1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/MustExecute.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/NoFolder.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/DebugCounter.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/GraphWriter.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 
52 #include <cassert>
53 #include <string>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "attributor"
58 
59 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
60               "Determine what attributes are manifested in the IR");
61 
62 STATISTIC(NumFnDeleted, "Number of function deleted");
63 STATISTIC(NumFnWithExactDefinition,
64           "Number of functions with exact definitions");
65 STATISTIC(NumFnWithoutExactDefinition,
66           "Number of functions without exact definitions");
67 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
68 STATISTIC(NumAttributesTimedOut,
69           "Number of abstract attributes timed out before fixpoint");
70 STATISTIC(NumAttributesValidFixpoint,
71           "Number of abstract attributes in a valid fixpoint state");
72 STATISTIC(NumAttributesManifested,
73           "Number of abstract attributes manifested in IR");
74 
75 // TODO: Determine a good default value.
76 //
77 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
78 // (when run with the first 5 abstract attributes). The results also indicate
79 // that we never reach 32 iterations but always find a fixpoint sooner.
80 //
81 // This will become more evolved once we perform two interleaved fixpoint
82 // iterations: bottom-up and top-down.
83 static cl::opt<unsigned>
84     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
85                           cl::desc("Maximal number of fixpoint iterations."),
86                           cl::init(32));
87 
88 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
89     "attributor-max-initialization-chain-length", cl::Hidden,
90     cl::desc(
91         "Maximal number of chained initializations (to avoid stack overflows)"),
92     cl::location(MaxInitializationChainLength), cl::init(1024));
93 unsigned llvm::MaxInitializationChainLength;
94 
95 static cl::opt<bool> VerifyMaxFixpointIterations(
96     "attributor-max-iterations-verify", cl::Hidden,
97     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
98     cl::init(false));
99 
100 static cl::opt<bool> AnnotateDeclarationCallSites(
101     "attributor-annotate-decl-cs", cl::Hidden,
102     cl::desc("Annotate call sites of function declarations."), cl::init(false));
103 
104 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
105                                        cl::init(true), cl::Hidden);
106 
107 static cl::opt<bool>
108     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
109                          cl::desc("Allow the Attributor to create shallow "
110                                   "wrappers for non-exact definitions."),
111                          cl::init(false));
112 
113 static cl::opt<bool>
114     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
115                      cl::desc("Allow the Attributor to use IP information "
116                               "derived from non-exact functions via cloning"),
117                      cl::init(false));
118 
119 // These options can only used for debug builds.
120 #ifndef NDEBUG
121 static cl::list<std::string>
122     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
123                   cl::desc("Comma seperated list of attribute names that are "
124                            "allowed to be seeded."),
125                   cl::ZeroOrMore, cl::CommaSeparated);
126 
127 static cl::list<std::string> FunctionSeedAllowList(
128     "attributor-function-seed-allow-list", cl::Hidden,
129     cl::desc("Comma seperated list of function names that are "
130              "allowed to be seeded."),
131     cl::ZeroOrMore, cl::CommaSeparated);
132 #endif
133 
134 static cl::opt<bool>
135     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
136                  cl::desc("Dump the dependency graph to dot files."),
137                  cl::init(false));
138 
139 static cl::opt<std::string> DepGraphDotFileNamePrefix(
140     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
141     cl::desc("The prefix used for the CallGraph dot file names."));
142 
143 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
144                                   cl::desc("View the dependency graph."),
145                                   cl::init(false));
146 
147 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
148                                        cl::desc("Print attribute dependencies"),
149                                        cl::init(false));
150 
151 static cl::opt<bool> EnableCallSiteSpecific(
152     "attributor-enable-call-site-specific-deduction", cl::Hidden,
153     cl::desc("Allow the Attributor to do call site specific analysis"),
154     cl::init(false));
155 
156 static cl::opt<bool>
157     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
158                    cl::desc("Print Attributor's internal call graph"),
159                    cl::init(false));
160 
161 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
162                                       cl::Hidden,
163                                       cl::desc("Try to simplify all loads."),
164                                       cl::init(true));
165 
166 /// Logic operators for the change status enum class.
167 ///
168 ///{
169 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
170   return L == ChangeStatus::CHANGED ? L : R;
171 }
172 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
173   L = L | R;
174   return L;
175 }
176 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
177   return L == ChangeStatus::UNCHANGED ? L : R;
178 }
179 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
180   L = L & R;
181   return L;
182 }
183 ///}
184 
185 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
186                              const Value &V) {
187   if (auto *C = dyn_cast<Constant>(&V))
188     return !C->isThreadDependent();
189   // TODO: Inspect and cache more complex instructions.
190   if (auto *CB = dyn_cast<CallBase>(&V))
191     return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
192            !CB->mayReadFromMemory();
193   const Function *Scope = nullptr;
194   if (auto *I = dyn_cast<Instruction>(&V))
195     Scope = I->getFunction();
196   if (auto *A = dyn_cast<Argument>(&V))
197     Scope = A->getParent();
198   if (!Scope)
199     return false;
200   auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
201       QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
202   return NoRecurseAA.isAssumedNoRecurse();
203 }
204 
205 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty) {
206   if (isa<AllocaInst>(Obj))
207     return UndefValue::get(&Ty);
208   auto *GV = dyn_cast<GlobalVariable>(&Obj);
209   if (!GV || !GV->hasLocalLinkage())
210     return nullptr;
211   if (!GV->hasInitializer())
212     return UndefValue::get(&Ty);
213   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
214 }
215 
216 bool AA::isValidInScope(const Value &V, const Function *Scope) {
217   if (isa<Constant>(V))
218     return true;
219   if (auto *I = dyn_cast<Instruction>(&V))
220     return I->getFunction() == Scope;
221   if (auto *A = dyn_cast<Argument>(&V))
222     return A->getParent() == Scope;
223   return false;
224 }
225 
226 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
227                            InformationCache &InfoCache) {
228   if (isa<Constant>(V))
229     return true;
230   const Function *Scope = CtxI.getFunction();
231   if (auto *A = dyn_cast<Argument>(&V))
232     return A->getParent() == Scope;
233   if (auto *I = dyn_cast<Instruction>(&V))
234     if (I->getFunction() == Scope) {
235       const DominatorTree *DT =
236           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
237       return DT && DT->dominates(I, &CtxI);
238     }
239   return false;
240 }
241 
242 Value *AA::getWithType(Value &V, Type &Ty) {
243   if (V.getType() == &Ty)
244     return &V;
245   if (isa<PoisonValue>(V))
246     return PoisonValue::get(&Ty);
247   if (isa<UndefValue>(V))
248     return UndefValue::get(&Ty);
249   if (auto *C = dyn_cast<Constant>(&V)) {
250     if (C->isNullValue())
251       return Constant::getNullValue(&Ty);
252     if (C->getType()->isPointerTy() && Ty.isPointerTy())
253       return ConstantExpr::getPointerCast(C, &Ty);
254     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
255       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
256         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
257       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
258         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
259     }
260   }
261   return nullptr;
262 }
263 
264 Optional<Value *>
265 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
266                                          const Optional<Value *> &B, Type *Ty) {
267   if (A == B)
268     return A;
269   if (!B.hasValue())
270     return A;
271   if (*B == nullptr)
272     return nullptr;
273   if (!A.hasValue())
274     return Ty ? getWithType(**B, *Ty) : nullptr;
275   if (*A == nullptr)
276     return nullptr;
277   if (!Ty)
278     Ty = (*A)->getType();
279   if (isa_and_nonnull<UndefValue>(*A))
280     return getWithType(**B, *Ty);
281   if (isa<UndefValue>(*B))
282     return A;
283   if (*A && *B && *A == getWithType(**B, *Ty))
284     return A;
285   return nullptr;
286 }
287 
288 bool AA::getPotentialCopiesOfStoredValue(
289     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
290     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
291 
292   Value &Ptr = *SI.getPointerOperand();
293   SmallVector<Value *, 8> Objects;
294   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI)) {
295     LLVM_DEBUG(
296         dbgs() << "Underlying objects stored into could not be determined\n";);
297     return false;
298   }
299 
300   SmallVector<const AAPointerInfo *> PIs;
301   SmallVector<Value *> NewCopies;
302 
303   for (Value *Obj : Objects) {
304     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
305     if (isa<UndefValue>(Obj))
306       continue;
307     if (isa<ConstantPointerNull>(Obj)) {
308       // A null pointer access can be undefined but any offset from null may
309       // be OK. We do not try to optimize the latter.
310       if (!NullPointerIsDefined(SI.getFunction(),
311                                 Ptr.getType()->getPointerAddressSpace()) &&
312           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
313               Obj)
314         continue;
315       LLVM_DEBUG(
316           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
317       return false;
318     }
319     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj)) {
320       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
321                         << "\n";);
322       return false;
323     }
324     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
325       if (!GV->hasLocalLinkage()) {
326         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
327                              "linkage, not supported yet: "
328                           << *Obj << "\n";);
329         return false;
330       }
331 
332     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
333       if (!Acc.isRead())
334         return true;
335       auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
336       if (!LI) {
337         LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
338                              "instruction not supported yet: "
339                           << *Acc.getRemoteInst() << "\n";);
340         return false;
341       }
342       NewCopies.push_back(LI);
343       return true;
344     };
345 
346     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
347                                          DepClassTy::NONE);
348     if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
349       LLVM_DEBUG(
350           dbgs()
351           << "Failed to verify all interfering accesses for underlying object: "
352           << *Obj << "\n");
353       return false;
354     }
355     PIs.push_back(&PI);
356   }
357 
358   for (auto *PI : PIs) {
359     if (!PI->getState().isAtFixpoint())
360       UsedAssumedInformation = true;
361     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
362   }
363   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
364 
365   return true;
366 }
367 
368 /// Return true if \p New is equal or worse than \p Old.
369 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
370   if (!Old.isIntAttribute())
371     return true;
372 
373   return Old.getValueAsInt() >= New.getValueAsInt();
374 }
375 
376 /// Return true if the information provided by \p Attr was added to the
377 /// attribute list \p Attrs. This is only the case if it was not already present
378 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
379 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
380                              AttributeList &Attrs, int AttrIdx,
381                              bool ForceReplace = false) {
382 
383   if (Attr.isEnumAttribute()) {
384     Attribute::AttrKind Kind = Attr.getKindAsEnum();
385     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
386       if (!ForceReplace &&
387           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
388         return false;
389     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
390     return true;
391   }
392   if (Attr.isStringAttribute()) {
393     StringRef Kind = Attr.getKindAsString();
394     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
395       if (!ForceReplace &&
396           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
397         return false;
398     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
399     return true;
400   }
401   if (Attr.isIntAttribute()) {
402     Attribute::AttrKind Kind = Attr.getKindAsEnum();
403     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
404       if (!ForceReplace &&
405           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
406         return false;
407     Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
408     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
409     return true;
410   }
411 
412   llvm_unreachable("Expected enum or string attribute!");
413 }
414 
415 Argument *IRPosition::getAssociatedArgument() const {
416   if (getPositionKind() == IRP_ARGUMENT)
417     return cast<Argument>(&getAnchorValue());
418 
419   // Not an Argument and no argument number means this is not a call site
420   // argument, thus we cannot find a callback argument to return.
421   int ArgNo = getCallSiteArgNo();
422   if (ArgNo < 0)
423     return nullptr;
424 
425   // Use abstract call sites to make the connection between the call site
426   // values and the ones in callbacks. If a callback was found that makes use
427   // of the underlying call site operand, we want the corresponding callback
428   // callee argument and not the direct callee argument.
429   Optional<Argument *> CBCandidateArg;
430   SmallVector<const Use *, 4> CallbackUses;
431   const auto &CB = cast<CallBase>(getAnchorValue());
432   AbstractCallSite::getCallbackUses(CB, CallbackUses);
433   for (const Use *U : CallbackUses) {
434     AbstractCallSite ACS(U);
435     assert(ACS && ACS.isCallbackCall());
436     if (!ACS.getCalledFunction())
437       continue;
438 
439     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
440 
441       // Test if the underlying call site operand is argument number u of the
442       // callback callee.
443       if (ACS.getCallArgOperandNo(u) != ArgNo)
444         continue;
445 
446       assert(ACS.getCalledFunction()->arg_size() > u &&
447              "ACS mapped into var-args arguments!");
448       if (CBCandidateArg.hasValue()) {
449         CBCandidateArg = nullptr;
450         break;
451       }
452       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
453     }
454   }
455 
456   // If we found a unique callback candidate argument, return it.
457   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
458     return CBCandidateArg.getValue();
459 
460   // If no callbacks were found, or none used the underlying call site operand
461   // exclusively, use the direct callee argument if available.
462   const Function *Callee = CB.getCalledFunction();
463   if (Callee && Callee->arg_size() > unsigned(ArgNo))
464     return Callee->getArg(ArgNo);
465 
466   return nullptr;
467 }
468 
469 ChangeStatus AbstractAttribute::update(Attributor &A) {
470   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
471   if (getState().isAtFixpoint())
472     return HasChanged;
473 
474   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
475 
476   HasChanged = updateImpl(A);
477 
478   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
479                     << "\n");
480 
481   return HasChanged;
482 }
483 
484 ChangeStatus
485 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
486                                    const ArrayRef<Attribute> &DeducedAttrs,
487                                    bool ForceReplace) {
488   Function *ScopeFn = IRP.getAnchorScope();
489   IRPosition::Kind PK = IRP.getPositionKind();
490 
491   // In the following some generic code that will manifest attributes in
492   // DeducedAttrs if they improve the current IR. Due to the different
493   // annotation positions we use the underlying AttributeList interface.
494 
495   AttributeList Attrs;
496   switch (PK) {
497   case IRPosition::IRP_INVALID:
498   case IRPosition::IRP_FLOAT:
499     return ChangeStatus::UNCHANGED;
500   case IRPosition::IRP_ARGUMENT:
501   case IRPosition::IRP_FUNCTION:
502   case IRPosition::IRP_RETURNED:
503     Attrs = ScopeFn->getAttributes();
504     break;
505   case IRPosition::IRP_CALL_SITE:
506   case IRPosition::IRP_CALL_SITE_RETURNED:
507   case IRPosition::IRP_CALL_SITE_ARGUMENT:
508     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
509     break;
510   }
511 
512   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
513   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
514   for (const Attribute &Attr : DeducedAttrs) {
515     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
516       continue;
517 
518     HasChanged = ChangeStatus::CHANGED;
519   }
520 
521   if (HasChanged == ChangeStatus::UNCHANGED)
522     return HasChanged;
523 
524   switch (PK) {
525   case IRPosition::IRP_ARGUMENT:
526   case IRPosition::IRP_FUNCTION:
527   case IRPosition::IRP_RETURNED:
528     ScopeFn->setAttributes(Attrs);
529     break;
530   case IRPosition::IRP_CALL_SITE:
531   case IRPosition::IRP_CALL_SITE_RETURNED:
532   case IRPosition::IRP_CALL_SITE_ARGUMENT:
533     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
534     break;
535   case IRPosition::IRP_INVALID:
536   case IRPosition::IRP_FLOAT:
537     break;
538   }
539 
540   return HasChanged;
541 }
542 
543 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
544 const IRPosition
545     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
546 
547 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
548   IRPositions.emplace_back(IRP);
549 
550   // Helper to determine if operand bundles on a call site are benin or
551   // potentially problematic. We handle only llvm.assume for now.
552   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
553     return (isa<IntrinsicInst>(CB) &&
554             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
555   };
556 
557   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
558   switch (IRP.getPositionKind()) {
559   case IRPosition::IRP_INVALID:
560   case IRPosition::IRP_FLOAT:
561   case IRPosition::IRP_FUNCTION:
562     return;
563   case IRPosition::IRP_ARGUMENT:
564   case IRPosition::IRP_RETURNED:
565     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
566     return;
567   case IRPosition::IRP_CALL_SITE:
568     assert(CB && "Expected call site!");
569     // TODO: We need to look at the operand bundles similar to the redirection
570     //       in CallBase.
571     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
572       if (const Function *Callee = CB->getCalledFunction())
573         IRPositions.emplace_back(IRPosition::function(*Callee));
574     return;
575   case IRPosition::IRP_CALL_SITE_RETURNED:
576     assert(CB && "Expected call site!");
577     // TODO: We need to look at the operand bundles similar to the redirection
578     //       in CallBase.
579     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
580       if (const Function *Callee = CB->getCalledFunction()) {
581         IRPositions.emplace_back(IRPosition::returned(*Callee));
582         IRPositions.emplace_back(IRPosition::function(*Callee));
583         for (const Argument &Arg : Callee->args())
584           if (Arg.hasReturnedAttr()) {
585             IRPositions.emplace_back(
586                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
587             IRPositions.emplace_back(
588                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
589             IRPositions.emplace_back(IRPosition::argument(Arg));
590           }
591       }
592     }
593     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
594     return;
595   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
596     assert(CB && "Expected call site!");
597     // TODO: We need to look at the operand bundles similar to the redirection
598     //       in CallBase.
599     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
600       const Function *Callee = CB->getCalledFunction();
601       if (Callee) {
602         if (Argument *Arg = IRP.getAssociatedArgument())
603           IRPositions.emplace_back(IRPosition::argument(*Arg));
604         IRPositions.emplace_back(IRPosition::function(*Callee));
605       }
606     }
607     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
608     return;
609   }
610   }
611 }
612 
613 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
614                          bool IgnoreSubsumingPositions, Attributor *A) const {
615   SmallVector<Attribute, 4> Attrs;
616   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
617     for (Attribute::AttrKind AK : AKs)
618       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
619         return true;
620     // The first position returned by the SubsumingPositionIterator is
621     // always the position itself. If we ignore subsuming positions we
622     // are done after the first iteration.
623     if (IgnoreSubsumingPositions)
624       break;
625   }
626   if (A)
627     for (Attribute::AttrKind AK : AKs)
628       if (getAttrsFromAssumes(AK, Attrs, *A))
629         return true;
630   return false;
631 }
632 
633 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
634                           SmallVectorImpl<Attribute> &Attrs,
635                           bool IgnoreSubsumingPositions, Attributor *A) const {
636   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
637     for (Attribute::AttrKind AK : AKs)
638       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
639     // The first position returned by the SubsumingPositionIterator is
640     // always the position itself. If we ignore subsuming positions we
641     // are done after the first iteration.
642     if (IgnoreSubsumingPositions)
643       break;
644   }
645   if (A)
646     for (Attribute::AttrKind AK : AKs)
647       getAttrsFromAssumes(AK, Attrs, *A);
648 }
649 
650 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
651                                     SmallVectorImpl<Attribute> &Attrs) const {
652   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
653     return false;
654 
655   AttributeList AttrList;
656   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
657     AttrList = CB->getAttributes();
658   else
659     AttrList = getAssociatedFunction()->getAttributes();
660 
661   bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
662   if (HasAttr)
663     Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
664   return HasAttr;
665 }
666 
667 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
668                                      SmallVectorImpl<Attribute> &Attrs,
669                                      Attributor &A) const {
670   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
671   Value &AssociatedValue = getAssociatedValue();
672 
673   const Assume2KnowledgeMap &A2K =
674       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
675 
676   // Check if we found any potential assume use, if not we don't need to create
677   // explorer iterators.
678   if (A2K.empty())
679     return false;
680 
681   LLVMContext &Ctx = AssociatedValue.getContext();
682   unsigned AttrsSize = Attrs.size();
683   MustBeExecutedContextExplorer &Explorer =
684       A.getInfoCache().getMustBeExecutedContextExplorer();
685   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
686   for (auto &It : A2K)
687     if (Explorer.findInContextOf(It.first, EIt, EEnd))
688       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
689   return AttrsSize != Attrs.size();
690 }
691 
692 void IRPosition::verify() {
693 #ifdef EXPENSIVE_CHECKS
694   switch (getPositionKind()) {
695   case IRP_INVALID:
696     assert((CBContext == nullptr) &&
697            "Invalid position must not have CallBaseContext!");
698     assert(!Enc.getOpaqueValue() &&
699            "Expected a nullptr for an invalid position!");
700     return;
701   case IRP_FLOAT:
702     assert((!isa<CallBase>(&getAssociatedValue()) &&
703             !isa<Argument>(&getAssociatedValue())) &&
704            "Expected specialized kind for call base and argument values!");
705     return;
706   case IRP_RETURNED:
707     assert(isa<Function>(getAsValuePtr()) &&
708            "Expected function for a 'returned' position!");
709     assert(getAsValuePtr() == &getAssociatedValue() &&
710            "Associated value mismatch!");
711     return;
712   case IRP_CALL_SITE_RETURNED:
713     assert((CBContext == nullptr) &&
714            "'call site returned' position must not have CallBaseContext!");
715     assert((isa<CallBase>(getAsValuePtr())) &&
716            "Expected call base for 'call site returned' position!");
717     assert(getAsValuePtr() == &getAssociatedValue() &&
718            "Associated value mismatch!");
719     return;
720   case IRP_CALL_SITE:
721     assert((CBContext == nullptr) &&
722            "'call site function' position must not have CallBaseContext!");
723     assert((isa<CallBase>(getAsValuePtr())) &&
724            "Expected call base for 'call site function' position!");
725     assert(getAsValuePtr() == &getAssociatedValue() &&
726            "Associated value mismatch!");
727     return;
728   case IRP_FUNCTION:
729     assert(isa<Function>(getAsValuePtr()) &&
730            "Expected function for a 'function' position!");
731     assert(getAsValuePtr() == &getAssociatedValue() &&
732            "Associated value mismatch!");
733     return;
734   case IRP_ARGUMENT:
735     assert(isa<Argument>(getAsValuePtr()) &&
736            "Expected argument for a 'argument' position!");
737     assert(getAsValuePtr() == &getAssociatedValue() &&
738            "Associated value mismatch!");
739     return;
740   case IRP_CALL_SITE_ARGUMENT: {
741     assert((CBContext == nullptr) &&
742            "'call site argument' position must not have CallBaseContext!");
743     Use *U = getAsUsePtr();
744     assert(U && "Expected use for a 'call site argument' position!");
745     assert(isa<CallBase>(U->getUser()) &&
746            "Expected call base user for a 'call site argument' position!");
747     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
748            "Expected call base argument operand for a 'call site argument' "
749            "position");
750     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
751                unsigned(getCallSiteArgNo()) &&
752            "Argument number mismatch!");
753     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
754     return;
755   }
756   }
757 #endif
758 }
759 
760 Optional<Constant *>
761 Attributor::getAssumedConstant(const IRPosition &IRP,
762                                const AbstractAttribute &AA,
763                                bool &UsedAssumedInformation) {
764   // First check all callbacks provided by outside AAs. If any of them returns
765   // a non-null value that is different from the associated value, or None, we
766   // assume it's simpliied.
767   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
768     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
769     if (!SimplifiedV.hasValue())
770       return llvm::None;
771     if (isa_and_nonnull<Constant>(*SimplifiedV))
772       return cast<Constant>(*SimplifiedV);
773     return nullptr;
774   }
775   const auto &ValueSimplifyAA =
776       getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
777   Optional<Value *> SimplifiedV =
778       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
779   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
780   UsedAssumedInformation |= !IsKnown;
781   if (!SimplifiedV.hasValue()) {
782     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
783     return llvm::None;
784   }
785   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
786     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
787     return UndefValue::get(IRP.getAssociatedType());
788   }
789   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
790   if (CI)
791     CI = dyn_cast_or_null<Constant>(
792         AA::getWithType(*CI, *IRP.getAssociatedType()));
793   if (CI)
794     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
795   return CI;
796 }
797 
798 Optional<Value *>
799 Attributor::getAssumedSimplified(const IRPosition &IRP,
800                                  const AbstractAttribute *AA,
801                                  bool &UsedAssumedInformation) {
802   // First check all callbacks provided by outside AAs. If any of them returns
803   // a non-null value that is different from the associated value, or None, we
804   // assume it's simpliied.
805   for (auto &CB : SimplificationCallbacks.lookup(IRP))
806     return CB(IRP, AA, UsedAssumedInformation);
807 
808   // If no high-level/outside simplification occured, use AAValueSimplify.
809   const auto &ValueSimplifyAA =
810       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
811   Optional<Value *> SimplifiedV =
812       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
813   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
814   UsedAssumedInformation |= !IsKnown;
815   if (!SimplifiedV.hasValue()) {
816     if (AA)
817       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
818     return llvm::None;
819   }
820   if (*SimplifiedV == nullptr)
821     return const_cast<Value *>(&IRP.getAssociatedValue());
822   if (Value *SimpleV =
823           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
824     if (AA)
825       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
826     return SimpleV;
827   }
828   return const_cast<Value *>(&IRP.getAssociatedValue());
829 }
830 
831 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
832     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
833     bool &UsedAssumedInformation) {
834   if (!V.hasValue())
835     return V;
836   if (*V == nullptr || isa<Constant>(*V))
837     return V;
838   if (auto *Arg = dyn_cast<Argument>(*V))
839     if (CB.getCalledFunction() == Arg->getParent())
840       if (!Arg->hasPointeeInMemoryValueAttr())
841         return getAssumedSimplified(
842             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
843             UsedAssumedInformation);
844   return nullptr;
845 }
846 
847 Attributor::~Attributor() {
848   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
849   // thus we cannot delete them. We can, and want to, destruct them though.
850   for (auto &DepAA : DG.SyntheticRoot.Deps) {
851     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
852     AA->~AbstractAttribute();
853   }
854 }
855 
856 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
857                                const AAIsDead *FnLivenessAA,
858                                bool &UsedAssumedInformation,
859                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
860   const IRPosition &IRP = AA.getIRPosition();
861   if (!Functions.count(IRP.getAnchorScope()))
862     return false;
863   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
864                        CheckBBLivenessOnly, DepClass);
865 }
866 
867 bool Attributor::isAssumedDead(const Use &U,
868                                const AbstractAttribute *QueryingAA,
869                                const AAIsDead *FnLivenessAA,
870                                bool &UsedAssumedInformation,
871                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
872   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
873   if (!UserI)
874     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
875                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
876 
877   if (auto *CB = dyn_cast<CallBase>(UserI)) {
878     // For call site argument uses we can check if the argument is
879     // unused/dead.
880     if (CB->isArgOperand(&U)) {
881       const IRPosition &CSArgPos =
882           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
883       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
884                            UsedAssumedInformation, CheckBBLivenessOnly,
885                            DepClass);
886     }
887   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
888     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
889     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
890                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
891   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
892     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
893     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
894                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
895   }
896 
897   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
898                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
899 }
900 
901 bool Attributor::isAssumedDead(const Instruction &I,
902                                const AbstractAttribute *QueryingAA,
903                                const AAIsDead *FnLivenessAA,
904                                bool &UsedAssumedInformation,
905                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
906   const IRPosition::CallBaseContext *CBCtx =
907       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
908 
909   if (ManifestAddedBlocks.contains(I.getParent()))
910     return false;
911 
912   if (!FnLivenessAA)
913     FnLivenessAA =
914         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
915                               QueryingAA, DepClassTy::NONE);
916 
917   // If we have a context instruction and a liveness AA we use it.
918   if (FnLivenessAA &&
919       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
920       FnLivenessAA->isAssumedDead(&I)) {
921     if (QueryingAA)
922       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
923     if (!FnLivenessAA->isKnownDead(&I))
924       UsedAssumedInformation = true;
925     return true;
926   }
927 
928   if (CheckBBLivenessOnly)
929     return false;
930 
931   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
932       IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
933   // Don't check liveness for AAIsDead.
934   if (QueryingAA == &IsDeadAA)
935     return false;
936 
937   if (IsDeadAA.isAssumedDead()) {
938     if (QueryingAA)
939       recordDependence(IsDeadAA, *QueryingAA, DepClass);
940     if (!IsDeadAA.isKnownDead())
941       UsedAssumedInformation = true;
942     return true;
943   }
944 
945   return false;
946 }
947 
948 bool Attributor::isAssumedDead(const IRPosition &IRP,
949                                const AbstractAttribute *QueryingAA,
950                                const AAIsDead *FnLivenessAA,
951                                bool &UsedAssumedInformation,
952                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
953   Instruction *CtxI = IRP.getCtxI();
954   if (CtxI &&
955       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
956                     /* CheckBBLivenessOnly */ true,
957                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
958     return true;
959 
960   if (CheckBBLivenessOnly)
961     return false;
962 
963   // If we haven't succeeded we query the specific liveness info for the IRP.
964   const AAIsDead *IsDeadAA;
965   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
966     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
967         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
968         QueryingAA, DepClassTy::NONE);
969   else
970     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
971   // Don't check liveness for AAIsDead.
972   if (QueryingAA == IsDeadAA)
973     return false;
974 
975   if (IsDeadAA->isAssumedDead()) {
976     if (QueryingAA)
977       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
978     if (!IsDeadAA->isKnownDead())
979       UsedAssumedInformation = true;
980     return true;
981   }
982 
983   return false;
984 }
985 
986 bool Attributor::isAssumedDead(const BasicBlock &BB,
987                                const AbstractAttribute *QueryingAA,
988                                const AAIsDead *FnLivenessAA,
989                                DepClassTy DepClass) {
990   if (!FnLivenessAA)
991     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
992                                          QueryingAA, DepClassTy::NONE);
993   if (FnLivenessAA->isAssumedDead(&BB)) {
994     if (QueryingAA)
995       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
996     return true;
997   }
998 
999   return false;
1000 }
1001 
1002 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
1003                                  const AbstractAttribute &QueryingAA,
1004                                  const Value &V, bool CheckBBLivenessOnly,
1005                                  DepClassTy LivenessDepClass) {
1006 
1007   // Check the trivial case first as it catches void values.
1008   if (V.use_empty())
1009     return true;
1010 
1011   const IRPosition &IRP = QueryingAA.getIRPosition();
1012   SmallVector<const Use *, 16> Worklist;
1013   SmallPtrSet<const Use *, 16> Visited;
1014 
1015   for (const Use &U : V.uses())
1016     Worklist.push_back(&U);
1017 
1018   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1019                     << " initial uses to check\n");
1020 
1021   const Function *ScopeFn = IRP.getAnchorScope();
1022   const auto *LivenessAA =
1023       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1024                                     DepClassTy::NONE)
1025               : nullptr;
1026 
1027   while (!Worklist.empty()) {
1028     const Use *U = Worklist.pop_back_val();
1029     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1030       continue;
1031     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
1032                       << *U->getUser() << "\n");
1033     bool UsedAssumedInformation = false;
1034     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1035                       CheckBBLivenessOnly, LivenessDepClass)) {
1036       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1037       continue;
1038     }
1039     if (U->getUser()->isDroppable()) {
1040       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1041       continue;
1042     }
1043 
1044     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1045       if (&SI->getOperandUse(0) == U) {
1046         if (!Visited.insert(U).second)
1047           continue;
1048         SmallSetVector<Value *, 4> PotentialCopies;
1049         if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1050                                                 QueryingAA,
1051                                                 UsedAssumedInformation)) {
1052           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1053                             << PotentialCopies.size()
1054                             << " potential copies instead!\n");
1055           for (Value *PotentialCopy : PotentialCopies)
1056             for (const Use &U : PotentialCopy->uses())
1057               Worklist.push_back(&U);
1058           continue;
1059         }
1060       }
1061     }
1062 
1063     bool Follow = false;
1064     if (!Pred(*U, Follow))
1065       return false;
1066     if (!Follow)
1067       continue;
1068     for (const Use &UU : U->getUser()->uses())
1069       Worklist.push_back(&UU);
1070   }
1071 
1072   return true;
1073 }
1074 
1075 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1076                                       const AbstractAttribute &QueryingAA,
1077                                       bool RequireAllCallSites,
1078                                       bool &AllCallSitesKnown) {
1079   // We can try to determine information from
1080   // the call sites. However, this is only possible all call sites are known,
1081   // hence the function has internal linkage.
1082   const IRPosition &IRP = QueryingAA.getIRPosition();
1083   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1084   if (!AssociatedFunction) {
1085     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1086                       << "\n");
1087     AllCallSitesKnown = false;
1088     return false;
1089   }
1090 
1091   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1092                               &QueryingAA, AllCallSitesKnown);
1093 }
1094 
1095 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1096                                       const Function &Fn,
1097                                       bool RequireAllCallSites,
1098                                       const AbstractAttribute *QueryingAA,
1099                                       bool &AllCallSitesKnown) {
1100   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1101     LLVM_DEBUG(
1102         dbgs()
1103         << "[Attributor] Function " << Fn.getName()
1104         << " has no internal linkage, hence not all call sites are known\n");
1105     AllCallSitesKnown = false;
1106     return false;
1107   }
1108 
1109   // If we do not require all call sites we might not see all.
1110   AllCallSitesKnown = RequireAllCallSites;
1111 
1112   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1113   for (unsigned u = 0; u < Uses.size(); ++u) {
1114     const Use &U = *Uses[u];
1115     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
1116                       << *U.getUser() << "\n");
1117     bool UsedAssumedInformation = false;
1118     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1119                       /* CheckBBLivenessOnly */ true)) {
1120       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1121       continue;
1122     }
1123     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1124       if (CE->isCast() && CE->getType()->isPointerTy() &&
1125           CE->getType()->getPointerElementType()->isFunctionTy()) {
1126         for (const Use &CEU : CE->uses())
1127           Uses.push_back(&CEU);
1128         continue;
1129       }
1130     }
1131 
1132     AbstractCallSite ACS(&U);
1133     if (!ACS) {
1134       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1135                         << " has non call site use " << *U.get() << " in "
1136                         << *U.getUser() << "\n");
1137       // BlockAddress users are allowed.
1138       if (isa<BlockAddress>(U.getUser()))
1139         continue;
1140       return false;
1141     }
1142 
1143     const Use *EffectiveUse =
1144         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1145     if (!ACS.isCallee(EffectiveUse)) {
1146       if (!RequireAllCallSites)
1147         continue;
1148       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
1149                         << " is an invalid use of " << Fn.getName() << "\n");
1150       return false;
1151     }
1152 
1153     // Make sure the arguments that can be matched between the call site and the
1154     // callee argee on their type. It is unlikely they do not and it doesn't
1155     // make sense for all attributes to know/care about this.
1156     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1157     unsigned MinArgsParams =
1158         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1159     for (unsigned u = 0; u < MinArgsParams; ++u) {
1160       Value *CSArgOp = ACS.getCallArgOperand(u);
1161       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1162         LLVM_DEBUG(
1163             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1164                    << u << "@" << Fn.getName() << ": "
1165                    << *Fn.getArg(u)->getType() << " vs. "
1166                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1167         return false;
1168       }
1169     }
1170 
1171     if (Pred(ACS))
1172       continue;
1173 
1174     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1175                       << *ACS.getInstruction() << "\n");
1176     return false;
1177   }
1178 
1179   return true;
1180 }
1181 
1182 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1183   // TODO: Maintain a cache of Values that are
1184   // on the pathway from a Argument to a Instruction that would effect the
1185   // liveness/return state etc.
1186   return EnableCallSiteSpecific;
1187 }
1188 
1189 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1190     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1191     const AbstractAttribute &QueryingAA) {
1192 
1193   const IRPosition &IRP = QueryingAA.getIRPosition();
1194   // Since we need to provide return instructions we have to have an exact
1195   // definition.
1196   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1197   if (!AssociatedFunction)
1198     return false;
1199 
1200   // If this is a call site query we use the call site specific return values
1201   // and liveness information.
1202   // TODO: use the function scope once we have call site AAReturnedValues.
1203   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1204   const auto &AARetVal =
1205       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1206   if (!AARetVal.getState().isValidState())
1207     return false;
1208 
1209   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1210 }
1211 
1212 bool Attributor::checkForAllReturnedValues(
1213     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1214 
1215   const IRPosition &IRP = QueryingAA.getIRPosition();
1216   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1217   if (!AssociatedFunction)
1218     return false;
1219 
1220   // TODO: use the function scope once we have call site AAReturnedValues.
1221   const IRPosition &QueryIRP = IRPosition::function(
1222       *AssociatedFunction, QueryingAA.getCallBaseContext());
1223   const auto &AARetVal =
1224       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1225   if (!AARetVal.getState().isValidState())
1226     return false;
1227 
1228   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1229       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1230         return Pred(RV);
1231       });
1232 }
1233 
1234 static bool checkForAllInstructionsImpl(
1235     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1236     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1237     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1238     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1239     bool CheckPotentiallyDead = false) {
1240   for (unsigned Opcode : Opcodes) {
1241     // Check if we have instructions with this opcode at all first.
1242     auto *Insts = OpcodeInstMap.lookup(Opcode);
1243     if (!Insts)
1244       continue;
1245 
1246     for (Instruction *I : *Insts) {
1247       // Skip dead instructions.
1248       if (A && !CheckPotentiallyDead &&
1249           A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
1250                            UsedAssumedInformation, CheckBBLivenessOnly))
1251         continue;
1252 
1253       if (!Pred(*I))
1254         return false;
1255     }
1256   }
1257   return true;
1258 }
1259 
1260 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1261                                          const AbstractAttribute &QueryingAA,
1262                                          const ArrayRef<unsigned> &Opcodes,
1263                                          bool &UsedAssumedInformation,
1264                                          bool CheckBBLivenessOnly,
1265                                          bool CheckPotentiallyDead) {
1266 
1267   const IRPosition &IRP = QueryingAA.getIRPosition();
1268   // Since we need to provide instructions we have to have an exact definition.
1269   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1270   if (!AssociatedFunction)
1271     return false;
1272 
1273   if (AssociatedFunction->isDeclaration())
1274     return false;
1275 
1276   // TODO: use the function scope once we have call site AAReturnedValues.
1277   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1278   const auto *LivenessAA =
1279       (CheckBBLivenessOnly || CheckPotentiallyDead)
1280           ? nullptr
1281           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1282 
1283   auto &OpcodeInstMap =
1284       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1285   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1286                                    LivenessAA, Opcodes, UsedAssumedInformation,
1287                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1288     return false;
1289 
1290   return true;
1291 }
1292 
1293 bool Attributor::checkForAllReadWriteInstructions(
1294     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1295     bool &UsedAssumedInformation) {
1296 
1297   const Function *AssociatedFunction =
1298       QueryingAA.getIRPosition().getAssociatedFunction();
1299   if (!AssociatedFunction)
1300     return false;
1301 
1302   // TODO: use the function scope once we have call site AAReturnedValues.
1303   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1304   const auto &LivenessAA =
1305       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1306 
1307   for (Instruction *I :
1308        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1309     // Skip dead instructions.
1310     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA,
1311                       UsedAssumedInformation))
1312       continue;
1313 
1314     if (!Pred(*I))
1315       return false;
1316   }
1317 
1318   return true;
1319 }
1320 
1321 void Attributor::runTillFixpoint() {
1322   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1323   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1324                     << DG.SyntheticRoot.Deps.size()
1325                     << " abstract attributes.\n");
1326 
1327   // Now that all abstract attributes are collected and initialized we start
1328   // the abstract analysis.
1329 
1330   unsigned IterationCounter = 1;
1331   unsigned MaxFixedPointIterations;
1332   if (MaxFixpointIterations)
1333     MaxFixedPointIterations = MaxFixpointIterations.getValue();
1334   else
1335     MaxFixedPointIterations = SetFixpointIterations;
1336 
1337   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1338   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1339   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1340 
1341   do {
1342     // Remember the size to determine new attributes.
1343     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1344     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1345                       << ", Worklist size: " << Worklist.size() << "\n");
1346 
1347     // For invalid AAs we can fix dependent AAs that have a required dependence,
1348     // thereby folding long dependence chains in a single step without the need
1349     // to run updates.
1350     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1351       AbstractAttribute *InvalidAA = InvalidAAs[u];
1352 
1353       // Check the dependences to fast track invalidation.
1354       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1355                         << InvalidAA->Deps.size()
1356                         << " required & optional dependences\n");
1357       while (!InvalidAA->Deps.empty()) {
1358         const auto &Dep = InvalidAA->Deps.back();
1359         InvalidAA->Deps.pop_back();
1360         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1361         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1362           Worklist.insert(DepAA);
1363           continue;
1364         }
1365         DepAA->getState().indicatePessimisticFixpoint();
1366         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1367         if (!DepAA->getState().isValidState())
1368           InvalidAAs.insert(DepAA);
1369         else
1370           ChangedAAs.push_back(DepAA);
1371       }
1372     }
1373 
1374     // Add all abstract attributes that are potentially dependent on one that
1375     // changed to the work list.
1376     for (AbstractAttribute *ChangedAA : ChangedAAs)
1377       while (!ChangedAA->Deps.empty()) {
1378         Worklist.insert(
1379             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1380         ChangedAA->Deps.pop_back();
1381       }
1382 
1383     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1384                       << ", Worklist+Dependent size: " << Worklist.size()
1385                       << "\n");
1386 
1387     // Reset the changed and invalid set.
1388     ChangedAAs.clear();
1389     InvalidAAs.clear();
1390 
1391     // Update all abstract attribute in the work list and record the ones that
1392     // changed.
1393     for (AbstractAttribute *AA : Worklist) {
1394       const auto &AAState = AA->getState();
1395       if (!AAState.isAtFixpoint())
1396         if (updateAA(*AA) == ChangeStatus::CHANGED)
1397           ChangedAAs.push_back(AA);
1398 
1399       // Use the InvalidAAs vector to propagate invalid states fast transitively
1400       // without requiring updates.
1401       if (!AAState.isValidState())
1402         InvalidAAs.insert(AA);
1403     }
1404 
1405     // Add attributes to the changed set if they have been created in the last
1406     // iteration.
1407     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1408                       DG.SyntheticRoot.end());
1409 
1410     // Reset the work list and repopulate with the changed abstract attributes.
1411     // Note that dependent ones are added above.
1412     Worklist.clear();
1413     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1414 
1415   } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1416                                  VerifyMaxFixpointIterations));
1417 
1418   if (IterationCounter > MaxFixedPointIterations && !Worklist.empty()) {
1419     auto Remark = [&](OptimizationRemarkMissed ORM) {
1420       return ORM << "Attributor did not reach a fixpoint after "
1421                  << ore::NV("Iterations", MaxFixedPointIterations)
1422                  << " iterations.";
1423     };
1424     Function *F = Worklist.front()->getIRPosition().getAssociatedFunction();
1425     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
1426   }
1427 
1428   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1429                     << IterationCounter << "/" << MaxFixpointIterations
1430                     << " iterations\n");
1431 
1432   // Reset abstract arguments not settled in a sound fixpoint by now. This
1433   // happens when we stopped the fixpoint iteration early. Note that only the
1434   // ones marked as "changed" *and* the ones transitively depending on them
1435   // need to be reverted to a pessimistic state. Others might not be in a
1436   // fixpoint state but we can use the optimistic results for them anyway.
1437   SmallPtrSet<AbstractAttribute *, 32> Visited;
1438   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1439     AbstractAttribute *ChangedAA = ChangedAAs[u];
1440     if (!Visited.insert(ChangedAA).second)
1441       continue;
1442 
1443     AbstractState &State = ChangedAA->getState();
1444     if (!State.isAtFixpoint()) {
1445       State.indicatePessimisticFixpoint();
1446 
1447       NumAttributesTimedOut++;
1448     }
1449 
1450     while (!ChangedAA->Deps.empty()) {
1451       ChangedAAs.push_back(
1452           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1453       ChangedAA->Deps.pop_back();
1454     }
1455   }
1456 
1457   LLVM_DEBUG({
1458     if (!Visited.empty())
1459       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1460              << " abstract attributes.\n";
1461   });
1462 
1463   if (VerifyMaxFixpointIterations &&
1464       IterationCounter != MaxFixedPointIterations) {
1465     errs() << "\n[Attributor] Fixpoint iteration done after: "
1466            << IterationCounter << "/" << MaxFixedPointIterations
1467            << " iterations\n";
1468     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1469                      "specified iterations!");
1470   }
1471 }
1472 
1473 ChangeStatus Attributor::manifestAttributes() {
1474   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1475   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1476 
1477   unsigned NumManifested = 0;
1478   unsigned NumAtFixpoint = 0;
1479   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1480   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1481     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1482     AbstractState &State = AA->getState();
1483 
1484     // If there is not already a fixpoint reached, we can now take the
1485     // optimistic state. This is correct because we enforced a pessimistic one
1486     // on abstract attributes that were transitively dependent on a changed one
1487     // already above.
1488     if (!State.isAtFixpoint())
1489       State.indicateOptimisticFixpoint();
1490 
1491     // We must not manifest Attributes that use Callbase info.
1492     if (AA->hasCallBaseContext())
1493       continue;
1494     // If the state is invalid, we do not try to manifest it.
1495     if (!State.isValidState())
1496       continue;
1497 
1498     // Skip dead code.
1499     bool UsedAssumedInformation = false;
1500     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1501                       /* CheckBBLivenessOnly */ true))
1502       continue;
1503     // Check if the manifest debug counter that allows skipping manifestation of
1504     // AAs
1505     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1506       continue;
1507     // Manifest the state and record if we changed the IR.
1508     ChangeStatus LocalChange = AA->manifest(*this);
1509     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1510       AA->trackStatistics();
1511     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1512                       << "\n");
1513 
1514     ManifestChange = ManifestChange | LocalChange;
1515 
1516     NumAtFixpoint++;
1517     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1518   }
1519 
1520   (void)NumManifested;
1521   (void)NumAtFixpoint;
1522   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1523                     << " arguments while " << NumAtFixpoint
1524                     << " were in a valid fixpoint state\n");
1525 
1526   NumAttributesManifested += NumManifested;
1527   NumAttributesValidFixpoint += NumAtFixpoint;
1528 
1529   (void)NumFinalAAs;
1530   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1531     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1532       errs() << "Unexpected abstract attribute: "
1533              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1534              << " :: "
1535              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1536                     ->getIRPosition()
1537                     .getAssociatedValue()
1538              << "\n";
1539     llvm_unreachable("Expected the final number of abstract attributes to "
1540                      "remain unchanged!");
1541   }
1542   return ManifestChange;
1543 }
1544 
1545 void Attributor::identifyDeadInternalFunctions() {
1546   // Early exit if we don't intend to delete functions.
1547   if (!DeleteFns)
1548     return;
1549 
1550   // Identify dead internal functions and delete them. This happens outside
1551   // the other fixpoint analysis as we might treat potentially dead functions
1552   // as live to lower the number of iterations. If they happen to be dead, the
1553   // below fixpoint loop will identify and eliminate them.
1554   SmallVector<Function *, 8> InternalFns;
1555   for (Function *F : Functions)
1556     if (F->hasLocalLinkage())
1557       InternalFns.push_back(F);
1558 
1559   SmallPtrSet<Function *, 8> LiveInternalFns;
1560   bool FoundLiveInternal = true;
1561   while (FoundLiveInternal) {
1562     FoundLiveInternal = false;
1563     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1564       Function *F = InternalFns[u];
1565       if (!F)
1566         continue;
1567 
1568       bool AllCallSitesKnown;
1569       if (checkForAllCallSites(
1570               [&](AbstractCallSite ACS) {
1571                 Function *Callee = ACS.getInstruction()->getFunction();
1572                 return ToBeDeletedFunctions.count(Callee) ||
1573                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1574                         !LiveInternalFns.count(Callee));
1575               },
1576               *F, true, nullptr, AllCallSitesKnown)) {
1577         continue;
1578       }
1579 
1580       LiveInternalFns.insert(F);
1581       InternalFns[u] = nullptr;
1582       FoundLiveInternal = true;
1583     }
1584   }
1585 
1586   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1587     if (Function *F = InternalFns[u])
1588       ToBeDeletedFunctions.insert(F);
1589 }
1590 
1591 ChangeStatus Attributor::cleanupIR() {
1592   TimeTraceScope TimeScope("Attributor::cleanupIR");
1593   // Delete stuff at the end to avoid invalid references and a nice order.
1594   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1595                     << ToBeDeletedFunctions.size() << " functions and "
1596                     << ToBeDeletedBlocks.size() << " blocks and "
1597                     << ToBeDeletedInsts.size() << " instructions and "
1598                     << ToBeChangedValues.size() << " values and "
1599                     << ToBeChangedUses.size() << " uses. "
1600                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1601                     << " blocks\n");
1602 
1603   SmallVector<WeakTrackingVH, 32> DeadInsts;
1604   SmallVector<Instruction *, 32> TerminatorsToFold;
1605 
1606   auto ReplaceUse = [&](Use *U, Value *NewV) {
1607     Value *OldV = U->get();
1608 
1609     // If we plan to replace NewV we need to update it at this point.
1610     do {
1611       const auto &Entry = ToBeChangedValues.lookup(NewV);
1612       if (!Entry.first)
1613         break;
1614       NewV = Entry.first;
1615     } while (true);
1616 
1617     // Do not replace uses in returns if the value is a must-tail call we will
1618     // not delete.
1619     if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1620       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1621         if (CI->isMustTailCall() &&
1622             (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1623           return;
1624       // If we rewrite a return and the new value is not an argument, strip the
1625       // `returned` attribute as it is wrong now.
1626       if (!isa<Argument>(NewV))
1627         for (auto &Arg : RI->getFunction()->args())
1628           Arg.removeAttr(Attribute::Returned);
1629     }
1630 
1631     // Do not perform call graph altering changes outside the SCC.
1632     if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1633       if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1634         return;
1635 
1636     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1637                       << " instead of " << *OldV << "\n");
1638     U->set(NewV);
1639 
1640     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1641       CGModifiedFunctions.insert(I->getFunction());
1642       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1643           isInstructionTriviallyDead(I))
1644         DeadInsts.push_back(I);
1645     }
1646     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1647       auto *CB = cast<CallBase>(U->getUser());
1648       if (CB->isArgOperand(U)) {
1649         unsigned Idx = CB->getArgOperandNo(U);
1650         CB->removeParamAttr(Idx, Attribute::NoUndef);
1651         Function *Fn = CB->getCalledFunction();
1652         if (Fn && Fn->arg_size() > Idx)
1653           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1654       }
1655     }
1656     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1657       Instruction *UserI = cast<Instruction>(U->getUser());
1658       if (isa<UndefValue>(NewV)) {
1659         ToBeChangedToUnreachableInsts.insert(UserI);
1660       } else {
1661         TerminatorsToFold.push_back(UserI);
1662       }
1663     }
1664   };
1665 
1666   for (auto &It : ToBeChangedUses) {
1667     Use *U = It.first;
1668     Value *NewV = It.second;
1669     ReplaceUse(U, NewV);
1670   }
1671 
1672   SmallVector<Use *, 4> Uses;
1673   for (auto &It : ToBeChangedValues) {
1674     Value *OldV = It.first;
1675     auto &Entry = It.second;
1676     Value *NewV = Entry.first;
1677     Uses.clear();
1678     for (auto &U : OldV->uses())
1679       if (Entry.second || !U.getUser()->isDroppable())
1680         Uses.push_back(&U);
1681     for (Use *U : Uses)
1682       ReplaceUse(U, NewV);
1683   }
1684 
1685   for (auto &V : InvokeWithDeadSuccessor)
1686     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1687       assert(isRunOn(*II->getFunction()) &&
1688              "Cannot replace an invoke outside the current SCC!");
1689       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1690       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1691       bool Invoke2CallAllowed =
1692           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1693       assert((UnwindBBIsDead || NormalBBIsDead) &&
1694              "Invoke does not have dead successors!");
1695       BasicBlock *BB = II->getParent();
1696       BasicBlock *NormalDestBB = II->getNormalDest();
1697       if (UnwindBBIsDead) {
1698         Instruction *NormalNextIP = &NormalDestBB->front();
1699         if (Invoke2CallAllowed) {
1700           changeToCall(II);
1701           NormalNextIP = BB->getTerminator();
1702         }
1703         if (NormalBBIsDead)
1704           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1705       } else {
1706         assert(NormalBBIsDead && "Broken invariant!");
1707         if (!NormalDestBB->getUniquePredecessor())
1708           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1709         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1710       }
1711     }
1712   for (Instruction *I : TerminatorsToFold) {
1713     if (!isRunOn(*I->getFunction()))
1714       continue;
1715     CGModifiedFunctions.insert(I->getFunction());
1716     ConstantFoldTerminator(I->getParent());
1717   }
1718   for (auto &V : ToBeChangedToUnreachableInsts)
1719     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1720       if (!isRunOn(*I->getFunction()))
1721         continue;
1722       CGModifiedFunctions.insert(I->getFunction());
1723       changeToUnreachable(I);
1724     }
1725 
1726   for (auto &V : ToBeDeletedInsts) {
1727     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1728       if (auto *CB = dyn_cast<CallBase>(I)) {
1729         if (!isRunOn(*I->getFunction()))
1730           continue;
1731         if (!isa<IntrinsicInst>(CB))
1732           CGUpdater.removeCallSite(*CB);
1733       }
1734       I->dropDroppableUses();
1735       CGModifiedFunctions.insert(I->getFunction());
1736       if (!I->getType()->isVoidTy())
1737         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1738       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1739         DeadInsts.push_back(I);
1740       else
1741         I->eraseFromParent();
1742     }
1743   }
1744 
1745   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1746     return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1747   });
1748 
1749   LLVM_DEBUG({
1750     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1751     for (auto &I : DeadInsts)
1752       if (I)
1753         dbgs() << "  - " << *I << "\n";
1754   });
1755 
1756   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1757 
1758   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1759     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1760     ToBeDeletedBBs.reserve(NumDeadBlocks);
1761     for (BasicBlock *BB : ToBeDeletedBlocks) {
1762       assert(isRunOn(*BB->getParent()) &&
1763              "Cannot delete a block outside the current SCC!");
1764       CGModifiedFunctions.insert(BB->getParent());
1765       // Do not delete BBs added during manifests of AAs.
1766       if (ManifestAddedBlocks.contains(BB))
1767         continue;
1768       ToBeDeletedBBs.push_back(BB);
1769     }
1770     // Actually we do not delete the blocks but squash them into a single
1771     // unreachable but untangling branches that jump here is something we need
1772     // to do in a more generic way.
1773     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1774   }
1775 
1776   identifyDeadInternalFunctions();
1777 
1778   // Rewrite the functions as requested during manifest.
1779   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1780 
1781   for (Function *Fn : CGModifiedFunctions)
1782     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1783       CGUpdater.reanalyzeFunction(*Fn);
1784 
1785   for (Function *Fn : ToBeDeletedFunctions) {
1786     if (!Functions.count(Fn))
1787       continue;
1788     CGUpdater.removeFunction(*Fn);
1789   }
1790 
1791   if (!ToBeChangedUses.empty())
1792     ManifestChange = ChangeStatus::CHANGED;
1793 
1794   if (!ToBeChangedToUnreachableInsts.empty())
1795     ManifestChange = ChangeStatus::CHANGED;
1796 
1797   if (!ToBeDeletedFunctions.empty())
1798     ManifestChange = ChangeStatus::CHANGED;
1799 
1800   if (!ToBeDeletedBlocks.empty())
1801     ManifestChange = ChangeStatus::CHANGED;
1802 
1803   if (!ToBeDeletedInsts.empty())
1804     ManifestChange = ChangeStatus::CHANGED;
1805 
1806   if (!InvokeWithDeadSuccessor.empty())
1807     ManifestChange = ChangeStatus::CHANGED;
1808 
1809   if (!DeadInsts.empty())
1810     ManifestChange = ChangeStatus::CHANGED;
1811 
1812   NumFnDeleted += ToBeDeletedFunctions.size();
1813 
1814   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1815                     << " functions after manifest.\n");
1816 
1817 #ifdef EXPENSIVE_CHECKS
1818   for (Function *F : Functions) {
1819     if (ToBeDeletedFunctions.count(F))
1820       continue;
1821     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1822   }
1823 #endif
1824 
1825   return ManifestChange;
1826 }
1827 
1828 ChangeStatus Attributor::run() {
1829   TimeTraceScope TimeScope("Attributor::run");
1830   AttributorCallGraph ACallGraph(*this);
1831 
1832   if (PrintCallGraph)
1833     ACallGraph.populateAll();
1834 
1835   Phase = AttributorPhase::UPDATE;
1836   runTillFixpoint();
1837 
1838   // dump graphs on demand
1839   if (DumpDepGraph)
1840     DG.dumpGraph();
1841 
1842   if (ViewDepGraph)
1843     DG.viewGraph();
1844 
1845   if (PrintDependencies)
1846     DG.print();
1847 
1848   Phase = AttributorPhase::MANIFEST;
1849   ChangeStatus ManifestChange = manifestAttributes();
1850 
1851   Phase = AttributorPhase::CLEANUP;
1852   ChangeStatus CleanupChange = cleanupIR();
1853 
1854   if (PrintCallGraph)
1855     ACallGraph.print();
1856 
1857   return ManifestChange | CleanupChange;
1858 }
1859 
1860 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1861   TimeTraceScope TimeScope(
1862       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1863       "::updateAA");
1864   assert(Phase == AttributorPhase::UPDATE &&
1865          "We can update AA only in the update stage!");
1866 
1867   // Use a new dependence vector for this update.
1868   DependenceVector DV;
1869   DependenceStack.push_back(&DV);
1870 
1871   auto &AAState = AA.getState();
1872   ChangeStatus CS = ChangeStatus::UNCHANGED;
1873   bool UsedAssumedInformation = false;
1874   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
1875                      /* CheckBBLivenessOnly */ true))
1876     CS = AA.update(*this);
1877 
1878   if (DV.empty()) {
1879     // If the attribute did not query any non-fix information, the state
1880     // will not change and we can indicate that right away.
1881     AAState.indicateOptimisticFixpoint();
1882   }
1883 
1884   if (!AAState.isAtFixpoint())
1885     rememberDependences();
1886 
1887   // Verify the stack was used properly, that is we pop the dependence vector we
1888   // put there earlier.
1889   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1890   (void)PoppedDV;
1891   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1892 
1893   return CS;
1894 }
1895 
1896 void Attributor::createShallowWrapper(Function &F) {
1897   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1898 
1899   Module &M = *F.getParent();
1900   LLVMContext &Ctx = M.getContext();
1901   FunctionType *FnTy = F.getFunctionType();
1902 
1903   Function *Wrapper =
1904       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1905   F.setName(""); // set the inside function anonymous
1906   M.getFunctionList().insert(F.getIterator(), Wrapper);
1907 
1908   F.setLinkage(GlobalValue::InternalLinkage);
1909 
1910   F.replaceAllUsesWith(Wrapper);
1911   assert(F.use_empty() && "Uses remained after wrapper was created!");
1912 
1913   // Move the COMDAT section to the wrapper.
1914   // TODO: Check if we need to keep it for F as well.
1915   Wrapper->setComdat(F.getComdat());
1916   F.setComdat(nullptr);
1917 
1918   // Copy all metadata and attributes but keep them on F as well.
1919   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1920   F.getAllMetadata(MDs);
1921   for (auto MDIt : MDs)
1922     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1923   Wrapper->setAttributes(F.getAttributes());
1924 
1925   // Create the call in the wrapper.
1926   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1927 
1928   SmallVector<Value *, 8> Args;
1929   Argument *FArgIt = F.arg_begin();
1930   for (Argument &Arg : Wrapper->args()) {
1931     Args.push_back(&Arg);
1932     Arg.setName((FArgIt++)->getName());
1933   }
1934 
1935   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1936   CI->setTailCall(true);
1937   CI->addFnAttr(Attribute::NoInline);
1938   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1939 
1940   NumFnShallowWrappersCreated++;
1941 }
1942 
1943 bool Attributor::isInternalizable(Function &F) {
1944   if (F.isDeclaration() || F.hasLocalLinkage() ||
1945       GlobalValue::isInterposableLinkage(F.getLinkage()))
1946     return false;
1947   return true;
1948 }
1949 
1950 Function *Attributor::internalizeFunction(Function &F, bool Force) {
1951   if (!AllowDeepWrapper && !Force)
1952     return nullptr;
1953   if (!isInternalizable(F))
1954     return nullptr;
1955 
1956   SmallPtrSet<Function *, 2> FnSet = {&F};
1957   DenseMap<Function *, Function *> InternalizedFns;
1958   internalizeFunctions(FnSet, InternalizedFns);
1959 
1960   return InternalizedFns[&F];
1961 }
1962 
1963 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
1964                                       DenseMap<Function *, Function *> &FnMap) {
1965   for (Function *F : FnSet)
1966     if (!Attributor::isInternalizable(*F))
1967       return false;
1968 
1969   FnMap.clear();
1970   // Generate the internalized version of each function.
1971   for (Function *F : FnSet) {
1972     Module &M = *F->getParent();
1973     FunctionType *FnTy = F->getFunctionType();
1974 
1975     // Create a copy of the current function
1976     Function *Copied =
1977         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
1978                          F->getName() + ".internalized");
1979     ValueToValueMapTy VMap;
1980     auto *NewFArgIt = Copied->arg_begin();
1981     for (auto &Arg : F->args()) {
1982       auto ArgName = Arg.getName();
1983       NewFArgIt->setName(ArgName);
1984       VMap[&Arg] = &(*NewFArgIt++);
1985     }
1986     SmallVector<ReturnInst *, 8> Returns;
1987 
1988     // Copy the body of the original function to the new one
1989     CloneFunctionInto(Copied, F, VMap,
1990                       CloneFunctionChangeType::LocalChangesOnly, Returns);
1991 
1992     // Set the linakage and visibility late as CloneFunctionInto has some
1993     // implicit requirements.
1994     Copied->setVisibility(GlobalValue::DefaultVisibility);
1995     Copied->setLinkage(GlobalValue::PrivateLinkage);
1996 
1997     // Copy metadata
1998     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1999     F->getAllMetadata(MDs);
2000     for (auto MDIt : MDs)
2001       if (!Copied->hasMetadata())
2002         Copied->addMetadata(MDIt.first, *MDIt.second);
2003 
2004     M.getFunctionList().insert(F->getIterator(), Copied);
2005     Copied->setDSOLocal(true);
2006     FnMap[F] = Copied;
2007   }
2008 
2009   // Replace all uses of the old function with the new internalized function
2010   // unless the caller is a function that was just internalized.
2011   for (Function *F : FnSet) {
2012     auto &InternalizedFn = FnMap[F];
2013     auto IsNotInternalized = [&](Use &U) -> bool {
2014       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2015         return !FnMap.lookup(CB->getCaller());
2016       return false;
2017     };
2018     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2019   }
2020 
2021   return true;
2022 }
2023 
2024 bool Attributor::isValidFunctionSignatureRewrite(
2025     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2026 
2027   if (!RewriteSignatures)
2028     return false;
2029 
2030   Function *Fn = Arg.getParent();
2031   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2032     // Forbid the call site to cast the function return type. If we need to
2033     // rewrite these functions we need to re-create a cast for the new call site
2034     // (if the old had uses).
2035     if (!ACS.getCalledFunction() ||
2036         ACS.getInstruction()->getType() !=
2037             ACS.getCalledFunction()->getReturnType())
2038       return false;
2039     if (ACS.getCalledOperand()->getType() != Fn->getType())
2040       return false;
2041     // Forbid must-tail calls for now.
2042     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2043   };
2044 
2045   // Avoid var-arg functions for now.
2046   if (Fn->isVarArg()) {
2047     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2048     return false;
2049   }
2050 
2051   // Avoid functions with complicated argument passing semantics.
2052   AttributeList FnAttributeList = Fn->getAttributes();
2053   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2054       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2055       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2056       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2057     LLVM_DEBUG(
2058         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2059     return false;
2060   }
2061 
2062   // Avoid callbacks for now.
2063   bool AllCallSitesKnown;
2064   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2065                             AllCallSitesKnown)) {
2066     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2067     return false;
2068   }
2069 
2070   auto InstPred = [](Instruction &I) {
2071     if (auto *CI = dyn_cast<CallInst>(&I))
2072       return !CI->isMustTailCall();
2073     return true;
2074   };
2075 
2076   // Forbid must-tail calls for now.
2077   // TODO:
2078   bool UsedAssumedInformation = false;
2079   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2080   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2081                                    nullptr, {Instruction::Call},
2082                                    UsedAssumedInformation)) {
2083     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2084     return false;
2085   }
2086 
2087   return true;
2088 }
2089 
2090 bool Attributor::registerFunctionSignatureRewrite(
2091     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2092     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2093     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2094   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2095                     << Arg.getParent()->getName() << " with "
2096                     << ReplacementTypes.size() << " replacements\n");
2097   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2098          "Cannot register an invalid rewrite");
2099 
2100   Function *Fn = Arg.getParent();
2101   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2102       ArgumentReplacementMap[Fn];
2103   if (ARIs.empty())
2104     ARIs.resize(Fn->arg_size());
2105 
2106   // If we have a replacement already with less than or equal new arguments,
2107   // ignore this request.
2108   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2109   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2110     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2111     return false;
2112   }
2113 
2114   // If we have a replacement already but we like the new one better, delete
2115   // the old.
2116   ARI.reset();
2117 
2118   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2119                     << Arg.getParent()->getName() << " with "
2120                     << ReplacementTypes.size() << " replacements\n");
2121 
2122   // Remember the replacement.
2123   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2124                                         std::move(CalleeRepairCB),
2125                                         std::move(ACSRepairCB)));
2126 
2127   return true;
2128 }
2129 
2130 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2131   bool Result = true;
2132 #ifndef NDEBUG
2133   if (SeedAllowList.size() != 0)
2134     Result =
2135         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
2136   Function *Fn = AA.getAnchorScope();
2137   if (FunctionSeedAllowList.size() != 0 && Fn)
2138     Result &= std::count(FunctionSeedAllowList.begin(),
2139                          FunctionSeedAllowList.end(), Fn->getName());
2140 #endif
2141   return Result;
2142 }
2143 
2144 ChangeStatus Attributor::rewriteFunctionSignatures(
2145     SmallPtrSetImpl<Function *> &ModifiedFns) {
2146   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2147 
2148   for (auto &It : ArgumentReplacementMap) {
2149     Function *OldFn = It.getFirst();
2150 
2151     // Deleted functions do not require rewrites.
2152     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2153       continue;
2154 
2155     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2156         It.getSecond();
2157     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2158 
2159     SmallVector<Type *, 16> NewArgumentTypes;
2160     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2161 
2162     // Collect replacement argument types and copy over existing attributes.
2163     AttributeList OldFnAttributeList = OldFn->getAttributes();
2164     for (Argument &Arg : OldFn->args()) {
2165       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2166               ARIs[Arg.getArgNo()]) {
2167         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2168                                 ARI->ReplacementTypes.end());
2169         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2170                                      AttributeSet());
2171       } else {
2172         NewArgumentTypes.push_back(Arg.getType());
2173         NewArgumentAttributes.push_back(
2174             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2175       }
2176     }
2177 
2178     FunctionType *OldFnTy = OldFn->getFunctionType();
2179     Type *RetTy = OldFnTy->getReturnType();
2180 
2181     // Construct the new function type using the new arguments types.
2182     FunctionType *NewFnTy =
2183         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2184 
2185     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2186                       << "' from " << *OldFn->getFunctionType() << " to "
2187                       << *NewFnTy << "\n");
2188 
2189     // Create the new function body and insert it into the module.
2190     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2191                                        OldFn->getAddressSpace(), "");
2192     Functions.insert(NewFn);
2193     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2194     NewFn->takeName(OldFn);
2195     NewFn->copyAttributesFrom(OldFn);
2196 
2197     // Patch the pointer to LLVM function in debug info descriptor.
2198     NewFn->setSubprogram(OldFn->getSubprogram());
2199     OldFn->setSubprogram(nullptr);
2200 
2201     // Recompute the parameter attributes list based on the new arguments for
2202     // the function.
2203     LLVMContext &Ctx = OldFn->getContext();
2204     NewFn->setAttributes(AttributeList::get(
2205         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2206         NewArgumentAttributes));
2207 
2208     // Since we have now created the new function, splice the body of the old
2209     // function right into the new function, leaving the old rotting hulk of the
2210     // function empty.
2211     NewFn->getBasicBlockList().splice(NewFn->begin(),
2212                                       OldFn->getBasicBlockList());
2213 
2214     // Fixup block addresses to reference new function.
2215     SmallVector<BlockAddress *, 8u> BlockAddresses;
2216     for (User *U : OldFn->users())
2217       if (auto *BA = dyn_cast<BlockAddress>(U))
2218         BlockAddresses.push_back(BA);
2219     for (auto *BA : BlockAddresses)
2220       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2221 
2222     // Set of all "call-like" instructions that invoke the old function mapped
2223     // to their new replacements.
2224     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2225 
2226     // Callback to create a new "call-like" instruction for a given one.
2227     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2228       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2229       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2230 
2231       // Collect the new argument operands for the replacement call site.
2232       SmallVector<Value *, 16> NewArgOperands;
2233       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2234       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2235         unsigned NewFirstArgNum = NewArgOperands.size();
2236         (void)NewFirstArgNum; // only used inside assert.
2237         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2238                 ARIs[OldArgNum]) {
2239           if (ARI->ACSRepairCB)
2240             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2241           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2242                      NewArgOperands.size() &&
2243                  "ACS repair callback did not provide as many operand as new "
2244                  "types were registered!");
2245           // TODO: Exose the attribute set to the ACS repair callback
2246           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2247                                          AttributeSet());
2248         } else {
2249           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2250           NewArgOperandAttributes.push_back(
2251               OldCallAttributeList.getParamAttrs(OldArgNum));
2252         }
2253       }
2254 
2255       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2256              "Mismatch # argument operands vs. # argument operand attributes!");
2257       assert(NewArgOperands.size() == NewFn->arg_size() &&
2258              "Mismatch # argument operands vs. # function arguments!");
2259 
2260       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2261       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2262 
2263       // Create a new call or invoke instruction to replace the old one.
2264       CallBase *NewCB;
2265       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2266         NewCB =
2267             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2268                                NewArgOperands, OperandBundleDefs, "", OldCB);
2269       } else {
2270         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2271                                        "", OldCB);
2272         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2273         NewCB = NewCI;
2274       }
2275 
2276       // Copy over various properties and the new attributes.
2277       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2278       NewCB->setCallingConv(OldCB->getCallingConv());
2279       NewCB->takeName(OldCB);
2280       NewCB->setAttributes(AttributeList::get(
2281           Ctx, OldCallAttributeList.getFnAttrs(),
2282           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2283 
2284       CallSitePairs.push_back({OldCB, NewCB});
2285       return true;
2286     };
2287 
2288     // Use the CallSiteReplacementCreator to create replacement call sites.
2289     bool AllCallSitesKnown;
2290     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2291                                         true, nullptr, AllCallSitesKnown);
2292     (void)Success;
2293     assert(Success && "Assumed call site replacement to succeed!");
2294 
2295     // Rewire the arguments.
2296     Argument *OldFnArgIt = OldFn->arg_begin();
2297     Argument *NewFnArgIt = NewFn->arg_begin();
2298     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2299          ++OldArgNum, ++OldFnArgIt) {
2300       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2301               ARIs[OldArgNum]) {
2302         if (ARI->CalleeRepairCB)
2303           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2304         NewFnArgIt += ARI->ReplacementTypes.size();
2305       } else {
2306         NewFnArgIt->takeName(&*OldFnArgIt);
2307         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2308         ++NewFnArgIt;
2309       }
2310     }
2311 
2312     // Eliminate the instructions *after* we visited all of them.
2313     for (auto &CallSitePair : CallSitePairs) {
2314       CallBase &OldCB = *CallSitePair.first;
2315       CallBase &NewCB = *CallSitePair.second;
2316       assert(OldCB.getType() == NewCB.getType() &&
2317              "Cannot handle call sites with different types!");
2318       ModifiedFns.insert(OldCB.getFunction());
2319       CGUpdater.replaceCallSite(OldCB, NewCB);
2320       OldCB.replaceAllUsesWith(&NewCB);
2321       OldCB.eraseFromParent();
2322     }
2323 
2324     // Replace the function in the call graph (if any).
2325     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2326 
2327     // If the old function was modified and needed to be reanalyzed, the new one
2328     // does now.
2329     if (ModifiedFns.erase(OldFn))
2330       ModifiedFns.insert(NewFn);
2331 
2332     Changed = ChangeStatus::CHANGED;
2333   }
2334 
2335   return Changed;
2336 }
2337 
2338 void InformationCache::initializeInformationCache(const Function &CF,
2339                                                   FunctionInfo &FI) {
2340   // As we do not modify the function here we can remove the const
2341   // withouth breaking implicit assumptions. At the end of the day, we could
2342   // initialize the cache eagerly which would look the same to the users.
2343   Function &F = const_cast<Function &>(CF);
2344 
2345   // Walk all instructions to find interesting instructions that might be
2346   // queried by abstract attributes during their initialization or update.
2347   // This has to happen before we create attributes.
2348 
2349   for (Instruction &I : instructions(&F)) {
2350     bool IsInterestingOpcode = false;
2351 
2352     // To allow easy access to all instructions in a function with a given
2353     // opcode we store them in the InfoCache. As not all opcodes are interesting
2354     // to concrete attributes we only cache the ones that are as identified in
2355     // the following switch.
2356     // Note: There are no concrete attributes now so this is initially empty.
2357     switch (I.getOpcode()) {
2358     default:
2359       assert(!isa<CallBase>(&I) &&
2360              "New call base instruction type needs to be known in the "
2361              "Attributor.");
2362       break;
2363     case Instruction::Call:
2364       // Calls are interesting on their own, additionally:
2365       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2366       // For `must-tail` calls we remember the caller and callee.
2367       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2368         fillMapFromAssume(*Assume, KnowledgeMap);
2369       } else if (cast<CallInst>(I).isMustTailCall()) {
2370         FI.ContainsMustTailCall = true;
2371         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2372           getFunctionInfo(*Callee).CalledViaMustTail = true;
2373       }
2374       LLVM_FALLTHROUGH;
2375     case Instruction::CallBr:
2376     case Instruction::Invoke:
2377     case Instruction::CleanupRet:
2378     case Instruction::CatchSwitch:
2379     case Instruction::AtomicRMW:
2380     case Instruction::AtomicCmpXchg:
2381     case Instruction::Br:
2382     case Instruction::Resume:
2383     case Instruction::Ret:
2384     case Instruction::Load:
2385       // The alignment of a pointer is interesting for loads.
2386     case Instruction::Store:
2387       // The alignment of a pointer is interesting for stores.
2388     case Instruction::Alloca:
2389     case Instruction::AddrSpaceCast:
2390       IsInterestingOpcode = true;
2391     }
2392     if (IsInterestingOpcode) {
2393       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2394       if (!Insts)
2395         Insts = new (Allocator) InstructionVectorTy();
2396       Insts->push_back(&I);
2397     }
2398     if (I.mayReadOrWriteMemory())
2399       FI.RWInsts.push_back(&I);
2400   }
2401 
2402   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2403       isInlineViable(F).isSuccess())
2404     InlineableFunctions.insert(&F);
2405 }
2406 
2407 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2408   return AG.getAnalysis<AAManager>(F);
2409 }
2410 
2411 InformationCache::FunctionInfo::~FunctionInfo() {
2412   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2413   // manually destroy them.
2414   for (auto &It : OpcodeInstMap)
2415     It.getSecond()->~InstructionVectorTy();
2416 }
2417 
2418 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2419                                   const AbstractAttribute &ToAA,
2420                                   DepClassTy DepClass) {
2421   if (DepClass == DepClassTy::NONE)
2422     return;
2423   // If we are outside of an update, thus before the actual fixpoint iteration
2424   // started (= when we create AAs), we do not track dependences because we will
2425   // put all AAs into the initial worklist anyway.
2426   if (DependenceStack.empty())
2427     return;
2428   if (FromAA.getState().isAtFixpoint())
2429     return;
2430   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2431 }
2432 
2433 void Attributor::rememberDependences() {
2434   assert(!DependenceStack.empty() && "No dependences to remember!");
2435 
2436   for (DepInfo &DI : *DependenceStack.back()) {
2437     assert((DI.DepClass == DepClassTy::REQUIRED ||
2438             DI.DepClass == DepClassTy::OPTIONAL) &&
2439            "Expected required or optional dependence (1 bit)!");
2440     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2441     DepAAs.push_back(AbstractAttribute::DepTy(
2442         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2443   }
2444 }
2445 
2446 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2447   if (!VisitedFunctions.insert(&F).second)
2448     return;
2449   if (F.isDeclaration())
2450     return;
2451 
2452   // In non-module runs we need to look at the call sites of a function to
2453   // determine if it is part of a must-tail call edge. This will influence what
2454   // attributes we can derive.
2455   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2456   if (!isModulePass() && !FI.CalledViaMustTail) {
2457     for (const Use &U : F.uses())
2458       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2459         if (CB->isCallee(&U) && CB->isMustTailCall())
2460           FI.CalledViaMustTail = true;
2461   }
2462 
2463   IRPosition FPos = IRPosition::function(F);
2464 
2465   // Check for dead BasicBlocks in every function.
2466   // We need dead instruction detection because we do not want to deal with
2467   // broken IR in which SSA rules do not apply.
2468   getOrCreateAAFor<AAIsDead>(FPos);
2469 
2470   // Every function might be "will-return".
2471   getOrCreateAAFor<AAWillReturn>(FPos);
2472 
2473   // Every function might contain instructions that cause "undefined behavior".
2474   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2475 
2476   // Every function can be nounwind.
2477   getOrCreateAAFor<AANoUnwind>(FPos);
2478 
2479   // Every function might be marked "nosync"
2480   getOrCreateAAFor<AANoSync>(FPos);
2481 
2482   // Every function might be "no-free".
2483   getOrCreateAAFor<AANoFree>(FPos);
2484 
2485   // Every function might be "no-return".
2486   getOrCreateAAFor<AANoReturn>(FPos);
2487 
2488   // Every function might be "no-recurse".
2489   getOrCreateAAFor<AANoRecurse>(FPos);
2490 
2491   // Every function might be "readnone/readonly/writeonly/...".
2492   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2493 
2494   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2495   getOrCreateAAFor<AAMemoryLocation>(FPos);
2496 
2497   // Every function might be applicable for Heap-To-Stack conversion.
2498   if (EnableHeapToStack)
2499     getOrCreateAAFor<AAHeapToStack>(FPos);
2500 
2501   // Return attributes are only appropriate if the return type is non void.
2502   Type *ReturnType = F.getReturnType();
2503   if (!ReturnType->isVoidTy()) {
2504     // Argument attribute "returned" --- Create only one per function even
2505     // though it is an argument attribute.
2506     getOrCreateAAFor<AAReturnedValues>(FPos);
2507 
2508     IRPosition RetPos = IRPosition::returned(F);
2509 
2510     // Every returned value might be dead.
2511     getOrCreateAAFor<AAIsDead>(RetPos);
2512 
2513     // Every function might be simplified.
2514     getOrCreateAAFor<AAValueSimplify>(RetPos);
2515 
2516     // Every returned value might be marked noundef.
2517     getOrCreateAAFor<AANoUndef>(RetPos);
2518 
2519     if (ReturnType->isPointerTy()) {
2520 
2521       // Every function with pointer return type might be marked align.
2522       getOrCreateAAFor<AAAlign>(RetPos);
2523 
2524       // Every function with pointer return type might be marked nonnull.
2525       getOrCreateAAFor<AANonNull>(RetPos);
2526 
2527       // Every function with pointer return type might be marked noalias.
2528       getOrCreateAAFor<AANoAlias>(RetPos);
2529 
2530       // Every function with pointer return type might be marked
2531       // dereferenceable.
2532       getOrCreateAAFor<AADereferenceable>(RetPos);
2533     }
2534   }
2535 
2536   for (Argument &Arg : F.args()) {
2537     IRPosition ArgPos = IRPosition::argument(Arg);
2538 
2539     // Every argument might be simplified. We have to go through the Attributor
2540     // interface though as outside AAs can register custom simplification
2541     // callbacks.
2542     bool UsedAssumedInformation = false;
2543     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2544 
2545     // Every argument might be dead.
2546     getOrCreateAAFor<AAIsDead>(ArgPos);
2547 
2548     // Every argument might be marked noundef.
2549     getOrCreateAAFor<AANoUndef>(ArgPos);
2550 
2551     if (Arg.getType()->isPointerTy()) {
2552       // Every argument with pointer type might be marked nonnull.
2553       getOrCreateAAFor<AANonNull>(ArgPos);
2554 
2555       // Every argument with pointer type might be marked noalias.
2556       getOrCreateAAFor<AANoAlias>(ArgPos);
2557 
2558       // Every argument with pointer type might be marked dereferenceable.
2559       getOrCreateAAFor<AADereferenceable>(ArgPos);
2560 
2561       // Every argument with pointer type might be marked align.
2562       getOrCreateAAFor<AAAlign>(ArgPos);
2563 
2564       // Every argument with pointer type might be marked nocapture.
2565       getOrCreateAAFor<AANoCapture>(ArgPos);
2566 
2567       // Every argument with pointer type might be marked
2568       // "readnone/readonly/writeonly/..."
2569       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2570 
2571       // Every argument with pointer type might be marked nofree.
2572       getOrCreateAAFor<AANoFree>(ArgPos);
2573 
2574       // Every argument with pointer type might be privatizable (or promotable)
2575       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2576     }
2577   }
2578 
2579   auto CallSitePred = [&](Instruction &I) -> bool {
2580     auto &CB = cast<CallBase>(I);
2581     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2582 
2583     // Call sites might be dead if they do not have side effects and no live
2584     // users. The return value might be dead if there are no live users.
2585     getOrCreateAAFor<AAIsDead>(CBRetPos);
2586 
2587     Function *Callee = CB.getCalledFunction();
2588     // TODO: Even if the callee is not known now we might be able to simplify
2589     //       the call/callee.
2590     if (!Callee)
2591       return true;
2592 
2593     // Skip declarations except if annotations on their call sites were
2594     // explicitly requested.
2595     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2596         !Callee->hasMetadata(LLVMContext::MD_callback))
2597       return true;
2598 
2599     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2600 
2601       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2602       getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2603     }
2604 
2605     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
2606 
2607       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2608 
2609       // Every call site argument might be dead.
2610       getOrCreateAAFor<AAIsDead>(CBArgPos);
2611 
2612       // Call site argument might be simplified. We have to go through the
2613       // Attributor interface though as outside AAs can register custom
2614       // simplification callbacks.
2615       bool UsedAssumedInformation = false;
2616       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2617 
2618       // Every call site argument might be marked "noundef".
2619       getOrCreateAAFor<AANoUndef>(CBArgPos);
2620 
2621       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2622         continue;
2623 
2624       // Call site argument attribute "non-null".
2625       getOrCreateAAFor<AANonNull>(CBArgPos);
2626 
2627       // Call site argument attribute "nocapture".
2628       getOrCreateAAFor<AANoCapture>(CBArgPos);
2629 
2630       // Call site argument attribute "no-alias".
2631       getOrCreateAAFor<AANoAlias>(CBArgPos);
2632 
2633       // Call site argument attribute "dereferenceable".
2634       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2635 
2636       // Call site argument attribute "align".
2637       getOrCreateAAFor<AAAlign>(CBArgPos);
2638 
2639       // Call site argument attribute
2640       // "readnone/readonly/writeonly/..."
2641       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2642 
2643       // Call site argument attribute "nofree".
2644       getOrCreateAAFor<AANoFree>(CBArgPos);
2645     }
2646     return true;
2647   };
2648 
2649   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2650   bool Success;
2651   bool UsedAssumedInformation = false;
2652   Success = checkForAllInstructionsImpl(
2653       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2654       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2655        (unsigned)Instruction::Call},
2656       UsedAssumedInformation);
2657   (void)Success;
2658   assert(Success && "Expected the check call to be successful!");
2659 
2660   auto LoadStorePred = [&](Instruction &I) -> bool {
2661     if (isa<LoadInst>(I)) {
2662       getOrCreateAAFor<AAAlign>(
2663           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2664       if (SimplifyAllLoads)
2665         getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2666     } else
2667       getOrCreateAAFor<AAAlign>(
2668           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2669     return true;
2670   };
2671   Success = checkForAllInstructionsImpl(
2672       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2673       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2674       UsedAssumedInformation);
2675   (void)Success;
2676   assert(Success && "Expected the check call to be successful!");
2677 }
2678 
2679 /// Helpers to ease debugging through output streams and print calls.
2680 ///
2681 ///{
2682 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2683   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2684 }
2685 
2686 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2687   switch (AP) {
2688   case IRPosition::IRP_INVALID:
2689     return OS << "inv";
2690   case IRPosition::IRP_FLOAT:
2691     return OS << "flt";
2692   case IRPosition::IRP_RETURNED:
2693     return OS << "fn_ret";
2694   case IRPosition::IRP_CALL_SITE_RETURNED:
2695     return OS << "cs_ret";
2696   case IRPosition::IRP_FUNCTION:
2697     return OS << "fn";
2698   case IRPosition::IRP_CALL_SITE:
2699     return OS << "cs";
2700   case IRPosition::IRP_ARGUMENT:
2701     return OS << "arg";
2702   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2703     return OS << "cs_arg";
2704   }
2705   llvm_unreachable("Unknown attribute position!");
2706 }
2707 
2708 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2709   const Value &AV = Pos.getAssociatedValue();
2710   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2711      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2712 
2713   if (Pos.hasCallBaseContext())
2714     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2715   return OS << "}";
2716 }
2717 
2718 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2719   OS << "range-state(" << S.getBitWidth() << ")<";
2720   S.getKnown().print(OS);
2721   OS << " / ";
2722   S.getAssumed().print(OS);
2723   OS << ">";
2724 
2725   return OS << static_cast<const AbstractState &>(S);
2726 }
2727 
2728 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2729   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2730 }
2731 
2732 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2733   AA.print(OS);
2734   return OS;
2735 }
2736 
2737 raw_ostream &llvm::operator<<(raw_ostream &OS,
2738                               const PotentialConstantIntValuesState &S) {
2739   OS << "set-state(< {";
2740   if (!S.isValidState())
2741     OS << "full-set";
2742   else {
2743     for (auto &it : S.getAssumedSet())
2744       OS << it << ", ";
2745     if (S.undefIsContained())
2746       OS << "undef ";
2747   }
2748   OS << "} >)";
2749 
2750   return OS;
2751 }
2752 
2753 void AbstractAttribute::print(raw_ostream &OS) const {
2754   OS << "[";
2755   OS << getName();
2756   OS << "] for CtxI ";
2757 
2758   if (auto *I = getCtxI()) {
2759     OS << "'";
2760     I->print(OS);
2761     OS << "'";
2762   } else
2763     OS << "<<null inst>>";
2764 
2765   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2766      << '\n';
2767 }
2768 
2769 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2770   print(OS);
2771 
2772   for (const auto &DepAA : Deps) {
2773     auto *AA = DepAA.getPointer();
2774     OS << "  updates ";
2775     AA->print(OS);
2776   }
2777 
2778   OS << '\n';
2779 }
2780 
2781 raw_ostream &llvm::operator<<(raw_ostream &OS,
2782                               const AAPointerInfo::Access &Acc) {
2783   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
2784   if (Acc.getLocalInst() != Acc.getRemoteInst())
2785     OS << " via " << *Acc.getLocalInst();
2786   if (Acc.getContent().hasValue())
2787     OS << " [" << *Acc.getContent() << "]";
2788   return OS;
2789 }
2790 ///}
2791 
2792 /// ----------------------------------------------------------------------------
2793 ///                       Pass (Manager) Boilerplate
2794 /// ----------------------------------------------------------------------------
2795 
2796 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2797                                      SetVector<Function *> &Functions,
2798                                      AnalysisGetter &AG,
2799                                      CallGraphUpdater &CGUpdater,
2800                                      bool DeleteFns) {
2801   if (Functions.empty())
2802     return false;
2803 
2804   LLVM_DEBUG({
2805     dbgs() << "[Attributor] Run on module with " << Functions.size()
2806            << " functions:\n";
2807     for (Function *Fn : Functions)
2808       dbgs() << "  - " << Fn->getName() << "\n";
2809   });
2810 
2811   // Create an Attributor and initially empty information cache that is filled
2812   // while we identify default attribute opportunities.
2813   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2814                DeleteFns);
2815 
2816   // Create shallow wrappers for all functions that are not IPO amendable
2817   if (AllowShallowWrappers)
2818     for (Function *F : Functions)
2819       if (!A.isFunctionIPOAmendable(*F))
2820         Attributor::createShallowWrapper(*F);
2821 
2822   // Internalize non-exact functions
2823   // TODO: for now we eagerly internalize functions without calculating the
2824   //       cost, we need a cost interface to determine whether internalizing
2825   //       a function is "benefitial"
2826   if (AllowDeepWrapper) {
2827     unsigned FunSize = Functions.size();
2828     for (unsigned u = 0; u < FunSize; u++) {
2829       Function *F = Functions[u];
2830       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2831           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2832         Function *NewF = Attributor::internalizeFunction(*F);
2833         assert(NewF && "Could not internalize function.");
2834         Functions.insert(NewF);
2835 
2836         // Update call graph
2837         CGUpdater.replaceFunctionWith(*F, *NewF);
2838         for (const Use &U : NewF->uses())
2839           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2840             auto *CallerF = CB->getCaller();
2841             CGUpdater.reanalyzeFunction(*CallerF);
2842           }
2843       }
2844     }
2845   }
2846 
2847   for (Function *F : Functions) {
2848     if (F->hasExactDefinition())
2849       NumFnWithExactDefinition++;
2850     else
2851       NumFnWithoutExactDefinition++;
2852 
2853     // We look at internal functions only on-demand but if any use is not a
2854     // direct call or outside the current set of analyzed functions, we have
2855     // to do it eagerly.
2856     if (F->hasLocalLinkage()) {
2857       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2858             const auto *CB = dyn_cast<CallBase>(U.getUser());
2859             return CB && CB->isCallee(&U) &&
2860                    Functions.count(const_cast<Function *>(CB->getCaller()));
2861           }))
2862         continue;
2863     }
2864 
2865     // Populate the Attributor with abstract attribute opportunities in the
2866     // function and the information cache with IR information.
2867     A.identifyDefaultAbstractAttributes(*F);
2868   }
2869 
2870   ChangeStatus Changed = A.run();
2871 
2872   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2873                     << " functions, result: " << Changed << ".\n");
2874   return Changed == ChangeStatus::CHANGED;
2875 }
2876 
2877 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2878 
2879 void AADepGraph::dumpGraph() {
2880   static std::atomic<int> CallTimes;
2881   std::string Prefix;
2882 
2883   if (!DepGraphDotFileNamePrefix.empty())
2884     Prefix = DepGraphDotFileNamePrefix;
2885   else
2886     Prefix = "dep_graph";
2887   std::string Filename =
2888       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2889 
2890   outs() << "Dependency graph dump to " << Filename << ".\n";
2891 
2892   std::error_code EC;
2893 
2894   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2895   if (!EC)
2896     llvm::WriteGraph(File, this);
2897 
2898   CallTimes++;
2899 }
2900 
2901 void AADepGraph::print() {
2902   for (auto DepAA : SyntheticRoot.Deps)
2903     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2904 }
2905 
2906 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2907   FunctionAnalysisManager &FAM =
2908       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2909   AnalysisGetter AG(FAM);
2910 
2911   SetVector<Function *> Functions;
2912   for (Function &F : M)
2913     Functions.insert(&F);
2914 
2915   CallGraphUpdater CGUpdater;
2916   BumpPtrAllocator Allocator;
2917   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2918   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2919                                /* DeleteFns */ true)) {
2920     // FIXME: Think about passes we will preserve and add them here.
2921     return PreservedAnalyses::none();
2922   }
2923   return PreservedAnalyses::all();
2924 }
2925 
2926 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2927                                            CGSCCAnalysisManager &AM,
2928                                            LazyCallGraph &CG,
2929                                            CGSCCUpdateResult &UR) {
2930   FunctionAnalysisManager &FAM =
2931       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2932   AnalysisGetter AG(FAM);
2933 
2934   SetVector<Function *> Functions;
2935   for (LazyCallGraph::Node &N : C)
2936     Functions.insert(&N.getFunction());
2937 
2938   if (Functions.empty())
2939     return PreservedAnalyses::all();
2940 
2941   Module &M = *Functions.back()->getParent();
2942   CallGraphUpdater CGUpdater;
2943   CGUpdater.initialize(CG, C, AM, UR);
2944   BumpPtrAllocator Allocator;
2945   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2946   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2947                                /* DeleteFns */ false)) {
2948     // FIXME: Think about passes we will preserve and add them here.
2949     PreservedAnalyses PA;
2950     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2951     return PA;
2952   }
2953   return PreservedAnalyses::all();
2954 }
2955 
2956 namespace llvm {
2957 
2958 template <> struct GraphTraits<AADepGraphNode *> {
2959   using NodeRef = AADepGraphNode *;
2960   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2961   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2962 
2963   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2964   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2965 
2966   using ChildIteratorType =
2967       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2968   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2969 
2970   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2971 
2972   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2973 };
2974 
2975 template <>
2976 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2977   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2978 
2979   using nodes_iterator =
2980       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2981 
2982   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2983 
2984   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2985 };
2986 
2987 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2988   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2989 
2990   static std::string getNodeLabel(const AADepGraphNode *Node,
2991                                   const AADepGraph *DG) {
2992     std::string AAString;
2993     raw_string_ostream O(AAString);
2994     Node->print(O);
2995     return AAString;
2996   }
2997 };
2998 
2999 } // end namespace llvm
3000 
3001 namespace {
3002 
3003 struct AttributorLegacyPass : public ModulePass {
3004   static char ID;
3005 
3006   AttributorLegacyPass() : ModulePass(ID) {
3007     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3008   }
3009 
3010   bool runOnModule(Module &M) override {
3011     if (skipModule(M))
3012       return false;
3013 
3014     AnalysisGetter AG;
3015     SetVector<Function *> Functions;
3016     for (Function &F : M)
3017       Functions.insert(&F);
3018 
3019     CallGraphUpdater CGUpdater;
3020     BumpPtrAllocator Allocator;
3021     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3022     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3023                                     /* DeleteFns*/ true);
3024   }
3025 
3026   void getAnalysisUsage(AnalysisUsage &AU) const override {
3027     // FIXME: Think about passes we will preserve and add them here.
3028     AU.addRequired<TargetLibraryInfoWrapperPass>();
3029   }
3030 };
3031 
3032 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3033   static char ID;
3034 
3035   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3036     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3037   }
3038 
3039   bool runOnSCC(CallGraphSCC &SCC) override {
3040     if (skipSCC(SCC))
3041       return false;
3042 
3043     SetVector<Function *> Functions;
3044     for (CallGraphNode *CGN : SCC)
3045       if (Function *Fn = CGN->getFunction())
3046         if (!Fn->isDeclaration())
3047           Functions.insert(Fn);
3048 
3049     if (Functions.empty())
3050       return false;
3051 
3052     AnalysisGetter AG;
3053     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3054     CallGraphUpdater CGUpdater;
3055     CGUpdater.initialize(CG, SCC);
3056     Module &M = *Functions.back()->getParent();
3057     BumpPtrAllocator Allocator;
3058     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3059     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3060                                     /* DeleteFns */ false);
3061   }
3062 
3063   void getAnalysisUsage(AnalysisUsage &AU) const override {
3064     // FIXME: Think about passes we will preserve and add them here.
3065     AU.addRequired<TargetLibraryInfoWrapperPass>();
3066     CallGraphSCCPass::getAnalysisUsage(AU);
3067   }
3068 };
3069 
3070 } // end anonymous namespace
3071 
3072 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3073 Pass *llvm::createAttributorCGSCCLegacyPass() {
3074   return new AttributorCGSCCLegacyPass();
3075 }
3076 
3077 char AttributorLegacyPass::ID = 0;
3078 char AttributorCGSCCLegacyPass::ID = 0;
3079 
3080 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3081                       "Deduce and propagate attributes", false, false)
3082 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3083 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3084                     "Deduce and propagate attributes", false, false)
3085 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3086                       "Deduce and propagate attributes (CGSCC pass)", false,
3087                       false)
3088 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3089 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3090 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3091                     "Deduce and propagate attributes (CGSCC pass)", false,
3092                     false)
3093