1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/TinyPtrVector.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/MustExecute.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/DebugCounter.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/GraphWriter.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 
54 #include <cassert>
55 #include <string>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "attributor"
60 
61 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
62               "Determine what attributes are manifested in the IR");
63 
64 STATISTIC(NumFnDeleted, "Number of function deleted");
65 STATISTIC(NumFnWithExactDefinition,
66           "Number of functions with exact definitions");
67 STATISTIC(NumFnWithoutExactDefinition,
68           "Number of functions without exact definitions");
69 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
70 STATISTIC(NumAttributesTimedOut,
71           "Number of abstract attributes timed out before fixpoint");
72 STATISTIC(NumAttributesValidFixpoint,
73           "Number of abstract attributes in a valid fixpoint state");
74 STATISTIC(NumAttributesManifested,
75           "Number of abstract attributes manifested in IR");
76 
77 // TODO: Determine a good default value.
78 //
79 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
80 // (when run with the first 5 abstract attributes). The results also indicate
81 // that we never reach 32 iterations but always find a fixpoint sooner.
82 //
83 // This will become more evolved once we perform two interleaved fixpoint
84 // iterations: bottom-up and top-down.
85 static cl::opt<unsigned>
86     SetFixpointIterations("attributor-max-iterations", cl::Hidden,
87                           cl::desc("Maximal number of fixpoint iterations."),
88                           cl::init(32));
89 
90 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
91     "attributor-max-initialization-chain-length", cl::Hidden,
92     cl::desc(
93         "Maximal number of chained initializations (to avoid stack overflows)"),
94     cl::location(MaxInitializationChainLength), cl::init(1024));
95 unsigned llvm::MaxInitializationChainLength;
96 
97 static cl::opt<bool> VerifyMaxFixpointIterations(
98     "attributor-max-iterations-verify", cl::Hidden,
99     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
100     cl::init(false));
101 
102 static cl::opt<bool> AnnotateDeclarationCallSites(
103     "attributor-annotate-decl-cs", cl::Hidden,
104     cl::desc("Annotate call sites of function declarations."), cl::init(false));
105 
106 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
107                                        cl::init(true), cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
111                          cl::desc("Allow the Attributor to create shallow "
112                                   "wrappers for non-exact definitions."),
113                          cl::init(false));
114 
115 static cl::opt<bool>
116     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
117                      cl::desc("Allow the Attributor to use IP information "
118                               "derived from non-exact functions via cloning"),
119                      cl::init(false));
120 
121 // These options can only used for debug builds.
122 #ifndef NDEBUG
123 static cl::list<std::string>
124     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
125                   cl::desc("Comma seperated list of attribute names that are "
126                            "allowed to be seeded."),
127                   cl::ZeroOrMore, cl::CommaSeparated);
128 
129 static cl::list<std::string> FunctionSeedAllowList(
130     "attributor-function-seed-allow-list", cl::Hidden,
131     cl::desc("Comma seperated list of function names that are "
132              "allowed to be seeded."),
133     cl::ZeroOrMore, cl::CommaSeparated);
134 #endif
135 
136 static cl::opt<bool>
137     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
138                  cl::desc("Dump the dependency graph to dot files."),
139                  cl::init(false));
140 
141 static cl::opt<std::string> DepGraphDotFileNamePrefix(
142     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
143     cl::desc("The prefix used for the CallGraph dot file names."));
144 
145 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
146                                   cl::desc("View the dependency graph."),
147                                   cl::init(false));
148 
149 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
150                                        cl::desc("Print attribute dependencies"),
151                                        cl::init(false));
152 
153 static cl::opt<bool> EnableCallSiteSpecific(
154     "attributor-enable-call-site-specific-deduction", cl::Hidden,
155     cl::desc("Allow the Attributor to do call site specific analysis"),
156     cl::init(false));
157 
158 static cl::opt<bool>
159     PrintCallGraph("attributor-print-call-graph", cl::Hidden,
160                    cl::desc("Print Attributor's internal call graph"),
161                    cl::init(false));
162 
163 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
164                                       cl::Hidden,
165                                       cl::desc("Try to simplify all loads."),
166                                       cl::init(true));
167 
168 /// Logic operators for the change status enum class.
169 ///
170 ///{
171 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
172   return L == ChangeStatus::CHANGED ? L : R;
173 }
174 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
175   L = L | R;
176   return L;
177 }
178 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
179   return L == ChangeStatus::UNCHANGED ? L : R;
180 }
181 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
182   L = L & R;
183   return L;
184 }
185 ///}
186 
187 bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
188                       const AbstractAttribute &QueryingAA) {
189   // We are looking for volatile instructions or non-relaxed atomics.
190   if (const auto *CB = dyn_cast<CallBase>(&I)) {
191     if (CB->hasFnAttr(Attribute::NoSync))
192       return true;
193 
194     // Non-convergent and readnone imply nosync.
195     if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
196       return true;
197 
198     if (AANoSync::isNoSyncIntrinsic(&I))
199       return true;
200 
201     const auto &NoSyncAA = A.getAAFor<AANoSync>(
202         QueryingAA, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
203     return NoSyncAA.isAssumedNoSync();
204   }
205 
206   if (!I.mayReadOrWriteMemory())
207     return true;
208 
209   return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
210 }
211 
212 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
213                              const Value &V) {
214   if (auto *C = dyn_cast<Constant>(&V))
215     return !C->isThreadDependent();
216   // TODO: Inspect and cache more complex instructions.
217   if (auto *CB = dyn_cast<CallBase>(&V))
218     return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
219            !CB->mayReadFromMemory();
220   const Function *Scope = nullptr;
221   if (auto *I = dyn_cast<Instruction>(&V))
222     Scope = I->getFunction();
223   if (auto *A = dyn_cast<Argument>(&V))
224     Scope = A->getParent();
225   if (!Scope)
226     return false;
227   auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
228       QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
229   return NoRecurseAA.isAssumedNoRecurse();
230 }
231 
232 Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty,
233                                     const TargetLibraryInfo *TLI) {
234   if (isa<AllocaInst>(Obj))
235     return UndefValue::get(&Ty);
236   if (isAllocationFn(&Obj, TLI))
237     return getInitialValueOfAllocation(&cast<CallBase>(Obj), TLI, &Ty);
238   auto *GV = dyn_cast<GlobalVariable>(&Obj);
239   if (!GV || !GV->hasLocalLinkage())
240     return nullptr;
241   if (!GV->hasInitializer())
242     return UndefValue::get(&Ty);
243   return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
244 }
245 
246 bool AA::isValidInScope(const Value &V, const Function *Scope) {
247   if (isa<Constant>(V))
248     return true;
249   if (auto *I = dyn_cast<Instruction>(&V))
250     return I->getFunction() == Scope;
251   if (auto *A = dyn_cast<Argument>(&V))
252     return A->getParent() == Scope;
253   return false;
254 }
255 
256 bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
257                            InformationCache &InfoCache) {
258   if (isa<Constant>(V))
259     return true;
260   const Function *Scope = CtxI.getFunction();
261   if (auto *A = dyn_cast<Argument>(&V))
262     return A->getParent() == Scope;
263   if (auto *I = dyn_cast<Instruction>(&V))
264     if (I->getFunction() == Scope) {
265       const DominatorTree *DT =
266           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
267       return DT && DT->dominates(I, &CtxI);
268     }
269   return false;
270 }
271 
272 Value *AA::getWithType(Value &V, Type &Ty) {
273   if (V.getType() == &Ty)
274     return &V;
275   if (isa<PoisonValue>(V))
276     return PoisonValue::get(&Ty);
277   if (isa<UndefValue>(V))
278     return UndefValue::get(&Ty);
279   if (auto *C = dyn_cast<Constant>(&V)) {
280     if (C->isNullValue())
281       return Constant::getNullValue(&Ty);
282     if (C->getType()->isPointerTy() && Ty.isPointerTy())
283       return ConstantExpr::getPointerCast(C, &Ty);
284     if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
285       if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
286         return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
287       if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
288         return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
289     }
290   }
291   return nullptr;
292 }
293 
294 Optional<Value *>
295 AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
296                                          const Optional<Value *> &B, Type *Ty) {
297   if (A == B)
298     return A;
299   if (!B.hasValue())
300     return A;
301   if (*B == nullptr)
302     return nullptr;
303   if (!A.hasValue())
304     return Ty ? getWithType(**B, *Ty) : nullptr;
305   if (*A == nullptr)
306     return nullptr;
307   if (!Ty)
308     Ty = (*A)->getType();
309   if (isa_and_nonnull<UndefValue>(*A))
310     return getWithType(**B, *Ty);
311   if (isa<UndefValue>(*B))
312     return A;
313   if (*A && *B && *A == getWithType(**B, *Ty))
314     return A;
315   return nullptr;
316 }
317 
318 bool AA::getPotentialCopiesOfStoredValue(
319     Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
320     const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
321 
322   Value &Ptr = *SI.getPointerOperand();
323   SmallVector<Value *, 8> Objects;
324   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI,
325                                        UsedAssumedInformation)) {
326     LLVM_DEBUG(
327         dbgs() << "Underlying objects stored into could not be determined\n";);
328     return false;
329   }
330 
331   SmallVector<const AAPointerInfo *> PIs;
332   SmallVector<Value *> NewCopies;
333 
334   for (Value *Obj : Objects) {
335     LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
336     if (isa<UndefValue>(Obj))
337       continue;
338     if (isa<ConstantPointerNull>(Obj)) {
339       // A null pointer access can be undefined but any offset from null may
340       // be OK. We do not try to optimize the latter.
341       if (!NullPointerIsDefined(SI.getFunction(),
342                                 Ptr.getType()->getPointerAddressSpace()) &&
343           A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
344               Obj)
345         continue;
346       LLVM_DEBUG(
347           dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
348       return false;
349     }
350     if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
351         !isNoAliasCall(Obj)) {
352       LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
353                         << "\n";);
354       return false;
355     }
356     if (auto *GV = dyn_cast<GlobalVariable>(Obj))
357       if (!GV->hasLocalLinkage()) {
358         LLVM_DEBUG(dbgs() << "Underlying object is global with external "
359                              "linkage, not supported yet: "
360                           << *Obj << "\n";);
361         return false;
362       }
363 
364     auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
365       if (!Acc.isRead())
366         return true;
367       auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
368       if (!LI) {
369         LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
370                              "instruction not supported yet: "
371                           << *Acc.getRemoteInst() << "\n";);
372         return false;
373       }
374       NewCopies.push_back(LI);
375       return true;
376     };
377 
378     auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
379                                          DepClassTy::NONE);
380     if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
381       LLVM_DEBUG(
382           dbgs()
383           << "Failed to verify all interfering accesses for underlying object: "
384           << *Obj << "\n");
385       return false;
386     }
387     PIs.push_back(&PI);
388   }
389 
390   for (auto *PI : PIs) {
391     if (!PI->getState().isAtFixpoint())
392       UsedAssumedInformation = true;
393     A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
394   }
395   PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
396 
397   return true;
398 }
399 
400 static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
401                                         const AbstractAttribute &QueryingAA,
402                                         bool RequireReadNone, bool &IsKnown) {
403 
404   IRPosition::Kind Kind = IRP.getPositionKind();
405   if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
406     const auto &MemLocAA =
407         A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
408     if (MemLocAA.isAssumedReadNone()) {
409       IsKnown = MemLocAA.isKnownReadNone();
410       if (!IsKnown)
411         A.recordDependence(MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
412       return true;
413     }
414   }
415 
416   const auto &MemBehaviorAA =
417       A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
418   if (MemBehaviorAA.isAssumedReadNone() ||
419       (!RequireReadNone && MemBehaviorAA.isAssumedReadOnly())) {
420     IsKnown = RequireReadNone ? MemBehaviorAA.isKnownReadNone()
421                               : MemBehaviorAA.isKnownReadOnly();
422     if (!IsKnown)
423       A.recordDependence(MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
424     return true;
425   }
426 
427   return false;
428 }
429 
430 bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
431                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
432   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
433                                      /* RequireReadNone */ false, IsKnown);
434 }
435 bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
436                            const AbstractAttribute &QueryingAA, bool &IsKnown) {
437   return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
438                                      /* RequireReadNone */ true, IsKnown);
439 }
440 
441 static bool
442 isPotentiallyReachable(Attributor &A, const Instruction &FromI,
443                        const Instruction *ToI, const Function &ToFn,
444                        const AbstractAttribute &QueryingAA,
445                        std::function<bool(const Function &F)> GoBackwardsCB) {
446   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName()
447                     << " from " << FromI << " [GBCB: " << bool(GoBackwardsCB)
448                     << "]\n");
449 
450   SmallPtrSet<const Instruction *, 8> Visited;
451   SmallVector<const Instruction *> Worklist;
452   Worklist.push_back(&FromI);
453 
454   while (!Worklist.empty()) {
455     const Instruction *CurFromI = Worklist.pop_back_val();
456     if (!Visited.insert(CurFromI).second)
457       continue;
458 
459     const Function *FromFn = CurFromI->getFunction();
460     if (FromFn == &ToFn) {
461       if (!ToI)
462         return true;
463       LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
464                         << " intraprocedurally\n");
465       const auto &ReachabilityAA = A.getAAFor<AAReachability>(
466           QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
467       bool Result = ReachabilityAA.isAssumedReachable(A, *CurFromI, *ToI);
468       LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
469                         << (Result ? "can potentially " : "cannot ") << "reach "
470                         << *ToI << " [Intra]\n");
471       if (Result)
472         return true;
473       continue;
474     }
475 
476     // TODO: If we can go arbitrarily backwards we will eventually reach an
477     // entry point that can reach ToI. Only once this takes a set of blocks
478     // through which we cannot go, or once we track internal functions not
479     // accessible from the outside, it makes sense to perform backwards analysis
480     // in the absence of a GoBackwardsCB.
481     if (!GoBackwardsCB) {
482       LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from "
483                         << *CurFromI << " is not checked backwards, abort\n");
484       return true;
485     }
486 
487     // Check if the current instruction is already known to reach the ToFn.
488     const auto &FnReachabilityAA = A.getAAFor<AAFunctionReachability>(
489         QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
490     bool Result = FnReachabilityAA.instructionCanReach(
491         A, *CurFromI, ToFn, /* UseBackwards */ false);
492     LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
493                       << " " << (Result ? "can potentially " : "cannot ")
494                       << "reach @" << ToFn.getName() << " [FromFn]\n");
495     if (Result)
496       return true;
497 
498     // If we do not go backwards from the FromFn we are done here and so far we
499     // could not find a way to reach ToFn/ToI.
500     if (!GoBackwardsCB(*FromFn))
501       continue;
502 
503     LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
504                       << FromFn->getName() << "\n");
505 
506     auto CheckCallSite = [&](AbstractCallSite ACS) {
507       CallBase *CB = ACS.getInstruction();
508       if (!CB)
509         return false;
510 
511       if (isa<InvokeInst>(CB))
512         return false;
513 
514       Instruction *Inst = CB->getNextNonDebugInstruction();
515       Worklist.push_back(Inst);
516       return true;
517     };
518 
519     bool UsedAssumedInformation = false;
520     Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
521                                      /* RequireAllCallSites */ true,
522                                      &QueryingAA, UsedAssumedInformation);
523     if (Result) {
524       LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
525                         << " in @" << FromFn->getName()
526                         << " failed, give up\n");
527       return true;
528     }
529 
530     LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
531                       << " in @" << FromFn->getName()
532                       << " worklist size is: " << Worklist.size() << "\n");
533   }
534   return false;
535 }
536 
537 bool AA::isPotentiallyReachable(
538     Attributor &A, const Instruction &FromI, const Instruction &ToI,
539     const AbstractAttribute &QueryingAA,
540     std::function<bool(const Function &F)> GoBackwardsCB) {
541   LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable " << ToI << " from "
542                     << FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n");
543   const Function *ToFn = ToI.getFunction();
544   return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
545                                   GoBackwardsCB);
546 }
547 
548 bool AA::isPotentiallyReachable(
549     Attributor &A, const Instruction &FromI, const Function &ToFn,
550     const AbstractAttribute &QueryingAA,
551     std::function<bool(const Function &F)> GoBackwardsCB) {
552   return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA,
553                                   GoBackwardsCB);
554 }
555 
556 /// Return true if \p New is equal or worse than \p Old.
557 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
558   if (!Old.isIntAttribute())
559     return true;
560 
561   return Old.getValueAsInt() >= New.getValueAsInt();
562 }
563 
564 /// Return true if the information provided by \p Attr was added to the
565 /// attribute list \p Attrs. This is only the case if it was not already present
566 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
567 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
568                              AttributeList &Attrs, int AttrIdx,
569                              bool ForceReplace = false) {
570 
571   if (Attr.isEnumAttribute()) {
572     Attribute::AttrKind Kind = Attr.getKindAsEnum();
573     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
574       if (!ForceReplace &&
575           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
576         return false;
577     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
578     return true;
579   }
580   if (Attr.isStringAttribute()) {
581     StringRef Kind = Attr.getKindAsString();
582     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
583       if (!ForceReplace &&
584           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
585         return false;
586     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
587     return true;
588   }
589   if (Attr.isIntAttribute()) {
590     Attribute::AttrKind Kind = Attr.getKindAsEnum();
591     if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
592       if (!ForceReplace &&
593           isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
594         return false;
595     Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
596     Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
597     return true;
598   }
599 
600   llvm_unreachable("Expected enum or string attribute!");
601 }
602 
603 Argument *IRPosition::getAssociatedArgument() const {
604   if (getPositionKind() == IRP_ARGUMENT)
605     return cast<Argument>(&getAnchorValue());
606 
607   // Not an Argument and no argument number means this is not a call site
608   // argument, thus we cannot find a callback argument to return.
609   int ArgNo = getCallSiteArgNo();
610   if (ArgNo < 0)
611     return nullptr;
612 
613   // Use abstract call sites to make the connection between the call site
614   // values and the ones in callbacks. If a callback was found that makes use
615   // of the underlying call site operand, we want the corresponding callback
616   // callee argument and not the direct callee argument.
617   Optional<Argument *> CBCandidateArg;
618   SmallVector<const Use *, 4> CallbackUses;
619   const auto &CB = cast<CallBase>(getAnchorValue());
620   AbstractCallSite::getCallbackUses(CB, CallbackUses);
621   for (const Use *U : CallbackUses) {
622     AbstractCallSite ACS(U);
623     assert(ACS && ACS.isCallbackCall());
624     if (!ACS.getCalledFunction())
625       continue;
626 
627     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
628 
629       // Test if the underlying call site operand is argument number u of the
630       // callback callee.
631       if (ACS.getCallArgOperandNo(u) != ArgNo)
632         continue;
633 
634       assert(ACS.getCalledFunction()->arg_size() > u &&
635              "ACS mapped into var-args arguments!");
636       if (CBCandidateArg.hasValue()) {
637         CBCandidateArg = nullptr;
638         break;
639       }
640       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
641     }
642   }
643 
644   // If we found a unique callback candidate argument, return it.
645   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
646     return CBCandidateArg.getValue();
647 
648   // If no callbacks were found, or none used the underlying call site operand
649   // exclusively, use the direct callee argument if available.
650   const Function *Callee = CB.getCalledFunction();
651   if (Callee && Callee->arg_size() > unsigned(ArgNo))
652     return Callee->getArg(ArgNo);
653 
654   return nullptr;
655 }
656 
657 ChangeStatus AbstractAttribute::update(Attributor &A) {
658   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
659   if (getState().isAtFixpoint())
660     return HasChanged;
661 
662   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
663 
664   HasChanged = updateImpl(A);
665 
666   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
667                     << "\n");
668 
669   return HasChanged;
670 }
671 
672 ChangeStatus
673 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
674                                    const ArrayRef<Attribute> &DeducedAttrs,
675                                    bool ForceReplace) {
676   Function *ScopeFn = IRP.getAnchorScope();
677   IRPosition::Kind PK = IRP.getPositionKind();
678 
679   // In the following some generic code that will manifest attributes in
680   // DeducedAttrs if they improve the current IR. Due to the different
681   // annotation positions we use the underlying AttributeList interface.
682 
683   AttributeList Attrs;
684   switch (PK) {
685   case IRPosition::IRP_INVALID:
686   case IRPosition::IRP_FLOAT:
687     return ChangeStatus::UNCHANGED;
688   case IRPosition::IRP_ARGUMENT:
689   case IRPosition::IRP_FUNCTION:
690   case IRPosition::IRP_RETURNED:
691     Attrs = ScopeFn->getAttributes();
692     break;
693   case IRPosition::IRP_CALL_SITE:
694   case IRPosition::IRP_CALL_SITE_RETURNED:
695   case IRPosition::IRP_CALL_SITE_ARGUMENT:
696     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
697     break;
698   }
699 
700   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
701   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
702   for (const Attribute &Attr : DeducedAttrs) {
703     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
704       continue;
705 
706     HasChanged = ChangeStatus::CHANGED;
707   }
708 
709   if (HasChanged == ChangeStatus::UNCHANGED)
710     return HasChanged;
711 
712   switch (PK) {
713   case IRPosition::IRP_ARGUMENT:
714   case IRPosition::IRP_FUNCTION:
715   case IRPosition::IRP_RETURNED:
716     ScopeFn->setAttributes(Attrs);
717     break;
718   case IRPosition::IRP_CALL_SITE:
719   case IRPosition::IRP_CALL_SITE_RETURNED:
720   case IRPosition::IRP_CALL_SITE_ARGUMENT:
721     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
722     break;
723   case IRPosition::IRP_INVALID:
724   case IRPosition::IRP_FLOAT:
725     break;
726   }
727 
728   return HasChanged;
729 }
730 
731 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
732 const IRPosition
733     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
734 
735 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
736   IRPositions.emplace_back(IRP);
737 
738   // Helper to determine if operand bundles on a call site are benin or
739   // potentially problematic. We handle only llvm.assume for now.
740   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
741     return (isa<IntrinsicInst>(CB) &&
742             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
743   };
744 
745   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
746   switch (IRP.getPositionKind()) {
747   case IRPosition::IRP_INVALID:
748   case IRPosition::IRP_FLOAT:
749   case IRPosition::IRP_FUNCTION:
750     return;
751   case IRPosition::IRP_ARGUMENT:
752   case IRPosition::IRP_RETURNED:
753     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
754     return;
755   case IRPosition::IRP_CALL_SITE:
756     assert(CB && "Expected call site!");
757     // TODO: We need to look at the operand bundles similar to the redirection
758     //       in CallBase.
759     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
760       if (const Function *Callee = CB->getCalledFunction())
761         IRPositions.emplace_back(IRPosition::function(*Callee));
762     return;
763   case IRPosition::IRP_CALL_SITE_RETURNED:
764     assert(CB && "Expected call site!");
765     // TODO: We need to look at the operand bundles similar to the redirection
766     //       in CallBase.
767     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
768       if (const Function *Callee = CB->getCalledFunction()) {
769         IRPositions.emplace_back(IRPosition::returned(*Callee));
770         IRPositions.emplace_back(IRPosition::function(*Callee));
771         for (const Argument &Arg : Callee->args())
772           if (Arg.hasReturnedAttr()) {
773             IRPositions.emplace_back(
774                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
775             IRPositions.emplace_back(
776                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
777             IRPositions.emplace_back(IRPosition::argument(Arg));
778           }
779       }
780     }
781     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
782     return;
783   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
784     assert(CB && "Expected call site!");
785     // TODO: We need to look at the operand bundles similar to the redirection
786     //       in CallBase.
787     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
788       const Function *Callee = CB->getCalledFunction();
789       if (Callee) {
790         if (Argument *Arg = IRP.getAssociatedArgument())
791           IRPositions.emplace_back(IRPosition::argument(*Arg));
792         IRPositions.emplace_back(IRPosition::function(*Callee));
793       }
794     }
795     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
796     return;
797   }
798   }
799 }
800 
801 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
802                          bool IgnoreSubsumingPositions, Attributor *A) const {
803   SmallVector<Attribute, 4> Attrs;
804   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
805     for (Attribute::AttrKind AK : AKs)
806       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
807         return true;
808     // The first position returned by the SubsumingPositionIterator is
809     // always the position itself. If we ignore subsuming positions we
810     // are done after the first iteration.
811     if (IgnoreSubsumingPositions)
812       break;
813   }
814   if (A)
815     for (Attribute::AttrKind AK : AKs)
816       if (getAttrsFromAssumes(AK, Attrs, *A))
817         return true;
818   return false;
819 }
820 
821 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
822                           SmallVectorImpl<Attribute> &Attrs,
823                           bool IgnoreSubsumingPositions, Attributor *A) const {
824   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
825     for (Attribute::AttrKind AK : AKs)
826       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
827     // The first position returned by the SubsumingPositionIterator is
828     // always the position itself. If we ignore subsuming positions we
829     // are done after the first iteration.
830     if (IgnoreSubsumingPositions)
831       break;
832   }
833   if (A)
834     for (Attribute::AttrKind AK : AKs)
835       getAttrsFromAssumes(AK, Attrs, *A);
836 }
837 
838 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
839                                     SmallVectorImpl<Attribute> &Attrs) const {
840   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
841     return false;
842 
843   AttributeList AttrList;
844   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
845     AttrList = CB->getAttributes();
846   else
847     AttrList = getAssociatedFunction()->getAttributes();
848 
849   bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
850   if (HasAttr)
851     Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
852   return HasAttr;
853 }
854 
855 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
856                                      SmallVectorImpl<Attribute> &Attrs,
857                                      Attributor &A) const {
858   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
859   Value &AssociatedValue = getAssociatedValue();
860 
861   const Assume2KnowledgeMap &A2K =
862       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
863 
864   // Check if we found any potential assume use, if not we don't need to create
865   // explorer iterators.
866   if (A2K.empty())
867     return false;
868 
869   LLVMContext &Ctx = AssociatedValue.getContext();
870   unsigned AttrsSize = Attrs.size();
871   MustBeExecutedContextExplorer &Explorer =
872       A.getInfoCache().getMustBeExecutedContextExplorer();
873   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
874   for (auto &It : A2K)
875     if (Explorer.findInContextOf(It.first, EIt, EEnd))
876       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
877   return AttrsSize != Attrs.size();
878 }
879 
880 void IRPosition::verify() {
881 #ifdef EXPENSIVE_CHECKS
882   switch (getPositionKind()) {
883   case IRP_INVALID:
884     assert((CBContext == nullptr) &&
885            "Invalid position must not have CallBaseContext!");
886     assert(!Enc.getOpaqueValue() &&
887            "Expected a nullptr for an invalid position!");
888     return;
889   case IRP_FLOAT:
890     assert((!isa<Argument>(&getAssociatedValue())) &&
891            "Expected specialized kind for argument values!");
892     return;
893   case IRP_RETURNED:
894     assert(isa<Function>(getAsValuePtr()) &&
895            "Expected function for a 'returned' position!");
896     assert(getAsValuePtr() == &getAssociatedValue() &&
897            "Associated value mismatch!");
898     return;
899   case IRP_CALL_SITE_RETURNED:
900     assert((CBContext == nullptr) &&
901            "'call site returned' position must not have CallBaseContext!");
902     assert((isa<CallBase>(getAsValuePtr())) &&
903            "Expected call base for 'call site returned' position!");
904     assert(getAsValuePtr() == &getAssociatedValue() &&
905            "Associated value mismatch!");
906     return;
907   case IRP_CALL_SITE:
908     assert((CBContext == nullptr) &&
909            "'call site function' position must not have CallBaseContext!");
910     assert((isa<CallBase>(getAsValuePtr())) &&
911            "Expected call base for 'call site function' position!");
912     assert(getAsValuePtr() == &getAssociatedValue() &&
913            "Associated value mismatch!");
914     return;
915   case IRP_FUNCTION:
916     assert(isa<Function>(getAsValuePtr()) &&
917            "Expected function for a 'function' position!");
918     assert(getAsValuePtr() == &getAssociatedValue() &&
919            "Associated value mismatch!");
920     return;
921   case IRP_ARGUMENT:
922     assert(isa<Argument>(getAsValuePtr()) &&
923            "Expected argument for a 'argument' position!");
924     assert(getAsValuePtr() == &getAssociatedValue() &&
925            "Associated value mismatch!");
926     return;
927   case IRP_CALL_SITE_ARGUMENT: {
928     assert((CBContext == nullptr) &&
929            "'call site argument' position must not have CallBaseContext!");
930     Use *U = getAsUsePtr();
931     (void)U; // Silence unused variable warning.
932     assert(U && "Expected use for a 'call site argument' position!");
933     assert(isa<CallBase>(U->getUser()) &&
934            "Expected call base user for a 'call site argument' position!");
935     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
936            "Expected call base argument operand for a 'call site argument' "
937            "position");
938     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
939                unsigned(getCallSiteArgNo()) &&
940            "Argument number mismatch!");
941     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
942     return;
943   }
944   }
945 #endif
946 }
947 
948 Optional<Constant *>
949 Attributor::getAssumedConstant(const IRPosition &IRP,
950                                const AbstractAttribute &AA,
951                                bool &UsedAssumedInformation) {
952   // First check all callbacks provided by outside AAs. If any of them returns
953   // a non-null value that is different from the associated value, or None, we
954   // assume it's simpliied.
955   for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
956     Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
957     if (!SimplifiedV.hasValue())
958       return llvm::None;
959     if (isa_and_nonnull<Constant>(*SimplifiedV))
960       return cast<Constant>(*SimplifiedV);
961     return nullptr;
962   }
963   const auto &ValueSimplifyAA =
964       getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
965   Optional<Value *> SimplifiedV =
966       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
967   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
968   UsedAssumedInformation |= !IsKnown;
969   if (!SimplifiedV.hasValue()) {
970     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
971     return llvm::None;
972   }
973   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
974     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
975     return UndefValue::get(IRP.getAssociatedType());
976   }
977   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
978   if (CI)
979     CI = dyn_cast_or_null<Constant>(
980         AA::getWithType(*CI, *IRP.getAssociatedType()));
981   if (CI)
982     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
983   return CI;
984 }
985 
986 Optional<Value *>
987 Attributor::getAssumedSimplified(const IRPosition &IRP,
988                                  const AbstractAttribute *AA,
989                                  bool &UsedAssumedInformation) {
990   // First check all callbacks provided by outside AAs. If any of them returns
991   // a non-null value that is different from the associated value, or None, we
992   // assume it's simpliied.
993   for (auto &CB : SimplificationCallbacks.lookup(IRP))
994     return CB(IRP, AA, UsedAssumedInformation);
995 
996   // If no high-level/outside simplification occurred, use AAValueSimplify.
997   const auto &ValueSimplifyAA =
998       getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
999   Optional<Value *> SimplifiedV =
1000       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
1001   bool IsKnown = ValueSimplifyAA.isAtFixpoint();
1002   UsedAssumedInformation |= !IsKnown;
1003   if (!SimplifiedV.hasValue()) {
1004     if (AA)
1005       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
1006     return llvm::None;
1007   }
1008   if (*SimplifiedV == nullptr)
1009     return const_cast<Value *>(&IRP.getAssociatedValue());
1010   if (Value *SimpleV =
1011           AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
1012     if (AA)
1013       recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
1014     return SimpleV;
1015   }
1016   return const_cast<Value *>(&IRP.getAssociatedValue());
1017 }
1018 
1019 Optional<Value *> Attributor::translateArgumentToCallSiteContent(
1020     Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
1021     bool &UsedAssumedInformation) {
1022   if (!V.hasValue())
1023     return V;
1024   if (*V == nullptr || isa<Constant>(*V))
1025     return V;
1026   if (auto *Arg = dyn_cast<Argument>(*V))
1027     if (CB.getCalledFunction() == Arg->getParent())
1028       if (!Arg->hasPointeeInMemoryValueAttr())
1029         return getAssumedSimplified(
1030             IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
1031             UsedAssumedInformation);
1032   return nullptr;
1033 }
1034 
1035 Attributor::~Attributor() {
1036   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1037   // thus we cannot delete them. We can, and want to, destruct them though.
1038   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1039     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1040     AA->~AbstractAttribute();
1041   }
1042 }
1043 
1044 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
1045                                const AAIsDead *FnLivenessAA,
1046                                bool &UsedAssumedInformation,
1047                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1048   const IRPosition &IRP = AA.getIRPosition();
1049   if (!Functions.count(IRP.getAnchorScope()))
1050     return false;
1051   return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
1052                        CheckBBLivenessOnly, DepClass);
1053 }
1054 
1055 bool Attributor::isAssumedDead(const Use &U,
1056                                const AbstractAttribute *QueryingAA,
1057                                const AAIsDead *FnLivenessAA,
1058                                bool &UsedAssumedInformation,
1059                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1060   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1061   if (!UserI)
1062     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
1063                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1064 
1065   if (auto *CB = dyn_cast<CallBase>(UserI)) {
1066     // For call site argument uses we can check if the argument is
1067     // unused/dead.
1068     if (CB->isArgOperand(&U)) {
1069       const IRPosition &CSArgPos =
1070           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
1071       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
1072                            UsedAssumedInformation, CheckBBLivenessOnly,
1073                            DepClass);
1074     }
1075   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
1076     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
1077     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
1078                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1079   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
1080     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
1081     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
1082                          UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1083   }
1084 
1085   return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
1086                        UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1087 }
1088 
1089 bool Attributor::isAssumedDead(const Instruction &I,
1090                                const AbstractAttribute *QueryingAA,
1091                                const AAIsDead *FnLivenessAA,
1092                                bool &UsedAssumedInformation,
1093                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1094   const IRPosition::CallBaseContext *CBCtx =
1095       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
1096 
1097   if (ManifestAddedBlocks.contains(I.getParent()))
1098     return false;
1099 
1100   if (!FnLivenessAA)
1101     FnLivenessAA =
1102         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
1103                               QueryingAA, DepClassTy::NONE);
1104 
1105   // If we have a context instruction and a liveness AA we use it.
1106   if (FnLivenessAA &&
1107       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
1108       (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
1109                            : FnLivenessAA->isAssumedDead(&I))) {
1110     if (QueryingAA)
1111       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1112     if (!FnLivenessAA->isKnownDead(&I))
1113       UsedAssumedInformation = true;
1114     return true;
1115   }
1116 
1117   if (CheckBBLivenessOnly)
1118     return false;
1119 
1120   const IRPosition IRP = IRPosition::inst(I, CBCtx);
1121   const AAIsDead &IsDeadAA =
1122       getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1123   // Don't check liveness for AAIsDead.
1124   if (QueryingAA == &IsDeadAA)
1125     return false;
1126 
1127   if (IsDeadAA.isAssumedDead()) {
1128     if (QueryingAA)
1129       recordDependence(IsDeadAA, *QueryingAA, DepClass);
1130     if (!IsDeadAA.isKnownDead())
1131       UsedAssumedInformation = true;
1132     return true;
1133   }
1134 
1135   return false;
1136 }
1137 
1138 bool Attributor::isAssumedDead(const IRPosition &IRP,
1139                                const AbstractAttribute *QueryingAA,
1140                                const AAIsDead *FnLivenessAA,
1141                                bool &UsedAssumedInformation,
1142                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
1143   Instruction *CtxI = IRP.getCtxI();
1144   if (CtxI &&
1145       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
1146                     /* CheckBBLivenessOnly */ true,
1147                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
1148     return true;
1149 
1150   if (CheckBBLivenessOnly)
1151     return false;
1152 
1153   // If we haven't succeeded we query the specific liveness info for the IRP.
1154   const AAIsDead *IsDeadAA;
1155   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
1156     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
1157         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
1158         QueryingAA, DepClassTy::NONE);
1159   else
1160     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1161   // Don't check liveness for AAIsDead.
1162   if (QueryingAA == IsDeadAA)
1163     return false;
1164 
1165   if (IsDeadAA->isAssumedDead()) {
1166     if (QueryingAA)
1167       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1168     if (!IsDeadAA->isKnownDead())
1169       UsedAssumedInformation = true;
1170     return true;
1171   }
1172 
1173   return false;
1174 }
1175 
1176 bool Attributor::isAssumedDead(const BasicBlock &BB,
1177                                const AbstractAttribute *QueryingAA,
1178                                const AAIsDead *FnLivenessAA,
1179                                DepClassTy DepClass) {
1180   if (!FnLivenessAA)
1181     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
1182                                          QueryingAA, DepClassTy::NONE);
1183   if (FnLivenessAA->isAssumedDead(&BB)) {
1184     if (QueryingAA)
1185       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1186     return true;
1187   }
1188 
1189   return false;
1190 }
1191 
1192 bool Attributor::checkForAllUses(
1193     function_ref<bool(const Use &, bool &)> Pred,
1194     const AbstractAttribute &QueryingAA, const Value &V,
1195     bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1196     function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1197 
1198   // Check the trivial case first as it catches void values.
1199   if (V.use_empty())
1200     return true;
1201 
1202   const IRPosition &IRP = QueryingAA.getIRPosition();
1203   SmallVector<const Use *, 16> Worklist;
1204   SmallPtrSet<const Use *, 16> Visited;
1205 
1206   for (const Use &U : V.uses())
1207     Worklist.push_back(&U);
1208 
1209   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1210                     << " initial uses to check\n");
1211 
1212   const Function *ScopeFn = IRP.getAnchorScope();
1213   const auto *LivenessAA =
1214       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1215                                     DepClassTy::NONE)
1216               : nullptr;
1217 
1218   while (!Worklist.empty()) {
1219     const Use *U = Worklist.pop_back_val();
1220     if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1221       continue;
1222     LLVM_DEBUG({
1223       if (auto *Fn = dyn_cast<Function>(U->getUser()))
1224         dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
1225                << "\n";
1226       else
1227         dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
1228                << "\n";
1229     });
1230     bool UsedAssumedInformation = false;
1231     if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1232                       CheckBBLivenessOnly, LivenessDepClass)) {
1233       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1234       continue;
1235     }
1236     if (U->getUser()->isDroppable()) {
1237       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
1238       continue;
1239     }
1240 
1241     if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1242       if (&SI->getOperandUse(0) == U) {
1243         if (!Visited.insert(U).second)
1244           continue;
1245         SmallSetVector<Value *, 4> PotentialCopies;
1246         if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1247                                                 QueryingAA,
1248                                                 UsedAssumedInformation)) {
1249           LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
1250                             << PotentialCopies.size()
1251                             << " potential copies instead!\n");
1252           for (Value *PotentialCopy : PotentialCopies)
1253             for (const Use &CopyUse : PotentialCopy->uses()) {
1254               if (EquivalentUseCB && !EquivalentUseCB(*U, CopyUse)) {
1255                 LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1256                                      "rejected by the equivalence call back: "
1257                                   << *CopyUse << "!\n");
1258                 return false;
1259               }
1260               Worklist.push_back(&CopyUse);
1261             }
1262           continue;
1263         }
1264       }
1265     }
1266 
1267     bool Follow = false;
1268     if (!Pred(*U, Follow))
1269       return false;
1270     if (!Follow)
1271       continue;
1272     for (const Use &UU : U->getUser()->uses())
1273       Worklist.push_back(&UU);
1274   }
1275 
1276   return true;
1277 }
1278 
1279 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1280                                       const AbstractAttribute &QueryingAA,
1281                                       bool RequireAllCallSites,
1282                                       bool &UsedAssumedInformation) {
1283   // We can try to determine information from
1284   // the call sites. However, this is only possible all call sites are known,
1285   // hence the function has internal linkage.
1286   const IRPosition &IRP = QueryingAA.getIRPosition();
1287   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1288   if (!AssociatedFunction) {
1289     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1290                       << "\n");
1291     return false;
1292   }
1293 
1294   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1295                               &QueryingAA, UsedAssumedInformation);
1296 }
1297 
1298 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1299                                       const Function &Fn,
1300                                       bool RequireAllCallSites,
1301                                       const AbstractAttribute *QueryingAA,
1302                                       bool &UsedAssumedInformation) {
1303   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1304     LLVM_DEBUG(
1305         dbgs()
1306         << "[Attributor] Function " << Fn.getName()
1307         << " has no internal linkage, hence not all call sites are known\n");
1308     return false;
1309   }
1310 
1311   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1312   for (unsigned u = 0; u < Uses.size(); ++u) {
1313     const Use &U = *Uses[u];
1314     LLVM_DEBUG({
1315       if (auto *Fn = dyn_cast<Function>(U))
1316         dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
1317                << *U.getUser() << "\n";
1318       else
1319         dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
1320                << "\n";
1321     });
1322     if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1323                       /* CheckBBLivenessOnly */ true)) {
1324       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
1325       continue;
1326     }
1327     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1328       if (CE->isCast() && CE->getType()->isPointerTy()) {
1329         LLVM_DEBUG(
1330             dbgs() << "[Attributor] Use, is constant cast expression, add "
1331                    << CE->getNumUses()
1332                    << " uses of that expression instead!\n");
1333         for (const Use &CEU : CE->uses())
1334           Uses.push_back(&CEU);
1335         continue;
1336       }
1337     }
1338 
1339     AbstractCallSite ACS(&U);
1340     if (!ACS) {
1341       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1342                         << " has non call site use " << *U.get() << " in "
1343                         << *U.getUser() << "\n");
1344       // BlockAddress users are allowed.
1345       if (isa<BlockAddress>(U.getUser()))
1346         continue;
1347       return false;
1348     }
1349 
1350     const Use *EffectiveUse =
1351         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1352     if (!ACS.isCallee(EffectiveUse)) {
1353       if (!RequireAllCallSites) {
1354         LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1355                           << " is not a call of " << Fn.getName()
1356                           << ", skip use\n");
1357         continue;
1358       }
1359       LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1360                         << " is an invalid use of " << Fn.getName() << "\n");
1361       return false;
1362     }
1363 
1364     // Make sure the arguments that can be matched between the call site and the
1365     // callee argee on their type. It is unlikely they do not and it doesn't
1366     // make sense for all attributes to know/care about this.
1367     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1368     unsigned MinArgsParams =
1369         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1370     for (unsigned u = 0; u < MinArgsParams; ++u) {
1371       Value *CSArgOp = ACS.getCallArgOperand(u);
1372       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1373         LLVM_DEBUG(
1374             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1375                    << u << "@" << Fn.getName() << ": "
1376                    << *Fn.getArg(u)->getType() << " vs. "
1377                    << *ACS.getCallArgOperand(u)->getType() << "\n");
1378         return false;
1379       }
1380     }
1381 
1382     if (Pred(ACS))
1383       continue;
1384 
1385     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1386                       << *ACS.getInstruction() << "\n");
1387     return false;
1388   }
1389 
1390   return true;
1391 }
1392 
1393 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1394   // TODO: Maintain a cache of Values that are
1395   // on the pathway from a Argument to a Instruction that would effect the
1396   // liveness/return state etc.
1397   return EnableCallSiteSpecific;
1398 }
1399 
1400 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1401     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1402     const AbstractAttribute &QueryingAA) {
1403 
1404   const IRPosition &IRP = QueryingAA.getIRPosition();
1405   // Since we need to provide return instructions we have to have an exact
1406   // definition.
1407   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1408   if (!AssociatedFunction)
1409     return false;
1410 
1411   // If this is a call site query we use the call site specific return values
1412   // and liveness information.
1413   // TODO: use the function scope once we have call site AAReturnedValues.
1414   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1415   const auto &AARetVal =
1416       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1417   if (!AARetVal.getState().isValidState())
1418     return false;
1419 
1420   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1421 }
1422 
1423 bool Attributor::checkForAllReturnedValues(
1424     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1425 
1426   const IRPosition &IRP = QueryingAA.getIRPosition();
1427   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1428   if (!AssociatedFunction)
1429     return false;
1430 
1431   // TODO: use the function scope once we have call site AAReturnedValues.
1432   const IRPosition &QueryIRP = IRPosition::function(
1433       *AssociatedFunction, QueryingAA.getCallBaseContext());
1434   const auto &AARetVal =
1435       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1436   if (!AARetVal.getState().isValidState())
1437     return false;
1438 
1439   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1440       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1441         return Pred(RV);
1442       });
1443 }
1444 
1445 static bool checkForAllInstructionsImpl(
1446     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1447     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1448     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1449     bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1450     bool CheckPotentiallyDead = false) {
1451   for (unsigned Opcode : Opcodes) {
1452     // Check if we have instructions with this opcode at all first.
1453     auto *Insts = OpcodeInstMap.lookup(Opcode);
1454     if (!Insts)
1455       continue;
1456 
1457     for (Instruction *I : *Insts) {
1458       // Skip dead instructions.
1459       if (A && !CheckPotentiallyDead &&
1460           A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
1461                            UsedAssumedInformation, CheckBBLivenessOnly)) {
1462         LLVM_DEBUG(dbgs() << "[Attributor] Instruction " << *I
1463                           << " is potentially dead, skip!\n";);
1464         continue;
1465       }
1466 
1467       if (!Pred(*I))
1468         return false;
1469     }
1470   }
1471   return true;
1472 }
1473 
1474 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1475                                          const AbstractAttribute &QueryingAA,
1476                                          const ArrayRef<unsigned> &Opcodes,
1477                                          bool &UsedAssumedInformation,
1478                                          bool CheckBBLivenessOnly,
1479                                          bool CheckPotentiallyDead) {
1480 
1481   const IRPosition &IRP = QueryingAA.getIRPosition();
1482   // Since we need to provide instructions we have to have an exact definition.
1483   const Function *AssociatedFunction = IRP.getAssociatedFunction();
1484   if (!AssociatedFunction)
1485     return false;
1486 
1487   if (AssociatedFunction->isDeclaration())
1488     return false;
1489 
1490   // TODO: use the function scope once we have call site AAReturnedValues.
1491   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1492   const auto *LivenessAA =
1493       (CheckBBLivenessOnly || CheckPotentiallyDead)
1494           ? nullptr
1495           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1496 
1497   auto &OpcodeInstMap =
1498       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1499   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1500                                    LivenessAA, Opcodes, UsedAssumedInformation,
1501                                    CheckBBLivenessOnly, CheckPotentiallyDead))
1502     return false;
1503 
1504   return true;
1505 }
1506 
1507 bool Attributor::checkForAllReadWriteInstructions(
1508     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1509     bool &UsedAssumedInformation) {
1510 
1511   const Function *AssociatedFunction =
1512       QueryingAA.getIRPosition().getAssociatedFunction();
1513   if (!AssociatedFunction)
1514     return false;
1515 
1516   // TODO: use the function scope once we have call site AAReturnedValues.
1517   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1518   const auto &LivenessAA =
1519       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1520 
1521   for (Instruction *I :
1522        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1523     // Skip dead instructions.
1524     if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, &LivenessAA,
1525                       UsedAssumedInformation))
1526       continue;
1527 
1528     if (!Pred(*I))
1529       return false;
1530   }
1531 
1532   return true;
1533 }
1534 
1535 void Attributor::runTillFixpoint() {
1536   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1537   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
1538                     << DG.SyntheticRoot.Deps.size()
1539                     << " abstract attributes.\n");
1540 
1541   // Now that all abstract attributes are collected and initialized we start
1542   // the abstract analysis.
1543 
1544   unsigned IterationCounter = 1;
1545   unsigned MaxFixedPointIterations;
1546   if (MaxFixpointIterations)
1547     MaxFixedPointIterations = MaxFixpointIterations.getValue();
1548   else
1549     MaxFixedPointIterations = SetFixpointIterations;
1550 
1551   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1552   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1553   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1554 
1555   do {
1556     // Remember the size to determine new attributes.
1557     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1558     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1559                       << ", Worklist size: " << Worklist.size() << "\n");
1560 
1561     // For invalid AAs we can fix dependent AAs that have a required dependence,
1562     // thereby folding long dependence chains in a single step without the need
1563     // to run updates.
1564     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1565       AbstractAttribute *InvalidAA = InvalidAAs[u];
1566 
1567       // Check the dependences to fast track invalidation.
1568       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1569                         << InvalidAA->Deps.size()
1570                         << " required & optional dependences\n");
1571       while (!InvalidAA->Deps.empty()) {
1572         const auto &Dep = InvalidAA->Deps.back();
1573         InvalidAA->Deps.pop_back();
1574         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1575         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1576           LLVM_DEBUG(dbgs() << " - recompute: " << *DepAA);
1577           Worklist.insert(DepAA);
1578           continue;
1579         }
1580         LLVM_DEBUG(dbgs() << " - invalidate: " << *DepAA);
1581         DepAA->getState().indicatePessimisticFixpoint();
1582         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1583         if (!DepAA->getState().isValidState())
1584           InvalidAAs.insert(DepAA);
1585         else
1586           ChangedAAs.push_back(DepAA);
1587       }
1588     }
1589 
1590     // Add all abstract attributes that are potentially dependent on one that
1591     // changed to the work list.
1592     for (AbstractAttribute *ChangedAA : ChangedAAs)
1593       while (!ChangedAA->Deps.empty()) {
1594         Worklist.insert(
1595             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1596         ChangedAA->Deps.pop_back();
1597       }
1598 
1599     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1600                       << ", Worklist+Dependent size: " << Worklist.size()
1601                       << "\n");
1602 
1603     // Reset the changed and invalid set.
1604     ChangedAAs.clear();
1605     InvalidAAs.clear();
1606 
1607     // Update all abstract attribute in the work list and record the ones that
1608     // changed.
1609     for (AbstractAttribute *AA : Worklist) {
1610       const auto &AAState = AA->getState();
1611       if (!AAState.isAtFixpoint())
1612         if (updateAA(*AA) == ChangeStatus::CHANGED)
1613           ChangedAAs.push_back(AA);
1614 
1615       // Use the InvalidAAs vector to propagate invalid states fast transitively
1616       // without requiring updates.
1617       if (!AAState.isValidState())
1618         InvalidAAs.insert(AA);
1619     }
1620 
1621     // Add attributes to the changed set if they have been created in the last
1622     // iteration.
1623     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1624                       DG.SyntheticRoot.end());
1625 
1626     // Reset the work list and repopulate with the changed abstract attributes.
1627     // Note that dependent ones are added above.
1628     Worklist.clear();
1629     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1630     Worklist.insert(QueryAAsAwaitingUpdate.begin(),
1631                     QueryAAsAwaitingUpdate.end());
1632     QueryAAsAwaitingUpdate.clear();
1633 
1634   } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1635                                  VerifyMaxFixpointIterations));
1636 
1637   if (IterationCounter > MaxFixedPointIterations && !Functions.empty()) {
1638     auto Remark = [&](OptimizationRemarkMissed ORM) {
1639       return ORM << "Attributor did not reach a fixpoint after "
1640                  << ore::NV("Iterations", MaxFixedPointIterations)
1641                  << " iterations.";
1642     };
1643     Function *F = Functions.front();
1644     emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
1645   }
1646 
1647   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1648                     << IterationCounter << "/" << MaxFixpointIterations
1649                     << " iterations\n");
1650 
1651   // Reset abstract arguments not settled in a sound fixpoint by now. This
1652   // happens when we stopped the fixpoint iteration early. Note that only the
1653   // ones marked as "changed" *and* the ones transitively depending on them
1654   // need to be reverted to a pessimistic state. Others might not be in a
1655   // fixpoint state but we can use the optimistic results for them anyway.
1656   SmallPtrSet<AbstractAttribute *, 32> Visited;
1657   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1658     AbstractAttribute *ChangedAA = ChangedAAs[u];
1659     if (!Visited.insert(ChangedAA).second)
1660       continue;
1661 
1662     AbstractState &State = ChangedAA->getState();
1663     if (!State.isAtFixpoint()) {
1664       State.indicatePessimisticFixpoint();
1665 
1666       NumAttributesTimedOut++;
1667     }
1668 
1669     while (!ChangedAA->Deps.empty()) {
1670       ChangedAAs.push_back(
1671           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1672       ChangedAA->Deps.pop_back();
1673     }
1674   }
1675 
1676   LLVM_DEBUG({
1677     if (!Visited.empty())
1678       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1679              << " abstract attributes.\n";
1680   });
1681 
1682   if (VerifyMaxFixpointIterations &&
1683       IterationCounter != MaxFixedPointIterations) {
1684     errs() << "\n[Attributor] Fixpoint iteration done after: "
1685            << IterationCounter << "/" << MaxFixedPointIterations
1686            << " iterations\n";
1687     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1688                      "specified iterations!");
1689   }
1690 }
1691 
1692 void Attributor::registerForUpdate(AbstractAttribute &AA) {
1693   assert(AA.isQueryAA() &&
1694          "Non-query AAs should not be required to register for updates!");
1695   QueryAAsAwaitingUpdate.insert(&AA);
1696 }
1697 
1698 ChangeStatus Attributor::manifestAttributes() {
1699   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1700   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1701 
1702   unsigned NumManifested = 0;
1703   unsigned NumAtFixpoint = 0;
1704   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1705   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1706     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1707     AbstractState &State = AA->getState();
1708 
1709     // If there is not already a fixpoint reached, we can now take the
1710     // optimistic state. This is correct because we enforced a pessimistic one
1711     // on abstract attributes that were transitively dependent on a changed one
1712     // already above.
1713     if (!State.isAtFixpoint())
1714       State.indicateOptimisticFixpoint();
1715 
1716     // We must not manifest Attributes that use Callbase info.
1717     if (AA->hasCallBaseContext())
1718       continue;
1719     // If the state is invalid, we do not try to manifest it.
1720     if (!State.isValidState())
1721       continue;
1722 
1723     // Skip dead code.
1724     bool UsedAssumedInformation = false;
1725     if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1726                       /* CheckBBLivenessOnly */ true))
1727       continue;
1728     // Check if the manifest debug counter that allows skipping manifestation of
1729     // AAs
1730     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1731       continue;
1732     // Manifest the state and record if we changed the IR.
1733     ChangeStatus LocalChange = AA->manifest(*this);
1734     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1735       AA->trackStatistics();
1736     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1737                       << "\n");
1738 
1739     ManifestChange = ManifestChange | LocalChange;
1740 
1741     NumAtFixpoint++;
1742     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1743   }
1744 
1745   (void)NumManifested;
1746   (void)NumAtFixpoint;
1747   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1748                     << " arguments while " << NumAtFixpoint
1749                     << " were in a valid fixpoint state\n");
1750 
1751   NumAttributesManifested += NumManifested;
1752   NumAttributesValidFixpoint += NumAtFixpoint;
1753 
1754   (void)NumFinalAAs;
1755   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1756     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1757       errs() << "Unexpected abstract attribute: "
1758              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1759              << " :: "
1760              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1761                     ->getIRPosition()
1762                     .getAssociatedValue()
1763              << "\n";
1764     llvm_unreachable("Expected the final number of abstract attributes to "
1765                      "remain unchanged!");
1766   }
1767   return ManifestChange;
1768 }
1769 
1770 void Attributor::identifyDeadInternalFunctions() {
1771   // Early exit if we don't intend to delete functions.
1772   if (!DeleteFns)
1773     return;
1774 
1775   // Identify dead internal functions and delete them. This happens outside
1776   // the other fixpoint analysis as we might treat potentially dead functions
1777   // as live to lower the number of iterations. If they happen to be dead, the
1778   // below fixpoint loop will identify and eliminate them.
1779   SmallVector<Function *, 8> InternalFns;
1780   for (Function *F : Functions)
1781     if (F->hasLocalLinkage())
1782       InternalFns.push_back(F);
1783 
1784   SmallPtrSet<Function *, 8> LiveInternalFns;
1785   bool FoundLiveInternal = true;
1786   while (FoundLiveInternal) {
1787     FoundLiveInternal = false;
1788     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1789       Function *F = InternalFns[u];
1790       if (!F)
1791         continue;
1792 
1793       bool UsedAssumedInformation = false;
1794       if (checkForAllCallSites(
1795               [&](AbstractCallSite ACS) {
1796                 Function *Callee = ACS.getInstruction()->getFunction();
1797                 return ToBeDeletedFunctions.count(Callee) ||
1798                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1799                         !LiveInternalFns.count(Callee));
1800               },
1801               *F, true, nullptr, UsedAssumedInformation)) {
1802         continue;
1803       }
1804 
1805       LiveInternalFns.insert(F);
1806       InternalFns[u] = nullptr;
1807       FoundLiveInternal = true;
1808     }
1809   }
1810 
1811   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1812     if (Function *F = InternalFns[u])
1813       ToBeDeletedFunctions.insert(F);
1814 }
1815 
1816 ChangeStatus Attributor::cleanupIR() {
1817   TimeTraceScope TimeScope("Attributor::cleanupIR");
1818   // Delete stuff at the end to avoid invalid references and a nice order.
1819   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
1820                     << ToBeDeletedFunctions.size() << " functions and "
1821                     << ToBeDeletedBlocks.size() << " blocks and "
1822                     << ToBeDeletedInsts.size() << " instructions and "
1823                     << ToBeChangedValues.size() << " values and "
1824                     << ToBeChangedUses.size() << " uses. "
1825                     << "Preserve manifest added " << ManifestAddedBlocks.size()
1826                     << " blocks\n");
1827 
1828   SmallVector<WeakTrackingVH, 32> DeadInsts;
1829   SmallVector<Instruction *, 32> TerminatorsToFold;
1830 
1831   auto ReplaceUse = [&](Use *U, Value *NewV) {
1832     Value *OldV = U->get();
1833 
1834     // If we plan to replace NewV we need to update it at this point.
1835     do {
1836       const auto &Entry = ToBeChangedValues.lookup(NewV);
1837       if (!Entry.first)
1838         break;
1839       NewV = Entry.first;
1840     } while (true);
1841 
1842     // Do not replace uses in returns if the value is a must-tail call we will
1843     // not delete.
1844     if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1845       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1846         if (CI->isMustTailCall() &&
1847             (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1848           return;
1849       // If we rewrite a return and the new value is not an argument, strip the
1850       // `returned` attribute as it is wrong now.
1851       if (!isa<Argument>(NewV))
1852         for (auto &Arg : RI->getFunction()->args())
1853           Arg.removeAttr(Attribute::Returned);
1854     }
1855 
1856     // Do not perform call graph altering changes outside the SCC.
1857     if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1858       if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1859         return;
1860 
1861     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1862                       << " instead of " << *OldV << "\n");
1863     U->set(NewV);
1864 
1865     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1866       CGModifiedFunctions.insert(I->getFunction());
1867       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1868           isInstructionTriviallyDead(I))
1869         DeadInsts.push_back(I);
1870     }
1871     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1872       auto *CB = cast<CallBase>(U->getUser());
1873       if (CB->isArgOperand(U)) {
1874         unsigned Idx = CB->getArgOperandNo(U);
1875         CB->removeParamAttr(Idx, Attribute::NoUndef);
1876         Function *Fn = CB->getCalledFunction();
1877         if (Fn && Fn->arg_size() > Idx)
1878           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1879       }
1880     }
1881     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1882       Instruction *UserI = cast<Instruction>(U->getUser());
1883       if (isa<UndefValue>(NewV)) {
1884         ToBeChangedToUnreachableInsts.insert(UserI);
1885       } else {
1886         TerminatorsToFold.push_back(UserI);
1887       }
1888     }
1889   };
1890 
1891   for (auto &It : ToBeChangedUses) {
1892     Use *U = It.first;
1893     Value *NewV = It.second;
1894     ReplaceUse(U, NewV);
1895   }
1896 
1897   SmallVector<Use *, 4> Uses;
1898   for (auto &It : ToBeChangedValues) {
1899     Value *OldV = It.first;
1900     auto &Entry = It.second;
1901     Value *NewV = Entry.first;
1902     Uses.clear();
1903     for (auto &U : OldV->uses())
1904       if (Entry.second || !U.getUser()->isDroppable())
1905         Uses.push_back(&U);
1906     for (Use *U : Uses)
1907       ReplaceUse(U, NewV);
1908   }
1909 
1910   for (auto &V : InvokeWithDeadSuccessor)
1911     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1912       assert(isRunOn(*II->getFunction()) &&
1913              "Cannot replace an invoke outside the current SCC!");
1914       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1915       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1916       bool Invoke2CallAllowed =
1917           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1918       assert((UnwindBBIsDead || NormalBBIsDead) &&
1919              "Invoke does not have dead successors!");
1920       BasicBlock *BB = II->getParent();
1921       BasicBlock *NormalDestBB = II->getNormalDest();
1922       if (UnwindBBIsDead) {
1923         Instruction *NormalNextIP = &NormalDestBB->front();
1924         if (Invoke2CallAllowed) {
1925           changeToCall(II);
1926           NormalNextIP = BB->getTerminator();
1927         }
1928         if (NormalBBIsDead)
1929           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1930       } else {
1931         assert(NormalBBIsDead && "Broken invariant!");
1932         if (!NormalDestBB->getUniquePredecessor())
1933           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1934         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1935       }
1936     }
1937   for (Instruction *I : TerminatorsToFold) {
1938     if (!isRunOn(*I->getFunction()))
1939       continue;
1940     CGModifiedFunctions.insert(I->getFunction());
1941     ConstantFoldTerminator(I->getParent());
1942   }
1943   for (auto &V : ToBeChangedToUnreachableInsts)
1944     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1945       if (!isRunOn(*I->getFunction()))
1946         continue;
1947       CGModifiedFunctions.insert(I->getFunction());
1948       changeToUnreachable(I);
1949     }
1950 
1951   for (auto &V : ToBeDeletedInsts) {
1952     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1953       if (auto *CB = dyn_cast<CallBase>(I)) {
1954         if (!isRunOn(*I->getFunction()))
1955           continue;
1956         if (!isa<IntrinsicInst>(CB))
1957           CGUpdater.removeCallSite(*CB);
1958       }
1959       I->dropDroppableUses();
1960       CGModifiedFunctions.insert(I->getFunction());
1961       if (!I->getType()->isVoidTy())
1962         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1963       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1964         DeadInsts.push_back(I);
1965       else
1966         I->eraseFromParent();
1967     }
1968   }
1969 
1970   llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1971     return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1972   });
1973 
1974   LLVM_DEBUG({
1975     dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
1976     for (auto &I : DeadInsts)
1977       if (I)
1978         dbgs() << "  - " << *I << "\n";
1979   });
1980 
1981   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1982 
1983   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1984     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1985     ToBeDeletedBBs.reserve(NumDeadBlocks);
1986     for (BasicBlock *BB : ToBeDeletedBlocks) {
1987       assert(isRunOn(*BB->getParent()) &&
1988              "Cannot delete a block outside the current SCC!");
1989       CGModifiedFunctions.insert(BB->getParent());
1990       // Do not delete BBs added during manifests of AAs.
1991       if (ManifestAddedBlocks.contains(BB))
1992         continue;
1993       ToBeDeletedBBs.push_back(BB);
1994     }
1995     // Actually we do not delete the blocks but squash them into a single
1996     // unreachable but untangling branches that jump here is something we need
1997     // to do in a more generic way.
1998     detachDeadBlocks(ToBeDeletedBBs, nullptr);
1999   }
2000 
2001   identifyDeadInternalFunctions();
2002 
2003   // Rewrite the functions as requested during manifest.
2004   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
2005 
2006   for (Function *Fn : CGModifiedFunctions)
2007     if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
2008       CGUpdater.reanalyzeFunction(*Fn);
2009 
2010   for (Function *Fn : ToBeDeletedFunctions) {
2011     if (!Functions.count(Fn))
2012       continue;
2013     CGUpdater.removeFunction(*Fn);
2014   }
2015 
2016   if (!ToBeChangedUses.empty())
2017     ManifestChange = ChangeStatus::CHANGED;
2018 
2019   if (!ToBeChangedToUnreachableInsts.empty())
2020     ManifestChange = ChangeStatus::CHANGED;
2021 
2022   if (!ToBeDeletedFunctions.empty())
2023     ManifestChange = ChangeStatus::CHANGED;
2024 
2025   if (!ToBeDeletedBlocks.empty())
2026     ManifestChange = ChangeStatus::CHANGED;
2027 
2028   if (!ToBeDeletedInsts.empty())
2029     ManifestChange = ChangeStatus::CHANGED;
2030 
2031   if (!InvokeWithDeadSuccessor.empty())
2032     ManifestChange = ChangeStatus::CHANGED;
2033 
2034   if (!DeadInsts.empty())
2035     ManifestChange = ChangeStatus::CHANGED;
2036 
2037   NumFnDeleted += ToBeDeletedFunctions.size();
2038 
2039   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
2040                     << " functions after manifest.\n");
2041 
2042 #ifdef EXPENSIVE_CHECKS
2043   for (Function *F : Functions) {
2044     if (ToBeDeletedFunctions.count(F))
2045       continue;
2046     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
2047   }
2048 #endif
2049 
2050   return ManifestChange;
2051 }
2052 
2053 ChangeStatus Attributor::run() {
2054   TimeTraceScope TimeScope("Attributor::run");
2055   AttributorCallGraph ACallGraph(*this);
2056 
2057   if (PrintCallGraph)
2058     ACallGraph.populateAll();
2059 
2060   Phase = AttributorPhase::UPDATE;
2061   runTillFixpoint();
2062 
2063   // dump graphs on demand
2064   if (DumpDepGraph)
2065     DG.dumpGraph();
2066 
2067   if (ViewDepGraph)
2068     DG.viewGraph();
2069 
2070   if (PrintDependencies)
2071     DG.print();
2072 
2073   Phase = AttributorPhase::MANIFEST;
2074   ChangeStatus ManifestChange = manifestAttributes();
2075 
2076   Phase = AttributorPhase::CLEANUP;
2077   ChangeStatus CleanupChange = cleanupIR();
2078 
2079   if (PrintCallGraph)
2080     ACallGraph.print();
2081 
2082   return ManifestChange | CleanupChange;
2083 }
2084 
2085 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
2086   TimeTraceScope TimeScope(
2087       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
2088       "::updateAA");
2089   assert(Phase == AttributorPhase::UPDATE &&
2090          "We can update AA only in the update stage!");
2091 
2092   // Use a new dependence vector for this update.
2093   DependenceVector DV;
2094   DependenceStack.push_back(&DV);
2095 
2096   auto &AAState = AA.getState();
2097   ChangeStatus CS = ChangeStatus::UNCHANGED;
2098   bool UsedAssumedInformation = false;
2099   if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
2100                      /* CheckBBLivenessOnly */ true))
2101     CS = AA.update(*this);
2102 
2103   if (!AA.isQueryAA() && DV.empty()) {
2104     // If the attribute did not query any non-fix information, the state
2105     // will not change and we can indicate that right away.
2106     AAState.indicateOptimisticFixpoint();
2107   }
2108 
2109   if (!AAState.isAtFixpoint())
2110     rememberDependences();
2111 
2112   // Verify the stack was used properly, that is we pop the dependence vector we
2113   // put there earlier.
2114   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
2115   (void)PoppedDV;
2116   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
2117 
2118   return CS;
2119 }
2120 
2121 void Attributor::createShallowWrapper(Function &F) {
2122   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
2123 
2124   Module &M = *F.getParent();
2125   LLVMContext &Ctx = M.getContext();
2126   FunctionType *FnTy = F.getFunctionType();
2127 
2128   Function *Wrapper =
2129       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
2130   F.setName(""); // set the inside function anonymous
2131   M.getFunctionList().insert(F.getIterator(), Wrapper);
2132 
2133   F.setLinkage(GlobalValue::InternalLinkage);
2134 
2135   F.replaceAllUsesWith(Wrapper);
2136   assert(F.use_empty() && "Uses remained after wrapper was created!");
2137 
2138   // Move the COMDAT section to the wrapper.
2139   // TODO: Check if we need to keep it for F as well.
2140   Wrapper->setComdat(F.getComdat());
2141   F.setComdat(nullptr);
2142 
2143   // Copy all metadata and attributes but keep them on F as well.
2144   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2145   F.getAllMetadata(MDs);
2146   for (auto MDIt : MDs)
2147     Wrapper->addMetadata(MDIt.first, *MDIt.second);
2148   Wrapper->setAttributes(F.getAttributes());
2149 
2150   // Create the call in the wrapper.
2151   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
2152 
2153   SmallVector<Value *, 8> Args;
2154   Argument *FArgIt = F.arg_begin();
2155   for (Argument &Arg : Wrapper->args()) {
2156     Args.push_back(&Arg);
2157     Arg.setName((FArgIt++)->getName());
2158   }
2159 
2160   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
2161   CI->setTailCall(true);
2162   CI->addFnAttr(Attribute::NoInline);
2163   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
2164 
2165   NumFnShallowWrappersCreated++;
2166 }
2167 
2168 bool Attributor::isInternalizable(Function &F) {
2169   if (F.isDeclaration() || F.hasLocalLinkage() ||
2170       GlobalValue::isInterposableLinkage(F.getLinkage()))
2171     return false;
2172   return true;
2173 }
2174 
2175 Function *Attributor::internalizeFunction(Function &F, bool Force) {
2176   if (!AllowDeepWrapper && !Force)
2177     return nullptr;
2178   if (!isInternalizable(F))
2179     return nullptr;
2180 
2181   SmallPtrSet<Function *, 2> FnSet = {&F};
2182   DenseMap<Function *, Function *> InternalizedFns;
2183   internalizeFunctions(FnSet, InternalizedFns);
2184 
2185   return InternalizedFns[&F];
2186 }
2187 
2188 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
2189                                       DenseMap<Function *, Function *> &FnMap) {
2190   for (Function *F : FnSet)
2191     if (!Attributor::isInternalizable(*F))
2192       return false;
2193 
2194   FnMap.clear();
2195   // Generate the internalized version of each function.
2196   for (Function *F : FnSet) {
2197     Module &M = *F->getParent();
2198     FunctionType *FnTy = F->getFunctionType();
2199 
2200     // Create a copy of the current function
2201     Function *Copied =
2202         Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2203                          F->getName() + ".internalized");
2204     ValueToValueMapTy VMap;
2205     auto *NewFArgIt = Copied->arg_begin();
2206     for (auto &Arg : F->args()) {
2207       auto ArgName = Arg.getName();
2208       NewFArgIt->setName(ArgName);
2209       VMap[&Arg] = &(*NewFArgIt++);
2210     }
2211     SmallVector<ReturnInst *, 8> Returns;
2212 
2213     // Copy the body of the original function to the new one
2214     CloneFunctionInto(Copied, F, VMap,
2215                       CloneFunctionChangeType::LocalChangesOnly, Returns);
2216 
2217     // Set the linakage and visibility late as CloneFunctionInto has some
2218     // implicit requirements.
2219     Copied->setVisibility(GlobalValue::DefaultVisibility);
2220     Copied->setLinkage(GlobalValue::PrivateLinkage);
2221 
2222     // Copy metadata
2223     SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2224     F->getAllMetadata(MDs);
2225     for (auto MDIt : MDs)
2226       if (!Copied->hasMetadata())
2227         Copied->addMetadata(MDIt.first, *MDIt.second);
2228 
2229     M.getFunctionList().insert(F->getIterator(), Copied);
2230     Copied->setDSOLocal(true);
2231     FnMap[F] = Copied;
2232   }
2233 
2234   // Replace all uses of the old function with the new internalized function
2235   // unless the caller is a function that was just internalized.
2236   for (Function *F : FnSet) {
2237     auto &InternalizedFn = FnMap[F];
2238     auto IsNotInternalized = [&](Use &U) -> bool {
2239       if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2240         return !FnMap.lookup(CB->getCaller());
2241       return false;
2242     };
2243     F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2244   }
2245 
2246   return true;
2247 }
2248 
2249 bool Attributor::isValidFunctionSignatureRewrite(
2250     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2251 
2252   if (!RewriteSignatures)
2253     return false;
2254 
2255   Function *Fn = Arg.getParent();
2256   auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2257     // Forbid the call site to cast the function return type. If we need to
2258     // rewrite these functions we need to re-create a cast for the new call site
2259     // (if the old had uses).
2260     if (!ACS.getCalledFunction() ||
2261         ACS.getInstruction()->getType() !=
2262             ACS.getCalledFunction()->getReturnType())
2263       return false;
2264     if (ACS.getCalledOperand()->getType() != Fn->getType())
2265       return false;
2266     // Forbid must-tail calls for now.
2267     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2268   };
2269 
2270   // Avoid var-arg functions for now.
2271   if (Fn->isVarArg()) {
2272     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2273     return false;
2274   }
2275 
2276   // Avoid functions with complicated argument passing semantics.
2277   AttributeList FnAttributeList = Fn->getAttributes();
2278   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2279       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2280       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2281       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2282     LLVM_DEBUG(
2283         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2284     return false;
2285   }
2286 
2287   // Avoid callbacks for now.
2288   bool UsedAssumedInformation = false;
2289   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2290                             UsedAssumedInformation)) {
2291     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2292     return false;
2293   }
2294 
2295   auto InstPred = [](Instruction &I) {
2296     if (auto *CI = dyn_cast<CallInst>(&I))
2297       return !CI->isMustTailCall();
2298     return true;
2299   };
2300 
2301   // Forbid must-tail calls for now.
2302   // TODO:
2303   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2304   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2305                                    nullptr, {Instruction::Call},
2306                                    UsedAssumedInformation)) {
2307     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2308     return false;
2309   }
2310 
2311   return true;
2312 }
2313 
2314 bool Attributor::registerFunctionSignatureRewrite(
2315     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2316     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2317     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2318   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2319                     << Arg.getParent()->getName() << " with "
2320                     << ReplacementTypes.size() << " replacements\n");
2321   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2322          "Cannot register an invalid rewrite");
2323 
2324   Function *Fn = Arg.getParent();
2325   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2326       ArgumentReplacementMap[Fn];
2327   if (ARIs.empty())
2328     ARIs.resize(Fn->arg_size());
2329 
2330   // If we have a replacement already with less than or equal new arguments,
2331   // ignore this request.
2332   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2333   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2334     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2335     return false;
2336   }
2337 
2338   // If we have a replacement already but we like the new one better, delete
2339   // the old.
2340   ARI.reset();
2341 
2342   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2343                     << Arg.getParent()->getName() << " with "
2344                     << ReplacementTypes.size() << " replacements\n");
2345 
2346   // Remember the replacement.
2347   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2348                                         std::move(CalleeRepairCB),
2349                                         std::move(ACSRepairCB)));
2350 
2351   return true;
2352 }
2353 
2354 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2355   bool Result = true;
2356 #ifndef NDEBUG
2357   if (SeedAllowList.size() != 0)
2358     Result = llvm::is_contained(SeedAllowList, AA.getName());
2359   Function *Fn = AA.getAnchorScope();
2360   if (FunctionSeedAllowList.size() != 0 && Fn)
2361     Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2362 #endif
2363   return Result;
2364 }
2365 
2366 ChangeStatus Attributor::rewriteFunctionSignatures(
2367     SmallPtrSetImpl<Function *> &ModifiedFns) {
2368   ChangeStatus Changed = ChangeStatus::UNCHANGED;
2369 
2370   for (auto &It : ArgumentReplacementMap) {
2371     Function *OldFn = It.getFirst();
2372 
2373     // Deleted functions do not require rewrites.
2374     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2375       continue;
2376 
2377     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2378         It.getSecond();
2379     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2380 
2381     SmallVector<Type *, 16> NewArgumentTypes;
2382     SmallVector<AttributeSet, 16> NewArgumentAttributes;
2383 
2384     // Collect replacement argument types and copy over existing attributes.
2385     AttributeList OldFnAttributeList = OldFn->getAttributes();
2386     for (Argument &Arg : OldFn->args()) {
2387       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2388               ARIs[Arg.getArgNo()]) {
2389         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2390                                 ARI->ReplacementTypes.end());
2391         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2392                                      AttributeSet());
2393       } else {
2394         NewArgumentTypes.push_back(Arg.getType());
2395         NewArgumentAttributes.push_back(
2396             OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2397       }
2398     }
2399 
2400     FunctionType *OldFnTy = OldFn->getFunctionType();
2401     Type *RetTy = OldFnTy->getReturnType();
2402 
2403     // Construct the new function type using the new arguments types.
2404     FunctionType *NewFnTy =
2405         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2406 
2407     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
2408                       << "' from " << *OldFn->getFunctionType() << " to "
2409                       << *NewFnTy << "\n");
2410 
2411     // Create the new function body and insert it into the module.
2412     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2413                                        OldFn->getAddressSpace(), "");
2414     Functions.insert(NewFn);
2415     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2416     NewFn->takeName(OldFn);
2417     NewFn->copyAttributesFrom(OldFn);
2418 
2419     // Patch the pointer to LLVM function in debug info descriptor.
2420     NewFn->setSubprogram(OldFn->getSubprogram());
2421     OldFn->setSubprogram(nullptr);
2422 
2423     // Recompute the parameter attributes list based on the new arguments for
2424     // the function.
2425     LLVMContext &Ctx = OldFn->getContext();
2426     NewFn->setAttributes(AttributeList::get(
2427         Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2428         NewArgumentAttributes));
2429 
2430     // Since we have now created the new function, splice the body of the old
2431     // function right into the new function, leaving the old rotting hulk of the
2432     // function empty.
2433     NewFn->getBasicBlockList().splice(NewFn->begin(),
2434                                       OldFn->getBasicBlockList());
2435 
2436     // Fixup block addresses to reference new function.
2437     SmallVector<BlockAddress *, 8u> BlockAddresses;
2438     for (User *U : OldFn->users())
2439       if (auto *BA = dyn_cast<BlockAddress>(U))
2440         BlockAddresses.push_back(BA);
2441     for (auto *BA : BlockAddresses)
2442       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2443 
2444     // Set of all "call-like" instructions that invoke the old function mapped
2445     // to their new replacements.
2446     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2447 
2448     // Callback to create a new "call-like" instruction for a given one.
2449     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2450       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2451       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2452 
2453       // Collect the new argument operands for the replacement call site.
2454       SmallVector<Value *, 16> NewArgOperands;
2455       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2456       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2457         unsigned NewFirstArgNum = NewArgOperands.size();
2458         (void)NewFirstArgNum; // only used inside assert.
2459         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2460                 ARIs[OldArgNum]) {
2461           if (ARI->ACSRepairCB)
2462             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2463           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
2464                      NewArgOperands.size() &&
2465                  "ACS repair callback did not provide as many operand as new "
2466                  "types were registered!");
2467           // TODO: Exose the attribute set to the ACS repair callback
2468           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2469                                          AttributeSet());
2470         } else {
2471           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2472           NewArgOperandAttributes.push_back(
2473               OldCallAttributeList.getParamAttrs(OldArgNum));
2474         }
2475       }
2476 
2477       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
2478              "Mismatch # argument operands vs. # argument operand attributes!");
2479       assert(NewArgOperands.size() == NewFn->arg_size() &&
2480              "Mismatch # argument operands vs. # function arguments!");
2481 
2482       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2483       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2484 
2485       // Create a new call or invoke instruction to replace the old one.
2486       CallBase *NewCB;
2487       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2488         NewCB =
2489             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2490                                NewArgOperands, OperandBundleDefs, "", OldCB);
2491       } else {
2492         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2493                                        "", OldCB);
2494         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2495         NewCB = NewCI;
2496       }
2497 
2498       // Copy over various properties and the new attributes.
2499       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2500       NewCB->setCallingConv(OldCB->getCallingConv());
2501       NewCB->takeName(OldCB);
2502       NewCB->setAttributes(AttributeList::get(
2503           Ctx, OldCallAttributeList.getFnAttrs(),
2504           OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2505 
2506       CallSitePairs.push_back({OldCB, NewCB});
2507       return true;
2508     };
2509 
2510     // Use the CallSiteReplacementCreator to create replacement call sites.
2511     bool UsedAssumedInformation = false;
2512     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2513                                         true, nullptr, UsedAssumedInformation);
2514     (void)Success;
2515     assert(Success && "Assumed call site replacement to succeed!");
2516 
2517     // Rewire the arguments.
2518     Argument *OldFnArgIt = OldFn->arg_begin();
2519     Argument *NewFnArgIt = NewFn->arg_begin();
2520     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2521          ++OldArgNum, ++OldFnArgIt) {
2522       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2523               ARIs[OldArgNum]) {
2524         if (ARI->CalleeRepairCB)
2525           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2526         NewFnArgIt += ARI->ReplacementTypes.size();
2527       } else {
2528         NewFnArgIt->takeName(&*OldFnArgIt);
2529         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2530         ++NewFnArgIt;
2531       }
2532     }
2533 
2534     // Eliminate the instructions *after* we visited all of them.
2535     for (auto &CallSitePair : CallSitePairs) {
2536       CallBase &OldCB = *CallSitePair.first;
2537       CallBase &NewCB = *CallSitePair.second;
2538       assert(OldCB.getType() == NewCB.getType() &&
2539              "Cannot handle call sites with different types!");
2540       ModifiedFns.insert(OldCB.getFunction());
2541       CGUpdater.replaceCallSite(OldCB, NewCB);
2542       OldCB.replaceAllUsesWith(&NewCB);
2543       OldCB.eraseFromParent();
2544     }
2545 
2546     // Replace the function in the call graph (if any).
2547     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2548 
2549     // If the old function was modified and needed to be reanalyzed, the new one
2550     // does now.
2551     if (ModifiedFns.erase(OldFn))
2552       ModifiedFns.insert(NewFn);
2553 
2554     Changed = ChangeStatus::CHANGED;
2555   }
2556 
2557   return Changed;
2558 }
2559 
2560 void InformationCache::initializeInformationCache(const Function &CF,
2561                                                   FunctionInfo &FI) {
2562   // As we do not modify the function here we can remove the const
2563   // withouth breaking implicit assumptions. At the end of the day, we could
2564   // initialize the cache eagerly which would look the same to the users.
2565   Function &F = const_cast<Function &>(CF);
2566 
2567   // Walk all instructions to find interesting instructions that might be
2568   // queried by abstract attributes during their initialization or update.
2569   // This has to happen before we create attributes.
2570 
2571   for (Instruction &I : instructions(&F)) {
2572     bool IsInterestingOpcode = false;
2573 
2574     // To allow easy access to all instructions in a function with a given
2575     // opcode we store them in the InfoCache. As not all opcodes are interesting
2576     // to concrete attributes we only cache the ones that are as identified in
2577     // the following switch.
2578     // Note: There are no concrete attributes now so this is initially empty.
2579     switch (I.getOpcode()) {
2580     default:
2581       assert(!isa<CallBase>(&I) &&
2582              "New call base instruction type needs to be known in the "
2583              "Attributor.");
2584       break;
2585     case Instruction::Call:
2586       // Calls are interesting on their own, additionally:
2587       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2588       // For `must-tail` calls we remember the caller and callee.
2589       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2590         fillMapFromAssume(*Assume, KnowledgeMap);
2591       } else if (cast<CallInst>(I).isMustTailCall()) {
2592         FI.ContainsMustTailCall = true;
2593         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2594           getFunctionInfo(*Callee).CalledViaMustTail = true;
2595       }
2596       LLVM_FALLTHROUGH;
2597     case Instruction::CallBr:
2598     case Instruction::Invoke:
2599     case Instruction::CleanupRet:
2600     case Instruction::CatchSwitch:
2601     case Instruction::AtomicRMW:
2602     case Instruction::AtomicCmpXchg:
2603     case Instruction::Br:
2604     case Instruction::Resume:
2605     case Instruction::Ret:
2606     case Instruction::Load:
2607       // The alignment of a pointer is interesting for loads.
2608     case Instruction::Store:
2609       // The alignment of a pointer is interesting for stores.
2610     case Instruction::Alloca:
2611     case Instruction::AddrSpaceCast:
2612       IsInterestingOpcode = true;
2613     }
2614     if (IsInterestingOpcode) {
2615       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2616       if (!Insts)
2617         Insts = new (Allocator) InstructionVectorTy();
2618       Insts->push_back(&I);
2619     }
2620     if (I.mayReadOrWriteMemory())
2621       FI.RWInsts.push_back(&I);
2622   }
2623 
2624   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2625       isInlineViable(F).isSuccess())
2626     InlineableFunctions.insert(&F);
2627 }
2628 
2629 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2630   return AG.getAnalysis<AAManager>(F);
2631 }
2632 
2633 InformationCache::FunctionInfo::~FunctionInfo() {
2634   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2635   // manually destroy them.
2636   for (auto &It : OpcodeInstMap)
2637     It.getSecond()->~InstructionVectorTy();
2638 }
2639 
2640 void Attributor::recordDependence(const AbstractAttribute &FromAA,
2641                                   const AbstractAttribute &ToAA,
2642                                   DepClassTy DepClass) {
2643   if (DepClass == DepClassTy::NONE)
2644     return;
2645   // If we are outside of an update, thus before the actual fixpoint iteration
2646   // started (= when we create AAs), we do not track dependences because we will
2647   // put all AAs into the initial worklist anyway.
2648   if (DependenceStack.empty())
2649     return;
2650   if (FromAA.getState().isAtFixpoint())
2651     return;
2652   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2653 }
2654 
2655 void Attributor::rememberDependences() {
2656   assert(!DependenceStack.empty() && "No dependences to remember!");
2657 
2658   for (DepInfo &DI : *DependenceStack.back()) {
2659     assert((DI.DepClass == DepClassTy::REQUIRED ||
2660             DI.DepClass == DepClassTy::OPTIONAL) &&
2661            "Expected required or optional dependence (1 bit)!");
2662     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2663     DepAAs.push_back(AbstractAttribute::DepTy(
2664         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2665   }
2666 }
2667 
2668 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2669   if (!VisitedFunctions.insert(&F).second)
2670     return;
2671   if (F.isDeclaration())
2672     return;
2673 
2674   // In non-module runs we need to look at the call sites of a function to
2675   // determine if it is part of a must-tail call edge. This will influence what
2676   // attributes we can derive.
2677   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2678   if (!isModulePass() && !FI.CalledViaMustTail) {
2679     for (const Use &U : F.uses())
2680       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2681         if (CB->isCallee(&U) && CB->isMustTailCall())
2682           FI.CalledViaMustTail = true;
2683   }
2684 
2685   IRPosition FPos = IRPosition::function(F);
2686 
2687   // Check for dead BasicBlocks in every function.
2688   // We need dead instruction detection because we do not want to deal with
2689   // broken IR in which SSA rules do not apply.
2690   getOrCreateAAFor<AAIsDead>(FPos);
2691 
2692   // Every function might be "will-return".
2693   getOrCreateAAFor<AAWillReturn>(FPos);
2694 
2695   // Every function might contain instructions that cause "undefined behavior".
2696   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2697 
2698   // Every function can be nounwind.
2699   getOrCreateAAFor<AANoUnwind>(FPos);
2700 
2701   // Every function might be marked "nosync"
2702   getOrCreateAAFor<AANoSync>(FPos);
2703 
2704   // Every function might be "no-free".
2705   getOrCreateAAFor<AANoFree>(FPos);
2706 
2707   // Every function might be "no-return".
2708   getOrCreateAAFor<AANoReturn>(FPos);
2709 
2710   // Every function might be "no-recurse".
2711   getOrCreateAAFor<AANoRecurse>(FPos);
2712 
2713   // Every function might be "readnone/readonly/writeonly/...".
2714   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2715 
2716   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2717   getOrCreateAAFor<AAMemoryLocation>(FPos);
2718 
2719   // Every function can track active assumptions.
2720   getOrCreateAAFor<AAAssumptionInfo>(FPos);
2721 
2722   // Every function might be applicable for Heap-To-Stack conversion.
2723   if (EnableHeapToStack)
2724     getOrCreateAAFor<AAHeapToStack>(FPos);
2725 
2726   // Return attributes are only appropriate if the return type is non void.
2727   Type *ReturnType = F.getReturnType();
2728   if (!ReturnType->isVoidTy()) {
2729     // Argument attribute "returned" --- Create only one per function even
2730     // though it is an argument attribute.
2731     getOrCreateAAFor<AAReturnedValues>(FPos);
2732 
2733     IRPosition RetPos = IRPosition::returned(F);
2734 
2735     // Every returned value might be dead.
2736     getOrCreateAAFor<AAIsDead>(RetPos);
2737 
2738     // Every function might be simplified.
2739     getOrCreateAAFor<AAValueSimplify>(RetPos);
2740 
2741     // Every returned value might be marked noundef.
2742     getOrCreateAAFor<AANoUndef>(RetPos);
2743 
2744     if (ReturnType->isPointerTy()) {
2745 
2746       // Every function with pointer return type might be marked align.
2747       getOrCreateAAFor<AAAlign>(RetPos);
2748 
2749       // Every function with pointer return type might be marked nonnull.
2750       getOrCreateAAFor<AANonNull>(RetPos);
2751 
2752       // Every function with pointer return type might be marked noalias.
2753       getOrCreateAAFor<AANoAlias>(RetPos);
2754 
2755       // Every function with pointer return type might be marked
2756       // dereferenceable.
2757       getOrCreateAAFor<AADereferenceable>(RetPos);
2758     }
2759   }
2760 
2761   for (Argument &Arg : F.args()) {
2762     IRPosition ArgPos = IRPosition::argument(Arg);
2763 
2764     // Every argument might be simplified. We have to go through the Attributor
2765     // interface though as outside AAs can register custom simplification
2766     // callbacks.
2767     bool UsedAssumedInformation = false;
2768     getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2769 
2770     // Every argument might be dead.
2771     getOrCreateAAFor<AAIsDead>(ArgPos);
2772 
2773     // Every argument might be marked noundef.
2774     getOrCreateAAFor<AANoUndef>(ArgPos);
2775 
2776     if (Arg.getType()->isPointerTy()) {
2777       // Every argument with pointer type might be marked nonnull.
2778       getOrCreateAAFor<AANonNull>(ArgPos);
2779 
2780       // Every argument with pointer type might be marked noalias.
2781       getOrCreateAAFor<AANoAlias>(ArgPos);
2782 
2783       // Every argument with pointer type might be marked dereferenceable.
2784       getOrCreateAAFor<AADereferenceable>(ArgPos);
2785 
2786       // Every argument with pointer type might be marked align.
2787       getOrCreateAAFor<AAAlign>(ArgPos);
2788 
2789       // Every argument with pointer type might be marked nocapture.
2790       getOrCreateAAFor<AANoCapture>(ArgPos);
2791 
2792       // Every argument with pointer type might be marked
2793       // "readnone/readonly/writeonly/..."
2794       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2795 
2796       // Every argument with pointer type might be marked nofree.
2797       getOrCreateAAFor<AANoFree>(ArgPos);
2798 
2799       // Every argument with pointer type might be privatizable (or promotable)
2800       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2801     }
2802   }
2803 
2804   auto CallSitePred = [&](Instruction &I) -> bool {
2805     auto &CB = cast<CallBase>(I);
2806     IRPosition CBInstPos = IRPosition::inst(CB);
2807     IRPosition CBFnPos = IRPosition::callsite_function(CB);
2808 
2809     // Call sites might be dead if they do not have side effects and no live
2810     // users. The return value might be dead if there are no live users.
2811     getOrCreateAAFor<AAIsDead>(CBInstPos);
2812 
2813     Function *Callee = CB.getCalledFunction();
2814     // TODO: Even if the callee is not known now we might be able to simplify
2815     //       the call/callee.
2816     if (!Callee)
2817       return true;
2818 
2819     // Every call site can track active assumptions.
2820     getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
2821 
2822     // Skip declarations except if annotations on their call sites were
2823     // explicitly requested.
2824     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2825         !Callee->hasMetadata(LLVMContext::MD_callback))
2826       return true;
2827 
2828     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2829 
2830       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2831       getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2832     }
2833 
2834     for (int I = 0, E = CB.arg_size(); I < E; ++I) {
2835 
2836       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2837 
2838       // Every call site argument might be dead.
2839       getOrCreateAAFor<AAIsDead>(CBArgPos);
2840 
2841       // Call site argument might be simplified. We have to go through the
2842       // Attributor interface though as outside AAs can register custom
2843       // simplification callbacks.
2844       bool UsedAssumedInformation = false;
2845       getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2846 
2847       // Every call site argument might be marked "noundef".
2848       getOrCreateAAFor<AANoUndef>(CBArgPos);
2849 
2850       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2851         continue;
2852 
2853       // Call site argument attribute "non-null".
2854       getOrCreateAAFor<AANonNull>(CBArgPos);
2855 
2856       // Call site argument attribute "nocapture".
2857       getOrCreateAAFor<AANoCapture>(CBArgPos);
2858 
2859       // Call site argument attribute "no-alias".
2860       getOrCreateAAFor<AANoAlias>(CBArgPos);
2861 
2862       // Call site argument attribute "dereferenceable".
2863       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2864 
2865       // Call site argument attribute "align".
2866       getOrCreateAAFor<AAAlign>(CBArgPos);
2867 
2868       // Call site argument attribute
2869       // "readnone/readonly/writeonly/..."
2870       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2871 
2872       // Call site argument attribute "nofree".
2873       getOrCreateAAFor<AANoFree>(CBArgPos);
2874     }
2875     return true;
2876   };
2877 
2878   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2879   bool Success;
2880   bool UsedAssumedInformation = false;
2881   Success = checkForAllInstructionsImpl(
2882       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2883       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2884        (unsigned)Instruction::Call},
2885       UsedAssumedInformation);
2886   (void)Success;
2887   assert(Success && "Expected the check call to be successful!");
2888 
2889   auto LoadStorePred = [&](Instruction &I) -> bool {
2890     if (isa<LoadInst>(I)) {
2891       getOrCreateAAFor<AAAlign>(
2892           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2893       if (SimplifyAllLoads)
2894         getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2895     } else
2896       getOrCreateAAFor<AAAlign>(
2897           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2898     return true;
2899   };
2900   Success = checkForAllInstructionsImpl(
2901       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2902       {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2903       UsedAssumedInformation);
2904   (void)Success;
2905   assert(Success && "Expected the check call to be successful!");
2906 }
2907 
2908 /// Helpers to ease debugging through output streams and print calls.
2909 ///
2910 ///{
2911 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2912   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2913 }
2914 
2915 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2916   switch (AP) {
2917   case IRPosition::IRP_INVALID:
2918     return OS << "inv";
2919   case IRPosition::IRP_FLOAT:
2920     return OS << "flt";
2921   case IRPosition::IRP_RETURNED:
2922     return OS << "fn_ret";
2923   case IRPosition::IRP_CALL_SITE_RETURNED:
2924     return OS << "cs_ret";
2925   case IRPosition::IRP_FUNCTION:
2926     return OS << "fn";
2927   case IRPosition::IRP_CALL_SITE:
2928     return OS << "cs";
2929   case IRPosition::IRP_ARGUMENT:
2930     return OS << "arg";
2931   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2932     return OS << "cs_arg";
2933   }
2934   llvm_unreachable("Unknown attribute position!");
2935 }
2936 
2937 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2938   const Value &AV = Pos.getAssociatedValue();
2939   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2940      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2941 
2942   if (Pos.hasCallBaseContext())
2943     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2944   return OS << "}";
2945 }
2946 
2947 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2948   OS << "range-state(" << S.getBitWidth() << ")<";
2949   S.getKnown().print(OS);
2950   OS << " / ";
2951   S.getAssumed().print(OS);
2952   OS << ">";
2953 
2954   return OS << static_cast<const AbstractState &>(S);
2955 }
2956 
2957 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2958   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2959 }
2960 
2961 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2962   AA.print(OS);
2963   return OS;
2964 }
2965 
2966 raw_ostream &llvm::operator<<(raw_ostream &OS,
2967                               const PotentialConstantIntValuesState &S) {
2968   OS << "set-state(< {";
2969   if (!S.isValidState())
2970     OS << "full-set";
2971   else {
2972     for (auto &it : S.getAssumedSet())
2973       OS << it << ", ";
2974     if (S.undefIsContained())
2975       OS << "undef ";
2976   }
2977   OS << "} >)";
2978 
2979   return OS;
2980 }
2981 
2982 void AbstractAttribute::print(raw_ostream &OS) const {
2983   OS << "[";
2984   OS << getName();
2985   OS << "] for CtxI ";
2986 
2987   if (auto *I = getCtxI()) {
2988     OS << "'";
2989     I->print(OS);
2990     OS << "'";
2991   } else
2992     OS << "<<null inst>>";
2993 
2994   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2995      << '\n';
2996 }
2997 
2998 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2999   print(OS);
3000 
3001   for (const auto &DepAA : Deps) {
3002     auto *AA = DepAA.getPointer();
3003     OS << "  updates ";
3004     AA->print(OS);
3005   }
3006 
3007   OS << '\n';
3008 }
3009 
3010 raw_ostream &llvm::operator<<(raw_ostream &OS,
3011                               const AAPointerInfo::Access &Acc) {
3012   OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
3013   if (Acc.getLocalInst() != Acc.getRemoteInst())
3014     OS << " via " << *Acc.getLocalInst();
3015   if (Acc.getContent().hasValue())
3016     OS << " [" << *Acc.getContent() << "]";
3017   return OS;
3018 }
3019 ///}
3020 
3021 /// ----------------------------------------------------------------------------
3022 ///                       Pass (Manager) Boilerplate
3023 /// ----------------------------------------------------------------------------
3024 
3025 static bool runAttributorOnFunctions(InformationCache &InfoCache,
3026                                      SetVector<Function *> &Functions,
3027                                      AnalysisGetter &AG,
3028                                      CallGraphUpdater &CGUpdater,
3029                                      bool DeleteFns) {
3030   if (Functions.empty())
3031     return false;
3032 
3033   LLVM_DEBUG({
3034     dbgs() << "[Attributor] Run on module with " << Functions.size()
3035            << " functions:\n";
3036     for (Function *Fn : Functions)
3037       dbgs() << "  - " << Fn->getName() << "\n";
3038   });
3039 
3040   // Create an Attributor and initially empty information cache that is filled
3041   // while we identify default attribute opportunities.
3042   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
3043                DeleteFns);
3044 
3045   // Create shallow wrappers for all functions that are not IPO amendable
3046   if (AllowShallowWrappers)
3047     for (Function *F : Functions)
3048       if (!A.isFunctionIPOAmendable(*F))
3049         Attributor::createShallowWrapper(*F);
3050 
3051   // Internalize non-exact functions
3052   // TODO: for now we eagerly internalize functions without calculating the
3053   //       cost, we need a cost interface to determine whether internalizing
3054   //       a function is "benefitial"
3055   if (AllowDeepWrapper) {
3056     unsigned FunSize = Functions.size();
3057     for (unsigned u = 0; u < FunSize; u++) {
3058       Function *F = Functions[u];
3059       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
3060           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
3061         Function *NewF = Attributor::internalizeFunction(*F);
3062         assert(NewF && "Could not internalize function.");
3063         Functions.insert(NewF);
3064 
3065         // Update call graph
3066         CGUpdater.replaceFunctionWith(*F, *NewF);
3067         for (const Use &U : NewF->uses())
3068           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
3069             auto *CallerF = CB->getCaller();
3070             CGUpdater.reanalyzeFunction(*CallerF);
3071           }
3072       }
3073     }
3074   }
3075 
3076   for (Function *F : Functions) {
3077     if (F->hasExactDefinition())
3078       NumFnWithExactDefinition++;
3079     else
3080       NumFnWithoutExactDefinition++;
3081 
3082     // We look at internal functions only on-demand but if any use is not a
3083     // direct call or outside the current set of analyzed functions, we have
3084     // to do it eagerly.
3085     if (F->hasLocalLinkage()) {
3086       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3087             const auto *CB = dyn_cast<CallBase>(U.getUser());
3088             return CB && CB->isCallee(&U) &&
3089                    Functions.count(const_cast<Function *>(CB->getCaller()));
3090           }))
3091         continue;
3092     }
3093 
3094     // Populate the Attributor with abstract attribute opportunities in the
3095     // function and the information cache with IR information.
3096     A.identifyDefaultAbstractAttributes(*F);
3097   }
3098 
3099   ChangeStatus Changed = A.run();
3100 
3101   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3102                     << " functions, result: " << Changed << ".\n");
3103   return Changed == ChangeStatus::CHANGED;
3104 }
3105 
3106 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3107 
3108 void AADepGraph::dumpGraph() {
3109   static std::atomic<int> CallTimes;
3110   std::string Prefix;
3111 
3112   if (!DepGraphDotFileNamePrefix.empty())
3113     Prefix = DepGraphDotFileNamePrefix;
3114   else
3115     Prefix = "dep_graph";
3116   std::string Filename =
3117       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
3118 
3119   outs() << "Dependency graph dump to " << Filename << ".\n";
3120 
3121   std::error_code EC;
3122 
3123   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
3124   if (!EC)
3125     llvm::WriteGraph(File, this);
3126 
3127   CallTimes++;
3128 }
3129 
3130 void AADepGraph::print() {
3131   for (auto DepAA : SyntheticRoot.Deps)
3132     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
3133 }
3134 
3135 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
3136   FunctionAnalysisManager &FAM =
3137       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3138   AnalysisGetter AG(FAM);
3139 
3140   SetVector<Function *> Functions;
3141   for (Function &F : M)
3142     Functions.insert(&F);
3143 
3144   CallGraphUpdater CGUpdater;
3145   BumpPtrAllocator Allocator;
3146   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3147   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3148                                /* DeleteFns */ true)) {
3149     // FIXME: Think about passes we will preserve and add them here.
3150     return PreservedAnalyses::none();
3151   }
3152   return PreservedAnalyses::all();
3153 }
3154 
3155 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
3156                                            CGSCCAnalysisManager &AM,
3157                                            LazyCallGraph &CG,
3158                                            CGSCCUpdateResult &UR) {
3159   FunctionAnalysisManager &FAM =
3160       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
3161   AnalysisGetter AG(FAM);
3162 
3163   SetVector<Function *> Functions;
3164   for (LazyCallGraph::Node &N : C)
3165     Functions.insert(&N.getFunction());
3166 
3167   if (Functions.empty())
3168     return PreservedAnalyses::all();
3169 
3170   Module &M = *Functions.back()->getParent();
3171   CallGraphUpdater CGUpdater;
3172   CGUpdater.initialize(CG, C, AM, UR);
3173   BumpPtrAllocator Allocator;
3174   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3175   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3176                                /* DeleteFns */ false)) {
3177     // FIXME: Think about passes we will preserve and add them here.
3178     PreservedAnalyses PA;
3179     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
3180     return PA;
3181   }
3182   return PreservedAnalyses::all();
3183 }
3184 
3185 namespace llvm {
3186 
3187 template <> struct GraphTraits<AADepGraphNode *> {
3188   using NodeRef = AADepGraphNode *;
3189   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
3190   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
3191 
3192   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
3193   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
3194 
3195   using ChildIteratorType =
3196       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3197   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
3198 
3199   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
3200 
3201   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
3202 };
3203 
3204 template <>
3205 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
3206   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
3207 
3208   using nodes_iterator =
3209       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
3210 
3211   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
3212 
3213   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
3214 };
3215 
3216 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
3217   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3218 
3219   static std::string getNodeLabel(const AADepGraphNode *Node,
3220                                   const AADepGraph *DG) {
3221     std::string AAString;
3222     raw_string_ostream O(AAString);
3223     Node->print(O);
3224     return AAString;
3225   }
3226 };
3227 
3228 } // end namespace llvm
3229 
3230 namespace {
3231 
3232 struct AttributorLegacyPass : public ModulePass {
3233   static char ID;
3234 
3235   AttributorLegacyPass() : ModulePass(ID) {
3236     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3237   }
3238 
3239   bool runOnModule(Module &M) override {
3240     if (skipModule(M))
3241       return false;
3242 
3243     AnalysisGetter AG;
3244     SetVector<Function *> Functions;
3245     for (Function &F : M)
3246       Functions.insert(&F);
3247 
3248     CallGraphUpdater CGUpdater;
3249     BumpPtrAllocator Allocator;
3250     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3251     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3252                                     /* DeleteFns*/ true);
3253   }
3254 
3255   void getAnalysisUsage(AnalysisUsage &AU) const override {
3256     // FIXME: Think about passes we will preserve and add them here.
3257     AU.addRequired<TargetLibraryInfoWrapperPass>();
3258   }
3259 };
3260 
3261 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3262   static char ID;
3263 
3264   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3265     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3266   }
3267 
3268   bool runOnSCC(CallGraphSCC &SCC) override {
3269     if (skipSCC(SCC))
3270       return false;
3271 
3272     SetVector<Function *> Functions;
3273     for (CallGraphNode *CGN : SCC)
3274       if (Function *Fn = CGN->getFunction())
3275         if (!Fn->isDeclaration())
3276           Functions.insert(Fn);
3277 
3278     if (Functions.empty())
3279       return false;
3280 
3281     AnalysisGetter AG;
3282     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3283     CallGraphUpdater CGUpdater;
3284     CGUpdater.initialize(CG, SCC);
3285     Module &M = *Functions.back()->getParent();
3286     BumpPtrAllocator Allocator;
3287     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3288     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3289                                     /* DeleteFns */ false);
3290   }
3291 
3292   void getAnalysisUsage(AnalysisUsage &AU) const override {
3293     // FIXME: Think about passes we will preserve and add them here.
3294     AU.addRequired<TargetLibraryInfoWrapperPass>();
3295     CallGraphSCCPass::getAnalysisUsage(AU);
3296   }
3297 };
3298 
3299 } // end anonymous namespace
3300 
3301 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3302 Pass *llvm::createAttributorCGSCCLegacyPass() {
3303   return new AttributorCGSCCLegacyPass();
3304 }
3305 
3306 char AttributorLegacyPass::ID = 0;
3307 char AttributorCGSCCLegacyPass::ID = 0;
3308 
3309 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3310                       "Deduce and propagate attributes", false, false)
3311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3312 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3313                     "Deduce and propagate attributes", false, false)
3314 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
3315                       "Deduce and propagate attributes (CGSCC pass)", false,
3316                       false)
3317 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3318 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
3319 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
3320                     "Deduce and propagate attributes (CGSCC pass)", false,
3321                     false)
3322