 return KnownUBInsts.count(I); 2406 } 2407 2408 bool isAssumedToCauseUB(Instruction *I) const override { 2409 // In simple words, if an instruction is not in the assumed to _not_ 2410 // cause UB, then it is assumed UB (that includes those 2411 // in the KnownUBInsts set). The rest is boilerplate 2412 // is to ensure that it is one of the instructions we test 2413 // for UB. 2414 2415 switch (I->getOpcode()) { 2416 case Instruction::Load: 2417 case Instruction::Store: 2418 case Instruction::AtomicCmpXchg: 2419 case Instruction::AtomicRMW: 2420 return !AssumedNoUBInsts.count(I); 2421 case Instruction::Br: { 2422 auto BrInst = cast<BranchInst>(I); 2423 if (BrInst->isUnconditional()) 2424 return false; 2425 return !AssumedNoUBInsts.count(I); 2426 } break; 2427 default: 2428 return false; 2429 } 2430 return false; 2431 } 2432 2433 ChangeStatus manifest(Attributor &A) override { 2434 if (KnownUBInsts.empty()) 2435 return ChangeStatus::UNCHANGED; 2436 for (Instruction *I : KnownUBInsts) 2437 A.changeToUnreachableAfterManifest(I); 2438 return ChangeStatus::CHANGED; 2439 } 2440 2441 /// See AbstractAttribute::getAsStr() 2442 const std::string getAsStr() const override { 2443 return getAssumed() ? "undefined-behavior" : "no-ub"; 2444 } 2445 2446 /// Note: The correctness of this analysis depends on the fact that the 2447 /// following 2 sets will stop changing after some point. 2448 /// "Change" here means that their size changes. 2449 /// The size of each set is monotonically increasing 2450 /// (we only add items to them) and it is upper bounded by the number of 2451 /// instructions in the processed function (we can never save more 2452 /// elements in either set than this number). Hence, at some point, 2453 /// they will stop increasing. 2454 /// Consequently, at some point, both sets will have stopped 2455 /// changing, effectively making the analysis reach a fixpoint. 2456 2457 /// Note: These 2 sets are disjoint and an instruction can be considered 2458 /// one of 3 things: 2459 /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in 2460 /// the KnownUBInsts set. 2461 /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior 2462 /// has a reason to assume it). 2463 /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior 2464 /// could not find a reason to assume or prove that it can cause UB, 2465 /// hence it assumes it doesn't. We have a set for these instructions 2466 /// so that we don't reprocess them in every update. 2467 /// Note however that instructions in this set may cause UB. 2468 2469 protected: 2470 /// A set of all live instructions _known_ to cause UB. 2471 SmallPtrSet<Instruction *, 8> KnownUBInsts; 2472 2473 private: 2474 /// A set of all the (live) instructions that are assumed to _not_ cause UB. 2475 SmallPtrSet<Instruction *, 8> AssumedNoUBInsts; 2476 2477 // Should be called on updates in which if we're processing an instruction 2478 // \p I that depends on a value \p V, one of the following has to happen: 2479 // - If the value is assumed, then stop. 2480 // - If the value is known but undef, then consider it UB. 2481 // - Otherwise, do specific processing with the simplified value. 2482 // We return None in the first 2 cases to signify that an appropriate 2483 // action was taken and the caller should stop. 2484 // Otherwise, we return the simplified value that the caller should 2485 // use for specific processing. 2486 Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V, 2487 Instruction *I) { 2488 const auto &ValueSimplifyAA = 2489 A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V)); 2490 Optional<Value *> SimplifiedV = 2491 ValueSimplifyAA.getAssumedSimplifiedValue(A); 2492 if (!ValueSimplifyAA.isKnown()) { 2493 // Don't depend on assumed values. 2494 return llvm::None; 2495 } 2496 if (!SimplifiedV.hasValue()) { 2497 // If it is known (which we tested above) but it doesn't have a value, 2498 // then we can assume `undef` and hence the instruction is UB. 2499 KnownUBInsts.insert(I); 2500 return llvm::None; 2501 } 2502 Value *Val = SimplifiedV.getValue(); 2503 if (isa<UndefValue>(Val)) { 2504 KnownUBInsts.insert(I); 2505 return llvm::None; 2506 } 2507 return Val; 2508 } 2509 }; 2510 2511 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl { 2512 AAUndefinedBehaviorFunction(const IRPosition &IRP) 2513 : AAUndefinedBehaviorImpl(IRP) {} 2514 2515 /// See AbstractAttribute::trackStatistics() 2516 void trackStatistics() const override { 2517 STATS_DECL(UndefinedBehaviorInstruction, Instruction, 2518 "Number of instructions known to have UB"); 2519 BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) += 2520 KnownUBInsts.size(); 2521 } 2522 }; 2523 2524 /// ------------------------ Will-Return Attributes ---------------------------- 2525 2526 // Helper function that checks whether a function has any cycle which we don't 2527 // know if it is bounded or not. 2528 // Loops with maximum trip count are considered bounded, any other cycle not. 2529 static bool mayContainUnboundedCycle(Function &F, Attributor &A) { 2530 ScalarEvolution *SE = 2531 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F); 2532 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F); 2533 // If either SCEV or LoopInfo is not available for the function then we assume 2534 // any cycle to be unbounded cycle. 2535 // We use scc_iterator which uses Tarjan algorithm to find all the maximal 2536 // SCCs.To detect if there's a cycle, we only need to find the maximal ones. 2537 if (!SE || !LI) { 2538 for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI) 2539 if (SCCI.hasCycle()) 2540 return true; 2541 return false; 2542 } 2543 2544 // If there's irreducible control, the function may contain non-loop cycles. 2545 if (mayContainIrreducibleControl(F, LI)) 2546 return true; 2547 2548 // Any loop that does not have a max trip count is considered unbounded cycle. 2549 for (auto *L : LI->getLoopsInPreorder()) { 2550 if (!SE->getSmallConstantMaxTripCount(L)) 2551 return true; 2552 } 2553 return false; 2554 } 2555 2556 struct AAWillReturnImpl : public AAWillReturn { 2557 AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {} 2558 2559 /// See AbstractAttribute::initialize(...). 2560 void initialize(Attributor &A) override { 2561 AAWillReturn::initialize(A); 2562 2563 Function *F = getAnchorScope(); 2564 if (!F || !A.isFunctionIPOAmendable(*F) || mayContainUnboundedCycle(*F, A)) 2565 indicatePessimisticFixpoint(); 2566 } 2567 2568 /// See AbstractAttribute::updateImpl(...). 2569 ChangeStatus updateImpl(Attributor &A) override { 2570 auto CheckForWillReturn = [&](Instruction &I) { 2571 IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I)); 2572 const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos); 2573 if (WillReturnAA.isKnownWillReturn()) 2574 return true; 2575 if (!WillReturnAA.isAssumedWillReturn()) 2576 return false; 2577 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos); 2578 return NoRecurseAA.isAssumedNoRecurse(); 2579 }; 2580 2581 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this)) 2582 return indicatePessimisticFixpoint(); 2583 2584 return ChangeStatus::UNCHANGED; 2585 } 2586 2587 /// See AbstractAttribute::getAsStr() 2588 const std::string getAsStr() const override { 2589 return getAssumed() ? "willreturn" : "may-noreturn"; 2590 } 2591 }; 2592 2593 struct AAWillReturnFunction final : AAWillReturnImpl { 2594 AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {} 2595 2596 /// See AbstractAttribute::trackStatistics() 2597 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } 2598 }; 2599 2600 /// WillReturn attribute deduction for a call sites. 2601 struct AAWillReturnCallSite final : AAWillReturnImpl { 2602 AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {} 2603 2604 /// See AbstractAttribute::initialize(...). 2605 void initialize(Attributor &A) override { 2606 AAWillReturnImpl::initialize(A); 2607 Function *F = getAssociatedFunction(); 2608 if (!F) 2609 indicatePessimisticFixpoint(); 2610 } 2611 2612 /// See AbstractAttribute::updateImpl(...). 2613 ChangeStatus updateImpl(Attributor &A) override { 2614 // TODO: Once we have call site specific value information we can provide 2615 // call site specific liveness information and then it makes 2616 // sense to specialize attributes for call sites arguments instead of 2617 // redirecting requests to the callee argument. 2618 Function *F = getAssociatedFunction(); 2619 const IRPosition &FnPos = IRPosition::function(*F); 2620 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos); 2621 return clampStateAndIndicateChange( 2622 getState(), 2623 static_cast<const AAWillReturn::StateType &>(FnAA.getState())); 2624 } 2625 2626 /// See AbstractAttribute::trackStatistics() 2627 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } 2628 }; 2629 2630 /// -------------------AAReachability Attribute-------------------------- 2631 2632 struct AAReachabilityImpl : AAReachability { 2633 AAReachabilityImpl(const IRPosition &IRP) : AAReachability(IRP) {} 2634 2635 const std::string getAsStr() const override { 2636 // TODO: Return the number of reachable queries. 2637 return "reachable"; 2638 } 2639 2640 /// See AbstractAttribute::initialize(...). 2641 void initialize(Attributor &A) override { indicatePessimisticFixpoint(); } 2642 2643 /// See AbstractAttribute::updateImpl(...). 2644 ChangeStatus updateImpl(Attributor &A) override { 2645 return indicatePessimisticFixpoint(); 2646 } 2647 }; 2648 2649 struct AAReachabilityFunction final : public AAReachabilityImpl { 2650 AAReachabilityFunction(const IRPosition &IRP) : AAReachabilityImpl(IRP) {} 2651 2652 /// See AbstractAttribute::trackStatistics() 2653 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); } 2654 }; 2655 2656 /// ------------------------ NoAlias Argument Attribute ------------------------ 2657 2658 struct AANoAliasImpl : AANoAlias { 2659 AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) { 2660 assert(getAssociatedType()->isPointerTy() && 2661 "Noalias is a pointer attribute"); 2662 } 2663 2664 const std::string getAsStr() const override { 2665 return getAssumed() ? "noalias" : "may-alias"; 2666 } 2667 }; 2668 2669 /// NoAlias attribute for a floating value. 2670 struct AANoAliasFloating final : AANoAliasImpl { 2671 AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {} 2672 2673 /// See AbstractAttribute::initialize(...). 2674 void initialize(Attributor &A) override { 2675 AANoAliasImpl::initialize(A); 2676 Value *Val = &getAssociatedValue(); 2677 do { 2678 CastInst *CI = dyn_cast<CastInst>(Val); 2679 if (!CI) 2680 break; 2681 Value *Base = CI->getOperand(0); 2682 if (Base->getNumUses() != 1) 2683 break; 2684 Val = Base; 2685 } while (true); 2686 2687 if (!Val->getType()->isPointerTy()) { 2688 indicatePessimisticFixpoint(); 2689 return; 2690 } 2691 2692 if (isa<AllocaInst>(Val)) 2693 indicateOptimisticFixpoint(); 2694 else if (isa<ConstantPointerNull>(Val) && 2695 !NullPointerIsDefined(getAnchorScope(), 2696 Val->getType()->getPointerAddressSpace())) 2697 indicateOptimisticFixpoint(); 2698 else if (Val != &getAssociatedValue()) { 2699 const auto &ValNoAliasAA = 2700 A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val)); 2701 if (ValNoAliasAA.isKnownNoAlias()) 2702 indicateOptimisticFixpoint(); 2703 } 2704 } 2705 2706 /// See AbstractAttribute::updateImpl(...). 2707 ChangeStatus updateImpl(Attributor &A) override { 2708 // TODO: Implement this. 2709 return indicatePessimisticFixpoint(); 2710 } 2711 2712 /// See AbstractAttribute::trackStatistics() 2713 void trackStatistics() const override { 2714 STATS_DECLTRACK_FLOATING_ATTR(noalias) 2715 } 2716 }; 2717 2718 /// NoAlias attribute for an argument. 2719 struct AANoAliasArgument final 2720 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { 2721 using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>; 2722 AANoAliasArgument(const IRPosition &IRP) : Base(IRP) {} 2723 2724 /// See AbstractAttribute::initialize(...). 2725 void initialize(Attributor &A) override { 2726 Base::initialize(A); 2727 // See callsite argument attribute and callee argument attribute. 2728 if (hasAttr({Attribute::ByVal})) 2729 indicateOptimisticFixpoint(); 2730 } 2731 2732 /// See AbstractAttribute::update(...). 2733 ChangeStatus updateImpl(Attributor &A) override { 2734 // We have to make sure no-alias on the argument does not break 2735 // synchronization when this is a callback argument, see also [1] below. 2736 // If synchronization cannot be affected, we delegate to the base updateImpl 2737 // function, otherwise we give up for now. 2738 2739 // If the function is no-sync, no-alias cannot break synchronization. 2740 const auto &NoSyncAA = A.getAAFor<AANoSync>( 2741 *this, IRPosition::function_scope(getIRPosition())); 2742 if (NoSyncAA.isAssumedNoSync()) 2743 return Base::updateImpl(A); 2744 2745 // If the argument is read-only, no-alias cannot break synchronization. 2746 const auto &MemBehaviorAA = 2747 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 2748 if (MemBehaviorAA.isAssumedReadOnly()) 2749 return Base::updateImpl(A); 2750 2751 // If the argument is never passed through callbacks, no-alias cannot break 2752 // synchronization. 2753 bool AllCallSitesKnown; 2754 if (A.checkForAllCallSites( 2755 [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this, 2756 true, AllCallSitesKnown)) 2757 return Base::updateImpl(A); 2758 2759 // TODO: add no-alias but make sure it doesn't break synchronization by 2760 // introducing fake uses. See: 2761 // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel, 2762 // International Workshop on OpenMP 2018, 2763 // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf 2764 2765 return indicatePessimisticFixpoint(); 2766 } 2767 2768 /// See AbstractAttribute::trackStatistics() 2769 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } 2770 }; 2771 2772 struct AANoAliasCallSiteArgument final : AANoAliasImpl { 2773 AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {} 2774 2775 /// See AbstractAttribute::initialize(...). 2776 void initialize(Attributor &A) override { 2777 // See callsite argument attribute and callee argument attribute. 2778 ImmutableCallSite ICS(&getAnchorValue()); 2779 if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias)) 2780 indicateOptimisticFixpoint(); 2781 Value &Val = getAssociatedValue(); 2782 if (isa<ConstantPointerNull>(Val) && 2783 !NullPointerIsDefined(getAnchorScope(), 2784 Val.getType()->getPointerAddressSpace())) 2785 indicateOptimisticFixpoint(); 2786 } 2787 2788 /// Determine if the underlying value may alias with the call site argument 2789 /// \p OtherArgNo of \p ICS (= the underlying call site). 2790 bool mayAliasWithArgument(Attributor &A, AAResults *&AAR, 2791 const AAMemoryBehavior &MemBehaviorAA, 2792 ImmutableCallSite ICS, unsigned OtherArgNo) { 2793 // We do not need to worry about aliasing with the underlying IRP. 2794 if (this->getArgNo() == (int)OtherArgNo) 2795 return false; 2796 2797 // If it is not a pointer or pointer vector we do not alias. 2798 const Value *ArgOp = ICS.getArgOperand(OtherArgNo); 2799 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 2800 return false; 2801 2802 auto &ICSArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 2803 *this, IRPosition::callsite_argument(ICS, OtherArgNo), 2804 /* TrackDependence */ false); 2805 2806 // If the argument is readnone, there is no read-write aliasing. 2807 if (ICSArgMemBehaviorAA.isAssumedReadNone()) { 2808 A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2809 return false; 2810 } 2811 2812 // If the argument is readonly and the underlying value is readonly, there 2813 // is no read-write aliasing. 2814 bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly(); 2815 if (ICSArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) { 2816 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2817 A.recordDependence(ICSArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); 2818 return false; 2819 } 2820 2821 // We have to utilize actual alias analysis queries so we need the object. 2822 if (!AAR) 2823 AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope()); 2824 2825 // Try to rule it out at the call site. 2826 bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp); 2827 LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between " 2828 "callsite arguments: " 2829 << getAssociatedValue() << " " << *ArgOp << " => " 2830 << (IsAliasing ? "" : "no-") << "alias \n"); 2831 2832 return IsAliasing; 2833 } 2834 2835 bool 2836 isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR, 2837 const AAMemoryBehavior &MemBehaviorAA, 2838 const AANoAlias &NoAliasAA) { 2839 // We can deduce "noalias" if the following conditions hold. 2840 // (i) Associated value is assumed to be noalias in the definition. 2841 // (ii) Associated value is assumed to be no-capture in all the uses 2842 // possibly executed before this callsite. 2843 // (iii) There is no other pointer argument which could alias with the 2844 // value. 2845 2846 bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias(); 2847 if (!AssociatedValueIsNoAliasAtDef) { 2848 LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue() 2849 << " is not no-alias at the definition\n"); 2850 return false; 2851 } 2852 2853 A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL); 2854 2855 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2856 auto &NoCaptureAA = 2857 A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false); 2858 // Check whether the value is captured in the scope using AANoCapture. 2859 // Look at CFG and check only uses possibly executed before this 2860 // callsite. 2861 auto UsePred = [&](const Use &U, bool &Follow) -> bool { 2862 Instruction *UserI = cast<Instruction>(U.getUser()); 2863 2864 // If user if curr instr and only use. 2865 if ((UserI == getCtxI()) && (UserI->getNumUses() == 1)) 2866 return true; 2867 2868 const Function *ScopeFn = VIRP.getAnchorScope(); 2869 if (ScopeFn) { 2870 const auto &ReachabilityAA = 2871 A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn)); 2872 2873 if (!ReachabilityAA.isAssumedReachable(UserI, getCtxI())) 2874 return true; 2875 2876 if (auto *CB = dyn_cast<CallBase>(UserI)) { 2877 if (CB->isArgOperand(&U)) { 2878 2879 unsigned ArgNo = CB->getArgOperandNo(&U); 2880 2881 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 2882 *this, IRPosition::callsite_argument(*CB, ArgNo)); 2883 2884 if (NoCaptureAA.isAssumedNoCapture()) 2885 return true; 2886 } 2887 } 2888 } 2889 2890 // For cases which can potentially have more users 2891 if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) || 2892 isa<SelectInst>(U)) { 2893 Follow = true; 2894 return true; 2895 } 2896 2897 LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n"); 2898 return false; 2899 }; 2900 2901 if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 2902 if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) { 2903 LLVM_DEBUG( 2904 dbgs() << "[AANoAliasCSArg] " << getAssociatedValue() 2905 << " cannot be noalias as it is potentially captured\n"); 2906 return false; 2907 } 2908 } 2909 A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL); 2910 2911 // Check there is no other pointer argument which could alias with the 2912 // value passed at this call site. 2913 // TODO: AbstractCallSite 2914 ImmutableCallSite ICS(&getAnchorValue()); 2915 for (unsigned OtherArgNo = 0; OtherArgNo < ICS.getNumArgOperands(); 2916 OtherArgNo++) 2917 if (mayAliasWithArgument(A, AAR, MemBehaviorAA, ICS, OtherArgNo)) 2918 return false; 2919 2920 return true; 2921 } 2922 2923 /// See AbstractAttribute::updateImpl(...). 2924 ChangeStatus updateImpl(Attributor &A) override { 2925 // If the argument is readnone we are done as there are no accesses via the 2926 // argument. 2927 auto &MemBehaviorAA = 2928 A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), 2929 /* TrackDependence */ false); 2930 if (MemBehaviorAA.isAssumedReadNone()) { 2931 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 2932 return ChangeStatus::UNCHANGED; 2933 } 2934 2935 const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); 2936 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP, 2937 /* TrackDependence */ false); 2938 2939 AAResults *AAR = nullptr; 2940 if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA, 2941 NoAliasAA)) { 2942 LLVM_DEBUG( 2943 dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n"); 2944 return ChangeStatus::UNCHANGED; 2945 } 2946 2947 return indicatePessimisticFixpoint(); 2948 } 2949 2950 /// See AbstractAttribute::trackStatistics() 2951 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } 2952 }; 2953 2954 /// NoAlias attribute for function return value. 2955 struct AANoAliasReturned final : AANoAliasImpl { 2956 AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {} 2957 2958 /// See AbstractAttribute::updateImpl(...). 2959 virtual ChangeStatus updateImpl(Attributor &A) override { 2960 2961 auto CheckReturnValue = [&](Value &RV) -> bool { 2962 if (Constant *C = dyn_cast<Constant>(&RV)) 2963 if (C->isNullValue() || isa<UndefValue>(C)) 2964 return true; 2965 2966 /// For now, we can only deduce noalias if we have call sites. 2967 /// FIXME: add more support. 2968 ImmutableCallSite ICS(&RV); 2969 if (!ICS) 2970 return false; 2971 2972 const IRPosition &RVPos = IRPosition::value(RV); 2973 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos); 2974 if (!NoAliasAA.isAssumedNoAlias()) 2975 return false; 2976 2977 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos); 2978 return NoCaptureAA.isAssumedNoCaptureMaybeReturned(); 2979 }; 2980 2981 if (!A.checkForAllReturnedValues(CheckReturnValue, *this)) 2982 return indicatePessimisticFixpoint(); 2983 2984 return ChangeStatus::UNCHANGED; 2985 } 2986 2987 /// See AbstractAttribute::trackStatistics() 2988 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } 2989 }; 2990 2991 /// NoAlias attribute deduction for a call site return value. 2992 struct AANoAliasCallSiteReturned final : AANoAliasImpl { 2993 AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {} 2994 2995 /// See AbstractAttribute::initialize(...). 2996 void initialize(Attributor &A) override { 2997 AANoAliasImpl::initialize(A); 2998 Function *F = getAssociatedFunction(); 2999 if (!F) 3000 indicatePessimisticFixpoint(); 3001 } 3002 3003 /// See AbstractAttribute::updateImpl(...). 3004 ChangeStatus updateImpl(Attributor &A) override { 3005 // TODO: Once we have call site specific value information we can provide 3006 // call site specific liveness information and then it makes 3007 // sense to specialize attributes for call sites arguments instead of 3008 // redirecting requests to the callee argument. 3009 Function *F = getAssociatedFunction(); 3010 const IRPosition &FnPos = IRPosition::returned(*F); 3011 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos); 3012 return clampStateAndIndicateChange( 3013 getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState())); 3014 } 3015 3016 /// See AbstractAttribute::trackStatistics() 3017 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } 3018 }; 3019 3020 /// -------------------AAIsDead Function Attribute----------------------- 3021 3022 struct AAIsDeadValueImpl : public AAIsDead { 3023 AAIsDeadValueImpl(const IRPosition &IRP) : AAIsDead(IRP) {} 3024 3025 /// See AAIsDead::isAssumedDead(). 3026 bool isAssumedDead() const override { return getAssumed(); } 3027 3028 /// See AAIsDead::isKnownDead(). 3029 bool isKnownDead() const override { return getKnown(); } 3030 3031 /// See AAIsDead::isAssumedDead(BasicBlock *). 3032 bool isAssumedDead(const BasicBlock *BB) const override { return false; } 3033 3034 /// See AAIsDead::isKnownDead(BasicBlock *). 3035 bool isKnownDead(const BasicBlock *BB) const override { return false; } 3036 3037 /// See AAIsDead::isAssumedDead(Instruction *I). 3038 bool isAssumedDead(const Instruction *I) const override { 3039 return I == getCtxI() && isAssumedDead(); 3040 } 3041 3042 /// See AAIsDead::isKnownDead(Instruction *I). 3043 bool isKnownDead(const Instruction *I) const override { 3044 return isAssumedDead(I) && getKnown(); 3045 } 3046 3047 /// See AbstractAttribute::getAsStr(). 3048 const std::string getAsStr() const override { 3049 return isAssumedDead() ? "assumed-dead" : "assumed-live"; 3050 } 3051 3052 /// Check if all uses are assumed dead. 3053 bool areAllUsesAssumedDead(Attributor &A, Value &V) { 3054 auto UsePred = [&](const Use &U, bool &Follow) { return false; }; 3055 // Explicitly set the dependence class to required because we want a long 3056 // chain of N dependent instructions to be considered live as soon as one is 3057 // without going through N update cycles. This is not required for 3058 // correctness. 3059 return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED); 3060 } 3061 3062 /// Determine if \p I is assumed to be side-effect free. 3063 bool isAssumedSideEffectFree(Attributor &A, Instruction *I) { 3064 if (!I || wouldInstructionBeTriviallyDead(I)) 3065 return true; 3066 3067 auto *CB = dyn_cast<CallBase>(I); 3068 if (!CB || isa<IntrinsicInst>(CB)) 3069 return false; 3070 3071 const IRPosition &CallIRP = IRPosition::callsite_function(*CB); 3072 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(*this, CallIRP); 3073 if (!NoUnwindAA.isAssumedNoUnwind()) 3074 return false; 3075 3076 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, CallIRP); 3077 if (!MemBehaviorAA.isAssumedReadOnly()) 3078 return false; 3079 3080 return true; 3081 } 3082 }; 3083 3084 struct AAIsDeadFloating : public AAIsDeadValueImpl { 3085 AAIsDeadFloating(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} 3086 3087 /// See AbstractAttribute::initialize(...). 3088 void initialize(Attributor &A) override { 3089 if (isa<UndefValue>(getAssociatedValue())) { 3090 indicatePessimisticFixpoint(); 3091 return; 3092 } 3093 3094 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 3095 if (!isAssumedSideEffectFree(A, I)) 3096 indicatePessimisticFixpoint(); 3097 } 3098 3099 /// See AbstractAttribute::updateImpl(...). 3100 ChangeStatus updateImpl(Attributor &A) override { 3101 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 3102 if (!isAssumedSideEffectFree(A, I)) 3103 return indicatePessimisticFixpoint(); 3104 3105 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 3106 return indicatePessimisticFixpoint(); 3107 return ChangeStatus::UNCHANGED; 3108 } 3109 3110 /// See AbstractAttribute::manifest(...). 3111 ChangeStatus manifest(Attributor &A) override { 3112 Value &V = getAssociatedValue(); 3113 if (auto *I = dyn_cast<Instruction>(&V)) { 3114 // If we get here we basically know the users are all dead. We check if 3115 // isAssumedSideEffectFree returns true here again because it might not be 3116 // the case and only the users are dead but the instruction (=call) is 3117 // still needed. 3118 if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) { 3119 A.deleteAfterManifest(*I); 3120 return ChangeStatus::CHANGED; 3121 } 3122 } 3123 if (V.use_empty()) 3124 return ChangeStatus::UNCHANGED; 3125 3126 bool UsedAssumedInformation = false; 3127 Optional<Constant *> C = 3128 getAssumedConstant(A, V, *this, UsedAssumedInformation); 3129 if (C.hasValue() && C.getValue()) 3130 return ChangeStatus::UNCHANGED; 3131 3132 UndefValue &UV = *UndefValue::get(V.getType()); 3133 bool AnyChange = A.changeValueAfterManifest(V, UV); 3134 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 3135 } 3136 3137 /// See AbstractAttribute::trackStatistics() 3138 void trackStatistics() const override { 3139 STATS_DECLTRACK_FLOATING_ATTR(IsDead) 3140 } 3141 }; 3142 3143 struct AAIsDeadArgument : public AAIsDeadFloating { 3144 AAIsDeadArgument(const IRPosition &IRP) : AAIsDeadFloating(IRP) {} 3145 3146 /// See AbstractAttribute::initialize(...). 3147 void initialize(Attributor &A) override { 3148 if (!A.isFunctionIPOAmendable(*getAnchorScope())) 3149 indicatePessimisticFixpoint(); 3150 } 3151 3152 /// See AbstractAttribute::manifest(...). 3153 ChangeStatus manifest(Attributor &A) override { 3154 ChangeStatus Changed = AAIsDeadFloating::manifest(A); 3155 Argument &Arg = *getAssociatedArgument(); 3156 if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {})) 3157 if (A.registerFunctionSignatureRewrite( 3158 Arg, /* ReplacementTypes */ {}, 3159 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{}, 3160 Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) 3161 return ChangeStatus::CHANGED; 3162 return Changed; 3163 } 3164 3165 /// See AbstractAttribute::trackStatistics() 3166 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } 3167 }; 3168 3169 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { 3170 AAIsDeadCallSiteArgument(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} 3171 3172 /// See AbstractAttribute::initialize(...). 3173 void initialize(Attributor &A) override { 3174 if (isa<UndefValue>(getAssociatedValue())) 3175 indicatePessimisticFixpoint(); 3176 } 3177 3178 /// See AbstractAttribute::updateImpl(...). 3179 ChangeStatus updateImpl(Attributor &A) override { 3180 // TODO: Once we have call site specific value information we can provide 3181 // call site specific liveness information and then it makes 3182 // sense to specialize attributes for call sites arguments instead of 3183 // redirecting requests to the callee argument. 3184 Argument *Arg = getAssociatedArgument(); 3185 if (!Arg) 3186 return indicatePessimisticFixpoint(); 3187 const IRPosition &ArgPos = IRPosition::argument(*Arg); 3188 auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos); 3189 return clampStateAndIndicateChange( 3190 getState(), static_cast<const AAIsDead::StateType &>(ArgAA.getState())); 3191 } 3192 3193 /// See AbstractAttribute::manifest(...). 3194 ChangeStatus manifest(Attributor &A) override { 3195 CallBase &CB = cast<CallBase>(getAnchorValue()); 3196 Use &U = CB.getArgOperandUse(getArgNo()); 3197 assert(!isa<UndefValue>(U.get()) && 3198 "Expected undef values to be filtered out!"); 3199 UndefValue &UV = *UndefValue::get(U->getType()); 3200 if (A.changeUseAfterManifest(U, UV)) 3201 return ChangeStatus::CHANGED; 3202 return ChangeStatus::UNCHANGED; 3203 } 3204 3205 /// See AbstractAttribute::trackStatistics() 3206 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } 3207 }; 3208 3209 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { 3210 AAIsDeadCallSiteReturned(const IRPosition &IRP) 3211 : AAIsDeadFloating(IRP), IsAssumedSideEffectFree(true) {} 3212 3213 /// See AAIsDead::isAssumedDead(). 3214 bool isAssumedDead() const override { 3215 return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree; 3216 } 3217 3218 /// See AbstractAttribute::initialize(...). 3219 void initialize(Attributor &A) override { 3220 if (isa<UndefValue>(getAssociatedValue())) { 3221 indicatePessimisticFixpoint(); 3222 return; 3223 } 3224 3225 // We track this separately as a secondary state. 3226 IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI()); 3227 } 3228 3229 /// See AbstractAttribute::updateImpl(...). 3230 ChangeStatus updateImpl(Attributor &A) override { 3231 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3232 if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) { 3233 IsAssumedSideEffectFree = false; 3234 Changed = ChangeStatus::CHANGED; 3235 } 3236 3237 if (!areAllUsesAssumedDead(A, getAssociatedValue())) 3238 return indicatePessimisticFixpoint(); 3239 return Changed; 3240 } 3241 3242 /// See AbstractAttribute::trackStatistics() 3243 void trackStatistics() const override { 3244 if (IsAssumedSideEffectFree) 3245 STATS_DECLTRACK_CSRET_ATTR(IsDead) 3246 else 3247 STATS_DECLTRACK_CSRET_ATTR(UnusedResult) 3248 } 3249 3250 /// See AbstractAttribute::getAsStr(). 3251 const std::string getAsStr() const override { 3252 return isAssumedDead() 3253 ? "assumed-dead" 3254 : (getAssumed() ? "assumed-dead-users" : "assumed-live"); 3255 } 3256 3257 private: 3258 bool IsAssumedSideEffectFree; 3259 }; 3260 3261 struct AAIsDeadReturned : public AAIsDeadValueImpl { 3262 AAIsDeadReturned(const IRPosition &IRP) : AAIsDeadValueImpl(IRP) {} 3263 3264 /// See AbstractAttribute::updateImpl(...). 3265 ChangeStatus updateImpl(Attributor &A) override { 3266 3267 A.checkForAllInstructions([](Instruction &) { return true; }, *this, 3268 {Instruction::Ret}); 3269 3270 auto PredForCallSite = [&](AbstractCallSite ACS) { 3271 if (ACS.isCallbackCall() || !ACS.getInstruction()) 3272 return false; 3273 return areAllUsesAssumedDead(A, *ACS.getInstruction()); 3274 }; 3275 3276 bool AllCallSitesKnown; 3277 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 3278 AllCallSitesKnown)) 3279 return indicatePessimisticFixpoint(); 3280 3281 return ChangeStatus::UNCHANGED; 3282 } 3283 3284 /// See AbstractAttribute::manifest(...). 3285 ChangeStatus manifest(Attributor &A) override { 3286 // TODO: Rewrite the signature to return void? 3287 bool AnyChange = false; 3288 UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType()); 3289 auto RetInstPred = [&](Instruction &I) { 3290 ReturnInst &RI = cast<ReturnInst>(I); 3291 if (!isa<UndefValue>(RI.getReturnValue())) 3292 AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV); 3293 return true; 3294 }; 3295 A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret}); 3296 return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 3297 } 3298 3299 /// See AbstractAttribute::trackStatistics() 3300 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } 3301 }; 3302 3303 struct AAIsDeadFunction : public AAIsDead { 3304 AAIsDeadFunction(const IRPosition &IRP) : AAIsDead(IRP) {} 3305 3306 /// See AbstractAttribute::initialize(...). 3307 void initialize(Attributor &A) override { 3308 const Function *F = getAnchorScope(); 3309 if (F && !F->isDeclaration()) { 3310 ToBeExploredFrom.insert(&F->getEntryBlock().front()); 3311 assumeLive(A, F->getEntryBlock()); 3312 } 3313 } 3314 3315 /// See AbstractAttribute::getAsStr(). 3316 const std::string getAsStr() const override { 3317 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" + 3318 std::to_string(getAnchorScope()->size()) + "][#TBEP " + 3319 std::to_string(ToBeExploredFrom.size()) + "][#KDE " + 3320 std::to_string(KnownDeadEnds.size()) + "]"; 3321 } 3322 3323 /// See AbstractAttribute::manifest(...). 3324 ChangeStatus manifest(Attributor &A) override { 3325 assert(getState().isValidState() && 3326 "Attempted to manifest an invalid state!"); 3327 3328 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 3329 Function &F = *getAnchorScope(); 3330 3331 if (AssumedLiveBlocks.empty()) { 3332 A.deleteAfterManifest(F); 3333 return ChangeStatus::CHANGED; 3334 } 3335 3336 // Flag to determine if we can change an invoke to a call assuming the 3337 // callee is nounwind. This is not possible if the personality of the 3338 // function allows to catch asynchronous exceptions. 3339 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); 3340 3341 KnownDeadEnds.set_union(ToBeExploredFrom); 3342 for (const Instruction *DeadEndI : KnownDeadEnds) { 3343 auto *CB = dyn_cast<CallBase>(DeadEndI); 3344 if (!CB) 3345 continue; 3346 const auto &NoReturnAA = 3347 A.getAAFor<AANoReturn>(*this, IRPosition::callsite_function(*CB)); 3348 bool MayReturn = !NoReturnAA.isAssumedNoReturn(); 3349 if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB))) 3350 continue; 3351 3352 if (auto *II = dyn_cast<InvokeInst>(DeadEndI)) 3353 A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II)); 3354 else 3355 A.changeToUnreachableAfterManifest( 3356 const_cast<Instruction *>(DeadEndI->getNextNode())); 3357 HasChanged = ChangeStatus::CHANGED; 3358 } 3359 3360 for (BasicBlock &BB : F) 3361 if (!AssumedLiveBlocks.count(&BB)) 3362 A.deleteAfterManifest(BB); 3363 3364 return HasChanged; 3365 } 3366 3367 /// See AbstractAttribute::updateImpl(...). 3368 ChangeStatus updateImpl(Attributor &A) override; 3369 3370 /// See AbstractAttribute::trackStatistics() 3371 void trackStatistics() const override {} 3372 3373 /// Returns true if the function is assumed dead. 3374 bool isAssumedDead() const override { return false; } 3375 3376 /// See AAIsDead::isKnownDead(). 3377 bool isKnownDead() const override { return false; } 3378 3379 /// See AAIsDead::isAssumedDead(BasicBlock *). 3380 bool isAssumedDead(const BasicBlock *BB) const override { 3381 assert(BB->getParent() == getAnchorScope() && 3382 "BB must be in the same anchor scope function."); 3383 3384 if (!getAssumed()) 3385 return false; 3386 return !AssumedLiveBlocks.count(BB); 3387 } 3388 3389 /// See AAIsDead::isKnownDead(BasicBlock *). 3390 bool isKnownDead(const BasicBlock *BB) const override { 3391 return getKnown() && isAssumedDead(BB); 3392 } 3393 3394 /// See AAIsDead::isAssumed(Instruction *I). 3395 bool isAssumedDead(const Instruction *I) const override { 3396 assert(I->getParent()->getParent() == getAnchorScope() && 3397 "Instruction must be in the same anchor scope function."); 3398 3399 if (!getAssumed()) 3400 return false; 3401 3402 // If it is not in AssumedLiveBlocks then it for sure dead. 3403 // Otherwise, it can still be after noreturn call in a live block. 3404 if (!AssumedLiveBlocks.count(I->getParent())) 3405 return true; 3406 3407 // If it is not after a liveness barrier it is live. 3408 const Instruction *PrevI = I->getPrevNode(); 3409 while (PrevI) { 3410 if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI)) 3411 return true; 3412 PrevI = PrevI->getPrevNode(); 3413 } 3414 return false; 3415 } 3416 3417 /// See AAIsDead::isKnownDead(Instruction *I). 3418 bool isKnownDead(const Instruction *I) const override { 3419 return getKnown() && isAssumedDead(I); 3420 } 3421 3422 /// Determine if \p F might catch asynchronous exceptions. 3423 static bool mayCatchAsynchronousExceptions(const Function &F) { 3424 return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F); 3425 } 3426 3427 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A 3428 /// that internal function called from \p BB should now be looked at. 3429 bool assumeLive(Attributor &A, const BasicBlock &BB) { 3430 if (!AssumedLiveBlocks.insert(&BB).second) 3431 return false; 3432 3433 // We assume that all of BB is (probably) live now and if there are calls to 3434 // internal functions we will assume that those are now live as well. This 3435 // is a performance optimization for blocks with calls to a lot of internal 3436 // functions. It can however cause dead functions to be treated as live. 3437 for (const Instruction &I : BB) 3438 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) 3439 if (const Function *F = ICS.getCalledFunction()) 3440 if (F->hasLocalLinkage()) 3441 A.markLiveInternalFunction(*F); 3442 return true; 3443 } 3444 3445 /// Collection of instructions that need to be explored again, e.g., we 3446 /// did assume they do not transfer control to (one of their) successors. 3447 SmallSetVector<const Instruction *, 8> ToBeExploredFrom; 3448 3449 /// Collection of instructions that are known to not transfer control. 3450 SmallSetVector<const Instruction *, 8> KnownDeadEnds; 3451 3452 /// Collection of all assumed live BasicBlocks. 3453 DenseSet<const BasicBlock *> AssumedLiveBlocks; 3454 }; 3455 3456 static bool 3457 identifyAliveSuccessors(Attributor &A, const CallBase &CB, 3458 AbstractAttribute &AA, 3459 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3460 const IRPosition &IPos = IRPosition::callsite_function(CB); 3461 3462 const auto &NoReturnAA = A.getAAFor<AANoReturn>(AA, IPos); 3463 if (NoReturnAA.isAssumedNoReturn()) 3464 return !NoReturnAA.isKnownNoReturn(); 3465 if (CB.isTerminator()) 3466 AliveSuccessors.push_back(&CB.getSuccessor(0)->front()); 3467 else 3468 AliveSuccessors.push_back(CB.getNextNode()); 3469 return false; 3470 } 3471 3472 static bool 3473 identifyAliveSuccessors(Attributor &A, const InvokeInst &II, 3474 AbstractAttribute &AA, 3475 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3476 bool UsedAssumedInformation = 3477 identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors); 3478 3479 // First, determine if we can change an invoke to a call assuming the 3480 // callee is nounwind. This is not possible if the personality of the 3481 // function allows to catch asynchronous exceptions. 3482 if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) { 3483 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3484 } else { 3485 const IRPosition &IPos = IRPosition::callsite_function(II); 3486 const auto &AANoUnw = A.getAAFor<AANoUnwind>(AA, IPos); 3487 if (AANoUnw.isAssumedNoUnwind()) { 3488 UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind(); 3489 } else { 3490 AliveSuccessors.push_back(&II.getUnwindDest()->front()); 3491 } 3492 } 3493 return UsedAssumedInformation; 3494 } 3495 3496 static bool 3497 identifyAliveSuccessors(Attributor &A, const BranchInst &BI, 3498 AbstractAttribute &AA, 3499 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3500 bool UsedAssumedInformation = false; 3501 if (BI.getNumSuccessors() == 1) { 3502 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3503 } else { 3504 Optional<ConstantInt *> CI = getAssumedConstantInt( 3505 A, *BI.getCondition(), AA, UsedAssumedInformation); 3506 if (!CI.hasValue()) { 3507 // No value yet, assume both edges are dead. 3508 } else if (CI.getValue()) { 3509 const BasicBlock *SuccBB = 3510 BI.getSuccessor(1 - CI.getValue()->getZExtValue()); 3511 AliveSuccessors.push_back(&SuccBB->front()); 3512 } else { 3513 AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); 3514 AliveSuccessors.push_back(&BI.getSuccessor(1)->front()); 3515 UsedAssumedInformation = false; 3516 } 3517 } 3518 return UsedAssumedInformation; 3519 } 3520 3521 static bool 3522 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, 3523 AbstractAttribute &AA, 3524 SmallVectorImpl<const Instruction *> &AliveSuccessors) { 3525 bool UsedAssumedInformation = false; 3526 Optional<ConstantInt *> CI = 3527 getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation); 3528 if (!CI.hasValue()) { 3529 // No value yet, assume all edges are dead. 3530 } else if (CI.getValue()) { 3531 for (auto &CaseIt : SI.cases()) { 3532 if (CaseIt.getCaseValue() == CI.getValue()) { 3533 AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front()); 3534 return UsedAssumedInformation; 3535 } 3536 } 3537 AliveSuccessors.push_back(&SI.getDefaultDest()->front()); 3538 return UsedAssumedInformation; 3539 } else { 3540 for (const BasicBlock *SuccBB : successors(SI.getParent())) 3541 AliveSuccessors.push_back(&SuccBB->front()); 3542 } 3543 return UsedAssumedInformation; 3544 } 3545 3546 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { 3547 ChangeStatus Change = ChangeStatus::UNCHANGED; 3548 3549 LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" 3550 << getAnchorScope()->size() << "] BBs and " 3551 << ToBeExploredFrom.size() << " exploration points and " 3552 << KnownDeadEnds.size() << " known dead ends\n"); 3553 3554 // Copy and clear the list of instructions we need to explore from. It is 3555 // refilled with instructions the next update has to look at. 3556 SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), 3557 ToBeExploredFrom.end()); 3558 decltype(ToBeExploredFrom) NewToBeExploredFrom; 3559 3560 SmallVector<const Instruction *, 8> AliveSuccessors; 3561 while (!Worklist.empty()) { 3562 const Instruction *I = Worklist.pop_back_val(); 3563 LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n"); 3564 3565 AliveSuccessors.clear(); 3566 3567 bool UsedAssumedInformation = false; 3568 switch (I->getOpcode()) { 3569 // TODO: look for (assumed) UB to backwards propagate "deadness". 3570 default: 3571 if (I->isTerminator()) { 3572 for (const BasicBlock *SuccBB : successors(I->getParent())) 3573 AliveSuccessors.push_back(&SuccBB->front()); 3574 } else { 3575 AliveSuccessors.push_back(I->getNextNode()); 3576 } 3577 break; 3578 case Instruction::Call: 3579 UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I), 3580 *this, AliveSuccessors); 3581 break; 3582 case Instruction::Invoke: 3583 UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I), 3584 *this, AliveSuccessors); 3585 break; 3586 case Instruction::Br: 3587 UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I), 3588 *this, AliveSuccessors); 3589 break; 3590 case Instruction::Switch: 3591 UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I), 3592 *this, AliveSuccessors); 3593 break; 3594 } 3595 3596 if (UsedAssumedInformation) { 3597 NewToBeExploredFrom.insert(I); 3598 } else { 3599 Change = ChangeStatus::CHANGED; 3600 if (AliveSuccessors.empty() || 3601 (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors())) 3602 KnownDeadEnds.insert(I); 3603 } 3604 3605 LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " 3606 << AliveSuccessors.size() << " UsedAssumedInformation: " 3607 << UsedAssumedInformation << "\n"); 3608 3609 for (const Instruction *AliveSuccessor : AliveSuccessors) { 3610 if (!I->isTerminator()) { 3611 assert(AliveSuccessors.size() == 1 && 3612 "Non-terminator expected to have a single successor!"); 3613 Worklist.push_back(AliveSuccessor); 3614 } else { 3615 if (assumeLive(A, *AliveSuccessor->getParent())) 3616 Worklist.push_back(AliveSuccessor); 3617 } 3618 } 3619 } 3620 3621 ToBeExploredFrom = std::move(NewToBeExploredFrom); 3622 3623 // If we know everything is live there is no need to query for liveness. 3624 // Instead, indicating a pessimistic fixpoint will cause the state to be 3625 // "invalid" and all queries to be answered conservatively without lookups. 3626 // To be in this state we have to (1) finished the exploration and (3) not 3627 // discovered any non-trivial dead end and (2) not ruled unreachable code 3628 // dead. 3629 if (ToBeExploredFrom.empty() && 3630 getAnchorScope()->size() == AssumedLiveBlocks.size() && 3631 llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) { 3632 return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; 3633 })) 3634 return indicatePessimisticFixpoint(); 3635 return Change; 3636 } 3637 3638 /// Liveness information for a call sites. 3639 struct AAIsDeadCallSite final : AAIsDeadFunction { 3640 AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadFunction(IRP) {} 3641 3642 /// See AbstractAttribute::initialize(...). 3643 void initialize(Attributor &A) override { 3644 // TODO: Once we have call site specific value information we can provide 3645 // call site specific liveness information and then it makes 3646 // sense to specialize attributes for call sites instead of 3647 // redirecting requests to the callee. 3648 llvm_unreachable("Abstract attributes for liveness are not " 3649 "supported for call sites yet!"); 3650 } 3651 3652 /// See AbstractAttribute::updateImpl(...). 3653 ChangeStatus updateImpl(Attributor &A) override { 3654 return indicatePessimisticFixpoint(); 3655 } 3656 3657 /// See AbstractAttribute::trackStatistics() 3658 void trackStatistics() const override {} 3659 }; 3660 3661 /// -------------------- Dereferenceable Argument Attribute -------------------- 3662 3663 template <> 3664 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, 3665 const DerefState &R) { 3666 ChangeStatus CS0 = 3667 clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState); 3668 ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState); 3669 return CS0 | CS1; 3670 } 3671 3672 struct AADereferenceableImpl : AADereferenceable { 3673 AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {} 3674 using StateType = DerefState; 3675 3676 void initialize(Attributor &A) override { 3677 SmallVector<Attribute, 4> Attrs; 3678 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, 3679 Attrs, /* IgnoreSubsumingPositions */ false, &A); 3680 for (const Attribute &Attr : Attrs) 3681 takeKnownDerefBytesMaximum(Attr.getValueAsInt()); 3682 3683 NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition(), 3684 /* TrackDependence */ false); 3685 3686 const IRPosition &IRP = this->getIRPosition(); 3687 bool IsFnInterface = IRP.isFnInterfaceKind(); 3688 Function *FnScope = IRP.getAnchorScope(); 3689 if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) 3690 indicatePessimisticFixpoint(); 3691 } 3692 3693 /// See AbstractAttribute::getState() 3694 /// { 3695 StateType &getState() override { return *this; } 3696 const StateType &getState() const override { return *this; } 3697 /// } 3698 3699 /// Helper function for collecting accessed bytes in must-be-executed-context 3700 void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I, 3701 DerefState &State) { 3702 const Value *UseV = U->get(); 3703 if (!UseV->getType()->isPointerTy()) 3704 return; 3705 3706 Type *PtrTy = UseV->getType(); 3707 const DataLayout &DL = A.getDataLayout(); 3708 int64_t Offset; 3709 if (const Value *Base = getBasePointerOfAccessPointerOperand( 3710 I, Offset, DL, /*AllowNonInbounds*/ true)) { 3711 if (Base == &getAssociatedValue() && 3712 getPointerOperand(I, /* AllowVolatile */ false) == UseV) { 3713 uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType()); 3714 State.addAccessedBytes(Offset, Size); 3715 } 3716 } 3717 return; 3718 } 3719 3720 /// See AAFromMustBeExecutedContext 3721 bool followUse(Attributor &A, const Use *U, const Instruction *I, 3722 AADereferenceable::StateType &State) { 3723 bool IsNonNull = false; 3724 bool TrackUse = false; 3725 int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( 3726 A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse); 3727 3728 addAccessedBytesForUse(A, U, I, State); 3729 State.takeKnownDerefBytesMaximum(DerefBytes); 3730 return TrackUse; 3731 } 3732 3733 /// See AbstractAttribute::manifest(...). 3734 ChangeStatus manifest(Attributor &A) override { 3735 ChangeStatus Change = AADereferenceable::manifest(A); 3736 if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) { 3737 removeAttrs({Attribute::DereferenceableOrNull}); 3738 return ChangeStatus::CHANGED; 3739 } 3740 return Change; 3741 } 3742 3743 void getDeducedAttributes(LLVMContext &Ctx, 3744 SmallVectorImpl<Attribute> &Attrs) const override { 3745 // TODO: Add *_globally support 3746 if (isAssumedNonNull()) 3747 Attrs.emplace_back(Attribute::getWithDereferenceableBytes( 3748 Ctx, getAssumedDereferenceableBytes())); 3749 else 3750 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( 3751 Ctx, getAssumedDereferenceableBytes())); 3752 } 3753 3754 /// See AbstractAttribute::getAsStr(). 3755 const std::string getAsStr() const override { 3756 if (!getAssumedDereferenceableBytes()) 3757 return "unknown-dereferenceable"; 3758 return std::string("dereferenceable") + 3759 (isAssumedNonNull() ? "" : "_or_null") + 3760 (isAssumedGlobal() ? "_globally" : "") + "<" + 3761 std::to_string(getKnownDereferenceableBytes()) + "-" + 3762 std::to_string(getAssumedDereferenceableBytes()) + ">"; 3763 } 3764 }; 3765 3766 /// Dereferenceable attribute for a floating value. 3767 struct AADereferenceableFloating 3768 : AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl> { 3769 using Base = 3770 AAFromMustBeExecutedContext<AADereferenceable, AADereferenceableImpl>; 3771 AADereferenceableFloating(const IRPosition &IRP) : Base(IRP) {} 3772 3773 /// See AbstractAttribute::updateImpl(...). 3774 ChangeStatus updateImpl(Attributor &A) override { 3775 ChangeStatus Change = Base::updateImpl(A); 3776 3777 const DataLayout &DL = A.getDataLayout(); 3778 3779 auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool { 3780 unsigned IdxWidth = 3781 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); 3782 APInt Offset(IdxWidth, 0); 3783 const Value *Base = 3784 V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3785 3786 const auto &AA = 3787 A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base)); 3788 int64_t DerefBytes = 0; 3789 if (!Stripped && this == &AA) { 3790 // Use IR information if we did not strip anything. 3791 // TODO: track globally. 3792 bool CanBeNull; 3793 DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull); 3794 T.GlobalState.indicatePessimisticFixpoint(); 3795 } else { 3796 const DerefState &DS = static_cast<const DerefState &>(AA.getState()); 3797 DerefBytes = DS.DerefBytesState.getAssumed(); 3798 T.GlobalState &= DS.GlobalState; 3799 } 3800 3801 // TODO: Use `AAConstantRange` to infer dereferenceable bytes. 3802 3803 // For now we do not try to "increase" dereferenceability due to negative 3804 // indices as we first have to come up with code to deal with loops and 3805 // for overflows of the dereferenceable bytes. 3806 int64_t OffsetSExt = Offset.getSExtValue(); 3807 if (OffsetSExt < 0) 3808 OffsetSExt = 0; 3809 3810 T.takeAssumedDerefBytesMinimum( 3811 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3812 3813 if (this == &AA) { 3814 if (!Stripped) { 3815 // If nothing was stripped IR information is all we got. 3816 T.takeKnownDerefBytesMaximum( 3817 std::max(int64_t(0), DerefBytes - OffsetSExt)); 3818 T.indicatePessimisticFixpoint(); 3819 } else if (OffsetSExt > 0) { 3820 // If something was stripped but there is circular reasoning we look 3821 // for the offset. If it is positive we basically decrease the 3822 // dereferenceable bytes in a circluar loop now, which will simply 3823 // drive them down to the known value in a very slow way which we 3824 // can accelerate. 3825 T.indicatePessimisticFixpoint(); 3826 } 3827 } 3828 3829 return T.isValidState(); 3830 }; 3831 3832 DerefState T; 3833 if (!genericValueTraversal<AADereferenceable, DerefState>( 3834 A, getIRPosition(), *this, T, VisitValueCB)) 3835 return indicatePessimisticFixpoint(); 3836 3837 return Change | clampStateAndIndicateChange(getState(), T); 3838 } 3839 3840 /// See AbstractAttribute::trackStatistics() 3841 void trackStatistics() const override { 3842 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) 3843 } 3844 }; 3845 3846 /// Dereferenceable attribute for a return value. 3847 struct AADereferenceableReturned final 3848 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> { 3849 AADereferenceableReturned(const IRPosition &IRP) 3850 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>( 3851 IRP) {} 3852 3853 /// See AbstractAttribute::trackStatistics() 3854 void trackStatistics() const override { 3855 STATS_DECLTRACK_FNRET_ATTR(dereferenceable) 3856 } 3857 }; 3858 3859 /// Dereferenceable attribute for an argument 3860 struct AADereferenceableArgument final 3861 : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext< 3862 AADereferenceable, AADereferenceableImpl> { 3863 using Base = AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext< 3864 AADereferenceable, AADereferenceableImpl>; 3865 AADereferenceableArgument(const IRPosition &IRP) : Base(IRP) {} 3866 3867 /// See AbstractAttribute::trackStatistics() 3868 void trackStatistics() const override { 3869 STATS_DECLTRACK_ARG_ATTR(dereferenceable) 3870 } 3871 }; 3872 3873 /// Dereferenceable attribute for a call site argument. 3874 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { 3875 AADereferenceableCallSiteArgument(const IRPosition &IRP) 3876 : AADereferenceableFloating(IRP) {} 3877 3878 /// See AbstractAttribute::trackStatistics() 3879 void trackStatistics() const override { 3880 STATS_DECLTRACK_CSARG_ATTR(dereferenceable) 3881 } 3882 }; 3883 3884 /// Dereferenceable attribute deduction for a call site return value. 3885 struct AADereferenceableCallSiteReturned final 3886 : AACallSiteReturnedFromReturnedAndMustBeExecutedContext< 3887 AADereferenceable, AADereferenceableImpl> { 3888 using Base = AACallSiteReturnedFromReturnedAndMustBeExecutedContext< 3889 AADereferenceable, AADereferenceableImpl>; 3890 AADereferenceableCallSiteReturned(const IRPosition &IRP) : Base(IRP) {} 3891 3892 /// See AbstractAttribute::trackStatistics() 3893 void trackStatistics() const override { 3894 STATS_DECLTRACK_CS_ATTR(dereferenceable); 3895 } 3896 }; 3897 3898 // ------------------------ Align Argument Attribute ------------------------ 3899 3900 static unsigned int getKnownAlignForUse(Attributor &A, 3901 AbstractAttribute &QueryingAA, 3902 Value &AssociatedValue, const Use *U, 3903 const Instruction *I, bool &TrackUse) { 3904 // We need to follow common pointer manipulation uses to the accesses they 3905 // feed into. 3906 if (isa<CastInst>(I)) { 3907 // Follow all but ptr2int casts. 3908 TrackUse = !isa<PtrToIntInst>(I); 3909 return 0; 3910 } 3911 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3912 if (GEP->hasAllConstantIndices()) { 3913 TrackUse = true; 3914 return 0; 3915 } 3916 } 3917 3918 unsigned Alignment = 0; 3919 if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 3920 if (ICS.isBundleOperand(U) || ICS.isCallee(U)) 3921 return 0; 3922 3923 unsigned ArgNo = ICS.getArgumentNo(U); 3924 IRPosition IRP = IRPosition::callsite_argument(ICS, ArgNo); 3925 // As long as we only use known information there is no need to track 3926 // dependences here. 3927 auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, 3928 /* TrackDependence */ false); 3929 Alignment = AlignAA.getKnownAlign(); 3930 } 3931 3932 const Value *UseV = U->get(); 3933 if (auto *SI = dyn_cast<StoreInst>(I)) { 3934 if (SI->getPointerOperand() == UseV) 3935 Alignment = SI->getAlignment(); 3936 } else if (auto *LI = dyn_cast<LoadInst>(I)) 3937 Alignment = LI->getAlignment(); 3938 3939 if (Alignment <= 1) 3940 return 0; 3941 3942 auto &DL = A.getDataLayout(); 3943 int64_t Offset; 3944 3945 if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) { 3946 if (Base == &AssociatedValue) { 3947 // BasePointerAddr + Offset = Alignment * Q for some integer Q. 3948 // So we can say that the maximum power of two which is a divisor of 3949 // gcd(Offset, Alignment) is an alignment. 3950 3951 uint32_t gcd = 3952 greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment); 3953 Alignment = llvm::PowerOf2Floor(gcd); 3954 } 3955 } 3956 3957 return Alignment; 3958 } 3959 struct AAAlignImpl : AAAlign { 3960 AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {} 3961 3962 /// See AbstractAttribute::initialize(...). 3963 void initialize(Attributor &A) override { 3964 SmallVector<Attribute, 4> Attrs; 3965 getAttrs({Attribute::Alignment}, Attrs); 3966 for (const Attribute &Attr : Attrs) 3967 takeKnownMaximum(Attr.getValueAsInt()); 3968 3969 if (getIRPosition().isFnInterfaceKind() && 3970 (!getAnchorScope() || 3971 !A.isFunctionIPOAmendable(*getAssociatedFunction()))) 3972 indicatePessimisticFixpoint(); 3973 } 3974 3975 /// See AbstractAttribute::manifest(...). 3976 ChangeStatus manifest(Attributor &A) override { 3977 ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED; 3978 3979 // Check for users that allow alignment annotations. 3980 Value &AssociatedValue = getAssociatedValue(); 3981 for (const Use &U : AssociatedValue.uses()) { 3982 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) { 3983 if (SI->getPointerOperand() == &AssociatedValue) 3984 if (SI->getAlignment() < getAssumedAlign()) { 3985 STATS_DECLTRACK(AAAlign, Store, 3986 "Number of times alignment added to a store"); 3987 SI->setAlignment(Align(getAssumedAlign())); 3988 LoadStoreChanged = ChangeStatus::CHANGED; 3989 } 3990 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) { 3991 if (LI->getPointerOperand() == &AssociatedValue) 3992 if (LI->getAlignment() < getAssumedAlign()) { 3993 LI->setAlignment(Align(getAssumedAlign())); 3994 STATS_DECLTRACK(AAAlign, Load, 3995 "Number of times alignment added to a load"); 3996 LoadStoreChanged = ChangeStatus::CHANGED; 3997 } 3998 } 3999 } 4000 4001 ChangeStatus Changed = AAAlign::manifest(A); 4002 4003 MaybeAlign InheritAlign = 4004 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 4005 if (InheritAlign.valueOrOne() >= getAssumedAlign()) 4006 return LoadStoreChanged; 4007 return Changed | LoadStoreChanged; 4008 } 4009 4010 // TODO: Provide a helper to determine the implied ABI alignment and check in 4011 // the existing manifest method and a new one for AAAlignImpl that value 4012 // to avoid making the alignment explicit if it did not improve. 4013 4014 /// See AbstractAttribute::getDeducedAttributes 4015 virtual void 4016 getDeducedAttributes(LLVMContext &Ctx, 4017 SmallVectorImpl<Attribute> &Attrs) const override { 4018 if (getAssumedAlign() > 1) 4019 Attrs.emplace_back( 4020 Attribute::getWithAlignment(Ctx, Align(getAssumedAlign()))); 4021 } 4022 /// See AAFromMustBeExecutedContext 4023 bool followUse(Attributor &A, const Use *U, const Instruction *I, 4024 AAAlign::StateType &State) { 4025 bool TrackUse = false; 4026 4027 unsigned int KnownAlign = 4028 getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse); 4029 State.takeKnownMaximum(KnownAlign); 4030 4031 return TrackUse; 4032 } 4033 4034 /// See AbstractAttribute::getAsStr(). 4035 const std::string getAsStr() const override { 4036 return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) + 4037 "-" + std::to_string(getAssumedAlign()) + ">") 4038 : "unknown-align"; 4039 } 4040 }; 4041 4042 /// Align attribute for a floating value. 4043 struct AAAlignFloating : AAFromMustBeExecutedContext<AAAlign, AAAlignImpl> { 4044 using Base = AAFromMustBeExecutedContext<AAAlign, AAAlignImpl>; 4045 AAAlignFloating(const IRPosition &IRP) : Base(IRP) {} 4046 4047 /// See AbstractAttribute::updateImpl(...). 4048 ChangeStatus updateImpl(Attributor &A) override { 4049 Base::updateImpl(A); 4050 4051 const DataLayout &DL = A.getDataLayout(); 4052 4053 auto VisitValueCB = [&](Value &V, AAAlign::StateType &T, 4054 bool Stripped) -> bool { 4055 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V)); 4056 if (!Stripped && this == &AA) { 4057 // Use only IR information if we did not strip anything. 4058 const MaybeAlign PA = V.getPointerAlignment(DL); 4059 T.takeKnownMaximum(PA ? PA->value() : 0); 4060 T.indicatePessimisticFixpoint(); 4061 } else { 4062 // Use abstract attribute information. 4063 const AAAlign::StateType &DS = 4064 static_cast<const AAAlign::StateType &>(AA.getState()); 4065 T ^= DS; 4066 } 4067 return T.isValidState(); 4068 }; 4069 4070 StateType T; 4071 if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T, 4072 VisitValueCB)) 4073 return indicatePessimisticFixpoint(); 4074 4075 // TODO: If we know we visited all incoming values, thus no are assumed 4076 // dead, we can take the known information from the state T. 4077 return clampStateAndIndicateChange(getState(), T); 4078 } 4079 4080 /// See AbstractAttribute::trackStatistics() 4081 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } 4082 }; 4083 4084 /// Align attribute for function return value. 4085 struct AAAlignReturned final 4086 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { 4087 AAAlignReturned(const IRPosition &IRP) 4088 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {} 4089 4090 /// See AbstractAttribute::trackStatistics() 4091 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } 4092 }; 4093 4094 /// Align attribute for function argument. 4095 struct AAAlignArgument final 4096 : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign, 4097 AAAlignImpl> { 4098 AAAlignArgument(const IRPosition &IRP) 4099 : AAArgumentFromCallSiteArgumentsAndMustBeExecutedContext<AAAlign, 4100 AAAlignImpl>( 4101 IRP) {} 4102 4103 /// See AbstractAttribute::trackStatistics() 4104 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } 4105 }; 4106 4107 struct AAAlignCallSiteArgument final : AAAlignFloating { 4108 AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {} 4109 4110 /// See AbstractAttribute::manifest(...). 4111 ChangeStatus manifest(Attributor &A) override { 4112 ChangeStatus Changed = AAAlignImpl::manifest(A); 4113 MaybeAlign InheritAlign = 4114 getAssociatedValue().getPointerAlignment(A.getDataLayout()); 4115 if (InheritAlign.valueOrOne() >= getAssumedAlign()) 4116 Changed = ChangeStatus::UNCHANGED; 4117 return Changed; 4118 } 4119 4120 /// See AbstractAttribute::updateImpl(Attributor &A). 4121 ChangeStatus updateImpl(Attributor &A) override { 4122 ChangeStatus Changed = AAAlignFloating::updateImpl(A); 4123 if (Argument *Arg = getAssociatedArgument()) { 4124 // We only take known information from the argument 4125 // so we do not need to track a dependence. 4126 const auto &ArgAlignAA = A.getAAFor<AAAlign>( 4127 *this, IRPosition::argument(*Arg), /* TrackDependence */ false); 4128 takeKnownMaximum(ArgAlignAA.getKnownAlign()); 4129 } 4130 return Changed; 4131 } 4132 4133 /// See AbstractAttribute::trackStatistics() 4134 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } 4135 }; 4136 4137 /// Align attribute deduction for a call site return value. 4138 struct AAAlignCallSiteReturned final 4139 : AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign, 4140 AAAlignImpl> { 4141 using Base = 4142 AACallSiteReturnedFromReturnedAndMustBeExecutedContext<AAAlign, 4143 AAAlignImpl>; 4144 AAAlignCallSiteReturned(const IRPosition &IRP) : Base(IRP) {} 4145 4146 /// See AbstractAttribute::initialize(...). 4147 void initialize(Attributor &A) override { 4148 Base::initialize(A); 4149 Function *F = getAssociatedFunction(); 4150 if (!F) 4151 indicatePessimisticFixpoint(); 4152 } 4153 4154 /// See AbstractAttribute::trackStatistics() 4155 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } 4156 }; 4157 4158 /// ------------------ Function No-Return Attribute ---------------------------- 4159 struct AANoReturnImpl : public AANoReturn { 4160 AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {} 4161 4162 /// See AbstractAttribute::initialize(...). 4163 void initialize(Attributor &A) override { 4164 AANoReturn::initialize(A); 4165 Function *F = getAssociatedFunction(); 4166 if (!F) 4167 indicatePessimisticFixpoint(); 4168 } 4169 4170 /// See AbstractAttribute::getAsStr(). 4171 const std::string getAsStr() const override { 4172 return getAssumed() ? "noreturn" : "may-return"; 4173 } 4174 4175 /// See AbstractAttribute::updateImpl(Attributor &A). 4176 virtual ChangeStatus updateImpl(Attributor &A) override { 4177 auto CheckForNoReturn = [](Instruction &) { return false; }; 4178 if (!A.checkForAllInstructions(CheckForNoReturn, *this, 4179 {(unsigned)Instruction::Ret})) 4180 return indicatePessimisticFixpoint(); 4181 return ChangeStatus::UNCHANGED; 4182 } 4183 }; 4184 4185 struct AANoReturnFunction final : AANoReturnImpl { 4186 AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {} 4187 4188 /// See AbstractAttribute::trackStatistics() 4189 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } 4190 }; 4191 4192 /// NoReturn attribute deduction for a call sites. 4193 struct AANoReturnCallSite final : AANoReturnImpl { 4194 AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {} 4195 4196 /// See AbstractAttribute::updateImpl(...). 4197 ChangeStatus updateImpl(Attributor &A) override { 4198 // TODO: Once we have call site specific value information we can provide 4199 // call site specific liveness information and then it makes 4200 // sense to specialize attributes for call sites arguments instead of 4201 // redirecting requests to the callee argument. 4202 Function *F = getAssociatedFunction(); 4203 const IRPosition &FnPos = IRPosition::function(*F); 4204 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos); 4205 return clampStateAndIndicateChange( 4206 getState(), 4207 static_cast<const AANoReturn::StateType &>(FnAA.getState())); 4208 } 4209 4210 /// See AbstractAttribute::trackStatistics() 4211 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } 4212 }; 4213 4214 /// ----------------------- Variable Capturing --------------------------------- 4215 4216 /// A class to hold the state of for no-capture attributes. 4217 struct AANoCaptureImpl : public AANoCapture { 4218 AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {} 4219 4220 /// See AbstractAttribute::initialize(...). 4221 void initialize(Attributor &A) override { 4222 if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) { 4223 indicateOptimisticFixpoint(); 4224 return; 4225 } 4226 Function *AnchorScope = getAnchorScope(); 4227 if (isFnInterfaceKind() && 4228 (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) { 4229 indicatePessimisticFixpoint(); 4230 return; 4231 } 4232 4233 // You cannot "capture" null in the default address space. 4234 if (isa<ConstantPointerNull>(getAssociatedValue()) && 4235 getAssociatedValue().getType()->getPointerAddressSpace() == 0) { 4236 indicateOptimisticFixpoint(); 4237 return; 4238 } 4239 4240 const Function *F = getArgNo() >= 0 ? getAssociatedFunction() : AnchorScope; 4241 4242 // Check what state the associated function can actually capture. 4243 if (F) 4244 determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); 4245 else 4246 indicatePessimisticFixpoint(); 4247 } 4248 4249 /// See AbstractAttribute::updateImpl(...). 4250 ChangeStatus updateImpl(Attributor &A) override; 4251 4252 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). 4253 virtual void 4254 getDeducedAttributes(LLVMContext &Ctx, 4255 SmallVectorImpl<Attribute> &Attrs) const override { 4256 if (!isAssumedNoCaptureMaybeReturned()) 4257 return; 4258 4259 if (getArgNo() >= 0) { 4260 if (isAssumedNoCapture()) 4261 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture)); 4262 else if (ManifestInternal) 4263 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned")); 4264 } 4265 } 4266 4267 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known 4268 /// depending on the ability of the function associated with \p IRP to capture 4269 /// state in memory and through "returning/throwing", respectively. 4270 static void determineFunctionCaptureCapabilities(const IRPosition &IRP, 4271 const Function &F, 4272 BitIntegerState &State) { 4273 // TODO: Once we have memory behavior attributes we should use them here. 4274 4275 // If we know we cannot communicate or write to memory, we do not care about 4276 // ptr2int anymore. 4277 if (F.onlyReadsMemory() && F.doesNotThrow() && 4278 F.getReturnType()->isVoidTy()) { 4279 State.addKnownBits(NO_CAPTURE); 4280 return; 4281 } 4282 4283 // A function cannot capture state in memory if it only reads memory, it can 4284 // however return/throw state and the state might be influenced by the 4285 // pointer value, e.g., loading from a returned pointer might reveal a bit. 4286 if (F.onlyReadsMemory()) 4287 State.addKnownBits(NOT_CAPTURED_IN_MEM); 4288 4289 // A function cannot communicate state back if it does not through 4290 // exceptions and doesn not return values. 4291 if (F.doesNotThrow() && F.getReturnType()->isVoidTy()) 4292 State.addKnownBits(NOT_CAPTURED_IN_RET); 4293 4294 // Check existing "returned" attributes. 4295 int ArgNo = IRP.getArgNo(); 4296 if (F.doesNotThrow() && ArgNo >= 0) { 4297 for (unsigned u = 0, e = F.arg_size(); u < e; ++u) 4298 if (F.hasParamAttribute(u, Attribute::Returned)) { 4299 if (u == unsigned(ArgNo)) 4300 State.removeAssumedBits(NOT_CAPTURED_IN_RET); 4301 else if (F.onlyReadsMemory()) 4302 State.addKnownBits(NO_CAPTURE); 4303 else 4304 State.addKnownBits(NOT_CAPTURED_IN_RET); 4305 break; 4306 } 4307 } 4308 } 4309 4310 /// See AbstractState::getAsStr(). 4311 const std::string getAsStr() const override { 4312 if (isKnownNoCapture()) 4313 return "known not-captured"; 4314 if (isAssumedNoCapture()) 4315 return "assumed not-captured"; 4316 if (isKnownNoCaptureMaybeReturned()) 4317 return "known not-captured-maybe-returned"; 4318 if (isAssumedNoCaptureMaybeReturned()) 4319 return "assumed not-captured-maybe-returned"; 4320 return "assumed-captured"; 4321 } 4322 }; 4323 4324 /// Attributor-aware capture tracker. 4325 struct AACaptureUseTracker final : public CaptureTracker { 4326 4327 /// Create a capture tracker that can lookup in-flight abstract attributes 4328 /// through the Attributor \p A. 4329 /// 4330 /// If a use leads to a potential capture, \p CapturedInMemory is set and the 4331 /// search is stopped. If a use leads to a return instruction, 4332 /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed. 4333 /// If a use leads to a ptr2int which may capture the value, 4334 /// \p CapturedInInteger is set. If a use is found that is currently assumed 4335 /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies 4336 /// set. All values in \p PotentialCopies are later tracked as well. For every 4337 /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0, 4338 /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger 4339 /// conservatively set to true. 4340 AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA, 4341 const AAIsDead &IsDeadAA, AANoCapture::StateType &State, 4342 SmallVectorImpl<const Value *> &PotentialCopies, 4343 unsigned &RemainingUsesToExplore) 4344 : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State), 4345 PotentialCopies(PotentialCopies), 4346 RemainingUsesToExplore(RemainingUsesToExplore) {} 4347 4348 /// Determine if \p V maybe captured. *Also updates the state!* 4349 bool valueMayBeCaptured(const Value *V) { 4350 if (V->getType()->isPointerTy()) { 4351 PointerMayBeCaptured(V, this); 4352 } else { 4353 State.indicatePessimisticFixpoint(); 4354 } 4355 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4356 } 4357 4358 /// See CaptureTracker::tooManyUses(). 4359 void tooManyUses() override { 4360 State.removeAssumedBits(AANoCapture::NO_CAPTURE); 4361 } 4362 4363 bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override { 4364 if (CaptureTracker::isDereferenceableOrNull(O, DL)) 4365 return true; 4366 const auto &DerefAA = A.getAAFor<AADereferenceable>( 4367 NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true, 4368 DepClassTy::OPTIONAL); 4369 return DerefAA.getAssumedDereferenceableBytes(); 4370 } 4371 4372 /// See CaptureTracker::captured(...). 4373 bool captured(const Use *U) override { 4374 Instruction *UInst = cast<Instruction>(U->getUser()); 4375 LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst 4376 << "\n"); 4377 4378 // Because we may reuse the tracker multiple times we keep track of the 4379 // number of explored uses ourselves as well. 4380 if (RemainingUsesToExplore-- == 0) { 4381 LLVM_DEBUG(dbgs() << " - too many uses to explore!\n"); 4382 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4383 /* Return */ true); 4384 } 4385 4386 // Deal with ptr2int by following uses. 4387 if (isa<PtrToIntInst>(UInst)) { 4388 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n"); 4389 return valueMayBeCaptured(UInst); 4390 } 4391 4392 // Explicitly catch return instructions. 4393 if (isa<ReturnInst>(UInst)) 4394 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4395 /* Return */ true); 4396 4397 // For now we only use special logic for call sites. However, the tracker 4398 // itself knows about a lot of other non-capturing cases already. 4399 CallSite CS(UInst); 4400 if (!CS || !CS.isArgOperand(U)) 4401 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4402 /* Return */ true); 4403 4404 unsigned ArgNo = CS.getArgumentNo(U); 4405 const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo); 4406 // If we have a abstract no-capture attribute for the argument we can use 4407 // it to justify a non-capture attribute here. This allows recursion! 4408 auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos); 4409 if (ArgNoCaptureAA.isAssumedNoCapture()) 4410 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4411 /* Return */ false); 4412 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 4413 addPotentialCopy(CS); 4414 return isCapturedIn(/* Memory */ false, /* Integer */ false, 4415 /* Return */ false); 4416 } 4417 4418 // Lastly, we could not find a reason no-capture can be assumed so we don't. 4419 return isCapturedIn(/* Memory */ true, /* Integer */ true, 4420 /* Return */ true); 4421 } 4422 4423 /// Register \p CS as potential copy of the value we are checking. 4424 void addPotentialCopy(CallSite CS) { 4425 PotentialCopies.push_back(CS.getInstruction()); 4426 } 4427 4428 /// See CaptureTracker::shouldExplore(...). 4429 bool shouldExplore(const Use *U) override { 4430 // Check liveness and ignore droppable users. 4431 return !U->getUser()->isDroppable() && 4432 !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA); 4433 } 4434 4435 /// Update the state according to \p CapturedInMem, \p CapturedInInt, and 4436 /// \p CapturedInRet, then return the appropriate value for use in the 4437 /// CaptureTracker::captured() interface. 4438 bool isCapturedIn(bool CapturedInMem, bool CapturedInInt, 4439 bool CapturedInRet) { 4440 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " 4441 << CapturedInInt << "|Ret " << CapturedInRet << "]\n"); 4442 if (CapturedInMem) 4443 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM); 4444 if (CapturedInInt) 4445 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT); 4446 if (CapturedInRet) 4447 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET); 4448 return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); 4449 } 4450 4451 private: 4452 /// The attributor providing in-flight abstract attributes. 4453 Attributor &A; 4454 4455 /// The abstract attribute currently updated. 4456 AANoCapture &NoCaptureAA; 4457 4458 /// The abstract liveness state. 4459 const AAIsDead &IsDeadAA; 4460 4461 /// The state currently updated. 4462 AANoCapture::StateType &State; 4463 4464 /// Set of potential copies of the tracked value. 4465 SmallVectorImpl<const Value *> &PotentialCopies; 4466 4467 /// Global counter to limit the number of explored uses. 4468 unsigned &RemainingUsesToExplore; 4469 }; 4470 4471 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { 4472 const IRPosition &IRP = getIRPosition(); 4473 const Value *V = 4474 getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue(); 4475 if (!V) 4476 return indicatePessimisticFixpoint(); 4477 4478 const Function *F = 4479 getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); 4480 assert(F && "Expected a function!"); 4481 const IRPosition &FnPos = IRPosition::function(*F); 4482 const auto &IsDeadAA = 4483 A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false); 4484 4485 AANoCapture::StateType T; 4486 4487 // Readonly means we cannot capture through memory. 4488 const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>( 4489 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 4490 if (FnMemAA.isAssumedReadOnly()) { 4491 T.addKnownBits(NOT_CAPTURED_IN_MEM); 4492 if (FnMemAA.isKnownReadOnly()) 4493 addKnownBits(NOT_CAPTURED_IN_MEM); 4494 } 4495 4496 // Make sure all returned values are different than the underlying value. 4497 // TODO: we could do this in a more sophisticated way inside 4498 // AAReturnedValues, e.g., track all values that escape through returns 4499 // directly somehow. 4500 auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) { 4501 bool SeenConstant = false; 4502 for (auto &It : RVAA.returned_values()) { 4503 if (isa<Constant>(It.first)) { 4504 if (SeenConstant) 4505 return false; 4506 SeenConstant = true; 4507 } else if (!isa<Argument>(It.first) || 4508 It.first == getAssociatedArgument()) 4509 return false; 4510 } 4511 return true; 4512 }; 4513 4514 const auto &NoUnwindAA = A.getAAFor<AANoUnwind>( 4515 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 4516 if (NoUnwindAA.isAssumedNoUnwind()) { 4517 bool IsVoidTy = F->getReturnType()->isVoidTy(); 4518 const AAReturnedValues *RVAA = 4519 IsVoidTy ? nullptr 4520 : &A.getAAFor<AAReturnedValues>(*this, FnPos, 4521 /* TrackDependence */ true, 4522 DepClassTy::OPTIONAL); 4523 if (IsVoidTy || CheckReturnedArgs(*RVAA)) { 4524 T.addKnownBits(NOT_CAPTURED_IN_RET); 4525 if (T.isKnown(NOT_CAPTURED_IN_MEM)) 4526 return ChangeStatus::UNCHANGED; 4527 if (NoUnwindAA.isKnownNoUnwind() && 4528 (IsVoidTy || RVAA->getState().isAtFixpoint())) { 4529 addKnownBits(NOT_CAPTURED_IN_RET); 4530 if (isKnown(NOT_CAPTURED_IN_MEM)) 4531 return indicateOptimisticFixpoint(); 4532 } 4533 } 4534 } 4535 4536 // Use the CaptureTracker interface and logic with the specialized tracker, 4537 // defined in AACaptureUseTracker, that can look at in-flight abstract 4538 // attributes and directly updates the assumed state. 4539 SmallVector<const Value *, 4> PotentialCopies; 4540 unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore; 4541 AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies, 4542 RemainingUsesToExplore); 4543 4544 // Check all potential copies of the associated value until we can assume 4545 // none will be captured or we have to assume at least one might be. 4546 unsigned Idx = 0; 4547 PotentialCopies.push_back(V); 4548 while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size()) 4549 Tracker.valueMayBeCaptured(PotentialCopies[Idx++]); 4550 4551 AANoCapture::StateType &S = getState(); 4552 auto Assumed = S.getAssumed(); 4553 S.intersectAssumedBits(T.getAssumed()); 4554 if (!isAssumedNoCaptureMaybeReturned()) 4555 return indicatePessimisticFixpoint(); 4556 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED 4557 : ChangeStatus::CHANGED; 4558 } 4559 4560 /// NoCapture attribute for function arguments. 4561 struct AANoCaptureArgument final : AANoCaptureImpl { 4562 AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} 4563 4564 /// See AbstractAttribute::trackStatistics() 4565 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } 4566 }; 4567 4568 /// NoCapture attribute for call site arguments. 4569 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { 4570 AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} 4571 4572 /// See AbstractAttribute::initialize(...). 4573 void initialize(Attributor &A) override { 4574 if (Argument *Arg = getAssociatedArgument()) 4575 if (Arg->hasByValAttr()) 4576 indicateOptimisticFixpoint(); 4577 AANoCaptureImpl::initialize(A); 4578 } 4579 4580 /// See AbstractAttribute::updateImpl(...). 4581 ChangeStatus updateImpl(Attributor &A) override { 4582 // TODO: Once we have call site specific value information we can provide 4583 // call site specific liveness information and then it makes 4584 // sense to specialize attributes for call sites arguments instead of 4585 // redirecting requests to the callee argument. 4586 Argument *Arg = getAssociatedArgument(); 4587 if (!Arg) 4588 return indicatePessimisticFixpoint(); 4589 const IRPosition &ArgPos = IRPosition::argument(*Arg); 4590 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos); 4591 return clampStateAndIndicateChange( 4592 getState(), 4593 static_cast<const AANoCapture::StateType &>(ArgAA.getState())); 4594 } 4595 4596 /// See AbstractAttribute::trackStatistics() 4597 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)}; 4598 }; 4599 4600 /// NoCapture attribute for floating values. 4601 struct AANoCaptureFloating final : AANoCaptureImpl { 4602 AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} 4603 4604 /// See AbstractAttribute::trackStatistics() 4605 void trackStatistics() const override { 4606 STATS_DECLTRACK_FLOATING_ATTR(nocapture) 4607 } 4608 }; 4609 4610 /// NoCapture attribute for function return value. 4611 struct AANoCaptureReturned final : AANoCaptureImpl { 4612 AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) { 4613 llvm_unreachable("NoCapture is not applicable to function returns!"); 4614 } 4615 4616 /// See AbstractAttribute::initialize(...). 4617 void initialize(Attributor &A) override { 4618 llvm_unreachable("NoCapture is not applicable to function returns!"); 4619 } 4620 4621 /// See AbstractAttribute::updateImpl(...). 4622 ChangeStatus updateImpl(Attributor &A) override { 4623 llvm_unreachable("NoCapture is not applicable to function returns!"); 4624 } 4625 4626 /// See AbstractAttribute::trackStatistics() 4627 void trackStatistics() const override {} 4628 }; 4629 4630 /// NoCapture attribute deduction for a call site return value. 4631 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { 4632 AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {} 4633 4634 /// See AbstractAttribute::trackStatistics() 4635 void trackStatistics() const override { 4636 STATS_DECLTRACK_CSRET_ATTR(nocapture) 4637 } 4638 }; 4639 4640 /// ------------------ Value Simplify Attribute ---------------------------- 4641 struct AAValueSimplifyImpl : AAValueSimplify { 4642 AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {} 4643 4644 /// See AbstractAttribute::initialize(...). 4645 void initialize(Attributor &A) override { 4646 if (getAssociatedValue().getType()->isVoidTy()) 4647 indicatePessimisticFixpoint(); 4648 } 4649 4650 /// See AbstractAttribute::getAsStr(). 4651 const std::string getAsStr() const override { 4652 return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple") 4653 : "not-simple"; 4654 } 4655 4656 /// See AbstractAttribute::trackStatistics() 4657 void trackStatistics() const override {} 4658 4659 /// See AAValueSimplify::getAssumedSimplifiedValue() 4660 Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { 4661 if (!getAssumed()) 4662 return const_cast<Value *>(&getAssociatedValue()); 4663 return SimplifiedAssociatedValue; 4664 } 4665 4666 /// Helper function for querying AAValueSimplify and updating candicate. 4667 /// \param QueryingValue Value trying to unify with SimplifiedValue 4668 /// \param AccumulatedSimplifiedValue Current simplification result. 4669 static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, 4670 Value &QueryingValue, 4671 Optional<Value *> &AccumulatedSimplifiedValue) { 4672 // FIXME: Add a typecast support. 4673 4674 auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>( 4675 QueryingAA, IRPosition::value(QueryingValue)); 4676 4677 Optional<Value *> QueryingValueSimplified = 4678 ValueSimplifyAA.getAssumedSimplifiedValue(A); 4679 4680 if (!QueryingValueSimplified.hasValue()) 4681 return true; 4682 4683 if (!QueryingValueSimplified.getValue()) 4684 return false; 4685 4686 Value &QueryingValueSimplifiedUnwrapped = 4687 *QueryingValueSimplified.getValue(); 4688 4689 if (AccumulatedSimplifiedValue.hasValue() && 4690 !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) && 4691 !isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4692 return AccumulatedSimplifiedValue == QueryingValueSimplified; 4693 if (AccumulatedSimplifiedValue.hasValue() && 4694 isa<UndefValue>(QueryingValueSimplifiedUnwrapped)) 4695 return true; 4696 4697 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue 4698 << " is assumed to be " 4699 << QueryingValueSimplifiedUnwrapped << "\n"); 4700 4701 AccumulatedSimplifiedValue = QueryingValueSimplified; 4702 return true; 4703 } 4704 4705 bool askSimplifiedValueForAAValueConstantRange(Attributor &A) { 4706 if (!getAssociatedValue().getType()->isIntegerTy()) 4707 return false; 4708 4709 const auto &ValueConstantRangeAA = 4710 A.getAAFor<AAValueConstantRange>(*this, getIRPosition()); 4711 4712 Optional<ConstantInt *> COpt = 4713 ValueConstantRangeAA.getAssumedConstantInt(A); 4714 if (COpt.hasValue()) { 4715 if (auto *C = COpt.getValue()) 4716 SimplifiedAssociatedValue = C; 4717 else 4718 return false; 4719 } else { 4720 SimplifiedAssociatedValue = llvm::None; 4721 } 4722 return true; 4723 } 4724 4725 /// See AbstractAttribute::manifest(...). 4726 ChangeStatus manifest(Attributor &A) override { 4727 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4728 4729 if (SimplifiedAssociatedValue.hasValue() && 4730 !SimplifiedAssociatedValue.getValue()) 4731 return Changed; 4732 4733 Value &V = getAssociatedValue(); 4734 auto *C = SimplifiedAssociatedValue.hasValue() 4735 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4736 : UndefValue::get(V.getType()); 4737 if (C) { 4738 // We can replace the AssociatedValue with the constant. 4739 if (!V.user_empty() && &V != C && V.getType() == C->getType()) { 4740 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C 4741 << " :: " << *this << "\n"); 4742 if (A.changeValueAfterManifest(V, *C)) 4743 Changed = ChangeStatus::CHANGED; 4744 } 4745 } 4746 4747 return Changed | AAValueSimplify::manifest(A); 4748 } 4749 4750 /// See AbstractState::indicatePessimisticFixpoint(...). 4751 ChangeStatus indicatePessimisticFixpoint() override { 4752 // NOTE: Associated value will be returned in a pessimistic fixpoint and is 4753 // regarded as known. That's why`indicateOptimisticFixpoint` is called. 4754 SimplifiedAssociatedValue = &getAssociatedValue(); 4755 indicateOptimisticFixpoint(); 4756 return ChangeStatus::CHANGED; 4757 } 4758 4759 protected: 4760 // An assumed simplified value. Initially, it is set to Optional::None, which 4761 // means that the value is not clear under current assumption. If in the 4762 // pessimistic state, getAssumedSimplifiedValue doesn't return this value but 4763 // returns orignal associated value. 4764 Optional<Value *> SimplifiedAssociatedValue; 4765 }; 4766 4767 struct AAValueSimplifyArgument final : AAValueSimplifyImpl { 4768 AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} 4769 4770 void initialize(Attributor &A) override { 4771 AAValueSimplifyImpl::initialize(A); 4772 if (!getAnchorScope() || getAnchorScope()->isDeclaration()) 4773 indicatePessimisticFixpoint(); 4774 if (hasAttr({Attribute::InAlloca, Attribute::StructRet, Attribute::Nest}, 4775 /* IgnoreSubsumingPositions */ true)) 4776 indicatePessimisticFixpoint(); 4777 4778 // FIXME: This is a hack to prevent us from propagating function poiner in 4779 // the new pass manager CGSCC pass as it creates call edges the 4780 // CallGraphUpdater cannot handle yet. 4781 Value &V = getAssociatedValue(); 4782 if (V.getType()->isPointerTy() && 4783 V.getType()->getPointerElementType()->isFunctionTy() && 4784 !A.isModulePass()) 4785 indicatePessimisticFixpoint(); 4786 } 4787 4788 /// See AbstractAttribute::updateImpl(...). 4789 ChangeStatus updateImpl(Attributor &A) override { 4790 // Byval is only replacable if it is readonly otherwise we would write into 4791 // the replaced value and not the copy that byval creates implicitly. 4792 Argument *Arg = getAssociatedArgument(); 4793 if (Arg->hasByValAttr()) { 4794 // TODO: We probably need to verify synchronization is not an issue, e.g., 4795 // there is no race by not copying a constant byval. 4796 const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition()); 4797 if (!MemAA.isAssumedReadOnly()) 4798 return indicatePessimisticFixpoint(); 4799 } 4800 4801 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4802 4803 auto PredForCallSite = [&](AbstractCallSite ACS) { 4804 const IRPosition &ACSArgPos = 4805 IRPosition::callsite_argument(ACS, getArgNo()); 4806 // Check if a coresponding argument was found or if it is on not 4807 // associated (which can happen for callback calls). 4808 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 4809 return false; 4810 4811 // We can only propagate thread independent values through callbacks. 4812 // This is different to direct/indirect call sites because for them we 4813 // know the thread executing the caller and callee is the same. For 4814 // callbacks this is not guaranteed, thus a thread dependent value could 4815 // be different for the caller and callee, making it invalid to propagate. 4816 Value &ArgOp = ACSArgPos.getAssociatedValue(); 4817 if (ACS.isCallbackCall()) 4818 if (auto *C = dyn_cast<Constant>(&ArgOp)) 4819 if (C->isThreadDependent()) 4820 return false; 4821 return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue); 4822 }; 4823 4824 bool AllCallSitesKnown; 4825 if (!A.checkForAllCallSites(PredForCallSite, *this, true, 4826 AllCallSitesKnown)) 4827 if (!askSimplifiedValueForAAValueConstantRange(A)) 4828 return indicatePessimisticFixpoint(); 4829 4830 // If a candicate was found in this update, return CHANGED. 4831 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4832 ? ChangeStatus::UNCHANGED 4833 : ChangeStatus ::CHANGED; 4834 } 4835 4836 /// See AbstractAttribute::trackStatistics() 4837 void trackStatistics() const override { 4838 STATS_DECLTRACK_ARG_ATTR(value_simplify) 4839 } 4840 }; 4841 4842 struct AAValueSimplifyReturned : AAValueSimplifyImpl { 4843 AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} 4844 4845 /// See AbstractAttribute::updateImpl(...). 4846 ChangeStatus updateImpl(Attributor &A) override { 4847 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4848 4849 auto PredForReturned = [&](Value &V) { 4850 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4851 }; 4852 4853 if (!A.checkForAllReturnedValues(PredForReturned, *this)) 4854 if (!askSimplifiedValueForAAValueConstantRange(A)) 4855 return indicatePessimisticFixpoint(); 4856 4857 // If a candicate was found in this update, return CHANGED. 4858 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4859 ? ChangeStatus::UNCHANGED 4860 : ChangeStatus ::CHANGED; 4861 } 4862 4863 ChangeStatus manifest(Attributor &A) override { 4864 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4865 4866 if (SimplifiedAssociatedValue.hasValue() && 4867 !SimplifiedAssociatedValue.getValue()) 4868 return Changed; 4869 4870 Value &V = getAssociatedValue(); 4871 auto *C = SimplifiedAssociatedValue.hasValue() 4872 ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue()) 4873 : UndefValue::get(V.getType()); 4874 if (C) { 4875 auto PredForReturned = 4876 [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) { 4877 // We can replace the AssociatedValue with the constant. 4878 if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V)) 4879 return true; 4880 4881 for (ReturnInst *RI : RetInsts) { 4882 if (RI->getFunction() != getAnchorScope()) 4883 continue; 4884 LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C 4885 << " in " << *RI << " :: " << *this << "\n"); 4886 if (A.changeUseAfterManifest(RI->getOperandUse(0), *C)) 4887 Changed = ChangeStatus::CHANGED; 4888 } 4889 return true; 4890 }; 4891 A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this); 4892 } 4893 4894 return Changed | AAValueSimplify::manifest(A); 4895 } 4896 4897 /// See AbstractAttribute::trackStatistics() 4898 void trackStatistics() const override { 4899 STATS_DECLTRACK_FNRET_ATTR(value_simplify) 4900 } 4901 }; 4902 4903 struct AAValueSimplifyFloating : AAValueSimplifyImpl { 4904 AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} 4905 4906 /// See AbstractAttribute::initialize(...). 4907 void initialize(Attributor &A) override { 4908 // FIXME: This might have exposed a SCC iterator update bug in the old PM. 4909 // Needs investigation. 4910 // AAValueSimplifyImpl::initialize(A); 4911 Value &V = getAnchorValue(); 4912 4913 // TODO: add other stuffs 4914 if (isa<Constant>(V)) 4915 indicatePessimisticFixpoint(); 4916 } 4917 4918 /// See AbstractAttribute::updateImpl(...). 4919 ChangeStatus updateImpl(Attributor &A) override { 4920 bool HasValueBefore = SimplifiedAssociatedValue.hasValue(); 4921 4922 auto VisitValueCB = [&](Value &V, bool &, bool Stripped) -> bool { 4923 auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V)); 4924 if (!Stripped && this == &AA) { 4925 // TODO: Look the instruction and check recursively. 4926 4927 LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V 4928 << "\n"); 4929 return false; 4930 } 4931 return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue); 4932 }; 4933 4934 bool Dummy = false; 4935 if (!genericValueTraversal<AAValueSimplify, bool>(A, getIRPosition(), *this, 4936 Dummy, VisitValueCB)) 4937 if (!askSimplifiedValueForAAValueConstantRange(A)) 4938 return indicatePessimisticFixpoint(); 4939 4940 // If a candicate was found in this update, return CHANGED. 4941 4942 return HasValueBefore == SimplifiedAssociatedValue.hasValue() 4943 ? ChangeStatus::UNCHANGED 4944 : ChangeStatus ::CHANGED; 4945 } 4946 4947 /// See AbstractAttribute::trackStatistics() 4948 void trackStatistics() const override { 4949 STATS_DECLTRACK_FLOATING_ATTR(value_simplify) 4950 } 4951 }; 4952 4953 struct AAValueSimplifyFunction : AAValueSimplifyImpl { 4954 AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {} 4955 4956 /// See AbstractAttribute::initialize(...). 4957 void initialize(Attributor &A) override { 4958 SimplifiedAssociatedValue = &getAnchorValue(); 4959 indicateOptimisticFixpoint(); 4960 } 4961 /// See AbstractAttribute::initialize(...). 4962 ChangeStatus updateImpl(Attributor &A) override { 4963 llvm_unreachable( 4964 "AAValueSimplify(Function|CallSite)::updateImpl will not be called"); 4965 } 4966 /// See AbstractAttribute::trackStatistics() 4967 void trackStatistics() const override { 4968 STATS_DECLTRACK_FN_ATTR(value_simplify) 4969 } 4970 }; 4971 4972 struct AAValueSimplifyCallSite : AAValueSimplifyFunction { 4973 AAValueSimplifyCallSite(const IRPosition &IRP) 4974 : AAValueSimplifyFunction(IRP) {} 4975 /// See AbstractAttribute::trackStatistics() 4976 void trackStatistics() const override { 4977 STATS_DECLTRACK_CS_ATTR(value_simplify) 4978 } 4979 }; 4980 4981 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned { 4982 AAValueSimplifyCallSiteReturned(const IRPosition &IRP) 4983 : AAValueSimplifyReturned(IRP) {} 4984 4985 /// See AbstractAttribute::manifest(...). 4986 ChangeStatus manifest(Attributor &A) override { 4987 return AAValueSimplifyImpl::manifest(A); 4988 } 4989 4990 void trackStatistics() const override { 4991 STATS_DECLTRACK_CSRET_ATTR(value_simplify) 4992 } 4993 }; 4994 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { 4995 AAValueSimplifyCallSiteArgument(const IRPosition &IRP) 4996 : AAValueSimplifyFloating(IRP) {} 4997 4998 void trackStatistics() const override { 4999 STATS_DECLTRACK_CSARG_ATTR(value_simplify) 5000 } 5001 }; 5002 5003 /// ----------------------- Heap-To-Stack Conversion --------------------------- 5004 struct AAHeapToStackImpl : public AAHeapToStack { 5005 AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {} 5006 5007 const std::string getAsStr() const override { 5008 return "[H2S] Mallocs: " + std::to_string(MallocCalls.size()); 5009 } 5010 5011 ChangeStatus manifest(Attributor &A) override { 5012 assert(getState().isValidState() && 5013 "Attempted to manifest an invalid state!"); 5014 5015 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 5016 Function *F = getAnchorScope(); 5017 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 5018 5019 for (Instruction *MallocCall : MallocCalls) { 5020 // This malloc cannot be replaced. 5021 if (BadMallocCalls.count(MallocCall)) 5022 continue; 5023 5024 for (Instruction *FreeCall : FreesForMalloc[MallocCall]) { 5025 LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n"); 5026 A.deleteAfterManifest(*FreeCall); 5027 HasChanged = ChangeStatus::CHANGED; 5028 } 5029 5030 LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall 5031 << "\n"); 5032 5033 Constant *Size; 5034 if (isCallocLikeFn(MallocCall, TLI)) { 5035 auto *Num = cast<ConstantInt>(MallocCall->getOperand(0)); 5036 auto *SizeT = dyn_cast<ConstantInt>(MallocCall->getOperand(1)); 5037 APInt TotalSize = SizeT->getValue() * Num->getValue(); 5038 Size = 5039 ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize); 5040 } else { 5041 Size = cast<ConstantInt>(MallocCall->getOperand(0)); 5042 } 5043 5044 unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace(); 5045 Instruction *AI = new AllocaInst(Type::getInt8Ty(F->getContext()), AS, 5046 Size, "", MallocCall->getNextNode()); 5047 5048 if (AI->getType() != MallocCall->getType()) 5049 AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc", 5050 AI->getNextNode()); 5051 5052 A.changeValueAfterManifest(*MallocCall, *AI); 5053 5054 if (auto *II = dyn_cast<InvokeInst>(MallocCall)) { 5055 auto *NBB = II->getNormalDest(); 5056 BranchInst::Create(NBB, MallocCall->getParent()); 5057 A.deleteAfterManifest(*MallocCall); 5058 } else { 5059 A.deleteAfterManifest(*MallocCall); 5060 } 5061 5062 if (isCallocLikeFn(MallocCall, TLI)) { 5063 auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc", 5064 AI->getNextNode()); 5065 Value *Ops[] = { 5066 BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size, 5067 ConstantInt::get(Type::getInt1Ty(F->getContext()), false)}; 5068 5069 Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()}; 5070 Module *M = F->getParent(); 5071 Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); 5072 CallInst::Create(Fn, Ops, "", BI->getNextNode()); 5073 } 5074 HasChanged = ChangeStatus::CHANGED; 5075 } 5076 5077 return HasChanged; 5078 } 5079 5080 /// Collection of all malloc calls in a function. 5081 SmallSetVector<Instruction *, 4> MallocCalls; 5082 5083 /// Collection of malloc calls that cannot be converted. 5084 DenseSet<const Instruction *> BadMallocCalls; 5085 5086 /// A map for each malloc call to the set of associated free calls. 5087 DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc; 5088 5089 ChangeStatus updateImpl(Attributor &A) override; 5090 }; 5091 5092 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) { 5093 const Function *F = getAnchorScope(); 5094 const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); 5095 5096 MustBeExecutedContextExplorer &Explorer = 5097 A.getInfoCache().getMustBeExecutedContextExplorer(); 5098 5099 auto FreeCheck = [&](Instruction &I) { 5100 const auto &Frees = FreesForMalloc.lookup(&I); 5101 if (Frees.size() != 1) 5102 return false; 5103 Instruction *UniqueFree = *Frees.begin(); 5104 return Explorer.findInContextOf(UniqueFree, I.getNextNode()); 5105 }; 5106 5107 auto UsesCheck = [&](Instruction &I) { 5108 bool ValidUsesOnly = true; 5109 bool MustUse = true; 5110 auto Pred = [&](const Use &U, bool &Follow) -> bool { 5111 Instruction *UserI = cast<Instruction>(U.getUser()); 5112 if (isa<LoadInst>(UserI)) 5113 return true; 5114 if (auto *SI = dyn_cast<StoreInst>(UserI)) { 5115 if (SI->getValueOperand() == U.get()) { 5116 LLVM_DEBUG(dbgs() 5117 << "[H2S] escaping store to memory: " << *UserI << "\n"); 5118 ValidUsesOnly = false; 5119 } else { 5120 // A store into the malloc'ed memory is fine. 5121 } 5122 return true; 5123 } 5124 if (auto *CB = dyn_cast<CallBase>(UserI)) { 5125 if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd()) 5126 return true; 5127 // Record malloc. 5128 if (isFreeCall(UserI, TLI)) { 5129 if (MustUse) { 5130 FreesForMalloc[&I].insert(UserI); 5131 } else { 5132 LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: " 5133 << *UserI << "\n"); 5134 ValidUsesOnly = false; 5135 } 5136 return true; 5137 } 5138 5139 unsigned ArgNo = CB->getArgOperandNo(&U); 5140 5141 const auto &NoCaptureAA = A.getAAFor<AANoCapture>( 5142 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5143 5144 // If a callsite argument use is nofree, we are fine. 5145 const auto &ArgNoFreeAA = A.getAAFor<AANoFree>( 5146 *this, IRPosition::callsite_argument(*CB, ArgNo)); 5147 5148 if (!NoCaptureAA.isAssumedNoCapture() || 5149 !ArgNoFreeAA.isAssumedNoFree()) { 5150 LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n"); 5151 ValidUsesOnly = false; 5152 } 5153 return true; 5154 } 5155 5156 if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || 5157 isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { 5158 MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI)); 5159 Follow = true; 5160 return true; 5161 } 5162 // Unknown user for which we can not track uses further (in a way that 5163 // makes sense). 5164 LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n"); 5165 ValidUsesOnly = false; 5166 return true; 5167 }; 5168 A.checkForAllUses(Pred, *this, I); 5169 return ValidUsesOnly; 5170 }; 5171 5172 auto MallocCallocCheck = [&](Instruction &I) { 5173 if (BadMallocCalls.count(&I)) 5174 return true; 5175 5176 bool IsMalloc = isMallocLikeFn(&I, TLI); 5177 bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI); 5178 if (!IsMalloc && !IsCalloc) { 5179 BadMallocCalls.insert(&I); 5180 return true; 5181 } 5182 5183 if (IsMalloc) { 5184 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0))) 5185 if (Size->getValue().ule(MaxHeapToStackSize)) 5186 if (UsesCheck(I) || FreeCheck(I)) { 5187 MallocCalls.insert(&I); 5188 return true; 5189 } 5190 } else if (IsCalloc) { 5191 bool Overflow = false; 5192 if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0))) 5193 if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1))) 5194 if ((Size->getValue().umul_ov(Num->getValue(), Overflow)) 5195 .ule(MaxHeapToStackSize)) 5196 if (!Overflow && (UsesCheck(I) || FreeCheck(I))) { 5197 MallocCalls.insert(&I); 5198 return true; 5199 } 5200 } 5201 5202 BadMallocCalls.insert(&I); 5203 return true; 5204 }; 5205 5206 size_t NumBadMallocs = BadMallocCalls.size(); 5207 5208 A.checkForAllCallLikeInstructions(MallocCallocCheck, *this); 5209 5210 if (NumBadMallocs != BadMallocCalls.size()) 5211 return ChangeStatus::CHANGED; 5212 5213 return ChangeStatus::UNCHANGED; 5214 } 5215 5216 struct AAHeapToStackFunction final : public AAHeapToStackImpl { 5217 AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {} 5218 5219 /// See AbstractAttribute::trackStatistics() 5220 void trackStatistics() const override { 5221 STATS_DECL(MallocCalls, Function, 5222 "Number of malloc calls converted to allocas"); 5223 for (auto *C : MallocCalls) 5224 if (!BadMallocCalls.count(C)) 5225 ++BUILD_STAT_NAME(MallocCalls, Function); 5226 } 5227 }; 5228 5229 /// ----------------------- Privatizable Pointers ------------------------------ 5230 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr { 5231 AAPrivatizablePtrImpl(const IRPosition &IRP) 5232 : AAPrivatizablePtr(IRP), PrivatizableType(llvm::None) {} 5233 5234 ChangeStatus indicatePessimisticFixpoint() override { 5235 AAPrivatizablePtr::indicatePessimisticFixpoint(); 5236 PrivatizableType = nullptr; 5237 return ChangeStatus::CHANGED; 5238 } 5239 5240 /// Identify the type we can chose for a private copy of the underlying 5241 /// argument. None means it is not clear yet, nullptr means there is none. 5242 virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0; 5243 5244 /// Return a privatizable type that encloses both T0 and T1. 5245 /// TODO: This is merely a stub for now as we should manage a mapping as well. 5246 Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) { 5247 if (!T0.hasValue()) 5248 return T1; 5249 if (!T1.hasValue()) 5250 return T0; 5251 if (T0 == T1) 5252 return T0; 5253 return nullptr; 5254 } 5255 5256 Optional<Type *> getPrivatizableType() const override { 5257 return PrivatizableType; 5258 } 5259 5260 const std::string getAsStr() const override { 5261 return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]"; 5262 } 5263 5264 protected: 5265 Optional<Type *> PrivatizableType; 5266 }; 5267 5268 // TODO: Do this for call site arguments (probably also other values) as well. 5269 5270 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl { 5271 AAPrivatizablePtrArgument(const IRPosition &IRP) 5272 : AAPrivatizablePtrImpl(IRP) {} 5273 5274 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5275 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5276 // If this is a byval argument and we know all the call sites (so we can 5277 // rewrite them), there is no need to check them explicitly. 5278 bool AllCallSitesKnown; 5279 if (getIRPosition().hasAttr(Attribute::ByVal) && 5280 A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this, 5281 true, AllCallSitesKnown)) 5282 return getAssociatedValue().getType()->getPointerElementType(); 5283 5284 Optional<Type *> Ty; 5285 unsigned ArgNo = getIRPosition().getArgNo(); 5286 5287 // Make sure the associated call site argument has the same type at all call 5288 // sites and it is an allocation we know is safe to privatize, for now that 5289 // means we only allow alloca instructions. 5290 // TODO: We can additionally analyze the accesses in the callee to create 5291 // the type from that information instead. That is a little more 5292 // involved and will be done in a follow up patch. 5293 auto CallSiteCheck = [&](AbstractCallSite ACS) { 5294 IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); 5295 // Check if a coresponding argument was found or if it is one not 5296 // associated (which can happen for callback calls). 5297 if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) 5298 return false; 5299 5300 // Check that all call sites agree on a type. 5301 auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos); 5302 Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType(); 5303 5304 LLVM_DEBUG({ 5305 dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: "; 5306 if (CSTy.hasValue() && CSTy.getValue()) 5307 CSTy.getValue()->print(dbgs()); 5308 else if (CSTy.hasValue()) 5309 dbgs() << "<nullptr>"; 5310 else 5311 dbgs() << "<none>"; 5312 }); 5313 5314 Ty = combineTypes(Ty, CSTy); 5315 5316 LLVM_DEBUG({ 5317 dbgs() << " : New Type: "; 5318 if (Ty.hasValue() && Ty.getValue()) 5319 Ty.getValue()->print(dbgs()); 5320 else if (Ty.hasValue()) 5321 dbgs() << "<nullptr>"; 5322 else 5323 dbgs() << "<none>"; 5324 dbgs() << "\n"; 5325 }); 5326 5327 return !Ty.hasValue() || Ty.getValue(); 5328 }; 5329 5330 if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown)) 5331 return nullptr; 5332 return Ty; 5333 } 5334 5335 /// See AbstractAttribute::updateImpl(...). 5336 ChangeStatus updateImpl(Attributor &A) override { 5337 PrivatizableType = identifyPrivatizableType(A); 5338 if (!PrivatizableType.hasValue()) 5339 return ChangeStatus::UNCHANGED; 5340 if (!PrivatizableType.getValue()) 5341 return indicatePessimisticFixpoint(); 5342 5343 // Avoid arguments with padding for now. 5344 if (!getIRPosition().hasAttr(Attribute::ByVal) && 5345 !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(), 5346 A.getInfoCache().getDL())) { 5347 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n"); 5348 return indicatePessimisticFixpoint(); 5349 } 5350 5351 // Verify callee and caller agree on how the promoted argument would be 5352 // passed. 5353 // TODO: The use of the ArgumentPromotion interface here is ugly, we need a 5354 // specialized form of TargetTransformInfo::areFunctionArgsABICompatible 5355 // which doesn't require the arguments ArgumentPromotion wanted to pass. 5356 Function &Fn = *getIRPosition().getAnchorScope(); 5357 SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy; 5358 ArgsToPromote.insert(getAssociatedArgument()); 5359 const auto *TTI = 5360 A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn); 5361 if (!TTI || 5362 !ArgumentPromotionPass::areFunctionArgsABICompatible( 5363 Fn, *TTI, ArgsToPromote, Dummy) || 5364 ArgsToPromote.empty()) { 5365 LLVM_DEBUG( 5366 dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for " 5367 << Fn.getName() << "\n"); 5368 return indicatePessimisticFixpoint(); 5369 } 5370 5371 // Collect the types that will replace the privatizable type in the function 5372 // signature. 5373 SmallVector<Type *, 16> ReplacementTypes; 5374 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5375 5376 // Register a rewrite of the argument. 5377 Argument *Arg = getAssociatedArgument(); 5378 if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) { 5379 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n"); 5380 return indicatePessimisticFixpoint(); 5381 } 5382 5383 unsigned ArgNo = Arg->getArgNo(); 5384 5385 // Helper to check if for the given call site the associated argument is 5386 // passed to a callback where the privatization would be different. 5387 auto IsCompatiblePrivArgOfCallback = [&](CallSite CS) { 5388 SmallVector<const Use *, 4> CBUses; 5389 AbstractCallSite::getCallbackUses(CS, CBUses); 5390 for (const Use *U : CBUses) { 5391 AbstractCallSite CBACS(U); 5392 assert(CBACS && CBACS.isCallbackCall()); 5393 for (Argument &CBArg : CBACS.getCalledFunction()->args()) { 5394 int CBArgNo = CBACS.getCallArgOperandNo(CBArg); 5395 5396 LLVM_DEBUG({ 5397 dbgs() 5398 << "[AAPrivatizablePtr] Argument " << *Arg 5399 << "check if can be privatized in the context of its parent (" 5400 << Arg->getParent()->getName() 5401 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5402 "callback (" 5403 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5404 << ")\n[AAPrivatizablePtr] " << CBArg << " : " 5405 << CBACS.getCallArgOperand(CBArg) << " vs " 5406 << CS.getArgOperand(ArgNo) << "\n" 5407 << "[AAPrivatizablePtr] " << CBArg << " : " 5408 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n"; 5409 }); 5410 5411 if (CBArgNo != int(ArgNo)) 5412 continue; 5413 const auto &CBArgPrivAA = 5414 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg)); 5415 if (CBArgPrivAA.isValidState()) { 5416 auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType(); 5417 if (!CBArgPrivTy.hasValue()) 5418 continue; 5419 if (CBArgPrivTy.getValue() == PrivatizableType) 5420 continue; 5421 } 5422 5423 LLVM_DEBUG({ 5424 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5425 << " cannot be privatized in the context of its parent (" 5426 << Arg->getParent()->getName() 5427 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5428 "callback (" 5429 << CBArgNo << "@" << CBACS.getCalledFunction()->getName() 5430 << ").\n[AAPrivatizablePtr] for which the argument " 5431 "privatization is not compatible.\n"; 5432 }); 5433 return false; 5434 } 5435 } 5436 return true; 5437 }; 5438 5439 // Helper to check if for the given call site the associated argument is 5440 // passed to a direct call where the privatization would be different. 5441 auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) { 5442 CallBase *DC = cast<CallBase>(ACS.getInstruction()); 5443 int DCArgNo = ACS.getCallArgOperandNo(ArgNo); 5444 assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() && 5445 "Expected a direct call operand for callback call operand"); 5446 5447 LLVM_DEBUG({ 5448 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5449 << " check if be privatized in the context of its parent (" 5450 << Arg->getParent()->getName() 5451 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5452 "direct call of (" 5453 << DCArgNo << "@" << DC->getCalledFunction()->getName() 5454 << ").\n"; 5455 }); 5456 5457 Function *DCCallee = DC->getCalledFunction(); 5458 if (unsigned(DCArgNo) < DCCallee->arg_size()) { 5459 const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>( 5460 *this, IRPosition::argument(*DCCallee->getArg(DCArgNo))); 5461 if (DCArgPrivAA.isValidState()) { 5462 auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType(); 5463 if (!DCArgPrivTy.hasValue()) 5464 return true; 5465 if (DCArgPrivTy.getValue() == PrivatizableType) 5466 return true; 5467 } 5468 } 5469 5470 LLVM_DEBUG({ 5471 dbgs() << "[AAPrivatizablePtr] Argument " << *Arg 5472 << " cannot be privatized in the context of its parent (" 5473 << Arg->getParent()->getName() 5474 << ")\n[AAPrivatizablePtr] because it is an argument in a " 5475 "direct call of (" 5476 << ACS.getCallSite().getCalledFunction()->getName() 5477 << ").\n[AAPrivatizablePtr] for which the argument " 5478 "privatization is not compatible.\n"; 5479 }); 5480 return false; 5481 }; 5482 5483 // Helper to check if the associated argument is used at the given abstract 5484 // call site in a way that is incompatible with the privatization assumed 5485 // here. 5486 auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) { 5487 if (ACS.isDirectCall()) 5488 return IsCompatiblePrivArgOfCallback(ACS.getCallSite()); 5489 if (ACS.isCallbackCall()) 5490 return IsCompatiblePrivArgOfDirectCS(ACS); 5491 return false; 5492 }; 5493 5494 bool AllCallSitesKnown; 5495 if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true, 5496 AllCallSitesKnown)) 5497 return indicatePessimisticFixpoint(); 5498 5499 return ChangeStatus::UNCHANGED; 5500 } 5501 5502 /// Given a type to private \p PrivType, collect the constituates (which are 5503 /// used) in \p ReplacementTypes. 5504 static void 5505 identifyReplacementTypes(Type *PrivType, 5506 SmallVectorImpl<Type *> &ReplacementTypes) { 5507 // TODO: For now we expand the privatization type to the fullest which can 5508 // lead to dead arguments that need to be removed later. 5509 assert(PrivType && "Expected privatizable type!"); 5510 5511 // Traverse the type, extract constituate types on the outermost level. 5512 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5513 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) 5514 ReplacementTypes.push_back(PrivStructType->getElementType(u)); 5515 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5516 ReplacementTypes.append(PrivArrayType->getNumElements(), 5517 PrivArrayType->getElementType()); 5518 } else { 5519 ReplacementTypes.push_back(PrivType); 5520 } 5521 } 5522 5523 /// Initialize \p Base according to the type \p PrivType at position \p IP. 5524 /// The values needed are taken from the arguments of \p F starting at 5525 /// position \p ArgNo. 5526 static void createInitialization(Type *PrivType, Value &Base, Function &F, 5527 unsigned ArgNo, Instruction &IP) { 5528 assert(PrivType && "Expected privatizable type!"); 5529 5530 IRBuilder<NoFolder> IRB(&IP); 5531 const DataLayout &DL = F.getParent()->getDataLayout(); 5532 5533 // Traverse the type, build GEPs and stores. 5534 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5535 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5536 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5537 Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo(); 5538 Value *Ptr = constructPointer( 5539 PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL); 5540 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5541 } 5542 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5543 Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo(); 5544 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy); 5545 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5546 Value *Ptr = 5547 constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL); 5548 new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); 5549 } 5550 } else { 5551 new StoreInst(F.getArg(ArgNo), &Base, &IP); 5552 } 5553 } 5554 5555 /// Extract values from \p Base according to the type \p PrivType at the 5556 /// call position \p ACS. The values are appended to \p ReplacementValues. 5557 void createReplacementValues(Type *PrivType, AbstractCallSite ACS, 5558 Value *Base, 5559 SmallVectorImpl<Value *> &ReplacementValues) { 5560 assert(Base && "Expected base value!"); 5561 assert(PrivType && "Expected privatizable type!"); 5562 Instruction *IP = ACS.getInstruction(); 5563 5564 IRBuilder<NoFolder> IRB(IP); 5565 const DataLayout &DL = IP->getModule()->getDataLayout(); 5566 5567 if (Base->getType()->getPointerElementType() != PrivType) 5568 Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(), 5569 "", ACS.getInstruction()); 5570 5571 // TODO: Improve the alignment of the loads. 5572 // Traverse the type, build GEPs and loads. 5573 if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { 5574 const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); 5575 for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { 5576 Type *PointeeTy = PrivStructType->getElementType(u); 5577 Value *Ptr = 5578 constructPointer(PointeeTy->getPointerTo(), Base, 5579 PrivStructLayout->getElementOffset(u), IRB, DL); 5580 LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP); 5581 L->setAlignment(MaybeAlign(1)); 5582 ReplacementValues.push_back(L); 5583 } 5584 } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { 5585 Type *PointeeTy = PrivArrayType->getElementType(); 5586 uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy); 5587 Type *PointeePtrTy = PointeeTy->getPointerTo(); 5588 for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { 5589 Value *Ptr = 5590 constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL); 5591 LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP); 5592 L->setAlignment(MaybeAlign(1)); 5593 ReplacementValues.push_back(L); 5594 } 5595 } else { 5596 LoadInst *L = new LoadInst(PrivType, Base, "", IP); 5597 L->setAlignment(MaybeAlign(1)); 5598 ReplacementValues.push_back(L); 5599 } 5600 } 5601 5602 /// See AbstractAttribute::manifest(...) 5603 ChangeStatus manifest(Attributor &A) override { 5604 if (!PrivatizableType.hasValue()) 5605 return ChangeStatus::UNCHANGED; 5606 assert(PrivatizableType.getValue() && "Expected privatizable type!"); 5607 5608 // Collect all tail calls in the function as we cannot allow new allocas to 5609 // escape into tail recursion. 5610 // TODO: Be smarter about new allocas escaping into tail calls. 5611 SmallVector<CallInst *, 16> TailCalls; 5612 if (!A.checkForAllInstructions( 5613 [&](Instruction &I) { 5614 CallInst &CI = cast<CallInst>(I); 5615 if (CI.isTailCall()) 5616 TailCalls.push_back(&CI); 5617 return true; 5618 }, 5619 *this, {Instruction::Call})) 5620 return ChangeStatus::UNCHANGED; 5621 5622 Argument *Arg = getAssociatedArgument(); 5623 5624 // Callback to repair the associated function. A new alloca is placed at the 5625 // beginning and initialized with the values passed through arguments. The 5626 // new alloca replaces the use of the old pointer argument. 5627 Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB = 5628 [=](const Attributor::ArgumentReplacementInfo &ARI, 5629 Function &ReplacementFn, Function::arg_iterator ArgIt) { 5630 BasicBlock &EntryBB = ReplacementFn.getEntryBlock(); 5631 Instruction *IP = &*EntryBB.getFirstInsertionPt(); 5632 auto *AI = new AllocaInst(PrivatizableType.getValue(), 0, 5633 Arg->getName() + ".priv", IP); 5634 createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn, 5635 ArgIt->getArgNo(), *IP); 5636 Arg->replaceAllUsesWith(AI); 5637 5638 for (CallInst *CI : TailCalls) 5639 CI->setTailCall(false); 5640 }; 5641 5642 // Callback to repair a call site of the associated function. The elements 5643 // of the privatizable type are loaded prior to the call and passed to the 5644 // new function version. 5645 Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB = 5646 [=](const Attributor::ArgumentReplacementInfo &ARI, 5647 AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) { 5648 createReplacementValues( 5649 PrivatizableType.getValue(), ACS, 5650 ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()), 5651 NewArgOperands); 5652 }; 5653 5654 // Collect the types that will replace the privatizable type in the function 5655 // signature. 5656 SmallVector<Type *, 16> ReplacementTypes; 5657 identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); 5658 5659 // Register a rewrite of the argument. 5660 if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes, 5661 std::move(FnRepairCB), 5662 std::move(ACSRepairCB))) 5663 return ChangeStatus::CHANGED; 5664 return ChangeStatus::UNCHANGED; 5665 } 5666 5667 /// See AbstractAttribute::trackStatistics() 5668 void trackStatistics() const override { 5669 STATS_DECLTRACK_ARG_ATTR(privatizable_ptr); 5670 } 5671 }; 5672 5673 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl { 5674 AAPrivatizablePtrFloating(const IRPosition &IRP) 5675 : AAPrivatizablePtrImpl(IRP) {} 5676 5677 /// See AbstractAttribute::initialize(...). 5678 virtual void initialize(Attributor &A) override { 5679 // TODO: We can privatize more than arguments. 5680 indicatePessimisticFixpoint(); 5681 } 5682 5683 ChangeStatus updateImpl(Attributor &A) override { 5684 llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::" 5685 "updateImpl will not be called"); 5686 } 5687 5688 /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) 5689 Optional<Type *> identifyPrivatizableType(Attributor &A) override { 5690 Value *Obj = 5691 GetUnderlyingObject(&getAssociatedValue(), A.getInfoCache().getDL()); 5692 if (!Obj) { 5693 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n"); 5694 return nullptr; 5695 } 5696 5697 if (auto *AI = dyn_cast<AllocaInst>(Obj)) 5698 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) 5699 if (CI->isOne()) 5700 return Obj->getType()->getPointerElementType(); 5701 if (auto *Arg = dyn_cast<Argument>(Obj)) { 5702 auto &PrivArgAA = 5703 A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg)); 5704 if (PrivArgAA.isAssumedPrivatizablePtr()) 5705 return Obj->getType()->getPointerElementType(); 5706 } 5707 5708 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid " 5709 "alloca nor privatizable argument: " 5710 << *Obj << "!\n"); 5711 return nullptr; 5712 } 5713 5714 /// See AbstractAttribute::trackStatistics() 5715 void trackStatistics() const override { 5716 STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr); 5717 } 5718 }; 5719 5720 struct AAPrivatizablePtrCallSiteArgument final 5721 : public AAPrivatizablePtrFloating { 5722 AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP) 5723 : AAPrivatizablePtrFloating(IRP) {} 5724 5725 /// See AbstractAttribute::initialize(...). 5726 void initialize(Attributor &A) override { 5727 if (getIRPosition().hasAttr(Attribute::ByVal)) 5728 indicateOptimisticFixpoint(); 5729 } 5730 5731 /// See AbstractAttribute::updateImpl(...). 5732 ChangeStatus updateImpl(Attributor &A) override { 5733 PrivatizableType = identifyPrivatizableType(A); 5734 if (!PrivatizableType.hasValue()) 5735 return ChangeStatus::UNCHANGED; 5736 if (!PrivatizableType.getValue()) 5737 return indicatePessimisticFixpoint(); 5738 5739 const IRPosition &IRP = getIRPosition(); 5740 auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP); 5741 if (!NoCaptureAA.isAssumedNoCapture()) { 5742 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n"); 5743 return indicatePessimisticFixpoint(); 5744 } 5745 5746 auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP); 5747 if (!NoAliasAA.isAssumedNoAlias()) { 5748 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n"); 5749 return indicatePessimisticFixpoint(); 5750 } 5751 5752 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP); 5753 if (!MemBehaviorAA.isAssumedReadOnly()) { 5754 LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n"); 5755 return indicatePessimisticFixpoint(); 5756 } 5757 5758 return ChangeStatus::UNCHANGED; 5759 } 5760 5761 /// See AbstractAttribute::trackStatistics() 5762 void trackStatistics() const override { 5763 STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr); 5764 } 5765 }; 5766 5767 struct AAPrivatizablePtrCallSiteReturned final 5768 : public AAPrivatizablePtrFloating { 5769 AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP) 5770 : AAPrivatizablePtrFloating(IRP) {} 5771 5772 /// See AbstractAttribute::initialize(...). 5773 void initialize(Attributor &A) override { 5774 // TODO: We can privatize more than arguments. 5775 indicatePessimisticFixpoint(); 5776 } 5777 5778 /// See AbstractAttribute::trackStatistics() 5779 void trackStatistics() const override { 5780 STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr); 5781 } 5782 }; 5783 5784 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating { 5785 AAPrivatizablePtrReturned(const IRPosition &IRP) 5786 : AAPrivatizablePtrFloating(IRP) {} 5787 5788 /// See AbstractAttribute::initialize(...). 5789 void initialize(Attributor &A) override { 5790 // TODO: We can privatize more than arguments. 5791 indicatePessimisticFixpoint(); 5792 } 5793 5794 /// See AbstractAttribute::trackStatistics() 5795 void trackStatistics() const override { 5796 STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr); 5797 } 5798 }; 5799 5800 /// -------------------- Memory Behavior Attributes ---------------------------- 5801 /// Includes read-none, read-only, and write-only. 5802 /// ---------------------------------------------------------------------------- 5803 struct AAMemoryBehaviorImpl : public AAMemoryBehavior { 5804 AAMemoryBehaviorImpl(const IRPosition &IRP) : AAMemoryBehavior(IRP) {} 5805 5806 /// See AbstractAttribute::initialize(...). 5807 void initialize(Attributor &A) override { 5808 intersectAssumedBits(BEST_STATE); 5809 getKnownStateFromValue(getIRPosition(), getState()); 5810 IRAttribute::initialize(A); 5811 } 5812 5813 /// Return the memory behavior information encoded in the IR for \p IRP. 5814 static void getKnownStateFromValue(const IRPosition &IRP, 5815 BitIntegerState &State, 5816 bool IgnoreSubsumingPositions = false) { 5817 SmallVector<Attribute, 2> Attrs; 5818 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 5819 for (const Attribute &Attr : Attrs) { 5820 switch (Attr.getKindAsEnum()) { 5821 case Attribute::ReadNone: 5822 State.addKnownBits(NO_ACCESSES); 5823 break; 5824 case Attribute::ReadOnly: 5825 State.addKnownBits(NO_WRITES); 5826 break; 5827 case Attribute::WriteOnly: 5828 State.addKnownBits(NO_READS); 5829 break; 5830 default: 5831 llvm_unreachable("Unexpected attribute!"); 5832 } 5833 } 5834 5835 if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) { 5836 if (!I->mayReadFromMemory()) 5837 State.addKnownBits(NO_READS); 5838 if (!I->mayWriteToMemory()) 5839 State.addKnownBits(NO_WRITES); 5840 } 5841 } 5842 5843 /// See AbstractAttribute::getDeducedAttributes(...). 5844 void getDeducedAttributes(LLVMContext &Ctx, 5845 SmallVectorImpl<Attribute> &Attrs) const override { 5846 assert(Attrs.size() == 0); 5847 if (isAssumedReadNone()) 5848 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 5849 else if (isAssumedReadOnly()) 5850 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly)); 5851 else if (isAssumedWriteOnly()) 5852 Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly)); 5853 assert(Attrs.size() <= 1); 5854 } 5855 5856 /// See AbstractAttribute::manifest(...). 5857 ChangeStatus manifest(Attributor &A) override { 5858 if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true)) 5859 return ChangeStatus::UNCHANGED; 5860 5861 const IRPosition &IRP = getIRPosition(); 5862 5863 // Check if we would improve the existing attributes first. 5864 SmallVector<Attribute, 4> DeducedAttrs; 5865 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 5866 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 5867 return IRP.hasAttr(Attr.getKindAsEnum(), 5868 /* IgnoreSubsumingPositions */ true); 5869 })) 5870 return ChangeStatus::UNCHANGED; 5871 5872 // Clear existing attributes. 5873 IRP.removeAttrs(AttrKinds); 5874 5875 // Use the generic manifest method. 5876 return IRAttribute::manifest(A); 5877 } 5878 5879 /// See AbstractState::getAsStr(). 5880 const std::string getAsStr() const override { 5881 if (isAssumedReadNone()) 5882 return "readnone"; 5883 if (isAssumedReadOnly()) 5884 return "readonly"; 5885 if (isAssumedWriteOnly()) 5886 return "writeonly"; 5887 return "may-read/write"; 5888 } 5889 5890 /// The set of IR attributes AAMemoryBehavior deals with. 5891 static const Attribute::AttrKind AttrKinds[3]; 5892 }; 5893 5894 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { 5895 Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; 5896 5897 /// Memory behavior attribute for a floating value. 5898 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { 5899 AAMemoryBehaviorFloating(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} 5900 5901 /// See AbstractAttribute::initialize(...). 5902 void initialize(Attributor &A) override { 5903 AAMemoryBehaviorImpl::initialize(A); 5904 // Initialize the use vector with all direct uses of the associated value. 5905 for (const Use &U : getAssociatedValue().uses()) 5906 Uses.insert(&U); 5907 } 5908 5909 /// See AbstractAttribute::updateImpl(...). 5910 ChangeStatus updateImpl(Attributor &A) override; 5911 5912 /// See AbstractAttribute::trackStatistics() 5913 void trackStatistics() const override { 5914 if (isAssumedReadNone()) 5915 STATS_DECLTRACK_FLOATING_ATTR(readnone) 5916 else if (isAssumedReadOnly()) 5917 STATS_DECLTRACK_FLOATING_ATTR(readonly) 5918 else if (isAssumedWriteOnly()) 5919 STATS_DECLTRACK_FLOATING_ATTR(writeonly) 5920 } 5921 5922 private: 5923 /// Return true if users of \p UserI might access the underlying 5924 /// variable/location described by \p U and should therefore be analyzed. 5925 bool followUsersOfUseIn(Attributor &A, const Use *U, 5926 const Instruction *UserI); 5927 5928 /// Update the state according to the effect of use \p U in \p UserI. 5929 void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI); 5930 5931 protected: 5932 /// Container for (transitive) uses of the associated argument. 5933 SetVector<const Use *> Uses; 5934 }; 5935 5936 /// Memory behavior attribute for function argument. 5937 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { 5938 AAMemoryBehaviorArgument(const IRPosition &IRP) 5939 : AAMemoryBehaviorFloating(IRP) {} 5940 5941 /// See AbstractAttribute::initialize(...). 5942 void initialize(Attributor &A) override { 5943 intersectAssumedBits(BEST_STATE); 5944 const IRPosition &IRP = getIRPosition(); 5945 // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we 5946 // can query it when we use has/getAttr. That would allow us to reuse the 5947 // initialize of the base class here. 5948 bool HasByVal = 5949 IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true); 5950 getKnownStateFromValue(IRP, getState(), 5951 /* IgnoreSubsumingPositions */ HasByVal); 5952 5953 // Initialize the use vector with all direct uses of the associated value. 5954 Argument *Arg = getAssociatedArgument(); 5955 if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) { 5956 indicatePessimisticFixpoint(); 5957 } else { 5958 // Initialize the use vector with all direct uses of the associated value. 5959 for (const Use &U : Arg->uses()) 5960 Uses.insert(&U); 5961 } 5962 } 5963 5964 ChangeStatus manifest(Attributor &A) override { 5965 // TODO: Pointer arguments are not supported on vectors of pointers yet. 5966 if (!getAssociatedValue().getType()->isPointerTy()) 5967 return ChangeStatus::UNCHANGED; 5968 5969 // TODO: From readattrs.ll: "inalloca parameters are always 5970 // considered written" 5971 if (hasAttr({Attribute::InAlloca})) { 5972 removeKnownBits(NO_WRITES); 5973 removeAssumedBits(NO_WRITES); 5974 } 5975 return AAMemoryBehaviorFloating::manifest(A); 5976 } 5977 5978 /// See AbstractAttribute::trackStatistics() 5979 void trackStatistics() const override { 5980 if (isAssumedReadNone()) 5981 STATS_DECLTRACK_ARG_ATTR(readnone) 5982 else if (isAssumedReadOnly()) 5983 STATS_DECLTRACK_ARG_ATTR(readonly) 5984 else if (isAssumedWriteOnly()) 5985 STATS_DECLTRACK_ARG_ATTR(writeonly) 5986 } 5987 }; 5988 5989 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { 5990 AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP) 5991 : AAMemoryBehaviorArgument(IRP) {} 5992 5993 /// See AbstractAttribute::initialize(...). 5994 void initialize(Attributor &A) override { 5995 if (Argument *Arg = getAssociatedArgument()) { 5996 if (Arg->hasByValAttr()) { 5997 addKnownBits(NO_WRITES); 5998 removeKnownBits(NO_READS); 5999 removeAssumedBits(NO_READS); 6000 } 6001 } else { 6002 } 6003 AAMemoryBehaviorArgument::initialize(A); 6004 } 6005 6006 /// See AbstractAttribute::updateImpl(...). 6007 ChangeStatus updateImpl(Attributor &A) override { 6008 // TODO: Once we have call site specific value information we can provide 6009 // call site specific liveness liveness information and then it makes 6010 // sense to specialize attributes for call sites arguments instead of 6011 // redirecting requests to the callee argument. 6012 Argument *Arg = getAssociatedArgument(); 6013 const IRPosition &ArgPos = IRPosition::argument(*Arg); 6014 auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos); 6015 return clampStateAndIndicateChange( 6016 getState(), 6017 static_cast<const AAMemoryBehavior::StateType &>(ArgAA.getState())); 6018 } 6019 6020 /// See AbstractAttribute::trackStatistics() 6021 void trackStatistics() const override { 6022 if (isAssumedReadNone()) 6023 STATS_DECLTRACK_CSARG_ATTR(readnone) 6024 else if (isAssumedReadOnly()) 6025 STATS_DECLTRACK_CSARG_ATTR(readonly) 6026 else if (isAssumedWriteOnly()) 6027 STATS_DECLTRACK_CSARG_ATTR(writeonly) 6028 } 6029 }; 6030 6031 /// Memory behavior attribute for a call site return position. 6032 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { 6033 AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP) 6034 : AAMemoryBehaviorFloating(IRP) {} 6035 6036 /// See AbstractAttribute::manifest(...). 6037 ChangeStatus manifest(Attributor &A) override { 6038 // We do not annotate returned values. 6039 return ChangeStatus::UNCHANGED; 6040 } 6041 6042 /// See AbstractAttribute::trackStatistics() 6043 void trackStatistics() const override {} 6044 }; 6045 6046 /// An AA to represent the memory behavior function attributes. 6047 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { 6048 AAMemoryBehaviorFunction(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} 6049 6050 /// See AbstractAttribute::updateImpl(Attributor &A). 6051 virtual ChangeStatus updateImpl(Attributor &A) override; 6052 6053 /// See AbstractAttribute::manifest(...). 6054 ChangeStatus manifest(Attributor &A) override { 6055 Function &F = cast<Function>(getAnchorValue()); 6056 if (isAssumedReadNone()) { 6057 F.removeFnAttr(Attribute::ArgMemOnly); 6058 F.removeFnAttr(Attribute::InaccessibleMemOnly); 6059 F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); 6060 } 6061 return AAMemoryBehaviorImpl::manifest(A); 6062 } 6063 6064 /// See AbstractAttribute::trackStatistics() 6065 void trackStatistics() const override { 6066 if (isAssumedReadNone()) 6067 STATS_DECLTRACK_FN_ATTR(readnone) 6068 else if (isAssumedReadOnly()) 6069 STATS_DECLTRACK_FN_ATTR(readonly) 6070 else if (isAssumedWriteOnly()) 6071 STATS_DECLTRACK_FN_ATTR(writeonly) 6072 } 6073 }; 6074 6075 /// AAMemoryBehavior attribute for call sites. 6076 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl { 6077 AAMemoryBehaviorCallSite(const IRPosition &IRP) : AAMemoryBehaviorImpl(IRP) {} 6078 6079 /// See AbstractAttribute::initialize(...). 6080 void initialize(Attributor &A) override { 6081 AAMemoryBehaviorImpl::initialize(A); 6082 Function *F = getAssociatedFunction(); 6083 if (!F || !A.isFunctionIPOAmendable(*F)) 6084 indicatePessimisticFixpoint(); 6085 } 6086 6087 /// See AbstractAttribute::updateImpl(...). 6088 ChangeStatus updateImpl(Attributor &A) override { 6089 // TODO: Once we have call site specific value information we can provide 6090 // call site specific liveness liveness information and then it makes 6091 // sense to specialize attributes for call sites arguments instead of 6092 // redirecting requests to the callee argument. 6093 Function *F = getAssociatedFunction(); 6094 const IRPosition &FnPos = IRPosition::function(*F); 6095 auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos); 6096 return clampStateAndIndicateChange( 6097 getState(), 6098 static_cast<const AAMemoryBehavior::StateType &>(FnAA.getState())); 6099 } 6100 6101 /// See AbstractAttribute::trackStatistics() 6102 void trackStatistics() const override { 6103 if (isAssumedReadNone()) 6104 STATS_DECLTRACK_CS_ATTR(readnone) 6105 else if (isAssumedReadOnly()) 6106 STATS_DECLTRACK_CS_ATTR(readonly) 6107 else if (isAssumedWriteOnly()) 6108 STATS_DECLTRACK_CS_ATTR(writeonly) 6109 } 6110 }; 6111 6112 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { 6113 6114 // The current assumed state used to determine a change. 6115 auto AssumedState = getAssumed(); 6116 6117 auto CheckRWInst = [&](Instruction &I) { 6118 // If the instruction has an own memory behavior state, use it to restrict 6119 // the local state. No further analysis is required as the other memory 6120 // state is as optimistic as it gets. 6121 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { 6122 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6123 *this, IRPosition::callsite_function(ICS)); 6124 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6125 return !isAtFixpoint(); 6126 } 6127 6128 // Remove access kind modifiers if necessary. 6129 if (I.mayReadFromMemory()) 6130 removeAssumedBits(NO_READS); 6131 if (I.mayWriteToMemory()) 6132 removeAssumedBits(NO_WRITES); 6133 return !isAtFixpoint(); 6134 }; 6135 6136 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6137 return indicatePessimisticFixpoint(); 6138 6139 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6140 : ChangeStatus::UNCHANGED; 6141 } 6142 6143 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { 6144 6145 const IRPosition &IRP = getIRPosition(); 6146 const IRPosition &FnPos = IRPosition::function_scope(IRP); 6147 AAMemoryBehavior::StateType &S = getState(); 6148 6149 // First, check the function scope. We take the known information and we avoid 6150 // work if the assumed information implies the current assumed information for 6151 // this attribute. This is a valid for all but byval arguments. 6152 Argument *Arg = IRP.getAssociatedArgument(); 6153 AAMemoryBehavior::base_t FnMemAssumedState = 6154 AAMemoryBehavior::StateType::getWorstState(); 6155 if (!Arg || !Arg->hasByValAttr()) { 6156 const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>( 6157 *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6158 FnMemAssumedState = FnMemAA.getAssumed(); 6159 S.addKnownBits(FnMemAA.getKnown()); 6160 if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed()) 6161 return ChangeStatus::UNCHANGED; 6162 } 6163 6164 // Make sure the value is not captured (except through "return"), if 6165 // it is, any information derived would be irrelevant anyway as we cannot 6166 // check the potential aliases introduced by the capture. However, no need 6167 // to fall back to anythign less optimistic than the function state. 6168 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6169 *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6170 if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { 6171 S.intersectAssumedBits(FnMemAssumedState); 6172 return ChangeStatus::CHANGED; 6173 } 6174 6175 // The current assumed state used to determine a change. 6176 auto AssumedState = S.getAssumed(); 6177 6178 // Liveness information to exclude dead users. 6179 // TODO: Take the FnPos once we have call site specific liveness information. 6180 const auto &LivenessAA = A.getAAFor<AAIsDead>( 6181 *this, IRPosition::function(*IRP.getAssociatedFunction()), 6182 /* TrackDependence */ false); 6183 6184 // Visit and expand uses until all are analyzed or a fixpoint is reached. 6185 for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) { 6186 const Use *U = Uses[i]; 6187 Instruction *UserI = cast<Instruction>(U->getUser()); 6188 LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI 6189 << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA)) 6190 << "]\n"); 6191 if (A.isAssumedDead(*U, this, &LivenessAA)) 6192 continue; 6193 6194 // Droppable users, e.g., llvm::assume does not actually perform any action. 6195 if (UserI->isDroppable()) 6196 continue; 6197 6198 // Check if the users of UserI should also be visited. 6199 if (followUsersOfUseIn(A, U, UserI)) 6200 for (const Use &UserIUse : UserI->uses()) 6201 Uses.insert(&UserIUse); 6202 6203 // If UserI might touch memory we analyze the use in detail. 6204 if (UserI->mayReadOrWriteMemory()) 6205 analyzeUseIn(A, U, UserI); 6206 } 6207 6208 return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED 6209 : ChangeStatus::UNCHANGED; 6210 } 6211 6212 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U, 6213 const Instruction *UserI) { 6214 // The loaded value is unrelated to the pointer argument, no need to 6215 // follow the users of the load. 6216 if (isa<LoadInst>(UserI)) 6217 return false; 6218 6219 // By default we follow all uses assuming UserI might leak information on U, 6220 // we have special handling for call sites operands though. 6221 ImmutableCallSite ICS(UserI); 6222 if (!ICS || !ICS.isArgOperand(U)) 6223 return true; 6224 6225 // If the use is a call argument known not to be captured, the users of 6226 // the call do not need to be visited because they have to be unrelated to 6227 // the input. Note that this check is not trivial even though we disallow 6228 // general capturing of the underlying argument. The reason is that the 6229 // call might the argument "through return", which we allow and for which we 6230 // need to check call users. 6231 if (U->get()->getType()->isPointerTy()) { 6232 unsigned ArgNo = ICS.getArgumentNo(U); 6233 const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( 6234 *this, IRPosition::callsite_argument(ICS, ArgNo), 6235 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6236 return !ArgNoCaptureAA.isAssumedNoCapture(); 6237 } 6238 6239 return true; 6240 } 6241 6242 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U, 6243 const Instruction *UserI) { 6244 assert(UserI->mayReadOrWriteMemory()); 6245 6246 switch (UserI->getOpcode()) { 6247 default: 6248 // TODO: Handle all atomics and other side-effect operations we know of. 6249 break; 6250 case Instruction::Load: 6251 // Loads cause the NO_READS property to disappear. 6252 removeAssumedBits(NO_READS); 6253 return; 6254 6255 case Instruction::Store: 6256 // Stores cause the NO_WRITES property to disappear if the use is the 6257 // pointer operand. Note that we do assume that capturing was taken care of 6258 // somewhere else. 6259 if (cast<StoreInst>(UserI)->getPointerOperand() == U->get()) 6260 removeAssumedBits(NO_WRITES); 6261 return; 6262 6263 case Instruction::Call: 6264 case Instruction::CallBr: 6265 case Instruction::Invoke: { 6266 // For call sites we look at the argument memory behavior attribute (this 6267 // could be recursive!) in order to restrict our own state. 6268 ImmutableCallSite ICS(UserI); 6269 6270 // Give up on operand bundles. 6271 if (ICS.isBundleOperand(U)) { 6272 indicatePessimisticFixpoint(); 6273 return; 6274 } 6275 6276 // Calling a function does read the function pointer, maybe write it if the 6277 // function is self-modifying. 6278 if (ICS.isCallee(U)) { 6279 removeAssumedBits(NO_READS); 6280 break; 6281 } 6282 6283 // Adjust the possible access behavior based on the information on the 6284 // argument. 6285 IRPosition Pos; 6286 if (U->get()->getType()->isPointerTy()) 6287 Pos = IRPosition::callsite_argument(ICS, ICS.getArgumentNo(U)); 6288 else 6289 Pos = IRPosition::callsite_function(ICS); 6290 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6291 *this, Pos, 6292 /* TrackDependence */ true, DepClassTy::OPTIONAL); 6293 // "assumed" has at most the same bits as the MemBehaviorAA assumed 6294 // and at least "known". 6295 intersectAssumedBits(MemBehaviorAA.getAssumed()); 6296 return; 6297 } 6298 }; 6299 6300 // Generally, look at the "may-properties" and adjust the assumed state if we 6301 // did not trigger special handling before. 6302 if (UserI->mayReadFromMemory()) 6303 removeAssumedBits(NO_READS); 6304 if (UserI->mayWriteToMemory()) 6305 removeAssumedBits(NO_WRITES); 6306 } 6307 6308 } // namespace 6309 6310 /// -------------------- Memory Locations Attributes --------------------------- 6311 /// Includes read-none, argmemonly, inaccessiblememonly, 6312 /// inaccessiblememorargmemonly 6313 /// ---------------------------------------------------------------------------- 6314 6315 std::string AAMemoryLocation::getMemoryLocationsAsStr( 6316 AAMemoryLocation::MemoryLocationsKind MLK) { 6317 if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS)) 6318 return "all memory"; 6319 if (MLK == AAMemoryLocation::NO_LOCATIONS) 6320 return "no memory"; 6321 std::string S = "memory:"; 6322 if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM)) 6323 S += "stack,"; 6324 if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM)) 6325 S += "constant,"; 6326 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM)) 6327 S += "internal global,"; 6328 if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM)) 6329 S += "external global,"; 6330 if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM)) 6331 S += "argument,"; 6332 if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM)) 6333 S += "inaccessible,"; 6334 if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM)) 6335 S += "malloced,"; 6336 if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM)) 6337 S += "unknown,"; 6338 S.pop_back(); 6339 return S; 6340 } 6341 6342 namespace { 6343 6344 struct AAMemoryLocationImpl : public AAMemoryLocation { 6345 6346 AAMemoryLocationImpl(const IRPosition &IRP) : AAMemoryLocation(IRP) {} 6347 6348 /// See AbstractAttribute::initialize(...). 6349 void initialize(Attributor &A) override { 6350 intersectAssumedBits(BEST_STATE); 6351 getKnownStateFromValue(getIRPosition(), getState()); 6352 IRAttribute::initialize(A); 6353 } 6354 6355 /// Return the memory behavior information encoded in the IR for \p IRP. 6356 static void getKnownStateFromValue(const IRPosition &IRP, 6357 BitIntegerState &State, 6358 bool IgnoreSubsumingPositions = false) { 6359 SmallVector<Attribute, 2> Attrs; 6360 IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); 6361 for (const Attribute &Attr : Attrs) { 6362 switch (Attr.getKindAsEnum()) { 6363 case Attribute::ReadNone: 6364 State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM); 6365 break; 6366 case Attribute::InaccessibleMemOnly: 6367 State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); 6368 break; 6369 case Attribute::ArgMemOnly: 6370 State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true)); 6371 break; 6372 case Attribute::InaccessibleMemOrArgMemOnly: 6373 State.addKnownBits( 6374 inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); 6375 break; 6376 default: 6377 llvm_unreachable("Unexpected attribute!"); 6378 } 6379 } 6380 } 6381 6382 /// See AbstractAttribute::getDeducedAttributes(...). 6383 void getDeducedAttributes(LLVMContext &Ctx, 6384 SmallVectorImpl<Attribute> &Attrs) const override { 6385 assert(Attrs.size() == 0); 6386 if (isAssumedReadNone()) { 6387 Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); 6388 } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) { 6389 if (isAssumedInaccessibleMemOnly()) 6390 Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly)); 6391 else if (isAssumedArgMemOnly()) 6392 Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly)); 6393 else if (isAssumedInaccessibleOrArgMemOnly()) 6394 Attrs.push_back( 6395 Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly)); 6396 } 6397 assert(Attrs.size() <= 1); 6398 } 6399 6400 /// See AbstractAttribute::manifest(...). 6401 ChangeStatus manifest(Attributor &A) override { 6402 const IRPosition &IRP = getIRPosition(); 6403 6404 // Check if we would improve the existing attributes first. 6405 SmallVector<Attribute, 4> DeducedAttrs; 6406 getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); 6407 if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { 6408 return IRP.hasAttr(Attr.getKindAsEnum(), 6409 /* IgnoreSubsumingPositions */ true); 6410 })) 6411 return ChangeStatus::UNCHANGED; 6412 6413 // Clear existing attributes. 6414 IRP.removeAttrs(AttrKinds); 6415 if (isAssumedReadNone()) 6416 IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds); 6417 6418 // Use the generic manifest method. 6419 return IRAttribute::manifest(A); 6420 } 6421 6422 /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...). 6423 bool checkForAllAccessesToMemoryKind( 6424 function_ref<bool(const Instruction *, const Value *, AccessKind, 6425 MemoryLocationsKind)> 6426 Pred, 6427 MemoryLocationsKind RequestedMLK) const override { 6428 if (!isValidState()) 6429 return false; 6430 6431 MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation(); 6432 if (AssumedMLK == NO_LOCATIONS) 6433 return true; 6434 6435 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { 6436 if (CurMLK & RequestedMLK) 6437 continue; 6438 6439 const auto &Accesses = AccessKindAccessesMap.lookup(CurMLK); 6440 for (const AccessInfo &AI : Accesses) { 6441 if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK)) 6442 return false; 6443 } 6444 } 6445 6446 return true; 6447 } 6448 6449 ChangeStatus indicatePessimisticFixpoint() override { 6450 // If we give up and indicate a pessimistic fixpoint this instruction will 6451 // become an access for all potential access kinds: 6452 // TODO: Add pointers for argmemonly and globals to improve the results of 6453 // checkForAllAccessesToMemoryKind. 6454 bool Changed = false; 6455 MemoryLocationsKind KnownMLK = getKnown(); 6456 Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); 6457 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) 6458 if (!(CurMLK & KnownMLK)) 6459 updateStateAndAccessesMap(getState(), AccessKindAccessesMap, CurMLK, I, 6460 nullptr, Changed); 6461 return AAMemoryLocation::indicatePessimisticFixpoint(); 6462 } 6463 6464 protected: 6465 /// Helper struct to tie together an instruction that has a read or write 6466 /// effect with the pointer it accesses (if any). 6467 struct AccessInfo { 6468 6469 /// The instruction that caused the access. 6470 const Instruction *I; 6471 6472 /// The base pointer that is accessed, or null if unknown. 6473 const Value *Ptr; 6474 6475 /// The kind of access (read/write/read+write). 6476 AccessKind Kind; 6477 6478 bool operator==(const AccessInfo &RHS) const { 6479 return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind; 6480 } 6481 bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const { 6482 if (LHS.I != RHS.I) 6483 return LHS.I < RHS.I; 6484 if (LHS.Ptr != RHS.Ptr) 6485 return LHS.Ptr < RHS.Ptr; 6486 if (LHS.Kind != RHS.Kind) 6487 return LHS.Kind < RHS.Kind; 6488 return false; 6489 } 6490 }; 6491 6492 /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the 6493 /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind. 6494 using AccessKindAccessesMapTy = 6495 DenseMap<unsigned, SmallSet<AccessInfo, 8, AccessInfo>>; 6496 AccessKindAccessesMapTy AccessKindAccessesMap; 6497 6498 /// Return the kind(s) of location that may be accessed by \p V. 6499 AAMemoryLocation::MemoryLocationsKind 6500 categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed); 6501 6502 /// Update the state \p State and the AccessKindAccessesMap given that \p I is 6503 /// an access to a \p MLK memory location with the access pointer \p Ptr. 6504 static void updateStateAndAccessesMap(AAMemoryLocation::StateType &State, 6505 AccessKindAccessesMapTy &AccessMap, 6506 MemoryLocationsKind MLK, 6507 const Instruction *I, const Value *Ptr, 6508 bool &Changed) { 6509 // TODO: The kind should be determined at the call sites based on the 6510 // information we have there. 6511 AccessKind Kind = READ_WRITE; 6512 if (I) { 6513 Kind = I->mayReadFromMemory() ? READ : NONE; 6514 Kind = AccessKind(Kind | (I->mayWriteToMemory() ? WRITE : NONE)); 6515 } 6516 6517 assert(isPowerOf2_32(MLK) && "Expected a single location set!"); 6518 Changed |= AccessMap[MLK].insert(AccessInfo{I, Ptr, Kind}).second; 6519 State.removeAssumedBits(MLK); 6520 } 6521 6522 /// Determine the underlying locations kinds for \p Ptr, e.g., globals or 6523 /// arguments, and update the state and access map accordingly. 6524 void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr, 6525 AAMemoryLocation::StateType &State, bool &Changed); 6526 6527 /// The set of IR attributes AAMemoryLocation deals with. 6528 static const Attribute::AttrKind AttrKinds[4]; 6529 }; 6530 6531 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = { 6532 Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly, 6533 Attribute::InaccessibleMemOrArgMemOnly}; 6534 6535 void AAMemoryLocationImpl::categorizePtrValue( 6536 Attributor &A, const Instruction &I, const Value &Ptr, 6537 AAMemoryLocation::StateType &State, bool &Changed) { 6538 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for " 6539 << Ptr << " [" 6540 << getMemoryLocationsAsStr(State.getAssumed()) << "]\n"); 6541 6542 auto StripGEPCB = [](Value *V) -> Value * { 6543 auto *GEP = dyn_cast<GEPOperator>(V); 6544 while (GEP) { 6545 V = GEP->getPointerOperand(); 6546 GEP = dyn_cast<GEPOperator>(V); 6547 } 6548 return V; 6549 }; 6550 6551 auto VisitValueCB = [&](Value &V, AAMemoryLocation::StateType &T, 6552 bool Stripped) -> bool { 6553 assert(!isa<GEPOperator>(V) && "GEPs should have been stripped."); 6554 if (isa<UndefValue>(V)) 6555 return true; 6556 if (auto *Arg = dyn_cast<Argument>(&V)) { 6557 if (Arg->hasByValAttr()) 6558 updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I, 6559 &V, Changed); 6560 else 6561 updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_ARGUMENT_MEM, &I, 6562 &V, Changed); 6563 return true; 6564 } 6565 if (auto *GV = dyn_cast<GlobalValue>(&V)) { 6566 if (GV->hasLocalLinkage()) 6567 updateStateAndAccessesMap(T, AccessKindAccessesMap, 6568 NO_GLOBAL_INTERNAL_MEM, &I, &V, Changed); 6569 else 6570 updateStateAndAccessesMap(T, AccessKindAccessesMap, 6571 NO_GLOBAL_EXTERNAL_MEM, &I, &V, Changed); 6572 return true; 6573 } 6574 if (isa<AllocaInst>(V)) { 6575 updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_LOCAL_MEM, &I, &V, 6576 Changed); 6577 return true; 6578 } 6579 if (ImmutableCallSite ICS = ImmutableCallSite(&V)) { 6580 const auto &NoAliasAA = 6581 A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(ICS)); 6582 if (NoAliasAA.isAssumedNoAlias()) { 6583 updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_MALLOCED_MEM, &I, 6584 &V, Changed); 6585 return true; 6586 } 6587 } 6588 6589 updateStateAndAccessesMap(T, AccessKindAccessesMap, NO_UNKOWN_MEM, &I, &V, 6590 Changed); 6591 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: " 6592 << V << " -> " << getMemoryLocationsAsStr(T.getAssumed()) 6593 << "\n"); 6594 return true; 6595 }; 6596 6597 if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>( 6598 A, IRPosition::value(Ptr), *this, State, VisitValueCB, 6599 /* MaxValues */ 32, StripGEPCB)) { 6600 LLVM_DEBUG( 6601 dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n"); 6602 updateStateAndAccessesMap(State, AccessKindAccessesMap, NO_UNKOWN_MEM, &I, 6603 nullptr, Changed); 6604 } else { 6605 LLVM_DEBUG( 6606 dbgs() 6607 << "[AAMemoryLocation] Accessed locations with pointer locations: " 6608 << getMemoryLocationsAsStr(State.getAssumed()) << "\n"); 6609 } 6610 } 6611 6612 AAMemoryLocation::MemoryLocationsKind 6613 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I, 6614 bool &Changed) { 6615 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for " 6616 << I << "\n"); 6617 6618 AAMemoryLocation::StateType AccessedLocs; 6619 AccessedLocs.intersectAssumedBits(NO_LOCATIONS); 6620 6621 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) { 6622 6623 // First check if we assume any memory is access is visible. 6624 const auto &ICSMemLocationAA = 6625 A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(ICS)); 6626 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I 6627 << " [" << ICSMemLocationAA << "]\n"); 6628 6629 if (ICSMemLocationAA.isAssumedReadNone()) 6630 return NO_LOCATIONS; 6631 6632 if (ICSMemLocationAA.isAssumedInaccessibleMemOnly()) { 6633 updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, 6634 NO_INACCESSIBLE_MEM, &I, nullptr, Changed); 6635 return AccessedLocs.getAssumed(); 6636 } 6637 6638 uint32_t ICSAssumedNotAccessedLocs = 6639 ICSMemLocationAA.getAssumedNotAccessedLocation(); 6640 6641 // Set the argmemonly and global bit as we handle them separately below. 6642 uint32_t ICSAssumedNotAccessedLocsNoArgMem = 6643 ICSAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM; 6644 6645 for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { 6646 if (ICSAssumedNotAccessedLocsNoArgMem & CurMLK) 6647 continue; 6648 updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, CurMLK, &I, 6649 nullptr, Changed); 6650 } 6651 6652 // Now handle global memory if it might be accessed. 6653 bool HasGlobalAccesses = !(ICSAssumedNotAccessedLocs & NO_GLOBAL_MEM); 6654 if (HasGlobalAccesses) { 6655 auto AccessPred = [&](const Instruction *, const Value *Ptr, 6656 AccessKind Kind, MemoryLocationsKind MLK) { 6657 updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, MLK, &I, 6658 Ptr, Changed); 6659 return true; 6660 }; 6661 if (!ICSMemLocationAA.checkForAllAccessesToMemoryKind( 6662 AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false))) 6663 return AccessedLocs.getWorstState(); 6664 } 6665 6666 LLVM_DEBUG( 6667 dbgs() << "[AAMemoryLocation] Accessed state before argument handling: " 6668 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6669 6670 // Now handle argument memory if it might be accessed. 6671 bool HasArgAccesses = !(ICSAssumedNotAccessedLocs & NO_ARGUMENT_MEM); 6672 if (HasArgAccesses) { 6673 for (unsigned ArgNo = 0, e = ICS.getNumArgOperands(); ArgNo < e; 6674 ++ArgNo) { 6675 6676 // Skip non-pointer arguments. 6677 const Value *ArgOp = ICS.getArgOperand(ArgNo); 6678 if (!ArgOp->getType()->isPtrOrPtrVectorTy()) 6679 continue; 6680 6681 // Skip readnone arguments. 6682 const IRPosition &ArgOpIRP = IRPosition::callsite_argument(ICS, ArgNo); 6683 const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>( 6684 *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL); 6685 6686 if (ArgOpMemLocationAA.isAssumedReadNone()) 6687 continue; 6688 6689 // Categorize potentially accessed pointer arguments as if there was an 6690 // access instruction with them as pointer. 6691 categorizePtrValue(A, I, *ArgOp, AccessedLocs, Changed); 6692 } 6693 } 6694 6695 LLVM_DEBUG( 6696 dbgs() << "[AAMemoryLocation] Accessed state after argument handling: " 6697 << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); 6698 6699 return AccessedLocs.getAssumed(); 6700 } 6701 6702 if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) { 6703 LLVM_DEBUG( 6704 dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: " 6705 << I << " [" << *Ptr << "]\n"); 6706 categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed); 6707 return AccessedLocs.getAssumed(); 6708 } 6709 6710 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: " 6711 << I << "\n"); 6712 updateStateAndAccessesMap(AccessedLocs, AccessKindAccessesMap, NO_UNKOWN_MEM, 6713 &I, nullptr, Changed); 6714 return AccessedLocs.getAssumed(); 6715 } 6716 6717 /// An AA to represent the memory behavior function attributes. 6718 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl { 6719 AAMemoryLocationFunction(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {} 6720 6721 /// See AbstractAttribute::updateImpl(Attributor &A). 6722 virtual ChangeStatus updateImpl(Attributor &A) override { 6723 6724 const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( 6725 *this, getIRPosition(), /* TrackDependence */ false); 6726 if (MemBehaviorAA.isAssumedReadNone()) { 6727 if (MemBehaviorAA.isKnownReadNone()) 6728 return indicateOptimisticFixpoint(); 6729 assert(isAssumedReadNone() && 6730 "AAMemoryLocation was not read-none but AAMemoryBehavior was!"); 6731 A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); 6732 return ChangeStatus::UNCHANGED; 6733 } 6734 6735 // The current assumed state used to determine a change. 6736 auto AssumedState = getAssumed(); 6737 bool Changed = false; 6738 6739 auto CheckRWInst = [&](Instruction &I) { 6740 MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed); 6741 LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I 6742 << ": " << getMemoryLocationsAsStr(MLK) << "\n"); 6743 removeAssumedBits(inverseLocation(MLK, false, false)); 6744 return true; 6745 }; 6746 6747 if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this)) 6748 return indicatePessimisticFixpoint(); 6749 6750 Changed |= AssumedState != getAssumed(); 6751 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6752 } 6753 6754 /// See AbstractAttribute::trackStatistics() 6755 void trackStatistics() const override { 6756 if (isAssumedReadNone()) 6757 STATS_DECLTRACK_FN_ATTR(readnone) 6758 else if (isAssumedArgMemOnly()) 6759 STATS_DECLTRACK_FN_ATTR(argmemonly) 6760 else if (isAssumedInaccessibleMemOnly()) 6761 STATS_DECLTRACK_FN_ATTR(inaccessiblememonly) 6762 else if (isAssumedInaccessibleOrArgMemOnly()) 6763 STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly) 6764 } 6765 }; 6766 6767 /// AAMemoryLocation attribute for call sites. 6768 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl { 6769 AAMemoryLocationCallSite(const IRPosition &IRP) : AAMemoryLocationImpl(IRP) {} 6770 6771 /// See AbstractAttribute::initialize(...). 6772 void initialize(Attributor &A) override { 6773 AAMemoryLocationImpl::initialize(A); 6774 Function *F = getAssociatedFunction(); 6775 if (!F || !A.isFunctionIPOAmendable(*F)) 6776 indicatePessimisticFixpoint(); 6777 } 6778 6779 /// See AbstractAttribute::updateImpl(...). 6780 ChangeStatus updateImpl(Attributor &A) override { 6781 // TODO: Once we have call site specific value information we can provide 6782 // call site specific liveness liveness information and then it makes 6783 // sense to specialize attributes for call sites arguments instead of 6784 // redirecting requests to the callee argument. 6785 Function *F = getAssociatedFunction(); 6786 const IRPosition &FnPos = IRPosition::function(*F); 6787 auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos); 6788 bool Changed = false; 6789 auto AccessPred = [&](const Instruction *I, const Value *Ptr, 6790 AccessKind Kind, MemoryLocationsKind MLK) { 6791 updateStateAndAccessesMap(getState(), AccessKindAccessesMap, MLK, I, Ptr, 6792 Changed); 6793 return true; 6794 }; 6795 if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS)) 6796 return indicatePessimisticFixpoint(); 6797 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; 6798 } 6799 6800 /// See AbstractAttribute::trackStatistics() 6801 void trackStatistics() const override { 6802 if (isAssumedReadNone()) 6803 STATS_DECLTRACK_CS_ATTR(readnone) 6804 } 6805 }; 6806 6807 /// ------------------ Value Constant Range Attribute ------------------------- 6808 6809 struct AAValueConstantRangeImpl : AAValueConstantRange { 6810 using StateType = IntegerRangeState; 6811 AAValueConstantRangeImpl(const IRPosition &IRP) : AAValueConstantRange(IRP) {} 6812 6813 /// See AbstractAttribute::getAsStr(). 6814 const std::string getAsStr() const override { 6815 std::string Str; 6816 llvm::raw_string_ostream OS(Str); 6817 OS << "range(" << getBitWidth() << ")<"; 6818 getKnown().print(OS); 6819 OS << " / "; 6820 getAssumed().print(OS); 6821 OS << ">"; 6822 return OS.str(); 6823 } 6824 6825 /// Helper function to get a SCEV expr for the associated value at program 6826 /// point \p I. 6827 const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const { 6828 if (!getAnchorScope()) 6829 return nullptr; 6830 6831 ScalarEvolution *SE = 6832 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6833 *getAnchorScope()); 6834 6835 LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>( 6836 *getAnchorScope()); 6837 6838 if (!SE || !LI) 6839 return nullptr; 6840 6841 const SCEV *S = SE->getSCEV(&getAssociatedValue()); 6842 if (!I) 6843 return S; 6844 6845 return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent())); 6846 } 6847 6848 /// Helper function to get a range from SCEV for the associated value at 6849 /// program point \p I. 6850 ConstantRange getConstantRangeFromSCEV(Attributor &A, 6851 const Instruction *I = nullptr) const { 6852 if (!getAnchorScope()) 6853 return getWorstState(getBitWidth()); 6854 6855 ScalarEvolution *SE = 6856 A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( 6857 *getAnchorScope()); 6858 6859 const SCEV *S = getSCEV(A, I); 6860 if (!SE || !S) 6861 return getWorstState(getBitWidth()); 6862 6863 return SE->getUnsignedRange(S); 6864 } 6865 6866 /// Helper function to get a range from LVI for the associated value at 6867 /// program point \p I. 6868 ConstantRange 6869 getConstantRangeFromLVI(Attributor &A, 6870 const Instruction *CtxI = nullptr) const { 6871 if (!getAnchorScope()) 6872 return getWorstState(getBitWidth()); 6873 6874 LazyValueInfo *LVI = 6875 A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>( 6876 *getAnchorScope()); 6877 6878 if (!LVI || !CtxI) 6879 return getWorstState(getBitWidth()); 6880 return LVI->getConstantRange(&getAssociatedValue(), 6881 const_cast<BasicBlock *>(CtxI->getParent()), 6882 const_cast<Instruction *>(CtxI)); 6883 } 6884 6885 /// See AAValueConstantRange::getKnownConstantRange(..). 6886 ConstantRange 6887 getKnownConstantRange(Attributor &A, 6888 const Instruction *CtxI = nullptr) const override { 6889 if (!CtxI || CtxI == getCtxI()) 6890 return getKnown(); 6891 6892 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6893 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6894 return getKnown().intersectWith(SCEVR).intersectWith(LVIR); 6895 } 6896 6897 /// See AAValueConstantRange::getAssumedConstantRange(..). 6898 ConstantRange 6899 getAssumedConstantRange(Attributor &A, 6900 const Instruction *CtxI = nullptr) const override { 6901 // TODO: Make SCEV use Attributor assumption. 6902 // We may be able to bound a variable range via assumptions in 6903 // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to 6904 // evolve to x^2 + x, then we can say that y is in [2, 12]. 6905 6906 if (!CtxI || CtxI == getCtxI()) 6907 return getAssumed(); 6908 6909 ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); 6910 ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); 6911 return getAssumed().intersectWith(SCEVR).intersectWith(LVIR); 6912 } 6913 6914 /// See AbstractAttribute::initialize(..). 6915 void initialize(Attributor &A) override { 6916 // Intersect a range given by SCEV. 6917 intersectKnown(getConstantRangeFromSCEV(A, getCtxI())); 6918 6919 // Intersect a range given by LVI. 6920 intersectKnown(getConstantRangeFromLVI(A, getCtxI())); 6921 } 6922 6923 /// Helper function to create MDNode for range metadata. 6924 static MDNode * 6925 getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx, 6926 const ConstantRange &AssumedConstantRange) { 6927 Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get( 6928 Ty, AssumedConstantRange.getLower())), 6929 ConstantAsMetadata::get(ConstantInt::get( 6930 Ty, AssumedConstantRange.getUpper()))}; 6931 return MDNode::get(Ctx, LowAndHigh); 6932 } 6933 6934 /// Return true if \p Assumed is included in \p KnownRanges. 6935 static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) { 6936 6937 if (Assumed.isFullSet()) 6938 return false; 6939 6940 if (!KnownRanges) 6941 return true; 6942 6943 // If multiple ranges are annotated in IR, we give up to annotate assumed 6944 // range for now. 6945 6946 // TODO: If there exists a known range which containts assumed range, we 6947 // can say assumed range is better. 6948 if (KnownRanges->getNumOperands() > 2) 6949 return false; 6950 6951 ConstantInt *Lower = 6952 mdconst::extract<ConstantInt>(KnownRanges->getOperand(0)); 6953 ConstantInt *Upper = 6954 mdconst::extract<ConstantInt>(KnownRanges->getOperand(1)); 6955 6956 ConstantRange Known(Lower->getValue(), Upper->getValue()); 6957 return Known.contains(Assumed) && Known != Assumed; 6958 } 6959 6960 /// Helper function to set range metadata. 6961 static bool 6962 setRangeMetadataIfisBetterRange(Instruction *I, 6963 const ConstantRange &AssumedConstantRange) { 6964 auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range); 6965 if (isBetterRange(AssumedConstantRange, OldRangeMD)) { 6966 if (!AssumedConstantRange.isEmptySet()) { 6967 I->setMetadata(LLVMContext::MD_range, 6968 getMDNodeForConstantRange(I->getType(), I->getContext(), 6969 AssumedConstantRange)); 6970 return true; 6971 } 6972 } 6973 return false; 6974 } 6975 6976 /// See AbstractAttribute::manifest() 6977 ChangeStatus manifest(Attributor &A) override { 6978 ChangeStatus Changed = ChangeStatus::UNCHANGED; 6979 ConstantRange AssumedConstantRange = getAssumedConstantRange(A); 6980 assert(!AssumedConstantRange.isFullSet() && "Invalid state"); 6981 6982 auto &V = getAssociatedValue(); 6983 if (!AssumedConstantRange.isEmptySet() && 6984 !AssumedConstantRange.isSingleElement()) { 6985 if (Instruction *I = dyn_cast<Instruction>(&V)) 6986 if (isa<CallInst>(I) || isa<LoadInst>(I)) 6987 if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange)) 6988 Changed = ChangeStatus::CHANGED; 6989 } 6990 6991 return Changed; 6992 } 6993 }; 6994 6995 struct AAValueConstantRangeArgument final 6996 : AAArgumentFromCallSiteArguments< 6997 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> { 6998 AAValueConstantRangeArgument(const IRPosition &IRP) 6999 : AAArgumentFromCallSiteArguments< 7000 AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>( 7001 IRP) {} 7002 7003 /// See AbstractAttribute::trackStatistics() 7004 void trackStatistics() const override { 7005 STATS_DECLTRACK_ARG_ATTR(value_range) 7006 } 7007 }; 7008 7009 struct AAValueConstantRangeReturned 7010 : AAReturnedFromReturnedValues<AAValueConstantRange, 7011 AAValueConstantRangeImpl> { 7012 using Base = AAReturnedFromReturnedValues<AAValueConstantRange, 7013 AAValueConstantRangeImpl>; 7014 AAValueConstantRangeReturned(const IRPosition &IRP) : Base(IRP) {} 7015 7016 /// See AbstractAttribute::initialize(...). 7017 void initialize(Attributor &A) override {} 7018 7019 /// See AbstractAttribute::trackStatistics() 7020 void trackStatistics() const override { 7021 STATS_DECLTRACK_FNRET_ATTR(value_range) 7022 } 7023 }; 7024 7025 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl { 7026 AAValueConstantRangeFloating(const IRPosition &IRP) 7027 : AAValueConstantRangeImpl(IRP) {} 7028 7029 /// See AbstractAttribute::initialize(...). 7030 void initialize(Attributor &A) override { 7031 AAValueConstantRangeImpl::initialize(A); 7032 Value &V = getAssociatedValue(); 7033 7034 if (auto *C = dyn_cast<ConstantInt>(&V)) { 7035 unionAssumed(ConstantRange(C->getValue())); 7036 indicateOptimisticFixpoint(); 7037 return; 7038 } 7039 7040 if (isa<UndefValue>(&V)) { 7041 // Collapse the undef state to 0. 7042 unionAssumed(ConstantRange(APInt(getBitWidth(), 0))); 7043 indicateOptimisticFixpoint(); 7044 return; 7045 } 7046 7047 if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V)) 7048 return; 7049 // If it is a load instruction with range metadata, use it. 7050 if (LoadInst *LI = dyn_cast<LoadInst>(&V)) 7051 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) { 7052 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7053 return; 7054 } 7055 7056 // We can work with PHI and select instruction as we traverse their operands 7057 // during update. 7058 if (isa<SelectInst>(V) || isa<PHINode>(V)) 7059 return; 7060 7061 // Otherwise we give up. 7062 indicatePessimisticFixpoint(); 7063 7064 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: " 7065 << getAssociatedValue() << "\n"); 7066 } 7067 7068 bool calculateBinaryOperator( 7069 Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T, 7070 Instruction *CtxI, 7071 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7072 Value *LHS = BinOp->getOperand(0); 7073 Value *RHS = BinOp->getOperand(1); 7074 // TODO: Allow non integers as well. 7075 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7076 return false; 7077 7078 auto &LHSAA = 7079 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7080 QuerriedAAs.push_back(&LHSAA); 7081 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7082 7083 auto &RHSAA = 7084 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7085 QuerriedAAs.push_back(&RHSAA); 7086 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7087 7088 auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange); 7089 7090 T.unionAssumed(AssumedRange); 7091 7092 // TODO: Track a known state too. 7093 7094 return T.isValidState(); 7095 } 7096 7097 bool calculateCastInst( 7098 Attributor &A, CastInst *CastI, IntegerRangeState &T, Instruction *CtxI, 7099 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7100 assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!"); 7101 // TODO: Allow non integers as well. 7102 Value &OpV = *CastI->getOperand(0); 7103 if (!OpV.getType()->isIntegerTy()) 7104 return false; 7105 7106 auto &OpAA = 7107 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV)); 7108 QuerriedAAs.push_back(&OpAA); 7109 T.unionAssumed( 7110 OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth())); 7111 return T.isValidState(); 7112 } 7113 7114 bool 7115 calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T, 7116 Instruction *CtxI, 7117 SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { 7118 Value *LHS = CmpI->getOperand(0); 7119 Value *RHS = CmpI->getOperand(1); 7120 // TODO: Allow non integers as well. 7121 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 7122 return false; 7123 7124 auto &LHSAA = 7125 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS)); 7126 QuerriedAAs.push_back(&LHSAA); 7127 auto &RHSAA = 7128 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS)); 7129 QuerriedAAs.push_back(&RHSAA); 7130 7131 auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); 7132 auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); 7133 7134 // If one of them is empty set, we can't decide. 7135 if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet()) 7136 return true; 7137 7138 bool MustTrue = false, MustFalse = false; 7139 7140 auto AllowedRegion = 7141 ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange); 7142 7143 auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion( 7144 CmpI->getPredicate(), RHSAARange); 7145 7146 if (AllowedRegion.intersectWith(LHSAARange).isEmptySet()) 7147 MustFalse = true; 7148 7149 if (SatisfyingRegion.contains(LHSAARange)) 7150 MustTrue = true; 7151 7152 assert((!MustTrue || !MustFalse) && 7153 "Either MustTrue or MustFalse should be false!"); 7154 7155 if (MustTrue) 7156 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1))); 7157 else if (MustFalse) 7158 T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0))); 7159 else 7160 T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true)); 7161 7162 LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA 7163 << " " << RHSAA << "\n"); 7164 7165 // TODO: Track a known state too. 7166 return T.isValidState(); 7167 } 7168 7169 /// See AbstractAttribute::updateImpl(...). 7170 ChangeStatus updateImpl(Attributor &A) override { 7171 Instruction *CtxI = getCtxI(); 7172 auto VisitValueCB = [&](Value &V, IntegerRangeState &T, 7173 bool Stripped) -> bool { 7174 Instruction *I = dyn_cast<Instruction>(&V); 7175 if (!I || isa<CallBase>(I)) { 7176 7177 // If the value is not instruction, we query AA to Attributor. 7178 const auto &AA = 7179 A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V)); 7180 7181 // Clamp operator is not used to utilize a program point CtxI. 7182 T.unionAssumed(AA.getAssumedConstantRange(A, CtxI)); 7183 7184 return T.isValidState(); 7185 } 7186 7187 SmallVector<const AAValueConstantRange *, 4> QuerriedAAs; 7188 if (auto *BinOp = dyn_cast<BinaryOperator>(I)) { 7189 if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs)) 7190 return false; 7191 } else if (auto *CmpI = dyn_cast<CmpInst>(I)) { 7192 if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs)) 7193 return false; 7194 } else if (auto *CastI = dyn_cast<CastInst>(I)) { 7195 if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs)) 7196 return false; 7197 } else { 7198 // Give up with other instructions. 7199 // TODO: Add other instructions 7200 7201 T.indicatePessimisticFixpoint(); 7202 return false; 7203 } 7204 7205 // Catch circular reasoning in a pessimistic way for now. 7206 // TODO: Check how the range evolves and if we stripped anything, see also 7207 // AADereferenceable or AAAlign for similar situations. 7208 for (const AAValueConstantRange *QueriedAA : QuerriedAAs) { 7209 if (QueriedAA != this) 7210 continue; 7211 // If we are in a stady state we do not need to worry. 7212 if (T.getAssumed() == getState().getAssumed()) 7213 continue; 7214 T.indicatePessimisticFixpoint(); 7215 } 7216 7217 return T.isValidState(); 7218 }; 7219 7220 IntegerRangeState T(getBitWidth()); 7221 7222 if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>( 7223 A, getIRPosition(), *this, T, VisitValueCB)) 7224 return indicatePessimisticFixpoint(); 7225 7226 return clampStateAndIndicateChange(getState(), T); 7227 } 7228 7229 /// See AbstractAttribute::trackStatistics() 7230 void trackStatistics() const override { 7231 STATS_DECLTRACK_FLOATING_ATTR(value_range) 7232 } 7233 }; 7234 7235 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl { 7236 AAValueConstantRangeFunction(const IRPosition &IRP) 7237 : AAValueConstantRangeImpl(IRP) {} 7238 7239 /// See AbstractAttribute::initialize(...). 7240 ChangeStatus updateImpl(Attributor &A) override { 7241 llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will " 7242 "not be called"); 7243 } 7244 7245 /// See AbstractAttribute::trackStatistics() 7246 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) } 7247 }; 7248 7249 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction { 7250 AAValueConstantRangeCallSite(const IRPosition &IRP) 7251 : AAValueConstantRangeFunction(IRP) {} 7252 7253 /// See AbstractAttribute::trackStatistics() 7254 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) } 7255 }; 7256 7257 struct AAValueConstantRangeCallSiteReturned 7258 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7259 AAValueConstantRangeImpl> { 7260 AAValueConstantRangeCallSiteReturned(const IRPosition &IRP) 7261 : AACallSiteReturnedFromReturned<AAValueConstantRange, 7262 AAValueConstantRangeImpl>(IRP) {} 7263 7264 /// See AbstractAttribute::initialize(...). 7265 void initialize(Attributor &A) override { 7266 // If it is a load instruction with range metadata, use the metadata. 7267 if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue())) 7268 if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range)) 7269 intersectKnown(getConstantRangeFromMetadata(*RangeMD)); 7270 7271 AAValueConstantRangeImpl::initialize(A); 7272 } 7273 7274 /// See AbstractAttribute::trackStatistics() 7275 void trackStatistics() const override { 7276 STATS_DECLTRACK_CSRET_ATTR(value_range) 7277 } 7278 }; 7279 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating { 7280 AAValueConstantRangeCallSiteArgument(const IRPosition &IRP) 7281 : AAValueConstantRangeFloating(IRP) {} 7282 7283 /// See AbstractAttribute::trackStatistics() 7284 void trackStatistics() const override { 7285 STATS_DECLTRACK_CSARG_ATTR(value_range) 7286 } 7287 }; 7288 7289 } // namespace 7290 /// ---------------------------------------------------------------------------- 7291 /// Attributor 7292 /// ---------------------------------------------------------------------------- 7293 7294 bool Attributor::isAssumedDead(const AbstractAttribute &AA, 7295 const AAIsDead *FnLivenessAA, 7296 bool CheckBBLivenessOnly, DepClassTy DepClass) { 7297 const IRPosition &IRP = AA.getIRPosition(); 7298 if (!Functions.count(IRP.getAnchorScope())) 7299 return false; 7300 return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass); 7301 } 7302 7303 bool Attributor::isAssumedDead(const Use &U, 7304 const AbstractAttribute *QueryingAA, 7305 const AAIsDead *FnLivenessAA, 7306 bool CheckBBLivenessOnly, DepClassTy DepClass) { 7307 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 7308 if (!UserI) 7309 return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA, 7310 CheckBBLivenessOnly, DepClass); 7311 7312 if (CallSite CS = CallSite(UserI)) { 7313 // For call site argument uses we can check if the argument is 7314 // unused/dead. 7315 if (CS.isArgOperand(&U)) { 7316 const IRPosition &CSArgPos = 7317 IRPosition::callsite_argument(CS, CS.getArgumentNo(&U)); 7318 return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA, 7319 CheckBBLivenessOnly, DepClass); 7320 } 7321 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) { 7322 const IRPosition &RetPos = IRPosition::returned(*RI->getFunction()); 7323 return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly, 7324 DepClass); 7325 } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) { 7326 BasicBlock *IncomingBB = PHI->getIncomingBlock(U); 7327 return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA, 7328 CheckBBLivenessOnly, DepClass); 7329 } 7330 7331 return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA, 7332 CheckBBLivenessOnly, DepClass); 7333 } 7334 7335 bool Attributor::isAssumedDead(const Instruction &I, 7336 const AbstractAttribute *QueryingAA, 7337 const AAIsDead *FnLivenessAA, 7338 bool CheckBBLivenessOnly, DepClassTy DepClass) { 7339 if (!FnLivenessAA) 7340 FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()), 7341 QueryingAA, 7342 /* TrackDependence */ false); 7343 7344 // If we have a context instruction and a liveness AA we use it. 7345 if (FnLivenessAA && 7346 FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() && 7347 FnLivenessAA->isAssumedDead(&I)) { 7348 if (QueryingAA) 7349 recordDependence(*FnLivenessAA, *QueryingAA, DepClass); 7350 return true; 7351 } 7352 7353 if (CheckBBLivenessOnly) 7354 return false; 7355 7356 const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>( 7357 IRPosition::value(I), QueryingAA, /* TrackDependence */ false); 7358 // Don't check liveness for AAIsDead. 7359 if (QueryingAA == &IsDeadAA) 7360 return false; 7361 7362 if (IsDeadAA.isAssumedDead()) { 7363 if (QueryingAA) 7364 recordDependence(IsDeadAA, *QueryingAA, DepClass); 7365 return true; 7366 } 7367 7368 return false; 7369 } 7370 7371 bool Attributor::isAssumedDead(const IRPosition &IRP, 7372 const AbstractAttribute *QueryingAA, 7373 const AAIsDead *FnLivenessAA, 7374 bool CheckBBLivenessOnly, DepClassTy DepClass) { 7375 Instruction *CtxI = IRP.getCtxI(); 7376 if (CtxI && 7377 isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, 7378 /* CheckBBLivenessOnly */ true, 7379 CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL)) 7380 return true; 7381 7382 if (CheckBBLivenessOnly) 7383 return false; 7384 7385 // If we haven't succeeded we query the specific liveness info for the IRP. 7386 const AAIsDead *IsDeadAA; 7387 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE) 7388 IsDeadAA = &getOrCreateAAFor<AAIsDead>( 7389 IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())), 7390 QueryingAA, /* TrackDependence */ false); 7391 else 7392 IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, 7393 /* TrackDependence */ false); 7394 // Don't check liveness for AAIsDead. 7395 if (QueryingAA == IsDeadAA) 7396 return false; 7397 7398 if (IsDeadAA->isAssumedDead()) { 7399 if (QueryingAA) 7400 recordDependence(*IsDeadAA, *QueryingAA, DepClass); 7401 return true; 7402 } 7403 7404 return false; 7405 } 7406 7407 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred, 7408 const AbstractAttribute &QueryingAA, 7409 const Value &V, DepClassTy LivenessDepClass) { 7410 7411 // Check the trivial case first as it catches void values. 7412 if (V.use_empty()) 7413 return true; 7414 7415 // If the value is replaced by another one, for now a constant, we do not have 7416 // uses. Note that this requires users of `checkForAllUses` to not recurse but 7417 // instead use the `follow` callback argument to look at transitive users, 7418 // however, that should be clear from the presence of the argument. 7419 bool UsedAssumedInformation = false; 7420 Optional<Constant *> C = 7421 getAssumedConstant(*this, V, QueryingAA, UsedAssumedInformation); 7422 if (C.hasValue() && C.getValue()) { 7423 LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V 7424 << " -> " << *C.getValue() << "\n"); 7425 return true; 7426 } 7427 7428 const IRPosition &IRP = QueryingAA.getIRPosition(); 7429 SmallVector<const Use *, 16> Worklist; 7430 SmallPtrSet<const Use *, 16> Visited; 7431 7432 for (const Use &U : V.uses()) 7433 Worklist.push_back(&U); 7434 7435 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size() 7436 << " initial uses to check\n"); 7437 7438 const Function *ScopeFn = IRP.getAnchorScope(); 7439 const auto *LivenessAA = 7440 ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn), 7441 /* TrackDependence */ false) 7442 : nullptr; 7443 7444 while (!Worklist.empty()) { 7445 const Use *U = Worklist.pop_back_val(); 7446 if (!Visited.insert(U).second) 7447 continue; 7448 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in " 7449 << *U->getUser() << "\n"); 7450 if (isAssumedDead(*U, &QueryingAA, LivenessAA, 7451 /* CheckBBLivenessOnly */ false, LivenessDepClass)) { 7452 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); 7453 continue; 7454 } 7455 if (U->getUser()->isDroppable()) { 7456 LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n"); 7457 continue; 7458 } 7459 7460 bool Follow = false; 7461 if (!Pred(*U, Follow)) 7462 return false; 7463 if (!Follow) 7464 continue; 7465 for (const Use &UU : U->getUser()->uses()) 7466 Worklist.push_back(&UU); 7467 } 7468 7469 return true; 7470 } 7471 7472 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, 7473 const AbstractAttribute &QueryingAA, 7474 bool RequireAllCallSites, 7475 bool &AllCallSitesKnown) { 7476 // We can try to determine information from 7477 // the call sites. However, this is only possible all call sites are known, 7478 // hence the function has internal linkage. 7479 const IRPosition &IRP = QueryingAA.getIRPosition(); 7480 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 7481 if (!AssociatedFunction) { 7482 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP 7483 << "\n"); 7484 AllCallSitesKnown = false; 7485 return false; 7486 } 7487 7488 return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites, 7489 &QueryingAA, AllCallSitesKnown); 7490 } 7491 7492 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, 7493 const Function &Fn, 7494 bool RequireAllCallSites, 7495 const AbstractAttribute *QueryingAA, 7496 bool &AllCallSitesKnown) { 7497 if (RequireAllCallSites && !Fn.hasLocalLinkage()) { 7498 LLVM_DEBUG( 7499 dbgs() 7500 << "[Attributor] Function " << Fn.getName() 7501 << " has no internal linkage, hence not all call sites are known\n"); 7502 AllCallSitesKnown = false; 7503 return false; 7504 } 7505 7506 // If we do not require all call sites we might not see all. 7507 AllCallSitesKnown = RequireAllCallSites; 7508 7509 SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses())); 7510 for (unsigned u = 0; u < Uses.size(); ++u) { 7511 const Use &U = *Uses[u]; 7512 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in " 7513 << *U.getUser() << "\n"); 7514 if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) { 7515 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); 7516 continue; 7517 } 7518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { 7519 if (CE->isCast() && CE->getType()->isPointerTy() && 7520 CE->getType()->getPointerElementType()->isFunctionTy()) { 7521 for (const Use &CEU : CE->uses()) 7522 Uses.push_back(&CEU); 7523 continue; 7524 } 7525 } 7526 7527 AbstractCallSite ACS(&U); 7528 if (!ACS) { 7529 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName() 7530 << " has non call site use " << *U.get() << " in " 7531 << *U.getUser() << "\n"); 7532 // BlockAddress users are allowed. 7533 if (isa<BlockAddress>(U.getUser())) 7534 continue; 7535 return false; 7536 } 7537 7538 const Use *EffectiveUse = 7539 ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U; 7540 if (!ACS.isCallee(EffectiveUse)) { 7541 if (!RequireAllCallSites) 7542 continue; 7543 LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser() 7544 << " is an invalid use of " << Fn.getName() << "\n"); 7545 return false; 7546 } 7547 7548 // Make sure the arguments that can be matched between the call site and the 7549 // callee argee on their type. It is unlikely they do not and it doesn't 7550 // make sense for all attributes to know/care about this. 7551 assert(&Fn == ACS.getCalledFunction() && "Expected known callee"); 7552 unsigned MinArgsParams = 7553 std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size()); 7554 for (unsigned u = 0; u < MinArgsParams; ++u) { 7555 Value *CSArgOp = ACS.getCallArgOperand(u); 7556 if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) { 7557 LLVM_DEBUG( 7558 dbgs() << "[Attributor] Call site / callee argument type mismatch [" 7559 << u << "@" << Fn.getName() << ": " 7560 << *Fn.getArg(u)->getType() << " vs. " 7561 << *ACS.getCallArgOperand(u)->getType() << "\n"); 7562 return false; 7563 } 7564 } 7565 7566 if (Pred(ACS)) 7567 continue; 7568 7569 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for " 7570 << *ACS.getInstruction() << "\n"); 7571 return false; 7572 } 7573 7574 return true; 7575 } 7576 7577 bool Attributor::checkForAllReturnedValuesAndReturnInsts( 7578 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred, 7579 const AbstractAttribute &QueryingAA) { 7580 7581 const IRPosition &IRP = QueryingAA.getIRPosition(); 7582 // Since we need to provide return instructions we have to have an exact 7583 // definition. 7584 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 7585 if (!AssociatedFunction) 7586 return false; 7587 7588 // If this is a call site query we use the call site specific return values 7589 // and liveness information. 7590 // TODO: use the function scope once we have call site AAReturnedValues. 7591 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 7592 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); 7593 if (!AARetVal.getState().isValidState()) 7594 return false; 7595 7596 return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred); 7597 } 7598 7599 bool Attributor::checkForAllReturnedValues( 7600 function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) { 7601 7602 const IRPosition &IRP = QueryingAA.getIRPosition(); 7603 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 7604 if (!AssociatedFunction) 7605 return false; 7606 7607 // TODO: use the function scope once we have call site AAReturnedValues. 7608 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 7609 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); 7610 if (!AARetVal.getState().isValidState()) 7611 return false; 7612 7613 return AARetVal.checkForAllReturnedValuesAndReturnInsts( 7614 [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) { 7615 return Pred(RV); 7616 }); 7617 } 7618 7619 static bool checkForAllInstructionsImpl( 7620 Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap, 7621 function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA, 7622 const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes, 7623 bool CheckBBLivenessOnly = false) { 7624 for (unsigned Opcode : Opcodes) { 7625 for (Instruction *I : OpcodeInstMap[Opcode]) { 7626 // Skip dead instructions. 7627 if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA, 7628 CheckBBLivenessOnly)) 7629 continue; 7630 7631 if (!Pred(*I)) 7632 return false; 7633 } 7634 } 7635 return true; 7636 } 7637 7638 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred, 7639 const AbstractAttribute &QueryingAA, 7640 const ArrayRef<unsigned> &Opcodes, 7641 bool CheckBBLivenessOnly) { 7642 7643 const IRPosition &IRP = QueryingAA.getIRPosition(); 7644 // Since we need to provide instructions we have to have an exact definition. 7645 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 7646 if (!AssociatedFunction) 7647 return false; 7648 7649 // TODO: use the function scope once we have call site AAReturnedValues. 7650 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 7651 const auto &LivenessAA = 7652 getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false); 7653 7654 auto &OpcodeInstMap = 7655 InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction); 7656 if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA, 7657 &LivenessAA, Opcodes, CheckBBLivenessOnly)) 7658 return false; 7659 7660 return true; 7661 } 7662 7663 bool Attributor::checkForAllReadWriteInstructions( 7664 function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) { 7665 7666 const Function *AssociatedFunction = 7667 QueryingAA.getIRPosition().getAssociatedFunction(); 7668 if (!AssociatedFunction) 7669 return false; 7670 7671 // TODO: use the function scope once we have call site AAReturnedValues. 7672 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 7673 const auto &LivenessAA = 7674 getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false); 7675 7676 for (Instruction *I : 7677 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) { 7678 // Skip dead instructions. 7679 if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA)) 7680 continue; 7681 7682 if (!Pred(*I)) 7683 return false; 7684 } 7685 7686 return true; 7687 } 7688 7689 ChangeStatus Attributor::run() { 7690 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " 7691 << AllAbstractAttributes.size() 7692 << " abstract attributes.\n"); 7693 7694 // Now that all abstract attributes are collected and initialized we start 7695 // the abstract analysis. 7696 7697 unsigned IterationCounter = 1; 7698 7699 SmallVector<AbstractAttribute *, 32> ChangedAAs; 7700 SetVector<AbstractAttribute *> Worklist, InvalidAAs; 7701 Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end()); 7702 7703 bool RecomputeDependences = false; 7704 7705 do { 7706 // Remember the size to determine new attributes. 7707 size_t NumAAs = AllAbstractAttributes.size(); 7708 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter 7709 << ", Worklist size: " << Worklist.size() << "\n"); 7710 7711 // For invalid AAs we can fix dependent AAs that have a required dependence, 7712 // thereby folding long dependence chains in a single step without the need 7713 // to run updates. 7714 for (unsigned u = 0; u < InvalidAAs.size(); ++u) { 7715 AbstractAttribute *InvalidAA = InvalidAAs[u]; 7716 auto &QuerriedAAs = QueryMap[InvalidAA]; 7717 LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has " 7718 << QuerriedAAs.RequiredAAs.size() << "/" 7719 << QuerriedAAs.OptionalAAs.size() 7720 << " required/optional dependences\n"); 7721 for (AbstractAttribute *DepOnInvalidAA : QuerriedAAs.RequiredAAs) { 7722 AbstractState &DOIAAState = DepOnInvalidAA->getState(); 7723 DOIAAState.indicatePessimisticFixpoint(); 7724 ++NumAttributesFixedDueToRequiredDependences; 7725 assert(DOIAAState.isAtFixpoint() && "Expected fixpoint state!"); 7726 if (!DOIAAState.isValidState()) 7727 InvalidAAs.insert(DepOnInvalidAA); 7728 else 7729 ChangedAAs.push_back(DepOnInvalidAA); 7730 } 7731 if (!RecomputeDependences) 7732 Worklist.insert(QuerriedAAs.OptionalAAs.begin(), 7733 QuerriedAAs.OptionalAAs.end()); 7734 } 7735 7736 // If dependences (=QueryMap) are recomputed we have to look at all abstract 7737 // attributes again, regardless of what changed in the last iteration. 7738 if (RecomputeDependences) { 7739 LLVM_DEBUG( 7740 dbgs() << "[Attributor] Run all AAs to recompute dependences\n"); 7741 QueryMap.clear(); 7742 ChangedAAs.clear(); 7743 Worklist.insert(AllAbstractAttributes.begin(), 7744 AllAbstractAttributes.end()); 7745 } 7746 7747 // Add all abstract attributes that are potentially dependent on one that 7748 // changed to the work list. 7749 for (AbstractAttribute *ChangedAA : ChangedAAs) { 7750 auto &QuerriedAAs = QueryMap[ChangedAA]; 7751 Worklist.insert(QuerriedAAs.OptionalAAs.begin(), 7752 QuerriedAAs.OptionalAAs.end()); 7753 Worklist.insert(QuerriedAAs.RequiredAAs.begin(), 7754 QuerriedAAs.RequiredAAs.end()); 7755 } 7756 7757 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter 7758 << ", Worklist+Dependent size: " << Worklist.size() 7759 << "\n"); 7760 7761 // Reset the changed and invalid set. 7762 ChangedAAs.clear(); 7763 InvalidAAs.clear(); 7764 7765 // Update all abstract attribute in the work list and record the ones that 7766 // changed. 7767 for (AbstractAttribute *AA : Worklist) 7768 if (!AA->getState().isAtFixpoint() && 7769 !isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true)) { 7770 QueriedNonFixAA = false; 7771 if (AA->update(*this) == ChangeStatus::CHANGED) { 7772 ChangedAAs.push_back(AA); 7773 if (!AA->getState().isValidState()) 7774 InvalidAAs.insert(AA); 7775 } else if (!QueriedNonFixAA) { 7776 // If the attribute did not query any non-fix information, the state 7777 // will not change and we can indicate that right away. 7778 AA->getState().indicateOptimisticFixpoint(); 7779 } 7780 } 7781 7782 // Check if we recompute the dependences in the next iteration. 7783 RecomputeDependences = (DepRecomputeInterval > 0 && 7784 IterationCounter % DepRecomputeInterval == 0); 7785 7786 // Add attributes to the changed set if they have been created in the last 7787 // iteration. 7788 ChangedAAs.append(AllAbstractAttributes.begin() + NumAAs, 7789 AllAbstractAttributes.end()); 7790 7791 // Reset the work list and repopulate with the changed abstract attributes. 7792 // Note that dependent ones are added above. 7793 Worklist.clear(); 7794 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end()); 7795 7796 } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations || 7797 VerifyMaxFixpointIterations)); 7798 7799 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " 7800 << IterationCounter << "/" << MaxFixpointIterations 7801 << " iterations\n"); 7802 7803 size_t NumFinalAAs = AllAbstractAttributes.size(); 7804 7805 // Reset abstract arguments not settled in a sound fixpoint by now. This 7806 // happens when we stopped the fixpoint iteration early. Note that only the 7807 // ones marked as "changed" *and* the ones transitively depending on them 7808 // need to be reverted to a pessimistic state. Others might not be in a 7809 // fixpoint state but we can use the optimistic results for them anyway. 7810 SmallPtrSet<AbstractAttribute *, 32> Visited; 7811 for (unsigned u = 0; u < ChangedAAs.size(); u++) { 7812 AbstractAttribute *ChangedAA = ChangedAAs[u]; 7813 if (!Visited.insert(ChangedAA).second) 7814 continue; 7815 7816 AbstractState &State = ChangedAA->getState(); 7817 if (!State.isAtFixpoint()) { 7818 State.indicatePessimisticFixpoint(); 7819 7820 NumAttributesTimedOut++; 7821 } 7822 7823 auto &QuerriedAAs = QueryMap[ChangedAA]; 7824 ChangedAAs.append(QuerriedAAs.OptionalAAs.begin(), 7825 QuerriedAAs.OptionalAAs.end()); 7826 ChangedAAs.append(QuerriedAAs.RequiredAAs.begin(), 7827 QuerriedAAs.RequiredAAs.end()); 7828 } 7829 7830 LLVM_DEBUG({ 7831 if (!Visited.empty()) 7832 dbgs() << "\n[Attributor] Finalized " << Visited.size() 7833 << " abstract attributes.\n"; 7834 }); 7835 7836 unsigned NumManifested = 0; 7837 unsigned NumAtFixpoint = 0; 7838 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; 7839 for (AbstractAttribute *AA : AllAbstractAttributes) { 7840 AbstractState &State = AA->getState(); 7841 7842 // If there is not already a fixpoint reached, we can now take the 7843 // optimistic state. This is correct because we enforced a pessimistic one 7844 // on abstract attributes that were transitively dependent on a changed one 7845 // already above. 7846 if (!State.isAtFixpoint()) 7847 State.indicateOptimisticFixpoint(); 7848 7849 // If the state is invalid, we do not try to manifest it. 7850 if (!State.isValidState()) 7851 continue; 7852 7853 // Skip dead code. 7854 if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true)) 7855 continue; 7856 // Manifest the state and record if we changed the IR. 7857 ChangeStatus LocalChange = AA->manifest(*this); 7858 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled()) 7859 AA->trackStatistics(); 7860 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA 7861 << "\n"); 7862 7863 ManifestChange = ManifestChange | LocalChange; 7864 7865 NumAtFixpoint++; 7866 NumManifested += (LocalChange == ChangeStatus::CHANGED); 7867 } 7868 7869 (void)NumManifested; 7870 (void)NumAtFixpoint; 7871 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested 7872 << " arguments while " << NumAtFixpoint 7873 << " were in a valid fixpoint state\n"); 7874 7875 NumAttributesManifested += NumManifested; 7876 NumAttributesValidFixpoint += NumAtFixpoint; 7877 7878 (void)NumFinalAAs; 7879 if (NumFinalAAs != AllAbstractAttributes.size()) { 7880 for (unsigned u = NumFinalAAs; u < AllAbstractAttributes.size(); ++u) 7881 errs() << "Unexpected abstract attribute: " << *AllAbstractAttributes[u] 7882 << " :: " 7883 << AllAbstractAttributes[u]->getIRPosition().getAssociatedValue() 7884 << "\n"; 7885 llvm_unreachable("Expected the final number of abstract attributes to " 7886 "remain unchanged!"); 7887 } 7888 7889 // Delete stuff at the end to avoid invalid references and a nice order. 7890 { 7891 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least " 7892 << ToBeDeletedFunctions.size() << " functions and " 7893 << ToBeDeletedBlocks.size() << " blocks and " 7894 << ToBeDeletedInsts.size() << " instructions and " 7895 << ToBeChangedUses.size() << " uses\n"); 7896 7897 SmallVector<WeakTrackingVH, 32> DeadInsts; 7898 SmallVector<Instruction *, 32> TerminatorsToFold; 7899 7900 for (auto &It : ToBeChangedUses) { 7901 Use *U = It.first; 7902 Value *NewV = It.second; 7903 Value *OldV = U->get(); 7904 7905 // Do not replace uses in returns if the value is a must-tail call we will 7906 // not delete. 7907 if (isa<ReturnInst>(U->getUser())) 7908 if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts())) 7909 if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI)) 7910 continue; 7911 7912 LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser() 7913 << " instead of " << *OldV << "\n"); 7914 U->set(NewV); 7915 // Do not modify call instructions outside the SCC. 7916 if (auto *CB = dyn_cast<CallBase>(OldV)) 7917 if (!Functions.count(CB->getCaller())) 7918 continue; 7919 if (Instruction *I = dyn_cast<Instruction>(OldV)) { 7920 CGModifiedFunctions.insert(I->getFunction()); 7921 if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) && 7922 isInstructionTriviallyDead(I)) 7923 DeadInsts.push_back(I); 7924 } 7925 if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) { 7926 Instruction *UserI = cast<Instruction>(U->getUser()); 7927 if (isa<UndefValue>(NewV)) { 7928 ToBeChangedToUnreachableInsts.insert(UserI); 7929 } else { 7930 TerminatorsToFold.push_back(UserI); 7931 } 7932 } 7933 } 7934 for (auto &V : InvokeWithDeadSuccessor) 7935 if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) { 7936 bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind); 7937 bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn); 7938 bool Invoke2CallAllowed = 7939 !AAIsDeadFunction::mayCatchAsynchronousExceptions( 7940 *II->getFunction()); 7941 assert((UnwindBBIsDead || NormalBBIsDead) && 7942 "Invoke does not have dead successors!"); 7943 BasicBlock *BB = II->getParent(); 7944 BasicBlock *NormalDestBB = II->getNormalDest(); 7945 if (UnwindBBIsDead) { 7946 Instruction *NormalNextIP = &NormalDestBB->front(); 7947 if (Invoke2CallAllowed) { 7948 changeToCall(II); 7949 NormalNextIP = BB->getTerminator(); 7950 } 7951 if (NormalBBIsDead) 7952 ToBeChangedToUnreachableInsts.insert(NormalNextIP); 7953 } else { 7954 assert(NormalBBIsDead && "Broken invariant!"); 7955 if (!NormalDestBB->getUniquePredecessor()) 7956 NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead"); 7957 ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front()); 7958 } 7959 } 7960 for (Instruction *I : TerminatorsToFold) { 7961 CGModifiedFunctions.insert(I->getFunction()); 7962 ConstantFoldTerminator(I->getParent()); 7963 } 7964 for (auto &V : ToBeChangedToUnreachableInsts) 7965 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) { 7966 CGModifiedFunctions.insert(I->getFunction()); 7967 changeToUnreachable(I, /* UseLLVMTrap */ false); 7968 } 7969 7970 for (auto &V : ToBeDeletedInsts) { 7971 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) { 7972 CGModifiedFunctions.insert(I->getFunction()); 7973 if (!I->getType()->isVoidTy()) 7974 I->replaceAllUsesWith(UndefValue::get(I->getType())); 7975 if (!isa<PHINode>(I) && isInstructionTriviallyDead(I)) 7976 DeadInsts.push_back(I); 7977 else 7978 I->eraseFromParent(); 7979 } 7980 } 7981 7982 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 7983 7984 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) { 7985 SmallVector<BasicBlock *, 8> ToBeDeletedBBs; 7986 ToBeDeletedBBs.reserve(NumDeadBlocks); 7987 for (BasicBlock *BB : ToBeDeletedBlocks) { 7988 CGModifiedFunctions.insert(BB->getParent()); 7989 ToBeDeletedBBs.push_back(BB); 7990 } 7991 // Actually we do not delete the blocks but squash them into a single 7992 // unreachable but untangling branches that jump here is something we need 7993 // to do in a more generic way. 7994 DetatchDeadBlocks(ToBeDeletedBBs, nullptr); 7995 STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted."); 7996 BUILD_STAT_NAME(AAIsDead, BasicBlock) += ToBeDeletedBlocks.size(); 7997 } 7998 7999 // Identify dead internal functions and delete them. This happens outside 8000 // the other fixpoint analysis as we might treat potentially dead functions 8001 // as live to lower the number of iterations. If they happen to be dead, the 8002 // below fixpoint loop will identify and eliminate them. 8003 SmallVector<Function *, 8> InternalFns; 8004 for (Function *F : Functions) 8005 if (F->hasLocalLinkage()) 8006 InternalFns.push_back(F); 8007 8008 bool FoundDeadFn = true; 8009 while (FoundDeadFn) { 8010 FoundDeadFn = false; 8011 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) { 8012 Function *F = InternalFns[u]; 8013 if (!F) 8014 continue; 8015 8016 bool AllCallSitesKnown; 8017 if (!checkForAllCallSites( 8018 [this](AbstractCallSite ACS) { 8019 return ToBeDeletedFunctions.count( 8020 ACS.getInstruction()->getFunction()); 8021 }, 8022 *F, true, nullptr, AllCallSitesKnown)) 8023 continue; 8024 8025 ToBeDeletedFunctions.insert(F); 8026 InternalFns[u] = nullptr; 8027 FoundDeadFn = true; 8028 } 8029 } 8030 } 8031 8032 // Rewrite the functions as requested during manifest. 8033 ManifestChange = 8034 ManifestChange | rewriteFunctionSignatures(CGModifiedFunctions); 8035 8036 for (Function *Fn : CGModifiedFunctions) 8037 CGUpdater.reanalyzeFunction(*Fn); 8038 8039 STATS_DECL(AAIsDead, Function, "Number of dead functions deleted."); 8040 BUILD_STAT_NAME(AAIsDead, Function) += ToBeDeletedFunctions.size(); 8041 8042 for (Function *Fn : ToBeDeletedFunctions) 8043 CGUpdater.removeFunction(*Fn); 8044 8045 if (VerifyMaxFixpointIterations && 8046 IterationCounter != MaxFixpointIterations) { 8047 errs() << "\n[Attributor] Fixpoint iteration done after: " 8048 << IterationCounter << "/" << MaxFixpointIterations 8049 << " iterations\n"; 8050 llvm_unreachable("The fixpoint was not reached with exactly the number of " 8051 "specified iterations!"); 8052 } 8053 8054 return ManifestChange; 8055 } 8056 8057 bool Attributor::isValidFunctionSignatureRewrite( 8058 Argument &Arg, ArrayRef<Type *> ReplacementTypes) { 8059 8060 auto CallSiteCanBeChanged = [](AbstractCallSite ACS) { 8061 // Forbid must-tail calls for now. 8062 return !ACS.isCallbackCall() && !ACS.getCallSite().isMustTailCall(); 8063 }; 8064 8065 Function *Fn = Arg.getParent(); 8066 // Avoid var-arg functions for now. 8067 if (Fn->isVarArg()) { 8068 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n"); 8069 return false; 8070 } 8071 8072 // Avoid functions with complicated argument passing semantics. 8073 AttributeList FnAttributeList = Fn->getAttributes(); 8074 if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) || 8075 FnAttributeList.hasAttrSomewhere(Attribute::StructRet) || 8076 FnAttributeList.hasAttrSomewhere(Attribute::InAlloca)) { 8077 LLVM_DEBUG( 8078 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n"); 8079 return false; 8080 } 8081 8082 // Avoid callbacks for now. 8083 bool AllCallSitesKnown; 8084 if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr, 8085 AllCallSitesKnown)) { 8086 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n"); 8087 return false; 8088 } 8089 8090 auto InstPred = [](Instruction &I) { 8091 if (auto *CI = dyn_cast<CallInst>(&I)) 8092 return !CI->isMustTailCall(); 8093 return true; 8094 }; 8095 8096 // Forbid must-tail calls for now. 8097 // TODO: 8098 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn); 8099 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr, 8100 nullptr, {Instruction::Call})) { 8101 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n"); 8102 return false; 8103 } 8104 8105 return true; 8106 } 8107 8108 bool Attributor::registerFunctionSignatureRewrite( 8109 Argument &Arg, ArrayRef<Type *> ReplacementTypes, 8110 ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, 8111 ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) { 8112 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " 8113 << Arg.getParent()->getName() << " with " 8114 << ReplacementTypes.size() << " replacements\n"); 8115 assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) && 8116 "Cannot register an invalid rewrite"); 8117 8118 Function *Fn = Arg.getParent(); 8119 SmallVectorImpl<ArgumentReplacementInfo *> &ARIs = ArgumentReplacementMap[Fn]; 8120 if (ARIs.empty()) 8121 ARIs.resize(Fn->arg_size()); 8122 8123 // If we have a replacement already with less than or equal new arguments, 8124 // ignore this request. 8125 ArgumentReplacementInfo *&ARI = ARIs[Arg.getArgNo()]; 8126 if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) { 8127 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n"); 8128 return false; 8129 } 8130 8131 // If we have a replacement already but we like the new one better, delete 8132 // the old. 8133 if (ARI) 8134 delete ARI; 8135 8136 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " 8137 << Arg.getParent()->getName() << " with " 8138 << ReplacementTypes.size() << " replacements\n"); 8139 8140 // Remember the replacement. 8141 ARI = new ArgumentReplacementInfo(*this, Arg, ReplacementTypes, 8142 std::move(CalleeRepairCB), 8143 std::move(ACSRepairCB)); 8144 8145 return true; 8146 } 8147 8148 ChangeStatus Attributor::rewriteFunctionSignatures( 8149 SmallPtrSetImpl<Function *> &ModifiedFns) { 8150 ChangeStatus Changed = ChangeStatus::UNCHANGED; 8151 8152 for (auto &It : ArgumentReplacementMap) { 8153 Function *OldFn = It.getFirst(); 8154 8155 // Deleted functions do not require rewrites. 8156 if (ToBeDeletedFunctions.count(OldFn)) 8157 continue; 8158 8159 const SmallVectorImpl<ArgumentReplacementInfo *> &ARIs = It.getSecond(); 8160 assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!"); 8161 8162 SmallVector<Type *, 16> NewArgumentTypes; 8163 SmallVector<AttributeSet, 16> NewArgumentAttributes; 8164 8165 // Collect replacement argument types and copy over existing attributes. 8166 AttributeList OldFnAttributeList = OldFn->getAttributes(); 8167 for (Argument &Arg : OldFn->args()) { 8168 if (ArgumentReplacementInfo *ARI = ARIs[Arg.getArgNo()]) { 8169 NewArgumentTypes.append(ARI->ReplacementTypes.begin(), 8170 ARI->ReplacementTypes.end()); 8171 NewArgumentAttributes.append(ARI->getNumReplacementArgs(), 8172 AttributeSet()); 8173 } else { 8174 NewArgumentTypes.push_back(Arg.getType()); 8175 NewArgumentAttributes.push_back( 8176 OldFnAttributeList.getParamAttributes(Arg.getArgNo())); 8177 } 8178 } 8179 8180 FunctionType *OldFnTy = OldFn->getFunctionType(); 8181 Type *RetTy = OldFnTy->getReturnType(); 8182 8183 // Construct the new function type using the new arguments types. 8184 FunctionType *NewFnTy = 8185 FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg()); 8186 8187 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName() 8188 << "' from " << *OldFn->getFunctionType() << " to " 8189 << *NewFnTy << "\n"); 8190 8191 // Create the new function body and insert it into the module. 8192 Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(), 8193 OldFn->getAddressSpace(), ""); 8194 OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn); 8195 NewFn->takeName(OldFn); 8196 NewFn->copyAttributesFrom(OldFn); 8197 8198 // Patch the pointer to LLVM function in debug info descriptor. 8199 NewFn->setSubprogram(OldFn->getSubprogram()); 8200 OldFn->setSubprogram(nullptr); 8201 8202 // Recompute the parameter attributes list based on the new arguments for 8203 // the function. 8204 LLVMContext &Ctx = OldFn->getContext(); 8205 NewFn->setAttributes(AttributeList::get( 8206 Ctx, OldFnAttributeList.getFnAttributes(), 8207 OldFnAttributeList.getRetAttributes(), NewArgumentAttributes)); 8208 8209 // Since we have now created the new function, splice the body of the old 8210 // function right into the new function, leaving the old rotting hulk of the 8211 // function empty. 8212 NewFn->getBasicBlockList().splice(NewFn->begin(), 8213 OldFn->getBasicBlockList()); 8214 8215 // Set of all "call-like" instructions that invoke the old function mapped 8216 // to their new replacements. 8217 SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs; 8218 8219 // Callback to create a new "call-like" instruction for a given one. 8220 auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) { 8221 CallBase *OldCB = cast<CallBase>(ACS.getInstruction()); 8222 const AttributeList &OldCallAttributeList = OldCB->getAttributes(); 8223 8224 // Collect the new argument operands for the replacement call site. 8225 SmallVector<Value *, 16> NewArgOperands; 8226 SmallVector<AttributeSet, 16> NewArgOperandAttributes; 8227 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) { 8228 unsigned NewFirstArgNum = NewArgOperands.size(); 8229 (void)NewFirstArgNum; // only used inside assert. 8230 if (ArgumentReplacementInfo *ARI = ARIs[OldArgNum]) { 8231 if (ARI->ACSRepairCB) 8232 ARI->ACSRepairCB(*ARI, ACS, NewArgOperands); 8233 assert(ARI->getNumReplacementArgs() + NewFirstArgNum == 8234 NewArgOperands.size() && 8235 "ACS repair callback did not provide as many operand as new " 8236 "types were registered!"); 8237 // TODO: Exose the attribute set to the ACS repair callback 8238 NewArgOperandAttributes.append(ARI->ReplacementTypes.size(), 8239 AttributeSet()); 8240 } else { 8241 NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum)); 8242 NewArgOperandAttributes.push_back( 8243 OldCallAttributeList.getParamAttributes(OldArgNum)); 8244 } 8245 } 8246 8247 assert(NewArgOperands.size() == NewArgOperandAttributes.size() && 8248 "Mismatch # argument operands vs. # argument operand attributes!"); 8249 assert(NewArgOperands.size() == NewFn->arg_size() && 8250 "Mismatch # argument operands vs. # function arguments!"); 8251 8252 SmallVector<OperandBundleDef, 4> OperandBundleDefs; 8253 OldCB->getOperandBundlesAsDefs(OperandBundleDefs); 8254 8255 // Create a new call or invoke instruction to replace the old one. 8256 CallBase *NewCB; 8257 if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) { 8258 NewCB = 8259 InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(), 8260 NewArgOperands, OperandBundleDefs, "", OldCB); 8261 } else { 8262 auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs, 8263 "", OldCB); 8264 NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind()); 8265 NewCB = NewCI; 8266 } 8267 8268 // Copy over various properties and the new attributes. 8269 uint64_t W; 8270 if (OldCB->extractProfTotalWeight(W)) 8271 NewCB->setProfWeight(W); 8272 NewCB->setCallingConv(OldCB->getCallingConv()); 8273 NewCB->setDebugLoc(OldCB->getDebugLoc()); 8274 NewCB->takeName(OldCB); 8275 NewCB->setAttributes(AttributeList::get( 8276 Ctx, OldCallAttributeList.getFnAttributes(), 8277 OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes)); 8278 8279 CallSitePairs.push_back({OldCB, NewCB}); 8280 return true; 8281 }; 8282 8283 // Use the CallSiteReplacementCreator to create replacement call sites. 8284 bool AllCallSitesKnown; 8285 bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn, 8286 true, nullptr, AllCallSitesKnown); 8287 (void)Success; 8288 assert(Success && "Assumed call site replacement to succeed!"); 8289 8290 // Rewire the arguments. 8291 auto OldFnArgIt = OldFn->arg_begin(); 8292 auto NewFnArgIt = NewFn->arg_begin(); 8293 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); 8294 ++OldArgNum, ++OldFnArgIt) { 8295 if (ArgumentReplacementInfo *ARI = ARIs[OldArgNum]) { 8296 if (ARI->CalleeRepairCB) 8297 ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt); 8298 NewFnArgIt += ARI->ReplacementTypes.size(); 8299 } else { 8300 NewFnArgIt->takeName(&*OldFnArgIt); 8301 OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt); 8302 ++NewFnArgIt; 8303 } 8304 } 8305 8306 // Eliminate the instructions *after* we visited all of them. 8307 for (auto &CallSitePair : CallSitePairs) { 8308 CallBase &OldCB = *CallSitePair.first; 8309 CallBase &NewCB = *CallSitePair.second; 8310 // We do not modify the call graph here but simply reanalyze the old 8311 // function. This should be revisited once the old PM is gone. 8312 ModifiedFns.insert(OldCB.getFunction()); 8313 OldCB.replaceAllUsesWith(&NewCB); 8314 OldCB.eraseFromParent(); 8315 } 8316 8317 // Replace the function in the call graph (if any). 8318 CGUpdater.replaceFunctionWith(*OldFn, *NewFn); 8319 8320 // If the old function was modified and needed to be reanalyzed, the new one 8321 // does now. 8322 if (ModifiedFns.erase(OldFn)) 8323 ModifiedFns.insert(NewFn); 8324 8325 Changed = ChangeStatus::CHANGED; 8326 } 8327 8328 return Changed; 8329 } 8330 8331 void Attributor::initializeInformationCache(Function &F) { 8332 8333 // Walk all instructions to find interesting instructions that might be 8334 // queried by abstract attributes during their initialization or update. 8335 // This has to happen before we create attributes. 8336 auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F]; 8337 auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F]; 8338 8339 for (Instruction &I : instructions(&F)) { 8340 bool IsInterestingOpcode = false; 8341 8342 // To allow easy access to all instructions in a function with a given 8343 // opcode we store them in the InfoCache. As not all opcodes are interesting 8344 // to concrete attributes we only cache the ones that are as identified in 8345 // the following switch. 8346 // Note: There are no concrete attributes now so this is initially empty. 8347 switch (I.getOpcode()) { 8348 default: 8349 assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) && 8350 "New call site/base instruction type needs to be known in the " 8351 "Attributor."); 8352 break; 8353 case Instruction::Call: 8354 // Calls are interesting but for `llvm.assume` calls we also fill the 8355 // KnowledgeMap as we find them. 8356 if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) { 8357 if (Assume->getIntrinsicID() == Intrinsic::assume) 8358 fillMapFromAssume(*Assume, InfoCache.KnowledgeMap); 8359 } 8360 LLVM_FALLTHROUGH; 8361 case Instruction::Load: 8362 // The alignment of a pointer is interesting for loads. 8363 case Instruction::Store: 8364 // The alignment of a pointer is interesting for stores. 8365 case Instruction::CallBr: 8366 case Instruction::Invoke: 8367 case Instruction::CleanupRet: 8368 case Instruction::CatchSwitch: 8369 case Instruction::AtomicRMW: 8370 case Instruction::AtomicCmpXchg: 8371 case Instruction::Br: 8372 case Instruction::Resume: 8373 case Instruction::Ret: 8374 IsInterestingOpcode = true; 8375 } 8376 if (IsInterestingOpcode) 8377 InstOpcodeMap[I.getOpcode()].push_back(&I); 8378 if (I.mayReadOrWriteMemory()) 8379 ReadOrWriteInsts.push_back(&I); 8380 } 8381 8382 if (F.hasFnAttribute(Attribute::AlwaysInline) && 8383 isInlineViable(F).isSuccess()) 8384 InfoCache.InlineableFunctions.insert(&F); 8385 } 8386 8387 void Attributor::recordDependence(const AbstractAttribute &FromAA, 8388 const AbstractAttribute &ToAA, 8389 DepClassTy DepClass) { 8390 if (FromAA.getState().isAtFixpoint()) 8391 return; 8392 8393 if (DepClass == DepClassTy::REQUIRED) 8394 QueryMap[&FromAA].RequiredAAs.insert( 8395 const_cast<AbstractAttribute *>(&ToAA)); 8396 else 8397 QueryMap[&FromAA].OptionalAAs.insert( 8398 const_cast<AbstractAttribute *>(&ToAA)); 8399 QueriedNonFixAA = true; 8400 } 8401 8402 void Attributor::identifyDefaultAbstractAttributes(Function &F) { 8403 if (!VisitedFunctions.insert(&F).second) 8404 return; 8405 if (F.isDeclaration()) 8406 return; 8407 8408 IRPosition FPos = IRPosition::function(F); 8409 8410 // Check for dead BasicBlocks in every function. 8411 // We need dead instruction detection because we do not want to deal with 8412 // broken IR in which SSA rules do not apply. 8413 getOrCreateAAFor<AAIsDead>(FPos); 8414 8415 // Every function might be "will-return". 8416 getOrCreateAAFor<AAWillReturn>(FPos); 8417 8418 // Every function might contain instructions that cause "undefined behavior". 8419 getOrCreateAAFor<AAUndefinedBehavior>(FPos); 8420 8421 // Every function can be nounwind. 8422 getOrCreateAAFor<AANoUnwind>(FPos); 8423 8424 // Every function might be marked "nosync" 8425 getOrCreateAAFor<AANoSync>(FPos); 8426 8427 // Every function might be "no-free". 8428 getOrCreateAAFor<AANoFree>(FPos); 8429 8430 // Every function might be "no-return". 8431 getOrCreateAAFor<AANoReturn>(FPos); 8432 8433 // Every function might be "no-recurse". 8434 getOrCreateAAFor<AANoRecurse>(FPos); 8435 8436 // Every function might be "readnone/readonly/writeonly/...". 8437 getOrCreateAAFor<AAMemoryBehavior>(FPos); 8438 8439 // Every function can be "readnone/argmemonly/inaccessiblememonly/...". 8440 getOrCreateAAFor<AAMemoryLocation>(FPos); 8441 8442 // Every function might be applicable for Heap-To-Stack conversion. 8443 if (EnableHeapToStack) 8444 getOrCreateAAFor<AAHeapToStack>(FPos); 8445 8446 // Return attributes are only appropriate if the return type is non void. 8447 Type *ReturnType = F.getReturnType(); 8448 if (!ReturnType->isVoidTy()) { 8449 // Argument attribute "returned" --- Create only one per function even 8450 // though it is an argument attribute. 8451 getOrCreateAAFor<AAReturnedValues>(FPos); 8452 8453 IRPosition RetPos = IRPosition::returned(F); 8454 8455 // Every returned value might be dead. 8456 getOrCreateAAFor<AAIsDead>(RetPos); 8457 8458 // Every function might be simplified. 8459 getOrCreateAAFor<AAValueSimplify>(RetPos); 8460 8461 if (ReturnType->isPointerTy()) { 8462 8463 // Every function with pointer return type might be marked align. 8464 getOrCreateAAFor<AAAlign>(RetPos); 8465 8466 // Every function with pointer return type might be marked nonnull. 8467 getOrCreateAAFor<AANonNull>(RetPos); 8468 8469 // Every function with pointer return type might be marked noalias. 8470 getOrCreateAAFor<AANoAlias>(RetPos); 8471 8472 // Every function with pointer return type might be marked 8473 // dereferenceable. 8474 getOrCreateAAFor<AADereferenceable>(RetPos); 8475 } 8476 } 8477 8478 for (Argument &Arg : F.args()) { 8479 IRPosition ArgPos = IRPosition::argument(Arg); 8480 8481 // Every argument might be simplified. 8482 getOrCreateAAFor<AAValueSimplify>(ArgPos); 8483 8484 // Every argument might be dead. 8485 getOrCreateAAFor<AAIsDead>(ArgPos); 8486 8487 if (Arg.getType()->isPointerTy()) { 8488 // Every argument with pointer type might be marked nonnull. 8489 getOrCreateAAFor<AANonNull>(ArgPos); 8490 8491 // Every argument with pointer type might be marked noalias. 8492 getOrCreateAAFor<AANoAlias>(ArgPos); 8493 8494 // Every argument with pointer type might be marked dereferenceable. 8495 getOrCreateAAFor<AADereferenceable>(ArgPos); 8496 8497 // Every argument with pointer type might be marked align. 8498 getOrCreateAAFor<AAAlign>(ArgPos); 8499 8500 // Every argument with pointer type might be marked nocapture. 8501 getOrCreateAAFor<AANoCapture>(ArgPos); 8502 8503 // Every argument with pointer type might be marked 8504 // "readnone/readonly/writeonly/..." 8505 getOrCreateAAFor<AAMemoryBehavior>(ArgPos); 8506 8507 // Every argument with pointer type might be marked nofree. 8508 getOrCreateAAFor<AANoFree>(ArgPos); 8509 8510 // Every argument with pointer type might be privatizable (or promotable) 8511 getOrCreateAAFor<AAPrivatizablePtr>(ArgPos); 8512 } 8513 } 8514 8515 auto CallSitePred = [&](Instruction &I) -> bool { 8516 CallSite CS(&I); 8517 IRPosition CSRetPos = IRPosition::callsite_returned(CS); 8518 8519 // Call sites might be dead if they do not have side effects and no live 8520 // users. The return value might be dead if there are no live users. 8521 getOrCreateAAFor<AAIsDead>(CSRetPos); 8522 8523 if (Function *Callee = CS.getCalledFunction()) { 8524 // Skip declerations except if annotations on their call sites were 8525 // explicitly requested. 8526 if (!AnnotateDeclarationCallSites && Callee->isDeclaration() && 8527 !Callee->hasMetadata(LLVMContext::MD_callback)) 8528 return true; 8529 8530 if (!Callee->getReturnType()->isVoidTy() && !CS->use_empty()) { 8531 8532 IRPosition CSRetPos = IRPosition::callsite_returned(CS); 8533 8534 // Call site return integer values might be limited by a constant range. 8535 if (Callee->getReturnType()->isIntegerTy()) 8536 getOrCreateAAFor<AAValueConstantRange>(CSRetPos); 8537 } 8538 8539 for (int i = 0, e = CS.getNumArgOperands(); i < e; i++) { 8540 8541 IRPosition CSArgPos = IRPosition::callsite_argument(CS, i); 8542 8543 // Every call site argument might be dead. 8544 getOrCreateAAFor<AAIsDead>(CSArgPos); 8545 8546 // Call site argument might be simplified. 8547 getOrCreateAAFor<AAValueSimplify>(CSArgPos); 8548 8549 if (!CS.getArgument(i)->getType()->isPointerTy()) 8550 continue; 8551 8552 // Call site argument attribute "non-null". 8553 getOrCreateAAFor<AANonNull>(CSArgPos); 8554 8555 // Call site argument attribute "no-alias". 8556 getOrCreateAAFor<AANoAlias>(CSArgPos); 8557 8558 // Call site argument attribute "dereferenceable". 8559 getOrCreateAAFor<AADereferenceable>(CSArgPos); 8560 8561 // Call site argument attribute "align". 8562 getOrCreateAAFor<AAAlign>(CSArgPos); 8563 8564 // Call site argument attribute 8565 // "readnone/readonly/writeonly/..." 8566 getOrCreateAAFor<AAMemoryBehavior>(CSArgPos); 8567 8568 // Call site argument attribute "nofree". 8569 getOrCreateAAFor<AANoFree>(CSArgPos); 8570 } 8571 } 8572 return true; 8573 }; 8574 8575 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); 8576 bool Success; 8577 Success = checkForAllInstructionsImpl( 8578 nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr, 8579 {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, 8580 (unsigned)Instruction::Call}); 8581 (void)Success; 8582 assert(Success && "Expected the check call to be successful!"); 8583 8584 auto LoadStorePred = [&](Instruction &I) -> bool { 8585 if (isa<LoadInst>(I)) 8586 getOrCreateAAFor<AAAlign>( 8587 IRPosition::value(*cast<LoadInst>(I).getPointerOperand())); 8588 else 8589 getOrCreateAAFor<AAAlign>( 8590 IRPosition::value(*cast<StoreInst>(I).getPointerOperand())); 8591 return true; 8592 }; 8593 Success = checkForAllInstructionsImpl( 8594 nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr, 8595 {(unsigned)Instruction::Load, (unsigned)Instruction::Store}); 8596 (void)Success; 8597 assert(Success && "Expected the check call to be successful!"); 8598 } 8599 8600 /// Helpers to ease debugging through output streams and print calls. 8601 /// 8602 ///{ 8603 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { 8604 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged"); 8605 } 8606 8607 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) { 8608 switch (AP) { 8609 case IRPosition::IRP_INVALID: 8610 return OS << "inv"; 8611 case IRPosition::IRP_FLOAT: 8612 return OS << "flt"; 8613 case IRPosition::IRP_RETURNED: 8614 return OS << "fn_ret"; 8615 case IRPosition::IRP_CALL_SITE_RETURNED: 8616 return OS << "cs_ret"; 8617 case IRPosition::IRP_FUNCTION: 8618 return OS << "fn"; 8619 case IRPosition::IRP_CALL_SITE: 8620 return OS << "cs"; 8621 case IRPosition::IRP_ARGUMENT: 8622 return OS << "arg"; 8623 case IRPosition::IRP_CALL_SITE_ARGUMENT: 8624 return OS << "cs_arg"; 8625 } 8626 llvm_unreachable("Unknown attribute position!"); 8627 } 8628 8629 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) { 8630 const Value &AV = Pos.getAssociatedValue(); 8631 return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " [" 8632 << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}"; 8633 } 8634 8635 template <typename base_ty, base_ty BestState, base_ty WorstState> 8636 raw_ostream & 8637 llvm::operator<<(raw_ostream &OS, 8638 const IntegerStateBase<base_ty, BestState, WorstState> &S) { 8639 return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")" 8640 << static_cast<const AbstractState &>(S); 8641 } 8642 8643 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) { 8644 OS << "range-state(" << S.getBitWidth() << ")<"; 8645 S.getKnown().print(OS); 8646 OS << " / "; 8647 S.getAssumed().print(OS); 8648 OS << ">"; 8649 8650 return OS << static_cast<const AbstractState &>(S); 8651 } 8652 8653 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { 8654 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "")); 8655 } 8656 8657 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { 8658 AA.print(OS); 8659 return OS; 8660 } 8661 8662 void AbstractAttribute::print(raw_ostream &OS) const { 8663 OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState() 8664 << "]"; 8665 } 8666 ///} 8667 8668 /// ---------------------------------------------------------------------------- 8669 /// Pass (Manager) Boilerplate 8670 /// ---------------------------------------------------------------------------- 8671 8672 static bool runAttributorOnFunctions(InformationCache &InfoCache, 8673 SetVector<Function *> &Functions, 8674 AnalysisGetter &AG, 8675 CallGraphUpdater &CGUpdater) { 8676 if (DisableAttributor || Functions.empty()) 8677 return false; 8678 8679 LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size() 8680 << " functions.\n"); 8681 8682 // Create an Attributor and initially empty information cache that is filled 8683 // while we identify default attribute opportunities. 8684 Attributor A(Functions, InfoCache, CGUpdater, DepRecInterval); 8685 8686 // Note: _Don't_ combine/fuse this loop with the one below because 8687 // when A.identifyDefaultAbstractAttributes() is called for one 8688 // function, it assumes that the information cach has been 8689 // initialized for _all_ functions. 8690 for (Function *F : Functions) 8691 A.initializeInformationCache(*F); 8692 8693 for (Function *F : Functions) { 8694 if (F->hasExactDefinition()) 8695 NumFnWithExactDefinition++; 8696 else 8697 NumFnWithoutExactDefinition++; 8698 8699 // We look at internal functions only on-demand but if any use is not a 8700 // direct call or outside the current set of analyzed functions, we have to 8701 // do it eagerly. 8702 if (F->hasLocalLinkage()) { 8703 if (llvm::all_of(F->uses(), [&Functions](const Use &U) { 8704 ImmutableCallSite ICS(U.getUser()); 8705 return ICS && ICS.isCallee(&U) && 8706 Functions.count(const_cast<Function *>(ICS.getCaller())); 8707 })) 8708 continue; 8709 } 8710 8711 // Populate the Attributor with abstract attribute opportunities in the 8712 // function and the information cache with IR information. 8713 A.identifyDefaultAbstractAttributes(*F); 8714 } 8715 8716 ChangeStatus Changed = A.run(); 8717 assert(!verifyModule(*Functions.front()->getParent(), &errs()) && 8718 "Module verification failed!"); 8719 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size() 8720 << " functions, result: " << Changed << ".\n"); 8721 return Changed == ChangeStatus::CHANGED; 8722 } 8723 8724 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { 8725 FunctionAnalysisManager &FAM = 8726 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 8727 AnalysisGetter AG(FAM); 8728 8729 SetVector<Function *> Functions; 8730 for (Function &F : M) 8731 Functions.insert(&F); 8732 8733 CallGraphUpdater CGUpdater; 8734 InformationCache InfoCache(M, AG, /* CGSCC */ nullptr); 8735 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) { 8736 // FIXME: Think about passes we will preserve and add them here. 8737 return PreservedAnalyses::none(); 8738 } 8739 return PreservedAnalyses::all(); 8740 } 8741 8742 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C, 8743 CGSCCAnalysisManager &AM, 8744 LazyCallGraph &CG, 8745 CGSCCUpdateResult &UR) { 8746 FunctionAnalysisManager &FAM = 8747 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 8748 AnalysisGetter AG(FAM); 8749 8750 SetVector<Function *> Functions; 8751 for (LazyCallGraph::Node &N : C) 8752 Functions.insert(&N.getFunction()); 8753 8754 if (Functions.empty()) 8755 return PreservedAnalyses::all(); 8756 8757 Module &M = *Functions.back()->getParent(); 8758 CallGraphUpdater CGUpdater; 8759 CGUpdater.initialize(CG, C, AM, UR); 8760 InformationCache InfoCache(M, AG, /* CGSCC */ &Functions); 8761 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) { 8762 // FIXME: Think about passes we will preserve and add them here. 8763 return PreservedAnalyses::none(); 8764 } 8765 return PreservedAnalyses::all(); 8766 } 8767 8768 namespace { 8769 8770 struct AttributorLegacyPass : public ModulePass { 8771 static char ID; 8772 8773 AttributorLegacyPass() : ModulePass(ID) { 8774 initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry()); 8775 } 8776 8777 bool runOnModule(Module &M) override { 8778 if (skipModule(M)) 8779 return false; 8780 8781 AnalysisGetter AG; 8782 SetVector<Function *> Functions; 8783 for (Function &F : M) 8784 Functions.insert(&F); 8785 8786 CallGraphUpdater CGUpdater; 8787 InformationCache InfoCache(M, AG, /* CGSCC */ nullptr); 8788 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater); 8789 } 8790 8791 void getAnalysisUsage(AnalysisUsage &AU) const override { 8792 // FIXME: Think about passes we will preserve and add them here. 8793 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8794 } 8795 }; 8796 8797 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass { 8798 CallGraphUpdater CGUpdater; 8799 static char ID; 8800 8801 AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) { 8802 initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 8803 } 8804 8805 bool runOnSCC(CallGraphSCC &SCC) override { 8806 if (skipSCC(SCC)) 8807 return false; 8808 8809 SetVector<Function *> Functions; 8810 for (CallGraphNode *CGN : SCC) 8811 if (Function *Fn = CGN->getFunction()) 8812 if (!Fn->isDeclaration()) 8813 Functions.insert(Fn); 8814 8815 if (Functions.empty()) 8816 return false; 8817 8818 AnalysisGetter AG; 8819 CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph()); 8820 CGUpdater.initialize(CG, SCC); 8821 Module &M = *Functions.back()->getParent(); 8822 InformationCache InfoCache(M, AG, /* CGSCC */ &Functions); 8823 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater); 8824 } 8825 8826 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 8827 8828 void getAnalysisUsage(AnalysisUsage &AU) const override { 8829 // FIXME: Think about passes we will preserve and add them here. 8830 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8831 CallGraphSCCPass::getAnalysisUsage(AU); 8832 } 8833 }; 8834 8835 } // end anonymous namespace 8836 8837 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); } 8838 Pass *llvm::createAttributorCGSCCLegacyPass() { 8839 return new AttributorCGSCCLegacyPass(); 8840 } 8841 8842 char AttributorLegacyPass::ID = 0; 8843 char AttributorCGSCCLegacyPass::ID = 0; 8844 8845 const char AAReturnedValues::ID = 0; 8846 const char AANoUnwind::ID = 0; 8847 const char AANoSync::ID = 0; 8848 const char AANoFree::ID = 0; 8849 const char AANonNull::ID = 0; 8850 const char AANoRecurse::ID = 0; 8851 const char AAWillReturn::ID = 0; 8852 const char AAUndefinedBehavior::ID = 0; 8853 const char AANoAlias::ID = 0; 8854 const char AAReachability::ID = 0; 8855 const char AANoReturn::ID = 0; 8856 const char AAIsDead::ID = 0; 8857 const char AADereferenceable::ID = 0; 8858 const char AAAlign::ID = 0; 8859 const char AANoCapture::ID = 0; 8860 const char AAValueSimplify::ID = 0; 8861 const char AAHeapToStack::ID = 0; 8862 const char AAPrivatizablePtr::ID = 0; 8863 const char AAMemoryBehavior::ID = 0; 8864 const char AAMemoryLocation::ID = 0; 8865 const char AAValueConstantRange::ID = 0; 8866 8867 // Macro magic to create the static generator function for attributes that 8868 // follow the naming scheme. 8869 8870 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \ 8871 case IRPosition::PK: \ 8872 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); 8873 8874 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \ 8875 case IRPosition::PK: \ 8876 AA = new CLASS##SUFFIX(IRP); \ 8877 break; 8878 8879 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 8880 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 8881 CLASS *AA = nullptr; \ 8882 switch (IRP.getPositionKind()) { \ 8883 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8884 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 8885 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 8886 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 8887 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 8888 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 8889 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 8890 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 8891 } \ 8892 return *AA; \ 8893 } 8894 8895 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 8896 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 8897 CLASS *AA = nullptr; \ 8898 switch (IRP.getPositionKind()) { \ 8899 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8900 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \ 8901 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 8902 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 8903 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 8904 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 8905 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 8906 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 8907 } \ 8908 return *AA; \ 8909 } 8910 8911 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 8912 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 8913 CLASS *AA = nullptr; \ 8914 switch (IRP.getPositionKind()) { \ 8915 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8916 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 8917 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 8918 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 8919 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 8920 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ 8921 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 8922 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 8923 } \ 8924 return *AA; \ 8925 } 8926 8927 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 8928 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 8929 CLASS *AA = nullptr; \ 8930 switch (IRP.getPositionKind()) { \ 8931 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8932 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ 8933 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ 8934 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 8935 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ 8936 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ 8937 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ 8938 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 8939 } \ 8940 return *AA; \ 8941 } 8942 8943 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ 8944 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ 8945 CLASS *AA = nullptr; \ 8946 switch (IRP.getPositionKind()) { \ 8947 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ 8948 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ 8949 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ 8950 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ 8951 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ 8952 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ 8953 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ 8954 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ 8955 } \ 8956 return *AA; \ 8957 } 8958 8959 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) 8960 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) 8961 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) 8962 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) 8963 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) 8964 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues) 8965 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation) 8966 8967 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) 8968 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) 8969 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr) 8970 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) 8971 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) 8972 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) 8973 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange) 8974 8975 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) 8976 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) 8977 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) 8978 8979 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) 8980 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability) 8981 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior) 8982 8983 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) 8984 8985 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION 8986 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION 8987 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION 8988 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION 8989 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION 8990 #undef SWITCH_PK_CREATE 8991 #undef SWITCH_PK_INV 8992 8993 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor", 8994 "Deduce and propagate attributes", false, false) 8995 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 8996 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor", 8997 "Deduce and propagate attributes", false, false) 8998 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc", 8999 "Deduce and propagate attributes (CGSCC pass)", false, 9000 false) 9001 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9002 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 9003 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc", 9004 "Deduce and propagate attributes (CGSCC pass)", false, 9005 false) 9006