1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/MustExecute.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/NoFolder.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/DebugCounter.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Cloning.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 
48 #include <cassert>
49 #include <string>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "attributor"
54 
55 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
56               "Determine what attributes are manifested in the IR");
57 
58 STATISTIC(NumFnDeleted, "Number of function deleted");
59 STATISTIC(NumFnWithExactDefinition,
60           "Number of functions with exact definitions");
61 STATISTIC(NumFnWithoutExactDefinition,
62           "Number of functions without exact definitions");
63 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
64 STATISTIC(NumAttributesTimedOut,
65           "Number of abstract attributes timed out before fixpoint");
66 STATISTIC(NumAttributesValidFixpoint,
67           "Number of abstract attributes in a valid fixpoint state");
68 STATISTIC(NumAttributesManifested,
69           "Number of abstract attributes manifested in IR");
70 
71 // TODO: Determine a good default value.
72 //
73 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
74 // (when run with the first 5 abstract attributes). The results also indicate
75 // that we never reach 32 iterations but always find a fixpoint sooner.
76 //
77 // This will become more evolved once we perform two interleaved fixpoint
78 // iterations: bottom-up and top-down.
79 static cl::opt<unsigned>
80     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
81                           cl::desc("Maximal number of fixpoint iterations."),
82                           cl::init(32));
83 
84 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
85     "attributor-max-initialization-chain-length", cl::Hidden,
86     cl::desc(
87         "Maximal number of chained initializations (to avoid stack overflows)"),
88     cl::location(MaxInitializationChainLength), cl::init(1024));
89 unsigned llvm::MaxInitializationChainLength;
90 
91 static cl::opt<bool> VerifyMaxFixpointIterations(
92     "attributor-max-iterations-verify", cl::Hidden,
93     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
94     cl::init(false));
95 
96 static cl::opt<bool> AnnotateDeclarationCallSites(
97     "attributor-annotate-decl-cs", cl::Hidden,
98     cl::desc("Annotate call sites of function declarations."), cl::init(false));
99 
100 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
101                                        cl::init(true), cl::Hidden);
102 
103 static cl::opt<bool>
104     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
105                          cl::desc("Allow the Attributor to create shallow "
106                                   "wrappers for non-exact definitions."),
107                          cl::init(false));
108 
109 static cl::opt<bool>
110     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
111                      cl::desc("Allow the Attributor to use IP information "
112                               "derived from non-exact functions via cloning"),
113                      cl::init(false));
114 
115 // These options can only used for debug builds.
116 #ifndef NDEBUG
117 static cl::list<std::string>
118     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
119                   cl::desc("Comma seperated list of attribute names that are "
120                            "allowed to be seeded."),
121                   cl::ZeroOrMore, cl::CommaSeparated);
122 
123 static cl::list<std::string> FunctionSeedAllowList(
124     "attributor-function-seed-allow-list", cl::Hidden,
125     cl::desc("Comma seperated list of function names that are "
126              "allowed to be seeded."),
127     cl::ZeroOrMore, cl::CommaSeparated);
128 #endif
129 
130 static cl::opt<bool>
131     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
132                  cl::desc("Dump the dependency graph to dot files."),
133                  cl::init(false));
134 
135 static cl::opt<std::string> DepGraphDotFileNamePrefix(
136     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
137     cl::desc("The prefix used for the CallGraph dot file names."));
138 
139 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
140                                   cl::desc("View the dependency graph."),
141                                   cl::init(false));
142 
143 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
144                                        cl::desc("Print attribute dependencies"),
145                                        cl::init(false));
146 
147 static cl::opt<bool> EnableCallSiteSpecific(
148     "attributor-enable-call-site-specific-deduction", cl::Hidden,
149     cl::desc("Allow the Attributor to do call site specific analysis"),
150     cl::init(false));
151 
152 static cl::opt<bool>
153     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
154                    cl::desc("Print Attributor's internal call graph"),
155                    cl::init(false));
156 
157 /// Logic operators for the change status enum class.
158 ///
159 ///{
160 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
161   return L == ChangeStatus::CHANGED ? L : R;
162 }
163 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
164   return L == ChangeStatus::UNCHANGED ? L : R;
165 }
166 ///}
167 
168 Value *AA::getWithType(Value &V, Type &Ty) {
169   if (V.getType() == &Ty)
170     return &V;
171   if (isa<PoisonValue>(V))
172     return PoisonValue::get(&Ty);
173   if (isa<UndefValue>(V))
174     return UndefValue::get(&Ty);
175   if (auto *C = dyn_cast<Constant>(&V)) {
176     if (C->isNullValue())
177       return Constant::getNullValue(&Ty);
178     if (C->getType()->isPointerTy() && Ty.isPointerTy())
179       return ConstantExpr::getPointerCast(C, &Ty);
180     if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
181       return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
182     if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
183       return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
184   }
185   return nullptr;
186 }
187 
188 /// Return true if \p New is equal or worse than \p Old.
189 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
190   if (!Old.isIntAttribute())
191     return true;
192 
193   return Old.getValueAsInt() >= New.getValueAsInt();
194 }
195 
196 /// Return true if the information provided by \p Attr was added to the
197 /// attribute list \p Attrs. This is only the case if it was not already present
198 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
199 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
200                              AttributeList &Attrs, int AttrIdx) {
201 
202   if (Attr.isEnumAttribute()) {
203     Attribute::AttrKind Kind = Attr.getKindAsEnum();
204     if (Attrs.hasAttribute(AttrIdx, Kind))
205       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
206         return false;
207     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
208     return true;
209   }
210   if (Attr.isStringAttribute()) {
211     StringRef Kind = Attr.getKindAsString();
212     if (Attrs.hasAttribute(AttrIdx, Kind))
213       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
214         return false;
215     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
216     return true;
217   }
218   if (Attr.isIntAttribute()) {
219     Attribute::AttrKind Kind = Attr.getKindAsEnum();
220     if (Attrs.hasAttribute(AttrIdx, Kind))
221       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
222         return false;
223     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
224     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
225     return true;
226   }
227 
228   llvm_unreachable("Expected enum or string attribute!");
229 }
230 
231 Argument *IRPosition::getAssociatedArgument() const {
232   if (getPositionKind() == IRP_ARGUMENT)
233     return cast<Argument>(&getAnchorValue());
234 
235   // Not an Argument and no argument number means this is not a call site
236   // argument, thus we cannot find a callback argument to return.
237   int ArgNo = getCallSiteArgNo();
238   if (ArgNo < 0)
239     return nullptr;
240 
241   // Use abstract call sites to make the connection between the call site
242   // values and the ones in callbacks. If a callback was found that makes use
243   // of the underlying call site operand, we want the corresponding callback
244   // callee argument and not the direct callee argument.
245   Optional<Argument *> CBCandidateArg;
246   SmallVector<const Use *, 4> CallbackUses;
247   const auto &CB = cast<CallBase>(getAnchorValue());
248   AbstractCallSite::getCallbackUses(CB, CallbackUses);
249   for (const Use *U : CallbackUses) {
250     AbstractCallSite ACS(U);
251     assert(ACS && ACS.isCallbackCall());
252     if (!ACS.getCalledFunction())
253       continue;
254 
255     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
256 
257       // Test if the underlying call site operand is argument number u of the
258       // callback callee.
259       if (ACS.getCallArgOperandNo(u) != ArgNo)
260         continue;
261 
262       assert(ACS.getCalledFunction()->arg_size() > u &&
263              "ACS mapped into var-args arguments!");
264       if (CBCandidateArg.hasValue()) {
265         CBCandidateArg = nullptr;
266         break;
267       }
268       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
269     }
270   }
271 
272   // If we found a unique callback candidate argument, return it.
273   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
274     return CBCandidateArg.getValue();
275 
276   // If no callbacks were found, or none used the underlying call site operand
277   // exclusively, use the direct callee argument if available.
278   const Function *Callee = CB.getCalledFunction();
279   if (Callee && Callee->arg_size() > unsigned(ArgNo))
280     return Callee->getArg(ArgNo);
281 
282   return nullptr;
283 }
284 
285 ChangeStatus AbstractAttribute::update(Attributor &A) {
286   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
287   if (getState().isAtFixpoint())
288     return HasChanged;
289 
290   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
291 
292   HasChanged = updateImpl(A);
293 
294   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
295                     << "\n");
296 
297   return HasChanged;
298 }
299 
300 ChangeStatus
301 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
302                                    const ArrayRef<Attribute> &DeducedAttrs) {
303   Function *ScopeFn = IRP.getAnchorScope();
304   IRPosition::Kind PK = IRP.getPositionKind();
305 
306   // In the following some generic code that will manifest attributes in
307   // DeducedAttrs if they improve the current IR. Due to the different
308   // annotation positions we use the underlying AttributeList interface.
309 
310   AttributeList Attrs;
311   switch (PK) {
312   case IRPosition::IRP_INVALID:
313   case IRPosition::IRP_FLOAT:
314     return ChangeStatus::UNCHANGED;
315   case IRPosition::IRP_ARGUMENT:
316   case IRPosition::IRP_FUNCTION:
317   case IRPosition::IRP_RETURNED:
318     Attrs = ScopeFn->getAttributes();
319     break;
320   case IRPosition::IRP_CALL_SITE:
321   case IRPosition::IRP_CALL_SITE_RETURNED:
322   case IRPosition::IRP_CALL_SITE_ARGUMENT:
323     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
324     break;
325   }
326 
327   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
328   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
329   for (const Attribute &Attr : DeducedAttrs) {
330     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
331       continue;
332 
333     HasChanged = ChangeStatus::CHANGED;
334   }
335 
336   if (HasChanged == ChangeStatus::UNCHANGED)
337     return HasChanged;
338 
339   switch (PK) {
340   case IRPosition::IRP_ARGUMENT:
341   case IRPosition::IRP_FUNCTION:
342   case IRPosition::IRP_RETURNED:
343     ScopeFn->setAttributes(Attrs);
344     break;
345   case IRPosition::IRP_CALL_SITE:
346   case IRPosition::IRP_CALL_SITE_RETURNED:
347   case IRPosition::IRP_CALL_SITE_ARGUMENT:
348     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
349     break;
350   case IRPosition::IRP_INVALID:
351   case IRPosition::IRP_FLOAT:
352     break;
353   }
354 
355   return HasChanged;
356 }
357 
358 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
359 const IRPosition
360     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
361 
362 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
363   IRPositions.emplace_back(IRP);
364 
365   // Helper to determine if operand bundles on a call site are benin or
366   // potentially problematic. We handle only llvm.assume for now.
367   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
368     return (isa<IntrinsicInst>(CB) &&
369             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
370   };
371 
372   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
373   switch (IRP.getPositionKind()) {
374   case IRPosition::IRP_INVALID:
375   case IRPosition::IRP_FLOAT:
376   case IRPosition::IRP_FUNCTION:
377     return;
378   case IRPosition::IRP_ARGUMENT:
379   case IRPosition::IRP_RETURNED:
380     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
381     return;
382   case IRPosition::IRP_CALL_SITE:
383     assert(CB && "Expected call site!");
384     // TODO: We need to look at the operand bundles similar to the redirection
385     //       in CallBase.
386     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
387       if (const Function *Callee = CB->getCalledFunction())
388         IRPositions.emplace_back(IRPosition::function(*Callee));
389     return;
390   case IRPosition::IRP_CALL_SITE_RETURNED:
391     assert(CB && "Expected call site!");
392     // TODO: We need to look at the operand bundles similar to the redirection
393     //       in CallBase.
394     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
395       if (const Function *Callee = CB->getCalledFunction()) {
396         IRPositions.emplace_back(IRPosition::returned(*Callee));
397         IRPositions.emplace_back(IRPosition::function(*Callee));
398         for (const Argument &Arg : Callee->args())
399           if (Arg.hasReturnedAttr()) {
400             IRPositions.emplace_back(
401                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
402             IRPositions.emplace_back(
403                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
404             IRPositions.emplace_back(IRPosition::argument(Arg));
405           }
406       }
407     }
408     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
409     return;
410   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
411     assert(CB && "Expected call site!");
412     // TODO: We need to look at the operand bundles similar to the redirection
413     //       in CallBase.
414     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
415       const Function *Callee = CB->getCalledFunction();
416       if (Callee) {
417         if (Argument *Arg = IRP.getAssociatedArgument())
418           IRPositions.emplace_back(IRPosition::argument(*Arg));
419         IRPositions.emplace_back(IRPosition::function(*Callee));
420       }
421     }
422     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
423     return;
424   }
425   }
426 }
427 
428 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
429                          bool IgnoreSubsumingPositions, Attributor *A) const {
430   SmallVector<Attribute, 4> Attrs;
431   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
432     for (Attribute::AttrKind AK : AKs)
433       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
434         return true;
435     // The first position returned by the SubsumingPositionIterator is
436     // always the position itself. If we ignore subsuming positions we
437     // are done after the first iteration.
438     if (IgnoreSubsumingPositions)
439       break;
440   }
441   if (A)
442     for (Attribute::AttrKind AK : AKs)
443       if (getAttrsFromAssumes(AK, Attrs, *A))
444         return true;
445   return false;
446 }
447 
448 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
449                           SmallVectorImpl<Attribute> &Attrs,
450                           bool IgnoreSubsumingPositions, Attributor *A) const {
451   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
452     for (Attribute::AttrKind AK : AKs)
453       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
454     // The first position returned by the SubsumingPositionIterator is
455     // always the position itself. If we ignore subsuming positions we
456     // are done after the first iteration.
457     if (IgnoreSubsumingPositions)
458       break;
459   }
460   if (A)
461     for (Attribute::AttrKind AK : AKs)
462       getAttrsFromAssumes(AK, Attrs, *A);
463 }
464 
465 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
466                                     SmallVectorImpl<Attribute> &Attrs) const {
467   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
468     return false;
469 
470   AttributeList AttrList;
471   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
472     AttrList = CB->getAttributes();
473   else
474     AttrList = getAssociatedFunction()->getAttributes();
475 
476   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
477   if (HasAttr)
478     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
479   return HasAttr;
480 }
481 
482 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
483                                      SmallVectorImpl<Attribute> &Attrs,
484                                      Attributor &A) const {
485   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
486   Value &AssociatedValue = getAssociatedValue();
487 
488   const Assume2KnowledgeMap &A2K =
489       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
490 
491   // Check if we found any potential assume use, if not we don't need to create
492   // explorer iterators.
493   if (A2K.empty())
494     return false;
495 
496   LLVMContext &Ctx = AssociatedValue.getContext();
497   unsigned AttrsSize = Attrs.size();
498   MustBeExecutedContextExplorer &Explorer =
499       A.getInfoCache().getMustBeExecutedContextExplorer();
500   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
501   for (auto &It : A2K)
502     if (Explorer.findInContextOf(It.first, EIt, EEnd))
503       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
504   return AttrsSize != Attrs.size();
505 }
506 
507 void IRPosition::verify() {
508 #ifdef EXPENSIVE_CHECKS
509   switch (getPositionKind()) {
510   case IRP_INVALID:
511     assert((CBContext == nullptr) &&
512            "Invalid position must not have CallBaseContext!");
513     assert(!Enc.getOpaqueValue() &&
514            "Expected a nullptr for an invalid position!");
515     return;
516   case IRP_FLOAT:
517     assert((!isa<CallBase>(&getAssociatedValue()) &&
518             !isa<Argument>(&getAssociatedValue())) &&
519            "Expected specialized kind for call base and argument values!");
520     return;
521   case IRP_RETURNED:
522     assert(isa<Function>(getAsValuePtr()) &&
523            "Expected function for a 'returned' position!");
524     assert(getAsValuePtr() == &getAssociatedValue() &&
525            "Associated value mismatch!");
526     return;
527   case IRP_CALL_SITE_RETURNED:
528     assert((CBContext == nullptr) &&
529            "'call site returned' position must not have CallBaseContext!");
530     assert((isa<CallBase>(getAsValuePtr())) &&
531            "Expected call base for 'call site returned' position!");
532     assert(getAsValuePtr() == &getAssociatedValue() &&
533            "Associated value mismatch!");
534     return;
535   case IRP_CALL_SITE:
536     assert((CBContext == nullptr) &&
537            "'call site function' position must not have CallBaseContext!");
538     assert((isa<CallBase>(getAsValuePtr())) &&
539            "Expected call base for 'call site function' position!");
540     assert(getAsValuePtr() == &getAssociatedValue() &&
541            "Associated value mismatch!");
542     return;
543   case IRP_FUNCTION:
544     assert(isa<Function>(getAsValuePtr()) &&
545            "Expected function for a 'function' position!");
546     assert(getAsValuePtr() == &getAssociatedValue() &&
547            "Associated value mismatch!");
548     return;
549   case IRP_ARGUMENT:
550     assert(isa<Argument>(getAsValuePtr()) &&
551            "Expected argument for a 'argument' position!");
552     assert(getAsValuePtr() == &getAssociatedValue() &&
553            "Associated value mismatch!");
554     return;
555   case IRP_CALL_SITE_ARGUMENT: {
556     assert((CBContext == nullptr) &&
557            "'call site argument' position must not have CallBaseContext!");
558     Use *U = getAsUsePtr();
559     assert(U && "Expected use for a 'call site argument' position!");
560     assert(isa<CallBase>(U->getUser()) &&
561            "Expected call base user for a 'call site argument' position!");
562     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
563            "Expected call base argument operand for a 'call site argument' "
564            "position");
565     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
566                unsigned(getCallSiteArgNo()) &&
567            "Argument number mismatch!");
568     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
569     return;
570   }
571   }
572 #endif
573 }
574 
575 Optional<Constant *>
576 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
577                                bool &UsedAssumedInformation) {
578   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
579       AA, IRPosition::value(V, AA.getCallBaseContext()), DepClassTy::NONE);
580   Optional<Value *> SimplifiedV =
581       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
582   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
583   UsedAssumedInformation |= !IsKnown;
584   if (!SimplifiedV.hasValue()) {
585     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
586     return llvm::None;
587   }
588   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
589     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
590     return UndefValue::get(V.getType());
591   }
592   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
593   if (CI && CI->getType() != V.getType()) {
594     // TODO: Check for a save conversion.
595     return nullptr;
596   }
597   if (CI)
598     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
599   return CI;
600 }
601 
602 Optional<Value *>
603 Attributor::getAssumedSimplified(const IRPosition &IRP,
604                                  const AbstractAttribute *AA,
605                                  bool &UsedAssumedInformation) {
606   // First check all callbacks provided by outside AAs. If any of them returns
607   // a non-null value that is different from the associated value, or None, we
608   // assume it's simpliied.
609   for (auto &CB : SimplificationCallbacks[IRP]) {
610     Optional<Value *> SimplifiedV = CB(IRP, AA, UsedAssumedInformation);
611     if (!SimplifiedV.hasValue() ||
612         (*SimplifiedV && *SimplifiedV != &IRP.getAssociatedValue()))
613       return SimplifiedV;
614   }
615 
616   // If no high-level/outside simplification occured, use AAValueSimplify.
617   const auto &ValueSimplifyAA =
618       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
619   Optional<Value *> SimplifiedV =
620       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
621   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
622   UsedAssumedInformation |= !IsKnown;
623   if (!SimplifiedV.hasValue()) {
624     if (AA)
625       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
626     return llvm::None;
627   }
628   if (*SimplifiedV == nullptr)
629     return const_cast<Value *>(&IRP.getAssociatedValue());
630   if (Value *SimpleV =
631           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
632     if (AA)
633       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
634     return SimpleV;
635   }
636   return const_cast<Value *>(&IRP.getAssociatedValue());
637 }
638 
639 Attributor::~Attributor() {
640   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
641   // thus we cannot delete them. We can, and want to, destruct them though.
642   for (auto &DepAA : DG.SyntheticRoot.Deps) {
643     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
644     AA->~AbstractAttribute();
645   }
646 }
647 
648 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
649                                const AAIsDead *FnLivenessAA,
650                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
651   const IRPosition &IRP = AA.getIRPosition();
652   if (!Functions.count(IRP.getAnchorScope()))
653     return false;
654   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
655 }
656 
657 bool Attributor::isAssumedDead(const Use &U,
658                                const AbstractAttribute *QueryingAA,
659                                const AAIsDead *FnLivenessAA,
660                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
661   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
662   if (!UserI)
663     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
664                          CheckBBLivenessOnly, DepClass);
665 
666   if (auto *CB = dyn_cast<CallBase>(UserI)) {
667     // For call site argument uses we can check if the argument is
668     // unused/dead.
669     if (CB->isArgOperand(&U)) {
670       const IRPosition &CSArgPos =
671           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
672       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
673                            CheckBBLivenessOnly, DepClass);
674     }
675   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
676     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
677     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
678                          DepClass);
679   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
680     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
681     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
682                          CheckBBLivenessOnly, DepClass);
683   }
684 
685   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
686                        CheckBBLivenessOnly, DepClass);
687 }
688 
689 bool Attributor::isAssumedDead(const Instruction &I,
690                                const AbstractAttribute *QueryingAA,
691                                const AAIsDead *FnLivenessAA,
692                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
693   const IRPosition::CallBaseContext *CBCtx =
694       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
695 
696   if (!FnLivenessAA)
697     FnLivenessAA =
698         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
699                               QueryingAA, DepClassTy::NONE);
700 
701   // If we have a context instruction and a liveness AA we use it.
702   if (FnLivenessAA &&
703       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
704       FnLivenessAA->isAssumedDead(&I)) {
705     if (QueryingAA)
706       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
707     return true;
708   }
709 
710   if (CheckBBLivenessOnly)
711     return false;
712 
713   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
714       IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
715   // Don't check liveness for AAIsDead.
716   if (QueryingAA == &IsDeadAA)
717     return false;
718 
719   if (IsDeadAA.isAssumedDead()) {
720     if (QueryingAA)
721       recordDependence(IsDeadAA, *QueryingAA, DepClass);
722     return true;
723   }
724 
725   return false;
726 }
727 
728 bool Attributor::isAssumedDead(const IRPosition &IRP,
729                                const AbstractAttribute *QueryingAA,
730                                const AAIsDead *FnLivenessAA,
731                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
732   Instruction *CtxI = IRP.getCtxI();
733   if (CtxI &&
734       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
735                     /* CheckBBLivenessOnly */ true,
736                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
737     return true;
738 
739   if (CheckBBLivenessOnly)
740     return false;
741 
742   // If we haven't succeeded we query the specific liveness info for the IRP.
743   const AAIsDead *IsDeadAA;
744   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
745     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
746         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
747         QueryingAA, DepClassTy::NONE);
748   else
749     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
750   // Don't check liveness for AAIsDead.
751   if (QueryingAA == IsDeadAA)
752     return false;
753 
754   if (IsDeadAA->isAssumedDead()) {
755     if (QueryingAA)
756       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
757     return true;
758   }
759 
760   return false;
761 }
762 
763 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
764                                  const AbstractAttribute &QueryingAA,
765                                  const Value &V, DepClassTy LivenessDepClass) {
766 
767   // Check the trivial case first as it catches void values.
768   if (V.use_empty())
769     return true;
770 
771   // If the value is replaced by another one, for now a constant, we do not have
772   // uses. Note that this requires users of `checkForAllUses` to not recurse but
773   // instead use the `follow` callback argument to look at transitive users,
774   // however, that should be clear from the presence of the argument.
775   bool UsedAssumedInformation = false;
776   Optional<Constant *> C =
777       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
778   if (C.hasValue() && C.getValue()) {
779     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
780                       << " -> " << *C.getValue() << "\n");
781     return true;
782   }
783 
784   const IRPosition &IRP = QueryingAA.getIRPosition();
785   SmallVector<const Use *, 16> Worklist;
786   SmallPtrSet<const Use *, 16> Visited;
787 
788   for (const Use &U : V.uses())
789     Worklist.push_back(&U);
790 
791   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
792                     << " initial uses to check\n");
793 
794   const Function *ScopeFn = IRP.getAnchorScope();
795   const auto *LivenessAA =
796       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
797                                     DepClassTy::NONE)
798               : nullptr;
799 
800   while (!Worklist.empty()) {
801     const Use *U = Worklist.pop_back_val();
802     if (!Visited.insert(U).second)
803       continue;
804     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
805                       << *U->getUser() << "\n");
806     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
807                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
808       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
809       continue;
810     }
811     if (U->getUser()->isDroppable()) {
812       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
813       continue;
814     }
815 
816     bool Follow = false;
817     if (!Pred(*U, Follow))
818       return false;
819     if (!Follow)
820       continue;
821     for (const Use &UU : U->getUser()->uses())
822       Worklist.push_back(&UU);
823   }
824 
825   return true;
826 }
827 
828 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
829                                       const AbstractAttribute &QueryingAA,
830                                       bool RequireAllCallSites,
831                                       bool &AllCallSitesKnown) {
832   // We can try to determine information from
833   // the call sites. However, this is only possible all call sites are known,
834   // hence the function has internal linkage.
835   const IRPosition &IRP = QueryingAA.getIRPosition();
836   const Function *AssociatedFunction = IRP.getAssociatedFunction();
837   if (!AssociatedFunction) {
838     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
839                       << "\n");
840     AllCallSitesKnown = false;
841     return false;
842   }
843 
844   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
845                               &QueryingAA, AllCallSitesKnown);
846 }
847 
848 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
849                                       const Function &Fn,
850                                       bool RequireAllCallSites,
851                                       const AbstractAttribute *QueryingAA,
852                                       bool &AllCallSitesKnown) {
853   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
854     LLVM_DEBUG(
855         dbgs()
856         << "[Attributor] Function " << Fn.getName()
857         << " has no internal linkage, hence not all call sites are known\n");
858     AllCallSitesKnown = false;
859     return false;
860   }
861 
862   // If we do not require all call sites we might not see all.
863   AllCallSitesKnown = RequireAllCallSites;
864 
865   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
866   for (unsigned u = 0; u < Uses.size(); ++u) {
867     const Use &U = *Uses[u];
868     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
869                       << *U.getUser() << "\n");
870     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
871       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
872       continue;
873     }
874     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
875       if (CE->isCast() && CE->getType()->isPointerTy() &&
876           CE->getType()->getPointerElementType()->isFunctionTy()) {
877         for (const Use &CEU : CE->uses())
878           Uses.push_back(&CEU);
879         continue;
880       }
881     }
882 
883     AbstractCallSite ACS(&U);
884     if (!ACS) {
885       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
886                         << " has non call site use " << *U.get() << " in "
887                         << *U.getUser() << "\n");
888       // BlockAddress users are allowed.
889       if (isa<BlockAddress>(U.getUser()))
890         continue;
891       return false;
892     }
893 
894     const Use *EffectiveUse =
895         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
896     if (!ACS.isCallee(EffectiveUse)) {
897       if (!RequireAllCallSites)
898         continue;
899       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
900                         << " is an invalid use of " << Fn.getName() << "\n");
901       return false;
902     }
903 
904     // Make sure the arguments that can be matched between the call site and the
905     // callee argee on their type. It is unlikely they do not and it doesn't
906     // make sense for all attributes to know/care about this.
907     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
908     unsigned MinArgsParams =
909         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
910     for (unsigned u = 0; u < MinArgsParams; ++u) {
911       Value *CSArgOp = ACS.getCallArgOperand(u);
912       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
913         LLVM_DEBUG(
914             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
915                    << u << "@" << Fn.getName() << ": "
916                    << *Fn.getArg(u)->getType() << " vs. "
917                    << *ACS.getCallArgOperand(u)->getType() << "\n");
918         return false;
919       }
920     }
921 
922     if (Pred(ACS))
923       continue;
924 
925     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
926                       << *ACS.getInstruction() << "\n");
927     return false;
928   }
929 
930   return true;
931 }
932 
933 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
934   // TODO: Maintain a cache of Values that are
935   // on the pathway from a Argument to a Instruction that would effect the
936   // liveness/return state etc.
937   return EnableCallSiteSpecific;
938 }
939 
940 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
941     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
942     const AbstractAttribute &QueryingAA) {
943 
944   const IRPosition &IRP = QueryingAA.getIRPosition();
945   // Since we need to provide return instructions we have to have an exact
946   // definition.
947   const Function *AssociatedFunction = IRP.getAssociatedFunction();
948   if (!AssociatedFunction)
949     return false;
950 
951   // If this is a call site query we use the call site specific return values
952   // and liveness information.
953   // TODO: use the function scope once we have call site AAReturnedValues.
954   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
955   const auto &AARetVal =
956       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
957   if (!AARetVal.getState().isValidState())
958     return false;
959 
960   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
961 }
962 
963 bool Attributor::checkForAllReturnedValues(
964     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
965 
966   const IRPosition &IRP = QueryingAA.getIRPosition();
967   const Function *AssociatedFunction = IRP.getAssociatedFunction();
968   if (!AssociatedFunction)
969     return false;
970 
971   // TODO: use the function scope once we have call site AAReturnedValues.
972   const IRPosition &QueryIRP = IRPosition::function(
973       *AssociatedFunction, QueryingAA.getCallBaseContext());
974   const auto &AARetVal =
975       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
976   if (!AARetVal.getState().isValidState())
977     return false;
978 
979   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
980       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
981         return Pred(RV);
982       });
983 }
984 
985 static bool checkForAllInstructionsImpl(
986     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
987     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
988     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
989     bool CheckBBLivenessOnly = false) {
990   for (unsigned Opcode : Opcodes) {
991     // Check if we have instructions with this opcode at all first.
992     auto *Insts = OpcodeInstMap.lookup(Opcode);
993     if (!Insts)
994       continue;
995 
996     for (Instruction *I : *Insts) {
997       // Skip dead instructions.
998       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
999                                 CheckBBLivenessOnly))
1000         continue;
1001 
1002       if (!Pred(*I))
1003         return false;
1004     }
1005   }
1006   return true;
1007 }
1008 
1009 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1010                                          const AbstractAttribute &QueryingAA,
1011                                          const ArrayRef<unsigned> &Opcodes,
1012                                          bool CheckBBLivenessOnly) {
1013 
1014   const IRPosition &IRP = QueryingAA.getIRPosition();
1015   // Since we need to provide instructions we have to have an exact definition.
1016   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1017   if (!AssociatedFunction)
1018     return false;
1019 
1020   // TODO: use the function scope once we have call site AAReturnedValues.
1021   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1022   const auto *LivenessAA =
1023       CheckBBLivenessOnly
1024           ? nullptr
1025           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1026 
1027   auto &OpcodeInstMap =
1028       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1029   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1030                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
1031     return false;
1032 
1033   return true;
1034 }
1035 
1036 bool Attributor::checkForAllReadWriteInstructions(
1037     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
1038 
1039   const Function *AssociatedFunction =
1040       QueryingAA.getIRPosition().getAssociatedFunction();
1041   if (!AssociatedFunction)
1042     return false;
1043 
1044   // TODO: use the function scope once we have call site AAReturnedValues.
1045   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1046   const auto &LivenessAA =
1047       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1048 
1049   for (Instruction *I :
1050        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1051     // Skip dead instructions.
1052     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
1053       continue;
1054 
1055     if (!Pred(*I))
1056       return false;
1057   }
1058 
1059   return true;
1060 }
1061 
1062 void Attributor::runTillFixpoint() {
1063   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1064   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1065                     << DG.SyntheticRoot.Deps.size()
1066                     << " abstract attributes.\n");
1067 
1068   // Now that all abstract attributes are collected and initialized we start
1069   // the abstract analysis.
1070 
1071   unsigned IterationCounter = 1;
1072   unsigned MaxFixedPointIterations;
1073   if (MaxFixpointIterations)
1074     MaxFixedPointIterations = MaxFixpointIterations.getValue();
1075   else
1076     MaxFixedPointIterations = SetFixpointIterations;
1077 
1078 
1079   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1080   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1081   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1082 
1083   do {
1084     // Remember the size to determine new attributes.
1085     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1086     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1087                       << ", Worklist size: " << Worklist.size() << "\n");
1088 
1089     // For invalid AAs we can fix dependent AAs that have a required dependence,
1090     // thereby folding long dependence chains in a single step without the need
1091     // to run updates.
1092     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1093       AbstractAttribute *InvalidAA = InvalidAAs[u];
1094 
1095       // Check the dependences to fast track invalidation.
1096       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1097                         << InvalidAA->Deps.size()
1098                         << " required & optional dependences\n");
1099       while (!InvalidAA->Deps.empty()) {
1100         const auto &Dep = InvalidAA->Deps.back();
1101         InvalidAA->Deps.pop_back();
1102         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1103         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1104           Worklist.insert(DepAA);
1105           continue;
1106         }
1107         DepAA->getState().indicatePessimisticFixpoint();
1108         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1109         if (!DepAA->getState().isValidState())
1110           InvalidAAs.insert(DepAA);
1111         else
1112           ChangedAAs.push_back(DepAA);
1113       }
1114     }
1115 
1116     // Add all abstract attributes that are potentially dependent on one that
1117     // changed to the work list.
1118     for (AbstractAttribute *ChangedAA : ChangedAAs)
1119       while (!ChangedAA->Deps.empty()) {
1120         Worklist.insert(
1121             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1122         ChangedAA->Deps.pop_back();
1123       }
1124 
1125     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1126                       << ", Worklist+Dependent size: " << Worklist.size()
1127                       << "\n");
1128 
1129     // Reset the changed and invalid set.
1130     ChangedAAs.clear();
1131     InvalidAAs.clear();
1132 
1133     // Update all abstract attribute in the work list and record the ones that
1134     // changed.
1135     for (AbstractAttribute *AA : Worklist) {
1136       const auto &AAState = AA->getState();
1137       if (!AAState.isAtFixpoint())
1138         if (updateAA(*AA) == ChangeStatus::CHANGED)
1139           ChangedAAs.push_back(AA);
1140 
1141       // Use the InvalidAAs vector to propagate invalid states fast transitively
1142       // without requiring updates.
1143       if (!AAState.isValidState())
1144         InvalidAAs.insert(AA);
1145     }
1146 
1147     // Add attributes to the changed set if they have been created in the last
1148     // iteration.
1149     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1150                       DG.SyntheticRoot.end());
1151 
1152     // Reset the work list and repopulate with the changed abstract attributes.
1153     // Note that dependent ones are added above.
1154     Worklist.clear();
1155     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1156 
1157   } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1158                                  VerifyMaxFixpointIterations));
1159 
1160   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1161                     << IterationCounter << "/" << MaxFixpointIterations
1162                     << " iterations\n");
1163 
1164   // Reset abstract arguments not settled in a sound fixpoint by now. This
1165   // happens when we stopped the fixpoint iteration early. Note that only the
1166   // ones marked as "changed" *and* the ones transitively depending on them
1167   // need to be reverted to a pessimistic state. Others might not be in a
1168   // fixpoint state but we can use the optimistic results for them anyway.
1169   SmallPtrSet<AbstractAttribute *, 32> Visited;
1170   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1171     AbstractAttribute *ChangedAA = ChangedAAs[u];
1172     if (!Visited.insert(ChangedAA).second)
1173       continue;
1174 
1175     AbstractState &State = ChangedAA->getState();
1176     if (!State.isAtFixpoint()) {
1177       State.indicatePessimisticFixpoint();
1178 
1179       NumAttributesTimedOut++;
1180     }
1181 
1182     while (!ChangedAA->Deps.empty()) {
1183       ChangedAAs.push_back(
1184           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1185       ChangedAA->Deps.pop_back();
1186     }
1187   }
1188 
1189   LLVM_DEBUG({
1190     if (!Visited.empty())
1191       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1192              << " abstract attributes.\n";
1193   });
1194 
1195   if (VerifyMaxFixpointIterations &&
1196       IterationCounter != MaxFixedPointIterations) {
1197     errs() << "\n[Attributor] Fixpoint iteration done after: "
1198            << IterationCounter << "/" << MaxFixedPointIterations
1199            << " iterations\n";
1200     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1201                      "specified iterations!");
1202   }
1203 }
1204 
1205 ChangeStatus Attributor::manifestAttributes() {
1206   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1207   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1208 
1209   unsigned NumManifested = 0;
1210   unsigned NumAtFixpoint = 0;
1211   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1212   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1213     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1214     AbstractState &State = AA->getState();
1215 
1216     // If there is not already a fixpoint reached, we can now take the
1217     // optimistic state. This is correct because we enforced a pessimistic one
1218     // on abstract attributes that were transitively dependent on a changed one
1219     // already above.
1220     if (!State.isAtFixpoint())
1221       State.indicateOptimisticFixpoint();
1222 
1223     // We must not manifest Attributes that use Callbase info.
1224     if (AA->hasCallBaseContext())
1225       continue;
1226     // If the state is invalid, we do not try to manifest it.
1227     if (!State.isValidState())
1228       continue;
1229 
1230     // Skip dead code.
1231     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1232       continue;
1233     // Check if the manifest debug counter that allows skipping manifestation of
1234     // AAs
1235     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1236       continue;
1237     // Manifest the state and record if we changed the IR.
1238     ChangeStatus LocalChange = AA->manifest(*this);
1239     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1240       AA->trackStatistics();
1241     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1242                       << "\n");
1243 
1244     ManifestChange = ManifestChange | LocalChange;
1245 
1246     NumAtFixpoint++;
1247     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1248   }
1249 
1250   (void)NumManifested;
1251   (void)NumAtFixpoint;
1252   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1253                     << " arguments while " << NumAtFixpoint
1254                     << " were in a valid fixpoint state\n");
1255 
1256   NumAttributesManifested += NumManifested;
1257   NumAttributesValidFixpoint += NumAtFixpoint;
1258 
1259   (void)NumFinalAAs;
1260   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1261     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1262       errs() << "Unexpected abstract attribute: "
1263              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1264              << " :: "
1265              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1266                     ->getIRPosition()
1267                     .getAssociatedValue()
1268              << "\n";
1269     llvm_unreachable("Expected the final number of abstract attributes to "
1270                      "remain unchanged!");
1271   }
1272   return ManifestChange;
1273 }
1274 
1275 void Attributor::identifyDeadInternalFunctions() {
1276   // Early exit if we don't intend to delete functions.
1277   if (!DeleteFns)
1278     return;
1279 
1280   // Identify dead internal functions and delete them. This happens outside
1281   // the other fixpoint analysis as we might treat potentially dead functions
1282   // as live to lower the number of iterations. If they happen to be dead, the
1283   // below fixpoint loop will identify and eliminate them.
1284   SmallVector<Function *, 8> InternalFns;
1285   for (Function *F : Functions)
1286     if (F->hasLocalLinkage())
1287       InternalFns.push_back(F);
1288 
1289   SmallPtrSet<Function *, 8> LiveInternalFns;
1290   bool FoundLiveInternal = true;
1291   while (FoundLiveInternal) {
1292     FoundLiveInternal = false;
1293     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1294       Function *F = InternalFns[u];
1295       if (!F)
1296         continue;
1297 
1298       bool AllCallSitesKnown;
1299       if (checkForAllCallSites(
1300               [&](AbstractCallSite ACS) {
1301                 Function *Callee = ACS.getInstruction()->getFunction();
1302                 return ToBeDeletedFunctions.count(Callee) ||
1303                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1304                         !LiveInternalFns.count(Callee));
1305               },
1306               *F, true, nullptr, AllCallSitesKnown)) {
1307         continue;
1308       }
1309 
1310       LiveInternalFns.insert(F);
1311       InternalFns[u] = nullptr;
1312       FoundLiveInternal = true;
1313     }
1314   }
1315 
1316   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1317     if (Function *F = InternalFns[u])
1318       ToBeDeletedFunctions.insert(F);
1319 }
1320 
1321 ChangeStatus Attributor::cleanupIR() {
1322   TimeTraceScope TimeScope("Attributor::cleanupIR");
1323   // Delete stuff at the end to avoid invalid references and a nice order.
1324   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1325                     << ToBeDeletedFunctions.size() << " functions and "
1326                     << ToBeDeletedBlocks.size() << " blocks and "
1327                     << ToBeDeletedInsts.size() << " instructions and "
1328                     << ToBeChangedUses.size() << " uses\n");
1329 
1330   SmallVector<WeakTrackingVH, 32> DeadInsts;
1331   SmallVector<Instruction *, 32> TerminatorsToFold;
1332 
1333   for (auto &It : ToBeChangedUses) {
1334     Use *U = It.first;
1335     Value *NewV = It.second;
1336     Value *OldV = U->get();
1337 
1338     // Do not replace uses in returns if the value is a must-tail call we will
1339     // not delete.
1340     if (isa<ReturnInst>(U->getUser()))
1341       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1342         if (CI->isMustTailCall() &&
1343             (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1344           continue;
1345 
1346     // Do not perform call graph altering changes outside the SCC.
1347     if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1348       if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1349         continue;
1350 
1351     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1352                       << " instead of " << *OldV << "\n");
1353     U->set(NewV);
1354 
1355     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1356       CGModifiedFunctions.insert(I->getFunction());
1357       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1358           isInstructionTriviallyDead(I))
1359         DeadInsts.push_back(I);
1360     }
1361     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1362       auto *CB = cast<CallBase>(U->getUser());
1363       if (CB->isArgOperand(U)) {
1364         unsigned Idx = CB->getArgOperandNo(U);
1365         CB->removeParamAttr(Idx, Attribute::NoUndef);
1366         Function *Fn = CB->getCalledFunction();
1367         if (Fn && Fn->arg_size() > Idx)
1368           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1369       }
1370     }
1371     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1372       Instruction *UserI = cast<Instruction>(U->getUser());
1373       if (isa<UndefValue>(NewV)) {
1374         ToBeChangedToUnreachableInsts.insert(UserI);
1375       } else {
1376         TerminatorsToFold.push_back(UserI);
1377       }
1378     }
1379   }
1380   for (auto &V : InvokeWithDeadSuccessor)
1381     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1382       assert(isRunOn(*II->getFunction()) &&
1383              "Cannot replace an invoke outside the current SCC!");
1384       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1385       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1386       bool Invoke2CallAllowed =
1387           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1388       assert((UnwindBBIsDead || NormalBBIsDead) &&
1389              "Invoke does not have dead successors!");
1390       BasicBlock *BB = II->getParent();
1391       BasicBlock *NormalDestBB = II->getNormalDest();
1392       if (UnwindBBIsDead) {
1393         Instruction *NormalNextIP = &NormalDestBB->front();
1394         if (Invoke2CallAllowed) {
1395           changeToCall(II);
1396           NormalNextIP = BB->getTerminator();
1397         }
1398         if (NormalBBIsDead)
1399           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1400       } else {
1401         assert(NormalBBIsDead && "Broken invariant!");
1402         if (!NormalDestBB->getUniquePredecessor())
1403           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1404         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1405       }
1406     }
1407   for (Instruction *I : TerminatorsToFold) {
1408     if (!isRunOn(*I->getFunction()))
1409       continue;
1410     CGModifiedFunctions.insert(I->getFunction());
1411     ConstantFoldTerminator(I->getParent());
1412   }
1413   for (auto &V : ToBeChangedToUnreachableInsts)
1414     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1415       if (!isRunOn(*I->getFunction()))
1416         continue;
1417       CGModifiedFunctions.insert(I->getFunction());
1418       changeToUnreachable(I, /* UseLLVMTrap */ false);
1419     }
1420 
1421   for (auto &V : ToBeDeletedInsts) {
1422     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1423       if (auto *CB = dyn_cast<CallBase>(I))
1424         if (CB->isMustTailCall() && !isRunOn(*I->getFunction()))
1425           continue;
1426       I->dropDroppableUses();
1427       CGModifiedFunctions.insert(I->getFunction());
1428       if (!I->getType()->isVoidTy())
1429         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1430       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1431         DeadInsts.push_back(I);
1432       else
1433         I->eraseFromParent();
1434     }
1435   }
1436 
1437   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1438     return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1439   });
1440 
1441   LLVM_DEBUG({
1442     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1443     for (auto &I : DeadInsts)
1444       if (I)
1445         dbgs() << "  - " << *I << "\n";
1446   });
1447 
1448   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1449 
1450   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1451     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1452     ToBeDeletedBBs.reserve(NumDeadBlocks);
1453     for (BasicBlock *BB : ToBeDeletedBlocks) {
1454       assert(isRunOn(*BB->getParent()) &&
1455              "Cannot delete a block outside the current SCC!");
1456       CGModifiedFunctions.insert(BB->getParent());
1457       ToBeDeletedBBs.push_back(BB);
1458     }
1459     // Actually we do not delete the blocks but squash them into a single
1460     // unreachable but untangling branches that jump here is something we need
1461     // to do in a more generic way.
1462     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1463   }
1464 
1465   identifyDeadInternalFunctions();
1466 
1467   // Rewrite the functions as requested during manifest.
1468   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1469 
1470   for (Function *Fn : CGModifiedFunctions)
1471     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1472       CGUpdater.reanalyzeFunction(*Fn);
1473 
1474   for (Function *Fn : ToBeDeletedFunctions) {
1475     if (!Functions.count(Fn))
1476       continue;
1477     CGUpdater.removeFunction(*Fn);
1478   }
1479 
1480   if (!ToBeChangedUses.empty())
1481     ManifestChange = ChangeStatus::CHANGED;
1482 
1483   if (!ToBeChangedToUnreachableInsts.empty())
1484     ManifestChange = ChangeStatus::CHANGED;
1485 
1486   if (!ToBeDeletedFunctions.empty())
1487     ManifestChange = ChangeStatus::CHANGED;
1488 
1489   if (!ToBeDeletedBlocks.empty())
1490     ManifestChange = ChangeStatus::CHANGED;
1491 
1492   if (!ToBeDeletedInsts.empty())
1493     ManifestChange = ChangeStatus::CHANGED;
1494 
1495   if (!InvokeWithDeadSuccessor.empty())
1496     ManifestChange = ChangeStatus::CHANGED;
1497 
1498   if (!DeadInsts.empty())
1499     ManifestChange = ChangeStatus::CHANGED;
1500 
1501   NumFnDeleted += ToBeDeletedFunctions.size();
1502 
1503   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1504                     << " functions after manifest.\n");
1505 
1506 #ifdef EXPENSIVE_CHECKS
1507   for (Function *F : Functions) {
1508     if (ToBeDeletedFunctions.count(F))
1509       continue;
1510     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1511   }
1512 #endif
1513 
1514   return ManifestChange;
1515 }
1516 
1517 ChangeStatus Attributor::run() {
1518   TimeTraceScope TimeScope("Attributor::run");
1519   AttributorCallGraph ACallGraph(*this);
1520 
1521   if (PrintCallGraph)
1522     ACallGraph.populateAll();
1523 
1524   Phase = AttributorPhase::UPDATE;
1525   runTillFixpoint();
1526 
1527   // dump graphs on demand
1528   if (DumpDepGraph)
1529     DG.dumpGraph();
1530 
1531   if (ViewDepGraph)
1532     DG.viewGraph();
1533 
1534   if (PrintDependencies)
1535     DG.print();
1536 
1537   Phase = AttributorPhase::MANIFEST;
1538   ChangeStatus ManifestChange = manifestAttributes();
1539 
1540   Phase = AttributorPhase::CLEANUP;
1541   ChangeStatus CleanupChange = cleanupIR();
1542 
1543   if (PrintCallGraph)
1544     ACallGraph.print();
1545 
1546   return ManifestChange | CleanupChange;
1547 }
1548 
1549 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1550   TimeTraceScope TimeScope(
1551       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1552       "::updateAA");
1553   assert(Phase == AttributorPhase::UPDATE &&
1554          "We can update AA only in the update stage!");
1555 
1556   // Use a new dependence vector for this update.
1557   DependenceVector DV;
1558   DependenceStack.push_back(&DV);
1559 
1560   auto &AAState = AA.getState();
1561   ChangeStatus CS = ChangeStatus::UNCHANGED;
1562   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1563     CS = AA.update(*this);
1564 
1565   if (DV.empty()) {
1566     // If the attribute did not query any non-fix information, the state
1567     // will not change and we can indicate that right away.
1568     AAState.indicateOptimisticFixpoint();
1569   }
1570 
1571   if (!AAState.isAtFixpoint())
1572     rememberDependences();
1573 
1574   // Verify the stack was used properly, that is we pop the dependence vector we
1575   // put there earlier.
1576   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1577   (void)PoppedDV;
1578   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1579 
1580   return CS;
1581 }
1582 
1583 void Attributor::createShallowWrapper(Function &F) {
1584   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1585 
1586   Module &M = *F.getParent();
1587   LLVMContext &Ctx = M.getContext();
1588   FunctionType *FnTy = F.getFunctionType();
1589 
1590   Function *Wrapper =
1591       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1592   F.setName(""); // set the inside function anonymous
1593   M.getFunctionList().insert(F.getIterator(), Wrapper);
1594 
1595   F.setLinkage(GlobalValue::InternalLinkage);
1596 
1597   F.replaceAllUsesWith(Wrapper);
1598   assert(F.use_empty() && "Uses remained after wrapper was created!");
1599 
1600   // Move the COMDAT section to the wrapper.
1601   // TODO: Check if we need to keep it for F as well.
1602   Wrapper->setComdat(F.getComdat());
1603   F.setComdat(nullptr);
1604 
1605   // Copy all metadata and attributes but keep them on F as well.
1606   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1607   F.getAllMetadata(MDs);
1608   for (auto MDIt : MDs)
1609     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1610   Wrapper->setAttributes(F.getAttributes());
1611 
1612   // Create the call in the wrapper.
1613   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1614 
1615   SmallVector<Value *, 8> Args;
1616   Argument *FArgIt = F.arg_begin();
1617   for (Argument &Arg : Wrapper->args()) {
1618     Args.push_back(&Arg);
1619     Arg.setName((FArgIt++)->getName());
1620   }
1621 
1622   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1623   CI->setTailCall(true);
1624   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1625   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1626 
1627   NumFnShallowWrappersCreated++;
1628 }
1629 
1630 Function *Attributor::internalizeFunction(Function &F, bool Force) {
1631   if (!AllowDeepWrapper && !Force)
1632     return nullptr;
1633   if (F.isDeclaration() || F.hasLocalLinkage() ||
1634       GlobalValue::isInterposableLinkage(F.getLinkage()))
1635     return nullptr;
1636 
1637   Module &M = *F.getParent();
1638   FunctionType *FnTy = F.getFunctionType();
1639 
1640   // create a copy of the current function
1641   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1642                                       F.getName() + ".internalized");
1643   ValueToValueMapTy VMap;
1644   auto *NewFArgIt = Copied->arg_begin();
1645   for (auto &Arg : F.args()) {
1646     auto ArgName = Arg.getName();
1647     NewFArgIt->setName(ArgName);
1648     VMap[&Arg] = &(*NewFArgIt++);
1649   }
1650   SmallVector<ReturnInst *, 8> Returns;
1651 
1652   // Copy the body of the original function to the new one
1653   CloneFunctionInto(Copied, &F, VMap, CloneFunctionChangeType::LocalChangesOnly,
1654                     Returns);
1655 
1656   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1657   // requirements.
1658   Copied->setVisibility(GlobalValue::DefaultVisibility);
1659   Copied->setLinkage(GlobalValue::PrivateLinkage);
1660 
1661   // Copy metadata
1662   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1663   F.getAllMetadata(MDs);
1664   for (auto MDIt : MDs)
1665     if (!Copied->hasMetadata())
1666       Copied->addMetadata(MDIt.first, *MDIt.second);
1667 
1668   M.getFunctionList().insert(F.getIterator(), Copied);
1669   F.replaceAllUsesWith(Copied);
1670   Copied->setDSOLocal(true);
1671 
1672   return Copied;
1673 }
1674 
1675 bool Attributor::isValidFunctionSignatureRewrite(
1676     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1677 
1678   if (!RewriteSignatures)
1679     return false;
1680 
1681   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1682     // Forbid the call site to cast the function return type. If we need to
1683     // rewrite these functions we need to re-create a cast for the new call site
1684     // (if the old had uses).
1685     if (!ACS.getCalledFunction() ||
1686         ACS.getInstruction()->getType() !=
1687             ACS.getCalledFunction()->getReturnType())
1688       return false;
1689     // Forbid must-tail calls for now.
1690     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1691   };
1692 
1693   Function *Fn = Arg.getParent();
1694   // Avoid var-arg functions for now.
1695   if (Fn->isVarArg()) {
1696     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1697     return false;
1698   }
1699 
1700   // Avoid functions with complicated argument passing semantics.
1701   AttributeList FnAttributeList = Fn->getAttributes();
1702   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1703       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1704       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1705       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1706     LLVM_DEBUG(
1707         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1708     return false;
1709   }
1710 
1711   // Avoid callbacks for now.
1712   bool AllCallSitesKnown;
1713   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1714                             AllCallSitesKnown)) {
1715     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1716     return false;
1717   }
1718 
1719   auto InstPred = [](Instruction &I) {
1720     if (auto *CI = dyn_cast<CallInst>(&I))
1721       return !CI->isMustTailCall();
1722     return true;
1723   };
1724 
1725   // Forbid must-tail calls for now.
1726   // TODO:
1727   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1728   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1729                                    nullptr, {Instruction::Call})) {
1730     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1731     return false;
1732   }
1733 
1734   return true;
1735 }
1736 
1737 bool Attributor::registerFunctionSignatureRewrite(
1738     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1739     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1740     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1741   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1742                     << Arg.getParent()->getName() << " with "
1743                     << ReplacementTypes.size() << " replacements\n");
1744   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1745          "Cannot register an invalid rewrite");
1746 
1747   Function *Fn = Arg.getParent();
1748   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1749       ArgumentReplacementMap[Fn];
1750   if (ARIs.empty())
1751     ARIs.resize(Fn->arg_size());
1752 
1753   // If we have a replacement already with less than or equal new arguments,
1754   // ignore this request.
1755   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1756   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1757     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1758     return false;
1759   }
1760 
1761   // If we have a replacement already but we like the new one better, delete
1762   // the old.
1763   ARI.reset();
1764 
1765   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1766                     << Arg.getParent()->getName() << " with "
1767                     << ReplacementTypes.size() << " replacements\n");
1768 
1769   // Remember the replacement.
1770   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1771                                         std::move(CalleeRepairCB),
1772                                         std::move(ACSRepairCB)));
1773 
1774   return true;
1775 }
1776 
1777 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1778   bool Result = true;
1779 #ifndef NDEBUG
1780   if (SeedAllowList.size() != 0)
1781     Result =
1782         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1783   Function *Fn = AA.getAnchorScope();
1784   if (FunctionSeedAllowList.size() != 0 && Fn)
1785     Result &= std::count(FunctionSeedAllowList.begin(),
1786                          FunctionSeedAllowList.end(), Fn->getName());
1787 #endif
1788   return Result;
1789 }
1790 
1791 ChangeStatus Attributor::rewriteFunctionSignatures(
1792     SmallPtrSetImpl<Function *> &ModifiedFns) {
1793   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1794 
1795   for (auto &It : ArgumentReplacementMap) {
1796     Function *OldFn = It.getFirst();
1797 
1798     // Deleted functions do not require rewrites.
1799     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1800       continue;
1801 
1802     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1803         It.getSecond();
1804     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1805 
1806     SmallVector<Type *, 16> NewArgumentTypes;
1807     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1808 
1809     // Collect replacement argument types and copy over existing attributes.
1810     AttributeList OldFnAttributeList = OldFn->getAttributes();
1811     for (Argument &Arg : OldFn->args()) {
1812       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1813               ARIs[Arg.getArgNo()]) {
1814         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1815                                 ARI->ReplacementTypes.end());
1816         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1817                                      AttributeSet());
1818       } else {
1819         NewArgumentTypes.push_back(Arg.getType());
1820         NewArgumentAttributes.push_back(
1821             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1822       }
1823     }
1824 
1825     FunctionType *OldFnTy = OldFn->getFunctionType();
1826     Type *RetTy = OldFnTy->getReturnType();
1827 
1828     // Construct the new function type using the new arguments types.
1829     FunctionType *NewFnTy =
1830         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1831 
1832     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1833                       << "' from " << *OldFn->getFunctionType() << " to "
1834                       << *NewFnTy << "\n");
1835 
1836     // Create the new function body and insert it into the module.
1837     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1838                                        OldFn->getAddressSpace(), "");
1839     Functions.insert(NewFn);
1840     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1841     NewFn->takeName(OldFn);
1842     NewFn->copyAttributesFrom(OldFn);
1843 
1844     // Patch the pointer to LLVM function in debug info descriptor.
1845     NewFn->setSubprogram(OldFn->getSubprogram());
1846     OldFn->setSubprogram(nullptr);
1847 
1848     // Recompute the parameter attributes list based on the new arguments for
1849     // the function.
1850     LLVMContext &Ctx = OldFn->getContext();
1851     NewFn->setAttributes(AttributeList::get(
1852         Ctx, OldFnAttributeList.getFnAttributes(),
1853         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1854 
1855     // Since we have now created the new function, splice the body of the old
1856     // function right into the new function, leaving the old rotting hulk of the
1857     // function empty.
1858     NewFn->getBasicBlockList().splice(NewFn->begin(),
1859                                       OldFn->getBasicBlockList());
1860 
1861     // Fixup block addresses to reference new function.
1862     SmallVector<BlockAddress *, 8u> BlockAddresses;
1863     for (User *U : OldFn->users())
1864       if (auto *BA = dyn_cast<BlockAddress>(U))
1865         BlockAddresses.push_back(BA);
1866     for (auto *BA : BlockAddresses)
1867       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1868 
1869     // Set of all "call-like" instructions that invoke the old function mapped
1870     // to their new replacements.
1871     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1872 
1873     // Callback to create a new "call-like" instruction for a given one.
1874     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1875       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1876       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1877 
1878       // Collect the new argument operands for the replacement call site.
1879       SmallVector<Value *, 16> NewArgOperands;
1880       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1881       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1882         unsigned NewFirstArgNum = NewArgOperands.size();
1883         (void)NewFirstArgNum; // only used inside assert.
1884         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1885                 ARIs[OldArgNum]) {
1886           if (ARI->ACSRepairCB)
1887             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1888           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1889                      NewArgOperands.size() &&
1890                  "ACS repair callback did not provide as many operand as new "
1891                  "types were registered!");
1892           // TODO: Exose the attribute set to the ACS repair callback
1893           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1894                                          AttributeSet());
1895         } else {
1896           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1897           NewArgOperandAttributes.push_back(
1898               OldCallAttributeList.getParamAttributes(OldArgNum));
1899         }
1900       }
1901 
1902       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1903              "Mismatch # argument operands vs. # argument operand attributes!");
1904       assert(NewArgOperands.size() == NewFn->arg_size() &&
1905              "Mismatch # argument operands vs. # function arguments!");
1906 
1907       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1908       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1909 
1910       // Create a new call or invoke instruction to replace the old one.
1911       CallBase *NewCB;
1912       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1913         NewCB =
1914             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1915                                NewArgOperands, OperandBundleDefs, "", OldCB);
1916       } else {
1917         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1918                                        "", OldCB);
1919         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1920         NewCB = NewCI;
1921       }
1922 
1923       // Copy over various properties and the new attributes.
1924       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1925       NewCB->setCallingConv(OldCB->getCallingConv());
1926       NewCB->takeName(OldCB);
1927       NewCB->setAttributes(AttributeList::get(
1928           Ctx, OldCallAttributeList.getFnAttributes(),
1929           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1930 
1931       CallSitePairs.push_back({OldCB, NewCB});
1932       return true;
1933     };
1934 
1935     // Use the CallSiteReplacementCreator to create replacement call sites.
1936     bool AllCallSitesKnown;
1937     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1938                                         true, nullptr, AllCallSitesKnown);
1939     (void)Success;
1940     assert(Success && "Assumed call site replacement to succeed!");
1941 
1942     // Rewire the arguments.
1943     Argument *OldFnArgIt = OldFn->arg_begin();
1944     Argument *NewFnArgIt = NewFn->arg_begin();
1945     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1946          ++OldArgNum, ++OldFnArgIt) {
1947       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1948               ARIs[OldArgNum]) {
1949         if (ARI->CalleeRepairCB)
1950           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1951         NewFnArgIt += ARI->ReplacementTypes.size();
1952       } else {
1953         NewFnArgIt->takeName(&*OldFnArgIt);
1954         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1955         ++NewFnArgIt;
1956       }
1957     }
1958 
1959     // Eliminate the instructions *after* we visited all of them.
1960     for (auto &CallSitePair : CallSitePairs) {
1961       CallBase &OldCB = *CallSitePair.first;
1962       CallBase &NewCB = *CallSitePair.second;
1963       assert(OldCB.getType() == NewCB.getType() &&
1964              "Cannot handle call sites with different types!");
1965       ModifiedFns.insert(OldCB.getFunction());
1966       CGUpdater.replaceCallSite(OldCB, NewCB);
1967       OldCB.replaceAllUsesWith(&NewCB);
1968       OldCB.eraseFromParent();
1969     }
1970 
1971     // Replace the function in the call graph (if any).
1972     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1973 
1974     // If the old function was modified and needed to be reanalyzed, the new one
1975     // does now.
1976     if (ModifiedFns.erase(OldFn))
1977       ModifiedFns.insert(NewFn);
1978 
1979     Changed = ChangeStatus::CHANGED;
1980   }
1981 
1982   return Changed;
1983 }
1984 
1985 void InformationCache::initializeInformationCache(const Function &CF,
1986                                                   FunctionInfo &FI) {
1987   // As we do not modify the function here we can remove the const
1988   // withouth breaking implicit assumptions. At the end of the day, we could
1989   // initialize the cache eagerly which would look the same to the users.
1990   Function &F = const_cast<Function &>(CF);
1991 
1992   // Walk all instructions to find interesting instructions that might be
1993   // queried by abstract attributes during their initialization or update.
1994   // This has to happen before we create attributes.
1995 
1996   for (Instruction &I : instructions(&F)) {
1997     bool IsInterestingOpcode = false;
1998 
1999     // To allow easy access to all instructions in a function with a given
2000     // opcode we store them in the InfoCache. As not all opcodes are interesting
2001     // to concrete attributes we only cache the ones that are as identified in
2002     // the following switch.
2003     // Note: There are no concrete attributes now so this is initially empty.
2004     switch (I.getOpcode()) {
2005     default:
2006       assert(!isa<CallBase>(&I) &&
2007              "New call base instruction type needs to be known in the "
2008              "Attributor.");
2009       break;
2010     case Instruction::Call:
2011       // Calls are interesting on their own, additionally:
2012       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2013       // For `must-tail` calls we remember the caller and callee.
2014       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2015         fillMapFromAssume(*Assume, KnowledgeMap);
2016       } else if (cast<CallInst>(I).isMustTailCall()) {
2017         FI.ContainsMustTailCall = true;
2018         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2019           getFunctionInfo(*Callee).CalledViaMustTail = true;
2020       }
2021       LLVM_FALLTHROUGH;
2022     case Instruction::CallBr:
2023     case Instruction::Invoke:
2024     case Instruction::CleanupRet:
2025     case Instruction::CatchSwitch:
2026     case Instruction::AtomicRMW:
2027     case Instruction::AtomicCmpXchg:
2028     case Instruction::Br:
2029     case Instruction::Resume:
2030     case Instruction::Ret:
2031     case Instruction::Load:
2032       // The alignment of a pointer is interesting for loads.
2033     case Instruction::Store:
2034       // The alignment of a pointer is interesting for stores.
2035       IsInterestingOpcode = true;
2036     }
2037     if (IsInterestingOpcode) {
2038       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2039       if (!Insts)
2040         Insts = new (Allocator) InstructionVectorTy();
2041       Insts->push_back(&I);
2042     }
2043     if (I.mayReadOrWriteMemory())
2044       FI.RWInsts.push_back(&I);
2045   }
2046 
2047   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2048       isInlineViable(F).isSuccess())
2049     InlineableFunctions.insert(&F);
2050 }
2051 
2052 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2053   return AG.getAnalysis<AAManager>(F);
2054 }
2055 
2056 InformationCache::FunctionInfo::~FunctionInfo() {
2057   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2058   // manually destroy them.
2059   for (auto &It : OpcodeInstMap)
2060     It.getSecond()->~InstructionVectorTy();
2061 }
2062 
2063 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2064                                   const AbstractAttribute &ToAA,
2065                                   DepClassTy DepClass) {
2066   if (DepClass == DepClassTy::NONE)
2067     return;
2068   // If we are outside of an update, thus before the actual fixpoint iteration
2069   // started (= when we create AAs), we do not track dependences because we will
2070   // put all AAs into the initial worklist anyway.
2071   if (DependenceStack.empty())
2072     return;
2073   if (FromAA.getState().isAtFixpoint())
2074     return;
2075   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2076 }
2077 
2078 void Attributor::rememberDependences() {
2079   assert(!DependenceStack.empty() && "No dependences to remember!");
2080 
2081   for (DepInfo &DI : *DependenceStack.back()) {
2082     assert((DI.DepClass == DepClassTy::REQUIRED ||
2083             DI.DepClass == DepClassTy::OPTIONAL) &&
2084            "Expected required or optional dependence (1 bit)!");
2085     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2086     DepAAs.push_back(AbstractAttribute::DepTy(
2087         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2088   }
2089 }
2090 
2091 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2092   if (!VisitedFunctions.insert(&F).second)
2093     return;
2094   if (F.isDeclaration())
2095     return;
2096 
2097   // In non-module runs we need to look at the call sites of a function to
2098   // determine if it is part of a must-tail call edge. This will influence what
2099   // attributes we can derive.
2100   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2101   if (!isModulePass() && !FI.CalledViaMustTail) {
2102     for (const Use &U : F.uses())
2103       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2104         if (CB->isCallee(&U) && CB->isMustTailCall())
2105           FI.CalledViaMustTail = true;
2106   }
2107 
2108   IRPosition FPos = IRPosition::function(F);
2109 
2110   // Check for dead BasicBlocks in every function.
2111   // We need dead instruction detection because we do not want to deal with
2112   // broken IR in which SSA rules do not apply.
2113   getOrCreateAAFor<AAIsDead>(FPos);
2114 
2115   // Every function might be "will-return".
2116   getOrCreateAAFor<AAWillReturn>(FPos);
2117 
2118   // Every function might contain instructions that cause "undefined behavior".
2119   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2120 
2121   // Every function can be nounwind.
2122   getOrCreateAAFor<AANoUnwind>(FPos);
2123 
2124   // Every function might be marked "nosync"
2125   getOrCreateAAFor<AANoSync>(FPos);
2126 
2127   // Every function might be "no-free".
2128   getOrCreateAAFor<AANoFree>(FPos);
2129 
2130   // Every function might be "no-return".
2131   getOrCreateAAFor<AANoReturn>(FPos);
2132 
2133   // Every function might be "no-recurse".
2134   getOrCreateAAFor<AANoRecurse>(FPos);
2135 
2136   // Every function might be "readnone/readonly/writeonly/...".
2137   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2138 
2139   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2140   getOrCreateAAFor<AAMemoryLocation>(FPos);
2141 
2142   // Every function might be applicable for Heap-To-Stack conversion.
2143   if (EnableHeapToStack)
2144     getOrCreateAAFor<AAHeapToStack>(FPos);
2145 
2146   // Return attributes are only appropriate if the return type is non void.
2147   Type *ReturnType = F.getReturnType();
2148   if (!ReturnType->isVoidTy()) {
2149     // Argument attribute "returned" --- Create only one per function even
2150     // though it is an argument attribute.
2151     getOrCreateAAFor<AAReturnedValues>(FPos);
2152 
2153     IRPosition RetPos = IRPosition::returned(F);
2154 
2155     // Every returned value might be dead.
2156     getOrCreateAAFor<AAIsDead>(RetPos);
2157 
2158     // Every function might be simplified.
2159     getOrCreateAAFor<AAValueSimplify>(RetPos);
2160 
2161     // Every returned value might be marked noundef.
2162     getOrCreateAAFor<AANoUndef>(RetPos);
2163 
2164     if (ReturnType->isPointerTy()) {
2165 
2166       // Every function with pointer return type might be marked align.
2167       getOrCreateAAFor<AAAlign>(RetPos);
2168 
2169       // Every function with pointer return type might be marked nonnull.
2170       getOrCreateAAFor<AANonNull>(RetPos);
2171 
2172       // Every function with pointer return type might be marked noalias.
2173       getOrCreateAAFor<AANoAlias>(RetPos);
2174 
2175       // Every function with pointer return type might be marked
2176       // dereferenceable.
2177       getOrCreateAAFor<AADereferenceable>(RetPos);
2178     }
2179   }
2180 
2181   for (Argument &Arg : F.args()) {
2182     IRPosition ArgPos = IRPosition::argument(Arg);
2183 
2184     // Every argument might be simplified. We have to go through the Attributor
2185     // interface though as outside AAs can register custom simplification
2186     // callbacks.
2187     bool UsedAssumedInformation = false;
2188     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2189 
2190     // Every argument might be dead.
2191     getOrCreateAAFor<AAIsDead>(ArgPos);
2192 
2193     // Every argument might be marked noundef.
2194     getOrCreateAAFor<AANoUndef>(ArgPos);
2195 
2196     if (Arg.getType()->isPointerTy()) {
2197       // Every argument with pointer type might be marked nonnull.
2198       getOrCreateAAFor<AANonNull>(ArgPos);
2199 
2200       // Every argument with pointer type might be marked noalias.
2201       getOrCreateAAFor<AANoAlias>(ArgPos);
2202 
2203       // Every argument with pointer type might be marked dereferenceable.
2204       getOrCreateAAFor<AADereferenceable>(ArgPos);
2205 
2206       // Every argument with pointer type might be marked align.
2207       getOrCreateAAFor<AAAlign>(ArgPos);
2208 
2209       // Every argument with pointer type might be marked nocapture.
2210       getOrCreateAAFor<AANoCapture>(ArgPos);
2211 
2212       // Every argument with pointer type might be marked
2213       // "readnone/readonly/writeonly/..."
2214       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2215 
2216       // Every argument with pointer type might be marked nofree.
2217       getOrCreateAAFor<AANoFree>(ArgPos);
2218 
2219       // Every argument with pointer type might be privatizable (or promotable)
2220       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2221     }
2222   }
2223 
2224   auto CallSitePred = [&](Instruction &I) -> bool {
2225     auto &CB = cast<CallBase>(I);
2226     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2227 
2228     // Call sites might be dead if they do not have side effects and no live
2229     // users. The return value might be dead if there are no live users.
2230     getOrCreateAAFor<AAIsDead>(CBRetPos);
2231 
2232     Function *Callee = CB.getCalledFunction();
2233     // TODO: Even if the callee is not known now we might be able to simplify
2234     //       the call/callee.
2235     if (!Callee)
2236       return true;
2237 
2238     // Skip declarations except if annotations on their call sites were
2239     // explicitly requested.
2240     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2241         !Callee->hasMetadata(LLVMContext::MD_callback))
2242       return true;
2243 
2244     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2245 
2246       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2247 
2248       // Call site return integer values might be limited by a constant range.
2249       if (Callee->getReturnType()->isIntegerTy())
2250         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2251     }
2252 
2253     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2254 
2255       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2256 
2257       // Every call site argument might be dead.
2258       getOrCreateAAFor<AAIsDead>(CBArgPos);
2259 
2260       // Call site argument might be simplified. We have to go through the
2261       // Attributor interface though as outside AAs can register custom
2262       // simplification callbacks.
2263       bool UsedAssumedInformation = false;
2264       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2265 
2266       // Every call site argument might be marked "noundef".
2267       getOrCreateAAFor<AANoUndef>(CBArgPos);
2268 
2269       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2270         continue;
2271 
2272       // Call site argument attribute "non-null".
2273       getOrCreateAAFor<AANonNull>(CBArgPos);
2274 
2275       // Call site argument attribute "nocapture".
2276       getOrCreateAAFor<AANoCapture>(CBArgPos);
2277 
2278       // Call site argument attribute "no-alias".
2279       getOrCreateAAFor<AANoAlias>(CBArgPos);
2280 
2281       // Call site argument attribute "dereferenceable".
2282       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2283 
2284       // Call site argument attribute "align".
2285       getOrCreateAAFor<AAAlign>(CBArgPos);
2286 
2287       // Call site argument attribute
2288       // "readnone/readonly/writeonly/..."
2289       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2290 
2291       // Call site argument attribute "nofree".
2292       getOrCreateAAFor<AANoFree>(CBArgPos);
2293     }
2294     return true;
2295   };
2296 
2297   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2298   bool Success;
2299   Success = checkForAllInstructionsImpl(
2300       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2301       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2302        (unsigned)Instruction::Call});
2303   (void)Success;
2304   assert(Success && "Expected the check call to be successful!");
2305 
2306   auto LoadStorePred = [&](Instruction &I) -> bool {
2307     if (isa<LoadInst>(I))
2308       getOrCreateAAFor<AAAlign>(
2309           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2310     else
2311       getOrCreateAAFor<AAAlign>(
2312           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2313     return true;
2314   };
2315   Success = checkForAllInstructionsImpl(
2316       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2317       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2318   (void)Success;
2319   assert(Success && "Expected the check call to be successful!");
2320 }
2321 
2322 /// Helpers to ease debugging through output streams and print calls.
2323 ///
2324 ///{
2325 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2326   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2327 }
2328 
2329 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2330   switch (AP) {
2331   case IRPosition::IRP_INVALID:
2332     return OS << "inv";
2333   case IRPosition::IRP_FLOAT:
2334     return OS << "flt";
2335   case IRPosition::IRP_RETURNED:
2336     return OS << "fn_ret";
2337   case IRPosition::IRP_CALL_SITE_RETURNED:
2338     return OS << "cs_ret";
2339   case IRPosition::IRP_FUNCTION:
2340     return OS << "fn";
2341   case IRPosition::IRP_CALL_SITE:
2342     return OS << "cs";
2343   case IRPosition::IRP_ARGUMENT:
2344     return OS << "arg";
2345   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2346     return OS << "cs_arg";
2347   }
2348   llvm_unreachable("Unknown attribute position!");
2349 }
2350 
2351 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2352   const Value &AV = Pos.getAssociatedValue();
2353   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2354      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2355 
2356   if (Pos.hasCallBaseContext())
2357     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2358   return OS << "}";
2359 }
2360 
2361 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2362   OS << "range-state(" << S.getBitWidth() << ")<";
2363   S.getKnown().print(OS);
2364   OS << " / ";
2365   S.getAssumed().print(OS);
2366   OS << ">";
2367 
2368   return OS << static_cast<const AbstractState &>(S);
2369 }
2370 
2371 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2372   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2373 }
2374 
2375 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2376   AA.print(OS);
2377   return OS;
2378 }
2379 
2380 raw_ostream &llvm::operator<<(raw_ostream &OS,
2381                               const PotentialConstantIntValuesState &S) {
2382   OS << "set-state(< {";
2383   if (!S.isValidState())
2384     OS << "full-set";
2385   else {
2386     for (auto &it : S.getAssumedSet())
2387       OS << it << ", ";
2388     if (S.undefIsContained())
2389       OS << "undef ";
2390   }
2391   OS << "} >)";
2392 
2393   return OS;
2394 }
2395 
2396 void AbstractAttribute::print(raw_ostream &OS) const {
2397   OS << "[";
2398   OS << getName();
2399   OS << "] for CtxI ";
2400 
2401   if (auto *I = getCtxI()) {
2402     OS << "'";
2403     I->print(OS);
2404     OS << "'";
2405   } else
2406     OS << "<<null inst>>";
2407 
2408   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2409      << '\n';
2410 }
2411 
2412 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2413   print(OS);
2414 
2415   for (const auto &DepAA : Deps) {
2416     auto *AA = DepAA.getPointer();
2417     OS << "  updates ";
2418     AA->print(OS);
2419   }
2420 
2421   OS << '\n';
2422 }
2423 ///}
2424 
2425 /// ----------------------------------------------------------------------------
2426 ///                       Pass (Manager) Boilerplate
2427 /// ----------------------------------------------------------------------------
2428 
2429 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2430                                      SetVector<Function *> &Functions,
2431                                      AnalysisGetter &AG,
2432                                      CallGraphUpdater &CGUpdater,
2433                                      bool DeleteFns) {
2434   if (Functions.empty())
2435     return false;
2436 
2437   LLVM_DEBUG({
2438     dbgs() << "[Attributor] Run on module with " << Functions.size()
2439            << " functions:\n";
2440     for (Function *Fn : Functions)
2441       dbgs() << "  - " << Fn->getName() << "\n";
2442   });
2443 
2444   // Create an Attributor and initially empty information cache that is filled
2445   // while we identify default attribute opportunities.
2446   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2447                DeleteFns);
2448 
2449   // Create shallow wrappers for all functions that are not IPO amendable
2450   if (AllowShallowWrappers)
2451     for (Function *F : Functions)
2452       if (!A.isFunctionIPOAmendable(*F))
2453         Attributor::createShallowWrapper(*F);
2454 
2455   // Internalize non-exact functions
2456   // TODO: for now we eagerly internalize functions without calculating the
2457   //       cost, we need a cost interface to determine whether internalizing
2458   //       a function is "benefitial"
2459   if (AllowDeepWrapper) {
2460     unsigned FunSize = Functions.size();
2461     for (unsigned u = 0; u < FunSize; u++) {
2462       Function *F = Functions[u];
2463       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2464           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2465         Function *NewF = Attributor::internalizeFunction(*F);
2466         assert(NewF && "Could not internalize function.");
2467         Functions.insert(NewF);
2468 
2469         // Update call graph
2470         CGUpdater.replaceFunctionWith(*F, *NewF);
2471         for (const Use &U : NewF->uses())
2472           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2473             auto *CallerF = CB->getCaller();
2474             CGUpdater.reanalyzeFunction(*CallerF);
2475           }
2476       }
2477     }
2478   }
2479 
2480   for (Function *F : Functions) {
2481     if (F->hasExactDefinition())
2482       NumFnWithExactDefinition++;
2483     else
2484       NumFnWithoutExactDefinition++;
2485 
2486     // We look at internal functions only on-demand but if any use is not a
2487     // direct call or outside the current set of analyzed functions, we have
2488     // to do it eagerly.
2489     if (F->hasLocalLinkage()) {
2490       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2491             const auto *CB = dyn_cast<CallBase>(U.getUser());
2492             return CB && CB->isCallee(&U) &&
2493                    Functions.count(const_cast<Function *>(CB->getCaller()));
2494           }))
2495         continue;
2496     }
2497 
2498     // Populate the Attributor with abstract attribute opportunities in the
2499     // function and the information cache with IR information.
2500     A.identifyDefaultAbstractAttributes(*F);
2501   }
2502 
2503   ChangeStatus Changed = A.run();
2504 
2505   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2506                     << " functions, result: " << Changed << ".\n");
2507   return Changed == ChangeStatus::CHANGED;
2508 }
2509 
2510 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2511 
2512 void AADepGraph::dumpGraph() {
2513   static std::atomic<int> CallTimes;
2514   std::string Prefix;
2515 
2516   if (!DepGraphDotFileNamePrefix.empty())
2517     Prefix = DepGraphDotFileNamePrefix;
2518   else
2519     Prefix = "dep_graph";
2520   std::string Filename =
2521       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2522 
2523   outs() << "Dependency graph dump to " << Filename << ".\n";
2524 
2525   std::error_code EC;
2526 
2527   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2528   if (!EC)
2529     llvm::WriteGraph(File, this);
2530 
2531   CallTimes++;
2532 }
2533 
2534 void AADepGraph::print() {
2535   for (auto DepAA : SyntheticRoot.Deps)
2536     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2537 }
2538 
2539 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2540   FunctionAnalysisManager &FAM =
2541       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2542   AnalysisGetter AG(FAM);
2543 
2544   SetVector<Function *> Functions;
2545   for (Function &F : M)
2546     Functions.insert(&F);
2547 
2548   CallGraphUpdater CGUpdater;
2549   BumpPtrAllocator Allocator;
2550   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2551   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2552                                /* DeleteFns */ true)) {
2553     // FIXME: Think about passes we will preserve and add them here.
2554     return PreservedAnalyses::none();
2555   }
2556   return PreservedAnalyses::all();
2557 }
2558 
2559 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2560                                            CGSCCAnalysisManager &AM,
2561                                            LazyCallGraph &CG,
2562                                            CGSCCUpdateResult &UR) {
2563   FunctionAnalysisManager &FAM =
2564       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2565   AnalysisGetter AG(FAM);
2566 
2567   SetVector<Function *> Functions;
2568   for (LazyCallGraph::Node &N : C)
2569     Functions.insert(&N.getFunction());
2570 
2571   if (Functions.empty())
2572     return PreservedAnalyses::all();
2573 
2574   Module &M = *Functions.back()->getParent();
2575   CallGraphUpdater CGUpdater;
2576   CGUpdater.initialize(CG, C, AM, UR);
2577   BumpPtrAllocator Allocator;
2578   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2579   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2580                                /* DeleteFns */ false)) {
2581     // FIXME: Think about passes we will preserve and add them here.
2582     PreservedAnalyses PA;
2583     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2584     return PA;
2585   }
2586   return PreservedAnalyses::all();
2587 }
2588 
2589 namespace llvm {
2590 
2591 template <> struct GraphTraits<AADepGraphNode *> {
2592   using NodeRef = AADepGraphNode *;
2593   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2594   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2595 
2596   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2597   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2598 
2599   using ChildIteratorType =
2600       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2601   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2602 
2603   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2604 
2605   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2606 };
2607 
2608 template <>
2609 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2610   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2611 
2612   using nodes_iterator =
2613       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2614 
2615   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2616 
2617   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2618 };
2619 
2620 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2621   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2622 
2623   static std::string getNodeLabel(const AADepGraphNode *Node,
2624                                   const AADepGraph *DG) {
2625     std::string AAString;
2626     raw_string_ostream O(AAString);
2627     Node->print(O);
2628     return AAString;
2629   }
2630 };
2631 
2632 } // end namespace llvm
2633 
2634 namespace {
2635 
2636 struct AttributorLegacyPass : public ModulePass {
2637   static char ID;
2638 
2639   AttributorLegacyPass() : ModulePass(ID) {
2640     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2641   }
2642 
2643   bool runOnModule(Module &M) override {
2644     if (skipModule(M))
2645       return false;
2646 
2647     AnalysisGetter AG;
2648     SetVector<Function *> Functions;
2649     for (Function &F : M)
2650       Functions.insert(&F);
2651 
2652     CallGraphUpdater CGUpdater;
2653     BumpPtrAllocator Allocator;
2654     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2655     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2656                                     /* DeleteFns*/ true);
2657   }
2658 
2659   void getAnalysisUsage(AnalysisUsage &AU) const override {
2660     // FIXME: Think about passes we will preserve and add them here.
2661     AU.addRequired<TargetLibraryInfoWrapperPass>();
2662   }
2663 };
2664 
2665 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2666   static char ID;
2667 
2668   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2669     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2670   }
2671 
2672   bool runOnSCC(CallGraphSCC &SCC) override {
2673     if (skipSCC(SCC))
2674       return false;
2675 
2676     SetVector<Function *> Functions;
2677     for (CallGraphNode *CGN : SCC)
2678       if (Function *Fn = CGN->getFunction())
2679         if (!Fn->isDeclaration())
2680           Functions.insert(Fn);
2681 
2682     if (Functions.empty())
2683       return false;
2684 
2685     AnalysisGetter AG;
2686     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2687     CallGraphUpdater CGUpdater;
2688     CGUpdater.initialize(CG, SCC);
2689     Module &M = *Functions.back()->getParent();
2690     BumpPtrAllocator Allocator;
2691     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2692     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2693                                     /* DeleteFns */ false);
2694   }
2695 
2696   void getAnalysisUsage(AnalysisUsage &AU) const override {
2697     // FIXME: Think about passes we will preserve and add them here.
2698     AU.addRequired<TargetLibraryInfoWrapperPass>();
2699     CallGraphSCCPass::getAnalysisUsage(AU);
2700   }
2701 };
2702 
2703 } // end anonymous namespace
2704 
2705 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2706 Pass *llvm::createAttributorCGSCCLegacyPass() {
2707   return new AttributorCGSCCLegacyPass();
2708 }
2709 
2710 char AttributorLegacyPass::ID = 0;
2711 char AttributorCGSCCLegacyPass::ID = 0;
2712 
2713 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2714                       "Deduce and propagate attributes", false, false)
2715 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2716 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2717                     "Deduce and propagate attributes", false, false)
2718 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2719                       "Deduce and propagate attributes (CGSCC pass)", false,
2720                       false)
2721 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2722 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2723 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2724                     "Deduce and propagate attributes (CGSCC pass)", false,
2725                     false)
2726