1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/NoFolder.h"
31 #include "llvm/IR/Verifier.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FileSystem.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 
44 #include <cassert>
45 #include <string>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
52               "Determine what attributes are manifested in the IR");
53 
54 STATISTIC(NumFnDeleted, "Number of function deleted");
55 STATISTIC(NumFnWithExactDefinition,
56           "Number of functions with exact definitions");
57 STATISTIC(NumFnWithoutExactDefinition,
58           "Number of functions without exact definitions");
59 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
60 STATISTIC(NumAttributesTimedOut,
61           "Number of abstract attributes timed out before fixpoint");
62 STATISTIC(NumAttributesValidFixpoint,
63           "Number of abstract attributes in a valid fixpoint state");
64 STATISTIC(NumAttributesManifested,
65           "Number of abstract attributes manifested in IR");
66 
67 // TODO: Determine a good default value.
68 //
69 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
70 // (when run with the first 5 abstract attributes). The results also indicate
71 // that we never reach 32 iterations but always find a fixpoint sooner.
72 //
73 // This will become more evolved once we perform two interleaved fixpoint
74 // iterations: bottom-up and top-down.
75 static cl::opt<unsigned>
76     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
77                           cl::desc("Maximal number of fixpoint iterations."),
78                           cl::init(32));
79 
80 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
81     "attributor-max-initialization-chain-length", cl::Hidden,
82     cl::desc(
83         "Maximal number of chained initializations (to avoid stack overflows)"),
84     cl::location(MaxInitializationChainLength), cl::init(1024));
85 unsigned llvm::MaxInitializationChainLength;
86 
87 static cl::opt<bool> VerifyMaxFixpointIterations(
88     "attributor-max-iterations-verify", cl::Hidden,
89     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
90     cl::init(false));
91 
92 static cl::opt<bool> AnnotateDeclarationCallSites(
93     "attributor-annotate-decl-cs", cl::Hidden,
94     cl::desc("Annotate call sites of function declarations."), cl::init(false));
95 
96 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
97                                        cl::init(true), cl::Hidden);
98 
99 static cl::opt<bool>
100     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
101                          cl::desc("Allow the Attributor to create shallow "
102                                   "wrappers for non-exact definitions."),
103                          cl::init(false));
104 
105 static cl::opt<bool>
106     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
107                      cl::desc("Allow the Attributor to use IP information "
108                               "derived from non-exact functions via cloning"),
109                      cl::init(false));
110 
111 // These options can only used for debug builds.
112 #ifndef NDEBUG
113 static cl::list<std::string>
114     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
115                   cl::desc("Comma seperated list of attribute names that are "
116                            "allowed to be seeded."),
117                   cl::ZeroOrMore, cl::CommaSeparated);
118 
119 static cl::list<std::string> FunctionSeedAllowList(
120     "attributor-function-seed-allow-list", cl::Hidden,
121     cl::desc("Comma seperated list of function names that are "
122              "allowed to be seeded."),
123     cl::ZeroOrMore, cl::CommaSeparated);
124 #endif
125 
126 static cl::opt<bool>
127     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
128                  cl::desc("Dump the dependency graph to dot files."),
129                  cl::init(false));
130 
131 static cl::opt<std::string> DepGraphDotFileNamePrefix(
132     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
133     cl::desc("The prefix used for the CallGraph dot file names."));
134 
135 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
136                                   cl::desc("View the dependency graph."),
137                                   cl::init(false));
138 
139 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
140                                        cl::desc("Print attribute dependencies"),
141                                        cl::init(false));
142 
143 static cl::opt<bool> EnableCallSiteSpecific(
144     "attributor-enable-call-site-specific-deduction", cl::Hidden,
145     cl::desc("Allow the Attributor to do call site specific analysis"),
146     cl::init(false));
147 
148 /// Logic operators for the change status enum class.
149 ///
150 ///{
151 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
152   return L == ChangeStatus::CHANGED ? L : R;
153 }
154 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
155   return L == ChangeStatus::UNCHANGED ? L : R;
156 }
157 ///}
158 
159 /// Return true if \p New is equal or worse than \p Old.
160 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
161   if (!Old.isIntAttribute())
162     return true;
163 
164   return Old.getValueAsInt() >= New.getValueAsInt();
165 }
166 
167 /// Return true if the information provided by \p Attr was added to the
168 /// attribute list \p Attrs. This is only the case if it was not already present
169 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
170 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
171                              AttributeList &Attrs, int AttrIdx) {
172 
173   if (Attr.isEnumAttribute()) {
174     Attribute::AttrKind Kind = Attr.getKindAsEnum();
175     if (Attrs.hasAttribute(AttrIdx, Kind))
176       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
177         return false;
178     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
179     return true;
180   }
181   if (Attr.isStringAttribute()) {
182     StringRef Kind = Attr.getKindAsString();
183     if (Attrs.hasAttribute(AttrIdx, Kind))
184       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
185         return false;
186     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
187     return true;
188   }
189   if (Attr.isIntAttribute()) {
190     Attribute::AttrKind Kind = Attr.getKindAsEnum();
191     if (Attrs.hasAttribute(AttrIdx, Kind))
192       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
193         return false;
194     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
195     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
196     return true;
197   }
198 
199   llvm_unreachable("Expected enum or string attribute!");
200 }
201 
202 Argument *IRPosition::getAssociatedArgument() const {
203   if (getPositionKind() == IRP_ARGUMENT)
204     return cast<Argument>(&getAnchorValue());
205 
206   // Not an Argument and no argument number means this is not a call site
207   // argument, thus we cannot find a callback argument to return.
208   int ArgNo = getCallSiteArgNo();
209   if (ArgNo < 0)
210     return nullptr;
211 
212   // Use abstract call sites to make the connection between the call site
213   // values and the ones in callbacks. If a callback was found that makes use
214   // of the underlying call site operand, we want the corresponding callback
215   // callee argument and not the direct callee argument.
216   Optional<Argument *> CBCandidateArg;
217   SmallVector<const Use *, 4> CallbackUses;
218   const auto &CB = cast<CallBase>(getAnchorValue());
219   AbstractCallSite::getCallbackUses(CB, CallbackUses);
220   for (const Use *U : CallbackUses) {
221     AbstractCallSite ACS(U);
222     assert(ACS && ACS.isCallbackCall());
223     if (!ACS.getCalledFunction())
224       continue;
225 
226     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
227 
228       // Test if the underlying call site operand is argument number u of the
229       // callback callee.
230       if (ACS.getCallArgOperandNo(u) != ArgNo)
231         continue;
232 
233       assert(ACS.getCalledFunction()->arg_size() > u &&
234              "ACS mapped into var-args arguments!");
235       if (CBCandidateArg.hasValue()) {
236         CBCandidateArg = nullptr;
237         break;
238       }
239       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
240     }
241   }
242 
243   // If we found a unique callback candidate argument, return it.
244   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
245     return CBCandidateArg.getValue();
246 
247   // If no callbacks were found, or none used the underlying call site operand
248   // exclusively, use the direct callee argument if available.
249   const Function *Callee = CB.getCalledFunction();
250   if (Callee && Callee->arg_size() > unsigned(ArgNo))
251     return Callee->getArg(ArgNo);
252 
253   return nullptr;
254 }
255 
256 ChangeStatus AbstractAttribute::update(Attributor &A) {
257   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
258   if (getState().isAtFixpoint())
259     return HasChanged;
260 
261   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
262 
263   HasChanged = updateImpl(A);
264 
265   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
266                     << "\n");
267 
268   return HasChanged;
269 }
270 
271 ChangeStatus
272 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
273                                    const ArrayRef<Attribute> &DeducedAttrs) {
274   Function *ScopeFn = IRP.getAnchorScope();
275   IRPosition::Kind PK = IRP.getPositionKind();
276 
277   // In the following some generic code that will manifest attributes in
278   // DeducedAttrs if they improve the current IR. Due to the different
279   // annotation positions we use the underlying AttributeList interface.
280 
281   AttributeList Attrs;
282   switch (PK) {
283   case IRPosition::IRP_INVALID:
284   case IRPosition::IRP_FLOAT:
285     return ChangeStatus::UNCHANGED;
286   case IRPosition::IRP_ARGUMENT:
287   case IRPosition::IRP_FUNCTION:
288   case IRPosition::IRP_RETURNED:
289     Attrs = ScopeFn->getAttributes();
290     break;
291   case IRPosition::IRP_CALL_SITE:
292   case IRPosition::IRP_CALL_SITE_RETURNED:
293   case IRPosition::IRP_CALL_SITE_ARGUMENT:
294     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
295     break;
296   }
297 
298   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
299   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
300   for (const Attribute &Attr : DeducedAttrs) {
301     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
302       continue;
303 
304     HasChanged = ChangeStatus::CHANGED;
305   }
306 
307   if (HasChanged == ChangeStatus::UNCHANGED)
308     return HasChanged;
309 
310   switch (PK) {
311   case IRPosition::IRP_ARGUMENT:
312   case IRPosition::IRP_FUNCTION:
313   case IRPosition::IRP_RETURNED:
314     ScopeFn->setAttributes(Attrs);
315     break;
316   case IRPosition::IRP_CALL_SITE:
317   case IRPosition::IRP_CALL_SITE_RETURNED:
318   case IRPosition::IRP_CALL_SITE_ARGUMENT:
319     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
320     break;
321   case IRPosition::IRP_INVALID:
322   case IRPosition::IRP_FLOAT:
323     break;
324   }
325 
326   return HasChanged;
327 }
328 
329 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
330 const IRPosition
331     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
332 
333 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
334   IRPositions.emplace_back(IRP);
335 
336   // Helper to determine if operand bundles on a call site are benin or
337   // potentially problematic. We handle only llvm.assume for now.
338   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
339     return (isa<IntrinsicInst>(CB) &&
340             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
341   };
342 
343   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
344   switch (IRP.getPositionKind()) {
345   case IRPosition::IRP_INVALID:
346   case IRPosition::IRP_FLOAT:
347   case IRPosition::IRP_FUNCTION:
348     return;
349   case IRPosition::IRP_ARGUMENT:
350   case IRPosition::IRP_RETURNED:
351     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
352     return;
353   case IRPosition::IRP_CALL_SITE:
354     assert(CB && "Expected call site!");
355     // TODO: We need to look at the operand bundles similar to the redirection
356     //       in CallBase.
357     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
358       if (const Function *Callee = CB->getCalledFunction())
359         IRPositions.emplace_back(IRPosition::function(*Callee));
360     return;
361   case IRPosition::IRP_CALL_SITE_RETURNED:
362     assert(CB && "Expected call site!");
363     // TODO: We need to look at the operand bundles similar to the redirection
364     //       in CallBase.
365     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
366       if (const Function *Callee = CB->getCalledFunction()) {
367         IRPositions.emplace_back(IRPosition::returned(*Callee));
368         IRPositions.emplace_back(IRPosition::function(*Callee));
369         for (const Argument &Arg : Callee->args())
370           if (Arg.hasReturnedAttr()) {
371             IRPositions.emplace_back(
372                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
373             IRPositions.emplace_back(
374                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
375             IRPositions.emplace_back(IRPosition::argument(Arg));
376           }
377       }
378     }
379     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
380     return;
381   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
382     assert(CB && "Expected call site!");
383     // TODO: We need to look at the operand bundles similar to the redirection
384     //       in CallBase.
385     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
386       const Function *Callee = CB->getCalledFunction();
387       if (Callee) {
388         if (Argument *Arg = IRP.getAssociatedArgument())
389           IRPositions.emplace_back(IRPosition::argument(*Arg));
390         IRPositions.emplace_back(IRPosition::function(*Callee));
391       }
392     }
393     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
394     return;
395   }
396   }
397 }
398 
399 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
400                          bool IgnoreSubsumingPositions, Attributor *A) const {
401   SmallVector<Attribute, 4> Attrs;
402   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
403     for (Attribute::AttrKind AK : AKs)
404       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
405         return true;
406     // The first position returned by the SubsumingPositionIterator is
407     // always the position itself. If we ignore subsuming positions we
408     // are done after the first iteration.
409     if (IgnoreSubsumingPositions)
410       break;
411   }
412   if (A)
413     for (Attribute::AttrKind AK : AKs)
414       if (getAttrsFromAssumes(AK, Attrs, *A))
415         return true;
416   return false;
417 }
418 
419 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
420                           SmallVectorImpl<Attribute> &Attrs,
421                           bool IgnoreSubsumingPositions, Attributor *A) const {
422   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
423     for (Attribute::AttrKind AK : AKs)
424       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
425     // The first position returned by the SubsumingPositionIterator is
426     // always the position itself. If we ignore subsuming positions we
427     // are done after the first iteration.
428     if (IgnoreSubsumingPositions)
429       break;
430   }
431   if (A)
432     for (Attribute::AttrKind AK : AKs)
433       getAttrsFromAssumes(AK, Attrs, *A);
434 }
435 
436 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
437                                     SmallVectorImpl<Attribute> &Attrs) const {
438   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
439     return false;
440 
441   AttributeList AttrList;
442   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
443     AttrList = CB->getAttributes();
444   else
445     AttrList = getAssociatedFunction()->getAttributes();
446 
447   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
448   if (HasAttr)
449     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
450   return HasAttr;
451 }
452 
453 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
454                                      SmallVectorImpl<Attribute> &Attrs,
455                                      Attributor &A) const {
456   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
457   Value &AssociatedValue = getAssociatedValue();
458 
459   const Assume2KnowledgeMap &A2K =
460       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
461 
462   // Check if we found any potential assume use, if not we don't need to create
463   // explorer iterators.
464   if (A2K.empty())
465     return false;
466 
467   LLVMContext &Ctx = AssociatedValue.getContext();
468   unsigned AttrsSize = Attrs.size();
469   MustBeExecutedContextExplorer &Explorer =
470       A.getInfoCache().getMustBeExecutedContextExplorer();
471   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
472   for (auto &It : A2K)
473     if (Explorer.findInContextOf(It.first, EIt, EEnd))
474       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
475   return AttrsSize != Attrs.size();
476 }
477 
478 void IRPosition::verify() {
479 #ifdef EXPENSIVE_CHECKS
480   switch (getPositionKind()) {
481   case IRP_INVALID:
482     assert((CBContext == nullptr) &&
483            "Invalid position must not have CallBaseContext!");
484     assert(!Enc.getOpaqueValue() &&
485            "Expected a nullptr for an invalid position!");
486     return;
487   case IRP_FLOAT:
488     assert((!isa<CallBase>(&getAssociatedValue()) &&
489             !isa<Argument>(&getAssociatedValue())) &&
490            "Expected specialized kind for call base and argument values!");
491     return;
492   case IRP_RETURNED:
493     assert(isa<Function>(getAsValuePtr()) &&
494            "Expected function for a 'returned' position!");
495     assert(getAsValuePtr() == &getAssociatedValue() &&
496            "Associated value mismatch!");
497     return;
498   case IRP_CALL_SITE_RETURNED:
499     assert((CBContext == nullptr) &&
500            "'call site returned' position must not have CallBaseContext!");
501     assert((isa<CallBase>(getAsValuePtr())) &&
502            "Expected call base for 'call site returned' position!");
503     assert(getAsValuePtr() == &getAssociatedValue() &&
504            "Associated value mismatch!");
505     return;
506   case IRP_CALL_SITE:
507     assert((CBContext == nullptr) &&
508            "'call site function' position must not have CallBaseContext!");
509     assert((isa<CallBase>(getAsValuePtr())) &&
510            "Expected call base for 'call site function' position!");
511     assert(getAsValuePtr() == &getAssociatedValue() &&
512            "Associated value mismatch!");
513     return;
514   case IRP_FUNCTION:
515     assert(isa<Function>(getAsValuePtr()) &&
516            "Expected function for a 'function' position!");
517     assert(getAsValuePtr() == &getAssociatedValue() &&
518            "Associated value mismatch!");
519     return;
520   case IRP_ARGUMENT:
521     assert(isa<Argument>(getAsValuePtr()) &&
522            "Expected argument for a 'argument' position!");
523     assert(getAsValuePtr() == &getAssociatedValue() &&
524            "Associated value mismatch!");
525     return;
526   case IRP_CALL_SITE_ARGUMENT: {
527     assert((CBContext == nullptr) &&
528            "'call site argument' position must not have CallBaseContext!");
529     Use *U = getAsUsePtr();
530     assert(U && "Expected use for a 'call site argument' position!");
531     assert(isa<CallBase>(U->getUser()) &&
532            "Expected call base user for a 'call site argument' position!");
533     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
534            "Expected call base argument operand for a 'call site argument' "
535            "position");
536     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
537                unsigned(getCallSiteArgNo()) &&
538            "Argument number mismatch!");
539     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
540     return;
541   }
542   }
543 #endif
544 }
545 
546 Optional<Constant *>
547 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
548                                bool &UsedAssumedInformation) {
549   const auto &ValueSimplifyAA =
550       getAAFor<AAValueSimplify>(AA, IRPosition::value(V), DepClassTy::NONE);
551   Optional<Value *> SimplifiedV =
552       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
553   bool IsKnown = ValueSimplifyAA.isKnown();
554   UsedAssumedInformation |= !IsKnown;
555   if (!SimplifiedV.hasValue()) {
556     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
557     return llvm::None;
558   }
559   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
560     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
561     return llvm::None;
562   }
563   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
564   if (CI && CI->getType() != V.getType()) {
565     // TODO: Check for a save conversion.
566     return nullptr;
567   }
568   if (CI)
569     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
570   return CI;
571 }
572 
573 Attributor::~Attributor() {
574   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
575   // thus we cannot delete them. We can, and want to, destruct them though.
576   for (auto &DepAA : DG.SyntheticRoot.Deps) {
577     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
578     AA->~AbstractAttribute();
579   }
580 }
581 
582 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
583                                const AAIsDead *FnLivenessAA,
584                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
585   const IRPosition &IRP = AA.getIRPosition();
586   if (!Functions.count(IRP.getAnchorScope()))
587     return false;
588   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
589 }
590 
591 bool Attributor::isAssumedDead(const Use &U,
592                                const AbstractAttribute *QueryingAA,
593                                const AAIsDead *FnLivenessAA,
594                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
595   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
596   if (!UserI)
597     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
598                          CheckBBLivenessOnly, DepClass);
599 
600   if (auto *CB = dyn_cast<CallBase>(UserI)) {
601     // For call site argument uses we can check if the argument is
602     // unused/dead.
603     if (CB->isArgOperand(&U)) {
604       const IRPosition &CSArgPos =
605           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
606       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
607                            CheckBBLivenessOnly, DepClass);
608     }
609   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
610     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
611     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
612                          DepClass);
613   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
614     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
615     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
616                          CheckBBLivenessOnly, DepClass);
617   }
618 
619   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
620                        CheckBBLivenessOnly, DepClass);
621 }
622 
623 bool Attributor::isAssumedDead(const Instruction &I,
624                                const AbstractAttribute *QueryingAA,
625                                const AAIsDead *FnLivenessAA,
626                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
627   if (!FnLivenessAA)
628     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
629                                          QueryingAA, DepClassTy::NONE);
630 
631   // If we have a context instruction and a liveness AA we use it.
632   if (FnLivenessAA &&
633       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
634       FnLivenessAA->isAssumedDead(&I)) {
635     if (QueryingAA)
636       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
637     return true;
638   }
639 
640   if (CheckBBLivenessOnly)
641     return false;
642 
643   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
644       IRPosition::value(I), QueryingAA, DepClassTy::NONE);
645   // Don't check liveness for AAIsDead.
646   if (QueryingAA == &IsDeadAA)
647     return false;
648 
649   if (IsDeadAA.isAssumedDead()) {
650     if (QueryingAA)
651       recordDependence(IsDeadAA, *QueryingAA, DepClass);
652     return true;
653   }
654 
655   return false;
656 }
657 
658 bool Attributor::isAssumedDead(const IRPosition &IRP,
659                                const AbstractAttribute *QueryingAA,
660                                const AAIsDead *FnLivenessAA,
661                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
662   Instruction *CtxI = IRP.getCtxI();
663   if (CtxI &&
664       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
665                     /* CheckBBLivenessOnly */ true,
666                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
667     return true;
668 
669   if (CheckBBLivenessOnly)
670     return false;
671 
672   // If we haven't succeeded we query the specific liveness info for the IRP.
673   const AAIsDead *IsDeadAA;
674   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
675     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
676         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
677         QueryingAA, DepClassTy::NONE);
678   else
679     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
680   // Don't check liveness for AAIsDead.
681   if (QueryingAA == IsDeadAA)
682     return false;
683 
684   if (IsDeadAA->isAssumedDead()) {
685     if (QueryingAA)
686       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
687     return true;
688   }
689 
690   return false;
691 }
692 
693 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
694                                  const AbstractAttribute &QueryingAA,
695                                  const Value &V, DepClassTy LivenessDepClass) {
696 
697   // Check the trivial case first as it catches void values.
698   if (V.use_empty())
699     return true;
700 
701   // If the value is replaced by another one, for now a constant, we do not have
702   // uses. Note that this requires users of `checkForAllUses` to not recurse but
703   // instead use the `follow` callback argument to look at transitive users,
704   // however, that should be clear from the presence of the argument.
705   bool UsedAssumedInformation = false;
706   Optional<Constant *> C =
707       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
708   if (C.hasValue() && C.getValue()) {
709     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
710                       << " -> " << *C.getValue() << "\n");
711     return true;
712   }
713 
714   const IRPosition &IRP = QueryingAA.getIRPosition();
715   SmallVector<const Use *, 16> Worklist;
716   SmallPtrSet<const Use *, 16> Visited;
717 
718   for (const Use &U : V.uses())
719     Worklist.push_back(&U);
720 
721   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
722                     << " initial uses to check\n");
723 
724   const Function *ScopeFn = IRP.getAnchorScope();
725   const auto *LivenessAA =
726       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
727                                     DepClassTy::NONE)
728               : nullptr;
729 
730   while (!Worklist.empty()) {
731     const Use *U = Worklist.pop_back_val();
732     if (!Visited.insert(U).second)
733       continue;
734     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
735                       << *U->getUser() << "\n");
736     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
737                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
738       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
739       continue;
740     }
741     if (U->getUser()->isDroppable()) {
742       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
743       continue;
744     }
745 
746     bool Follow = false;
747     if (!Pred(*U, Follow))
748       return false;
749     if (!Follow)
750       continue;
751     for (const Use &UU : U->getUser()->uses())
752       Worklist.push_back(&UU);
753   }
754 
755   return true;
756 }
757 
758 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
759                                       const AbstractAttribute &QueryingAA,
760                                       bool RequireAllCallSites,
761                                       bool &AllCallSitesKnown) {
762   // We can try to determine information from
763   // the call sites. However, this is only possible all call sites are known,
764   // hence the function has internal linkage.
765   const IRPosition &IRP = QueryingAA.getIRPosition();
766   const Function *AssociatedFunction = IRP.getAssociatedFunction();
767   if (!AssociatedFunction) {
768     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
769                       << "\n");
770     AllCallSitesKnown = false;
771     return false;
772   }
773 
774   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
775                               &QueryingAA, AllCallSitesKnown);
776 }
777 
778 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
779                                       const Function &Fn,
780                                       bool RequireAllCallSites,
781                                       const AbstractAttribute *QueryingAA,
782                                       bool &AllCallSitesKnown) {
783   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
784     LLVM_DEBUG(
785         dbgs()
786         << "[Attributor] Function " << Fn.getName()
787         << " has no internal linkage, hence not all call sites are known\n");
788     AllCallSitesKnown = false;
789     return false;
790   }
791 
792   // If we do not require all call sites we might not see all.
793   AllCallSitesKnown = RequireAllCallSites;
794 
795   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
796   for (unsigned u = 0; u < Uses.size(); ++u) {
797     const Use &U = *Uses[u];
798     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
799                       << *U.getUser() << "\n");
800     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
801       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
802       continue;
803     }
804     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
805       if (CE->isCast() && CE->getType()->isPointerTy() &&
806           CE->getType()->getPointerElementType()->isFunctionTy()) {
807         for (const Use &CEU : CE->uses())
808           Uses.push_back(&CEU);
809         continue;
810       }
811     }
812 
813     AbstractCallSite ACS(&U);
814     if (!ACS) {
815       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
816                         << " has non call site use " << *U.get() << " in "
817                         << *U.getUser() << "\n");
818       // BlockAddress users are allowed.
819       if (isa<BlockAddress>(U.getUser()))
820         continue;
821       return false;
822     }
823 
824     const Use *EffectiveUse =
825         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
826     if (!ACS.isCallee(EffectiveUse)) {
827       if (!RequireAllCallSites)
828         continue;
829       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
830                         << " is an invalid use of " << Fn.getName() << "\n");
831       return false;
832     }
833 
834     // Make sure the arguments that can be matched between the call site and the
835     // callee argee on their type. It is unlikely they do not and it doesn't
836     // make sense for all attributes to know/care about this.
837     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
838     unsigned MinArgsParams =
839         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
840     for (unsigned u = 0; u < MinArgsParams; ++u) {
841       Value *CSArgOp = ACS.getCallArgOperand(u);
842       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
843         LLVM_DEBUG(
844             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
845                    << u << "@" << Fn.getName() << ": "
846                    << *Fn.getArg(u)->getType() << " vs. "
847                    << *ACS.getCallArgOperand(u)->getType() << "\n");
848         return false;
849       }
850     }
851 
852     if (Pred(ACS))
853       continue;
854 
855     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
856                       << *ACS.getInstruction() << "\n");
857     return false;
858   }
859 
860   return true;
861 }
862 
863 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
864   // TODO: Maintain a cache of Values that are
865   // on the pathway from a Argument to a Instruction that would effect the
866   // liveness/return state etc.
867   return EnableCallSiteSpecific;
868 }
869 
870 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
871     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
872     const AbstractAttribute &QueryingAA) {
873 
874   const IRPosition &IRP = QueryingAA.getIRPosition();
875   // Since we need to provide return instructions we have to have an exact
876   // definition.
877   const Function *AssociatedFunction = IRP.getAssociatedFunction();
878   if (!AssociatedFunction)
879     return false;
880 
881   // If this is a call site query we use the call site specific return values
882   // and liveness information.
883   // TODO: use the function scope once we have call site AAReturnedValues.
884   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
885   const auto &AARetVal =
886       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
887   if (!AARetVal.getState().isValidState())
888     return false;
889 
890   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
891 }
892 
893 bool Attributor::checkForAllReturnedValues(
894     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
895 
896   const IRPosition &IRP = QueryingAA.getIRPosition();
897   const Function *AssociatedFunction = IRP.getAssociatedFunction();
898   if (!AssociatedFunction)
899     return false;
900 
901   // TODO: use the function scope once we have call site AAReturnedValues.
902   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
903   const auto &AARetVal =
904       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
905   if (!AARetVal.getState().isValidState())
906     return false;
907 
908   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
909       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
910         return Pred(RV);
911       });
912 }
913 
914 static bool checkForAllInstructionsImpl(
915     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
916     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
917     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
918     bool CheckBBLivenessOnly = false) {
919   for (unsigned Opcode : Opcodes) {
920     // Check if we have instructions with this opcode at all first.
921     auto *Insts = OpcodeInstMap.lookup(Opcode);
922     if (!Insts)
923       continue;
924 
925     for (Instruction *I : *Insts) {
926       // Skip dead instructions.
927       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
928                                 CheckBBLivenessOnly))
929         continue;
930 
931       if (!Pred(*I))
932         return false;
933     }
934   }
935   return true;
936 }
937 
938 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
939                                          const AbstractAttribute &QueryingAA,
940                                          const ArrayRef<unsigned> &Opcodes,
941                                          bool CheckBBLivenessOnly) {
942 
943   const IRPosition &IRP = QueryingAA.getIRPosition();
944   // Since we need to provide instructions we have to have an exact definition.
945   const Function *AssociatedFunction = IRP.getAssociatedFunction();
946   if (!AssociatedFunction)
947     return false;
948 
949   // TODO: use the function scope once we have call site AAReturnedValues.
950   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
951   const auto *LivenessAA =
952       CheckBBLivenessOnly
953           ? nullptr
954           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
955 
956   auto &OpcodeInstMap =
957       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
958   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
959                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
960     return false;
961 
962   return true;
963 }
964 
965 bool Attributor::checkForAllReadWriteInstructions(
966     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
967 
968   const Function *AssociatedFunction =
969       QueryingAA.getIRPosition().getAssociatedFunction();
970   if (!AssociatedFunction)
971     return false;
972 
973   // TODO: use the function scope once we have call site AAReturnedValues.
974   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
975   const auto &LivenessAA =
976       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
977 
978   for (Instruction *I :
979        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
980     // Skip dead instructions.
981     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
982       continue;
983 
984     if (!Pred(*I))
985       return false;
986   }
987 
988   return true;
989 }
990 
991 void Attributor::runTillFixpoint() {
992   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
993   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
994                     << DG.SyntheticRoot.Deps.size()
995                     << " abstract attributes.\n");
996 
997   // Now that all abstract attributes are collected and initialized we start
998   // the abstract analysis.
999 
1000   unsigned IterationCounter = 1;
1001 
1002   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1003   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1004   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1005 
1006   do {
1007     // Remember the size to determine new attributes.
1008     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1009     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1010                       << ", Worklist size: " << Worklist.size() << "\n");
1011 
1012     // For invalid AAs we can fix dependent AAs that have a required dependence,
1013     // thereby folding long dependence chains in a single step without the need
1014     // to run updates.
1015     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1016       AbstractAttribute *InvalidAA = InvalidAAs[u];
1017 
1018       // Check the dependences to fast track invalidation.
1019       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1020                         << InvalidAA->Deps.size()
1021                         << " required & optional dependences\n");
1022       while (!InvalidAA->Deps.empty()) {
1023         const auto &Dep = InvalidAA->Deps.back();
1024         InvalidAA->Deps.pop_back();
1025         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1026         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1027           Worklist.insert(DepAA);
1028           continue;
1029         }
1030         DepAA->getState().indicatePessimisticFixpoint();
1031         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1032         if (!DepAA->getState().isValidState())
1033           InvalidAAs.insert(DepAA);
1034         else
1035           ChangedAAs.push_back(DepAA);
1036       }
1037     }
1038 
1039     // Add all abstract attributes that are potentially dependent on one that
1040     // changed to the work list.
1041     for (AbstractAttribute *ChangedAA : ChangedAAs)
1042       while (!ChangedAA->Deps.empty()) {
1043         Worklist.insert(
1044             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1045         ChangedAA->Deps.pop_back();
1046       }
1047 
1048     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1049                       << ", Worklist+Dependent size: " << Worklist.size()
1050                       << "\n");
1051 
1052     // Reset the changed and invalid set.
1053     ChangedAAs.clear();
1054     InvalidAAs.clear();
1055 
1056     // Update all abstract attribute in the work list and record the ones that
1057     // changed.
1058     for (AbstractAttribute *AA : Worklist) {
1059       const auto &AAState = AA->getState();
1060       if (!AAState.isAtFixpoint())
1061         if (updateAA(*AA) == ChangeStatus::CHANGED)
1062           ChangedAAs.push_back(AA);
1063 
1064       // Use the InvalidAAs vector to propagate invalid states fast transitively
1065       // without requiring updates.
1066       if (!AAState.isValidState())
1067         InvalidAAs.insert(AA);
1068     }
1069 
1070     // Add attributes to the changed set if they have been created in the last
1071     // iteration.
1072     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1073                       DG.SyntheticRoot.end());
1074 
1075     // Reset the work list and repopulate with the changed abstract attributes.
1076     // Note that dependent ones are added above.
1077     Worklist.clear();
1078     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1079 
1080   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1081                                  VerifyMaxFixpointIterations));
1082 
1083   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1084                     << IterationCounter << "/" << MaxFixpointIterations
1085                     << " iterations\n");
1086 
1087   // Reset abstract arguments not settled in a sound fixpoint by now. This
1088   // happens when we stopped the fixpoint iteration early. Note that only the
1089   // ones marked as "changed" *and* the ones transitively depending on them
1090   // need to be reverted to a pessimistic state. Others might not be in a
1091   // fixpoint state but we can use the optimistic results for them anyway.
1092   SmallPtrSet<AbstractAttribute *, 32> Visited;
1093   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1094     AbstractAttribute *ChangedAA = ChangedAAs[u];
1095     if (!Visited.insert(ChangedAA).second)
1096       continue;
1097 
1098     AbstractState &State = ChangedAA->getState();
1099     if (!State.isAtFixpoint()) {
1100       State.indicatePessimisticFixpoint();
1101 
1102       NumAttributesTimedOut++;
1103     }
1104 
1105     while (!ChangedAA->Deps.empty()) {
1106       ChangedAAs.push_back(
1107           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1108       ChangedAA->Deps.pop_back();
1109     }
1110   }
1111 
1112   LLVM_DEBUG({
1113     if (!Visited.empty())
1114       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1115              << " abstract attributes.\n";
1116   });
1117 
1118   if (VerifyMaxFixpointIterations &&
1119       IterationCounter != MaxFixpointIterations) {
1120     errs() << "\n[Attributor] Fixpoint iteration done after: "
1121            << IterationCounter << "/" << MaxFixpointIterations
1122            << " iterations\n";
1123     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1124                      "specified iterations!");
1125   }
1126 }
1127 
1128 ChangeStatus Attributor::manifestAttributes() {
1129   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1130   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1131 
1132   unsigned NumManifested = 0;
1133   unsigned NumAtFixpoint = 0;
1134   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1135   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1136     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1137     AbstractState &State = AA->getState();
1138 
1139     // If there is not already a fixpoint reached, we can now take the
1140     // optimistic state. This is correct because we enforced a pessimistic one
1141     // on abstract attributes that were transitively dependent on a changed one
1142     // already above.
1143     if (!State.isAtFixpoint())
1144       State.indicateOptimisticFixpoint();
1145 
1146     // We must not manifest Attributes that use Callbase info.
1147     if (AA->hasCallBaseContext())
1148       continue;
1149     // If the state is invalid, we do not try to manifest it.
1150     if (!State.isValidState())
1151       continue;
1152 
1153     // Skip dead code.
1154     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1155       continue;
1156     // Check if the manifest debug counter that allows skipping manifestation of
1157     // AAs
1158     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1159       continue;
1160     // Manifest the state and record if we changed the IR.
1161     ChangeStatus LocalChange = AA->manifest(*this);
1162     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1163       AA->trackStatistics();
1164     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1165                       << "\n");
1166 
1167     ManifestChange = ManifestChange | LocalChange;
1168 
1169     NumAtFixpoint++;
1170     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1171   }
1172 
1173   (void)NumManifested;
1174   (void)NumAtFixpoint;
1175   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1176                     << " arguments while " << NumAtFixpoint
1177                     << " were in a valid fixpoint state\n");
1178 
1179   NumAttributesManifested += NumManifested;
1180   NumAttributesValidFixpoint += NumAtFixpoint;
1181 
1182   (void)NumFinalAAs;
1183   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1184     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1185       errs() << "Unexpected abstract attribute: "
1186              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1187              << " :: "
1188              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1189                     ->getIRPosition()
1190                     .getAssociatedValue()
1191              << "\n";
1192     llvm_unreachable("Expected the final number of abstract attributes to "
1193                      "remain unchanged!");
1194   }
1195   return ManifestChange;
1196 }
1197 
1198 void Attributor::identifyDeadInternalFunctions() {
1199   // Early exit if we don't intend to delete functions.
1200   if (!DeleteFns)
1201     return;
1202 
1203   // Identify dead internal functions and delete them. This happens outside
1204   // the other fixpoint analysis as we might treat potentially dead functions
1205   // as live to lower the number of iterations. If they happen to be dead, the
1206   // below fixpoint loop will identify and eliminate them.
1207   SmallVector<Function *, 8> InternalFns;
1208   for (Function *F : Functions)
1209     if (F->hasLocalLinkage())
1210       InternalFns.push_back(F);
1211 
1212   SmallPtrSet<Function *, 8> LiveInternalFns;
1213   bool FoundLiveInternal = true;
1214   while (FoundLiveInternal) {
1215     FoundLiveInternal = false;
1216     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1217       Function *F = InternalFns[u];
1218       if (!F)
1219         continue;
1220 
1221       bool AllCallSitesKnown;
1222       if (checkForAllCallSites(
1223               [&](AbstractCallSite ACS) {
1224                 Function *Callee = ACS.getInstruction()->getFunction();
1225                 return ToBeDeletedFunctions.count(Callee) ||
1226                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1227                         !LiveInternalFns.count(Callee));
1228               },
1229               *F, true, nullptr, AllCallSitesKnown)) {
1230         continue;
1231       }
1232 
1233       LiveInternalFns.insert(F);
1234       InternalFns[u] = nullptr;
1235       FoundLiveInternal = true;
1236     }
1237   }
1238 
1239   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1240     if (Function *F = InternalFns[u])
1241       ToBeDeletedFunctions.insert(F);
1242 }
1243 
1244 ChangeStatus Attributor::cleanupIR() {
1245   TimeTraceScope TimeScope("Attributor::cleanupIR");
1246   // Delete stuff at the end to avoid invalid references and a nice order.
1247   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1248                     << ToBeDeletedFunctions.size() << " functions and "
1249                     << ToBeDeletedBlocks.size() << " blocks and "
1250                     << ToBeDeletedInsts.size() << " instructions and "
1251                     << ToBeChangedUses.size() << " uses\n");
1252 
1253   SmallVector<WeakTrackingVH, 32> DeadInsts;
1254   SmallVector<Instruction *, 32> TerminatorsToFold;
1255 
1256   for (auto &It : ToBeChangedUses) {
1257     Use *U = It.first;
1258     Value *NewV = It.second;
1259     Value *OldV = U->get();
1260 
1261     // Do not replace uses in returns if the value is a must-tail call we will
1262     // not delete.
1263     if (isa<ReturnInst>(U->getUser()))
1264       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1265         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1266           continue;
1267 
1268     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1269                       << " instead of " << *OldV << "\n");
1270     U->set(NewV);
1271     // Do not modify call instructions outside the SCC.
1272     if (auto *CB = dyn_cast<CallBase>(OldV))
1273       if (!Functions.count(CB->getCaller()))
1274         continue;
1275     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1276       CGModifiedFunctions.insert(I->getFunction());
1277       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1278           isInstructionTriviallyDead(I))
1279         DeadInsts.push_back(I);
1280     }
1281     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1282       auto *CB = cast<CallBase>(U->getUser());
1283       if (CB->isArgOperand(U)) {
1284         unsigned Idx = CB->getArgOperandNo(U);
1285         CB->removeParamAttr(Idx, Attribute::NoUndef);
1286         Function *Fn = CB->getCalledFunction();
1287         assert(Fn && "Expected callee when call argument is replaced!");
1288         if (Fn->arg_size() > Idx)
1289           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1290       }
1291     }
1292     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1293       Instruction *UserI = cast<Instruction>(U->getUser());
1294       if (isa<UndefValue>(NewV)) {
1295         ToBeChangedToUnreachableInsts.insert(UserI);
1296       } else {
1297         TerminatorsToFold.push_back(UserI);
1298       }
1299     }
1300   }
1301   for (auto &V : InvokeWithDeadSuccessor)
1302     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1303       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1304       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1305       bool Invoke2CallAllowed =
1306           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1307       assert((UnwindBBIsDead || NormalBBIsDead) &&
1308              "Invoke does not have dead successors!");
1309       BasicBlock *BB = II->getParent();
1310       BasicBlock *NormalDestBB = II->getNormalDest();
1311       if (UnwindBBIsDead) {
1312         Instruction *NormalNextIP = &NormalDestBB->front();
1313         if (Invoke2CallAllowed) {
1314           changeToCall(II);
1315           NormalNextIP = BB->getTerminator();
1316         }
1317         if (NormalBBIsDead)
1318           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1319       } else {
1320         assert(NormalBBIsDead && "Broken invariant!");
1321         if (!NormalDestBB->getUniquePredecessor())
1322           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1323         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1324       }
1325     }
1326   for (Instruction *I : TerminatorsToFold) {
1327     CGModifiedFunctions.insert(I->getFunction());
1328     ConstantFoldTerminator(I->getParent());
1329   }
1330   for (auto &V : ToBeChangedToUnreachableInsts)
1331     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1332       CGModifiedFunctions.insert(I->getFunction());
1333       changeToUnreachable(I, /* UseLLVMTrap */ false);
1334     }
1335 
1336   for (auto &V : ToBeDeletedInsts) {
1337     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1338       I->dropDroppableUses();
1339       CGModifiedFunctions.insert(I->getFunction());
1340       if (!I->getType()->isVoidTy())
1341         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1342       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1343         DeadInsts.push_back(I);
1344       else
1345         I->eraseFromParent();
1346     }
1347   }
1348 
1349   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1350                     << "\n");
1351 
1352   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1353 
1354   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1355     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1356     ToBeDeletedBBs.reserve(NumDeadBlocks);
1357     for (BasicBlock *BB : ToBeDeletedBlocks) {
1358       CGModifiedFunctions.insert(BB->getParent());
1359       ToBeDeletedBBs.push_back(BB);
1360     }
1361     // Actually we do not delete the blocks but squash them into a single
1362     // unreachable but untangling branches that jump here is something we need
1363     // to do in a more generic way.
1364     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1365   }
1366 
1367   identifyDeadInternalFunctions();
1368 
1369   // Rewrite the functions as requested during manifest.
1370   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1371 
1372   for (Function *Fn : CGModifiedFunctions)
1373     if (!ToBeDeletedFunctions.count(Fn))
1374       CGUpdater.reanalyzeFunction(*Fn);
1375 
1376   for (Function *Fn : ToBeDeletedFunctions) {
1377     if (!Functions.count(Fn))
1378       continue;
1379     CGUpdater.removeFunction(*Fn);
1380   }
1381 
1382   if (!ToBeChangedUses.empty())
1383     ManifestChange = ChangeStatus::CHANGED;
1384 
1385   if (!ToBeChangedToUnreachableInsts.empty())
1386     ManifestChange = ChangeStatus::CHANGED;
1387 
1388   if (!ToBeDeletedFunctions.empty())
1389     ManifestChange = ChangeStatus::CHANGED;
1390 
1391   if (!ToBeDeletedBlocks.empty())
1392     ManifestChange = ChangeStatus::CHANGED;
1393 
1394   if (!ToBeDeletedInsts.empty())
1395     ManifestChange = ChangeStatus::CHANGED;
1396 
1397   if (!InvokeWithDeadSuccessor.empty())
1398     ManifestChange = ChangeStatus::CHANGED;
1399 
1400   if (!DeadInsts.empty())
1401     ManifestChange = ChangeStatus::CHANGED;
1402 
1403   NumFnDeleted += ToBeDeletedFunctions.size();
1404 
1405   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1406                     << " functions after manifest.\n");
1407 
1408 #ifdef EXPENSIVE_CHECKS
1409   for (Function *F : Functions) {
1410     if (ToBeDeletedFunctions.count(F))
1411       continue;
1412     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1413   }
1414 #endif
1415 
1416   return ManifestChange;
1417 }
1418 
1419 ChangeStatus Attributor::run() {
1420   TimeTraceScope TimeScope("Attributor::run");
1421 
1422   Phase = AttributorPhase::UPDATE;
1423   runTillFixpoint();
1424 
1425   // dump graphs on demand
1426   if (DumpDepGraph)
1427     DG.dumpGraph();
1428 
1429   if (ViewDepGraph)
1430     DG.viewGraph();
1431 
1432   if (PrintDependencies)
1433     DG.print();
1434 
1435   Phase = AttributorPhase::MANIFEST;
1436   ChangeStatus ManifestChange = manifestAttributes();
1437 
1438   Phase = AttributorPhase::CLEANUP;
1439   ChangeStatus CleanupChange = cleanupIR();
1440 
1441   return ManifestChange | CleanupChange;
1442 }
1443 
1444 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1445   TimeTraceScope TimeScope(
1446       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1447       "::updateAA");
1448   assert(Phase == AttributorPhase::UPDATE &&
1449          "We can update AA only in the update stage!");
1450 
1451   // Use a new dependence vector for this update.
1452   DependenceVector DV;
1453   DependenceStack.push_back(&DV);
1454 
1455   auto &AAState = AA.getState();
1456   ChangeStatus CS = ChangeStatus::UNCHANGED;
1457   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1458     CS = AA.update(*this);
1459 
1460   if (DV.empty()) {
1461     // If the attribute did not query any non-fix information, the state
1462     // will not change and we can indicate that right away.
1463     AAState.indicateOptimisticFixpoint();
1464   }
1465 
1466   if (!AAState.isAtFixpoint())
1467     rememberDependences();
1468 
1469   // Verify the stack was used properly, that is we pop the dependence vector we
1470   // put there earlier.
1471   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1472   (void)PoppedDV;
1473   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1474 
1475   return CS;
1476 }
1477 
1478 void Attributor::createShallowWrapper(Function &F) {
1479   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1480 
1481   Module &M = *F.getParent();
1482   LLVMContext &Ctx = M.getContext();
1483   FunctionType *FnTy = F.getFunctionType();
1484 
1485   Function *Wrapper =
1486       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1487   F.setName(""); // set the inside function anonymous
1488   M.getFunctionList().insert(F.getIterator(), Wrapper);
1489 
1490   F.setLinkage(GlobalValue::InternalLinkage);
1491 
1492   F.replaceAllUsesWith(Wrapper);
1493   assert(F.use_empty() && "Uses remained after wrapper was created!");
1494 
1495   // Move the COMDAT section to the wrapper.
1496   // TODO: Check if we need to keep it for F as well.
1497   Wrapper->setComdat(F.getComdat());
1498   F.setComdat(nullptr);
1499 
1500   // Copy all metadata and attributes but keep them on F as well.
1501   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1502   F.getAllMetadata(MDs);
1503   for (auto MDIt : MDs)
1504     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1505   Wrapper->setAttributes(F.getAttributes());
1506 
1507   // Create the call in the wrapper.
1508   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1509 
1510   SmallVector<Value *, 8> Args;
1511   Argument *FArgIt = F.arg_begin();
1512   for (Argument &Arg : Wrapper->args()) {
1513     Args.push_back(&Arg);
1514     Arg.setName((FArgIt++)->getName());
1515   }
1516 
1517   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1518   CI->setTailCall(true);
1519   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1520   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1521 
1522   NumFnShallowWrappersCreated++;
1523 }
1524 
1525 /// Make another copy of the function \p F such that the copied version has
1526 /// internal linkage afterwards and can be analysed. Then we replace all uses
1527 /// of the original function to the copied one
1528 ///
1529 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1530 /// linkage can be internalized because these linkages guarantee that other
1531 /// definitions with the same name have the same semantics as this one
1532 ///
1533 static Function *internalizeFunction(Function &F) {
1534   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1535   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1536          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1537          "Trying to internalize function which cannot be internalized.");
1538 
1539   Module &M = *F.getParent();
1540   FunctionType *FnTy = F.getFunctionType();
1541 
1542   // create a copy of the current function
1543   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1544                                       F.getName() + ".internalized");
1545   ValueToValueMapTy VMap;
1546   auto *NewFArgIt = Copied->arg_begin();
1547   for (auto &Arg : F.args()) {
1548     auto ArgName = Arg.getName();
1549     NewFArgIt->setName(ArgName);
1550     VMap[&Arg] = &(*NewFArgIt++);
1551   }
1552   SmallVector<ReturnInst *, 8> Returns;
1553 
1554   // Copy the body of the original function to the new one
1555   CloneFunctionInto(Copied, &F, VMap, CloneFunctionChangeType::LocalChangesOnly,
1556                     Returns);
1557 
1558   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1559   // requirements.
1560   Copied->setVisibility(GlobalValue::DefaultVisibility);
1561   Copied->setLinkage(GlobalValue::PrivateLinkage);
1562 
1563   // Copy metadata
1564   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1565   F.getAllMetadata(MDs);
1566   for (auto MDIt : MDs)
1567     Copied->addMetadata(MDIt.first, *MDIt.second);
1568 
1569   M.getFunctionList().insert(F.getIterator(), Copied);
1570   F.replaceAllUsesWith(Copied);
1571   Copied->setDSOLocal(true);
1572 
1573   return Copied;
1574 }
1575 
1576 bool Attributor::isValidFunctionSignatureRewrite(
1577     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1578 
1579   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1580     // Forbid the call site to cast the function return type. If we need to
1581     // rewrite these functions we need to re-create a cast for the new call site
1582     // (if the old had uses).
1583     if (!ACS.getCalledFunction() ||
1584         ACS.getInstruction()->getType() !=
1585             ACS.getCalledFunction()->getReturnType())
1586       return false;
1587     // Forbid must-tail calls for now.
1588     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1589   };
1590 
1591   Function *Fn = Arg.getParent();
1592   // Avoid var-arg functions for now.
1593   if (Fn->isVarArg()) {
1594     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1595     return false;
1596   }
1597 
1598   // Avoid functions with complicated argument passing semantics.
1599   AttributeList FnAttributeList = Fn->getAttributes();
1600   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1601       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1602       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1603       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1604     LLVM_DEBUG(
1605         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1606     return false;
1607   }
1608 
1609   // Avoid callbacks for now.
1610   bool AllCallSitesKnown;
1611   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1612                             AllCallSitesKnown)) {
1613     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1614     return false;
1615   }
1616 
1617   auto InstPred = [](Instruction &I) {
1618     if (auto *CI = dyn_cast<CallInst>(&I))
1619       return !CI->isMustTailCall();
1620     return true;
1621   };
1622 
1623   // Forbid must-tail calls for now.
1624   // TODO:
1625   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1626   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1627                                    nullptr, {Instruction::Call})) {
1628     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1629     return false;
1630   }
1631 
1632   return true;
1633 }
1634 
1635 bool Attributor::registerFunctionSignatureRewrite(
1636     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1637     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1638     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1639   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1640                     << Arg.getParent()->getName() << " with "
1641                     << ReplacementTypes.size() << " replacements\n");
1642   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1643          "Cannot register an invalid rewrite");
1644 
1645   Function *Fn = Arg.getParent();
1646   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1647       ArgumentReplacementMap[Fn];
1648   if (ARIs.empty())
1649     ARIs.resize(Fn->arg_size());
1650 
1651   // If we have a replacement already with less than or equal new arguments,
1652   // ignore this request.
1653   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1654   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1655     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1656     return false;
1657   }
1658 
1659   // If we have a replacement already but we like the new one better, delete
1660   // the old.
1661   ARI.reset();
1662 
1663   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1664                     << Arg.getParent()->getName() << " with "
1665                     << ReplacementTypes.size() << " replacements\n");
1666 
1667   // Remember the replacement.
1668   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1669                                         std::move(CalleeRepairCB),
1670                                         std::move(ACSRepairCB)));
1671 
1672   return true;
1673 }
1674 
1675 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1676   bool Result = true;
1677 #ifndef NDEBUG
1678   if (SeedAllowList.size() != 0)
1679     Result =
1680         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1681   Function *Fn = AA.getAnchorScope();
1682   if (FunctionSeedAllowList.size() != 0 && Fn)
1683     Result &= std::count(FunctionSeedAllowList.begin(),
1684                          FunctionSeedAllowList.end(), Fn->getName());
1685 #endif
1686   return Result;
1687 }
1688 
1689 ChangeStatus Attributor::rewriteFunctionSignatures(
1690     SmallPtrSetImpl<Function *> &ModifiedFns) {
1691   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1692 
1693   for (auto &It : ArgumentReplacementMap) {
1694     Function *OldFn = It.getFirst();
1695 
1696     // Deleted functions do not require rewrites.
1697     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1698       continue;
1699 
1700     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1701         It.getSecond();
1702     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1703 
1704     SmallVector<Type *, 16> NewArgumentTypes;
1705     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1706 
1707     // Collect replacement argument types and copy over existing attributes.
1708     AttributeList OldFnAttributeList = OldFn->getAttributes();
1709     for (Argument &Arg : OldFn->args()) {
1710       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1711               ARIs[Arg.getArgNo()]) {
1712         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1713                                 ARI->ReplacementTypes.end());
1714         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1715                                      AttributeSet());
1716       } else {
1717         NewArgumentTypes.push_back(Arg.getType());
1718         NewArgumentAttributes.push_back(
1719             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1720       }
1721     }
1722 
1723     FunctionType *OldFnTy = OldFn->getFunctionType();
1724     Type *RetTy = OldFnTy->getReturnType();
1725 
1726     // Construct the new function type using the new arguments types.
1727     FunctionType *NewFnTy =
1728         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1729 
1730     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1731                       << "' from " << *OldFn->getFunctionType() << " to "
1732                       << *NewFnTy << "\n");
1733 
1734     // Create the new function body and insert it into the module.
1735     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1736                                        OldFn->getAddressSpace(), "");
1737     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1738     NewFn->takeName(OldFn);
1739     NewFn->copyAttributesFrom(OldFn);
1740 
1741     // Patch the pointer to LLVM function in debug info descriptor.
1742     NewFn->setSubprogram(OldFn->getSubprogram());
1743     OldFn->setSubprogram(nullptr);
1744 
1745     // Recompute the parameter attributes list based on the new arguments for
1746     // the function.
1747     LLVMContext &Ctx = OldFn->getContext();
1748     NewFn->setAttributes(AttributeList::get(
1749         Ctx, OldFnAttributeList.getFnAttributes(),
1750         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1751 
1752     // Since we have now created the new function, splice the body of the old
1753     // function right into the new function, leaving the old rotting hulk of the
1754     // function empty.
1755     NewFn->getBasicBlockList().splice(NewFn->begin(),
1756                                       OldFn->getBasicBlockList());
1757 
1758     // Fixup block addresses to reference new function.
1759     SmallVector<BlockAddress *, 8u> BlockAddresses;
1760     for (User *U : OldFn->users())
1761       if (auto *BA = dyn_cast<BlockAddress>(U))
1762         BlockAddresses.push_back(BA);
1763     for (auto *BA : BlockAddresses)
1764       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1765 
1766     // Set of all "call-like" instructions that invoke the old function mapped
1767     // to their new replacements.
1768     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1769 
1770     // Callback to create a new "call-like" instruction for a given one.
1771     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1772       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1773       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1774 
1775       // Collect the new argument operands for the replacement call site.
1776       SmallVector<Value *, 16> NewArgOperands;
1777       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1778       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1779         unsigned NewFirstArgNum = NewArgOperands.size();
1780         (void)NewFirstArgNum; // only used inside assert.
1781         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1782                 ARIs[OldArgNum]) {
1783           if (ARI->ACSRepairCB)
1784             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1785           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1786                      NewArgOperands.size() &&
1787                  "ACS repair callback did not provide as many operand as new "
1788                  "types were registered!");
1789           // TODO: Exose the attribute set to the ACS repair callback
1790           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1791                                          AttributeSet());
1792         } else {
1793           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1794           NewArgOperandAttributes.push_back(
1795               OldCallAttributeList.getParamAttributes(OldArgNum));
1796         }
1797       }
1798 
1799       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1800              "Mismatch # argument operands vs. # argument operand attributes!");
1801       assert(NewArgOperands.size() == NewFn->arg_size() &&
1802              "Mismatch # argument operands vs. # function arguments!");
1803 
1804       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1805       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1806 
1807       // Create a new call or invoke instruction to replace the old one.
1808       CallBase *NewCB;
1809       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1810         NewCB =
1811             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1812                                NewArgOperands, OperandBundleDefs, "", OldCB);
1813       } else {
1814         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1815                                        "", OldCB);
1816         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1817         NewCB = NewCI;
1818       }
1819 
1820       // Copy over various properties and the new attributes.
1821       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1822       NewCB->setCallingConv(OldCB->getCallingConv());
1823       NewCB->takeName(OldCB);
1824       NewCB->setAttributes(AttributeList::get(
1825           Ctx, OldCallAttributeList.getFnAttributes(),
1826           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1827 
1828       CallSitePairs.push_back({OldCB, NewCB});
1829       return true;
1830     };
1831 
1832     // Use the CallSiteReplacementCreator to create replacement call sites.
1833     bool AllCallSitesKnown;
1834     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1835                                         true, nullptr, AllCallSitesKnown);
1836     (void)Success;
1837     assert(Success && "Assumed call site replacement to succeed!");
1838 
1839     // Rewire the arguments.
1840     Argument *OldFnArgIt = OldFn->arg_begin();
1841     Argument *NewFnArgIt = NewFn->arg_begin();
1842     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1843          ++OldArgNum, ++OldFnArgIt) {
1844       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1845               ARIs[OldArgNum]) {
1846         if (ARI->CalleeRepairCB)
1847           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1848         NewFnArgIt += ARI->ReplacementTypes.size();
1849       } else {
1850         NewFnArgIt->takeName(&*OldFnArgIt);
1851         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1852         ++NewFnArgIt;
1853       }
1854     }
1855 
1856     // Eliminate the instructions *after* we visited all of them.
1857     for (auto &CallSitePair : CallSitePairs) {
1858       CallBase &OldCB = *CallSitePair.first;
1859       CallBase &NewCB = *CallSitePair.second;
1860       assert(OldCB.getType() == NewCB.getType() &&
1861              "Cannot handle call sites with different types!");
1862       ModifiedFns.insert(OldCB.getFunction());
1863       CGUpdater.replaceCallSite(OldCB, NewCB);
1864       OldCB.replaceAllUsesWith(&NewCB);
1865       OldCB.eraseFromParent();
1866     }
1867 
1868     // Replace the function in the call graph (if any).
1869     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1870 
1871     // If the old function was modified and needed to be reanalyzed, the new one
1872     // does now.
1873     if (ModifiedFns.erase(OldFn))
1874       ModifiedFns.insert(NewFn);
1875 
1876     Changed = ChangeStatus::CHANGED;
1877   }
1878 
1879   return Changed;
1880 }
1881 
1882 void InformationCache::initializeInformationCache(const Function &CF,
1883                                                   FunctionInfo &FI) {
1884   // As we do not modify the function here we can remove the const
1885   // withouth breaking implicit assumptions. At the end of the day, we could
1886   // initialize the cache eagerly which would look the same to the users.
1887   Function &F = const_cast<Function &>(CF);
1888 
1889   // Walk all instructions to find interesting instructions that might be
1890   // queried by abstract attributes during their initialization or update.
1891   // This has to happen before we create attributes.
1892 
1893   for (Instruction &I : instructions(&F)) {
1894     bool IsInterestingOpcode = false;
1895 
1896     // To allow easy access to all instructions in a function with a given
1897     // opcode we store them in the InfoCache. As not all opcodes are interesting
1898     // to concrete attributes we only cache the ones that are as identified in
1899     // the following switch.
1900     // Note: There are no concrete attributes now so this is initially empty.
1901     switch (I.getOpcode()) {
1902     default:
1903       assert(!isa<CallBase>(&I) &&
1904              "New call base instruction type needs to be known in the "
1905              "Attributor.");
1906       break;
1907     case Instruction::Call:
1908       // Calls are interesting on their own, additionally:
1909       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1910       // For `must-tail` calls we remember the caller and callee.
1911       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
1912         fillMapFromAssume(*Assume, KnowledgeMap);
1913       } else if (cast<CallInst>(I).isMustTailCall()) {
1914         FI.ContainsMustTailCall = true;
1915         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1916           getFunctionInfo(*Callee).CalledViaMustTail = true;
1917       }
1918       LLVM_FALLTHROUGH;
1919     case Instruction::CallBr:
1920     case Instruction::Invoke:
1921     case Instruction::CleanupRet:
1922     case Instruction::CatchSwitch:
1923     case Instruction::AtomicRMW:
1924     case Instruction::AtomicCmpXchg:
1925     case Instruction::Br:
1926     case Instruction::Resume:
1927     case Instruction::Ret:
1928     case Instruction::Load:
1929       // The alignment of a pointer is interesting for loads.
1930     case Instruction::Store:
1931       // The alignment of a pointer is interesting for stores.
1932       IsInterestingOpcode = true;
1933     }
1934     if (IsInterestingOpcode) {
1935       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1936       if (!Insts)
1937         Insts = new (Allocator) InstructionVectorTy();
1938       Insts->push_back(&I);
1939     }
1940     if (I.mayReadOrWriteMemory())
1941       FI.RWInsts.push_back(&I);
1942   }
1943 
1944   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1945       isInlineViable(F).isSuccess())
1946     InlineableFunctions.insert(&F);
1947 }
1948 
1949 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
1950   return AG.getAnalysis<AAManager>(F);
1951 }
1952 
1953 InformationCache::FunctionInfo::~FunctionInfo() {
1954   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1955   // manually destroy them.
1956   for (auto &It : OpcodeInstMap)
1957     It.getSecond()->~InstructionVectorTy();
1958 }
1959 
1960 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1961                                   const AbstractAttribute &ToAA,
1962                                   DepClassTy DepClass) {
1963   if (DepClass == DepClassTy::NONE)
1964     return;
1965   // If we are outside of an update, thus before the actual fixpoint iteration
1966   // started (= when we create AAs), we do not track dependences because we will
1967   // put all AAs into the initial worklist anyway.
1968   if (DependenceStack.empty())
1969     return;
1970   if (FromAA.getState().isAtFixpoint())
1971     return;
1972   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1973 }
1974 
1975 void Attributor::rememberDependences() {
1976   assert(!DependenceStack.empty() && "No dependences to remember!");
1977 
1978   for (DepInfo &DI : *DependenceStack.back()) {
1979     assert((DI.DepClass == DepClassTy::REQUIRED ||
1980             DI.DepClass == DepClassTy::OPTIONAL) &&
1981            "Expected required or optional dependence (1 bit)!");
1982     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1983     DepAAs.push_back(AbstractAttribute::DepTy(
1984         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1985   }
1986 }
1987 
1988 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1989   if (!VisitedFunctions.insert(&F).second)
1990     return;
1991   if (F.isDeclaration())
1992     return;
1993 
1994   // In non-module runs we need to look at the call sites of a function to
1995   // determine if it is part of a must-tail call edge. This will influence what
1996   // attributes we can derive.
1997   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
1998   if (!isModulePass() && !FI.CalledViaMustTail) {
1999     for (const Use &U : F.uses())
2000       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2001         if (CB->isCallee(&U) && CB->isMustTailCall())
2002           FI.CalledViaMustTail = true;
2003   }
2004 
2005   IRPosition FPos = IRPosition::function(F);
2006 
2007   // Check for dead BasicBlocks in every function.
2008   // We need dead instruction detection because we do not want to deal with
2009   // broken IR in which SSA rules do not apply.
2010   getOrCreateAAFor<AAIsDead>(FPos);
2011 
2012   // Every function might be "will-return".
2013   getOrCreateAAFor<AAWillReturn>(FPos);
2014 
2015   // Every function might contain instructions that cause "undefined behavior".
2016   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2017 
2018   // Every function can be nounwind.
2019   getOrCreateAAFor<AANoUnwind>(FPos);
2020 
2021   // Every function might be marked "nosync"
2022   getOrCreateAAFor<AANoSync>(FPos);
2023 
2024   // Every function might be "no-free".
2025   getOrCreateAAFor<AANoFree>(FPos);
2026 
2027   // Every function might be "no-return".
2028   getOrCreateAAFor<AANoReturn>(FPos);
2029 
2030   // Every function might be "no-recurse".
2031   getOrCreateAAFor<AANoRecurse>(FPos);
2032 
2033   // Every function might be "readnone/readonly/writeonly/...".
2034   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2035 
2036   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2037   getOrCreateAAFor<AAMemoryLocation>(FPos);
2038 
2039   // Every function might be applicable for Heap-To-Stack conversion.
2040   if (EnableHeapToStack)
2041     getOrCreateAAFor<AAHeapToStack>(FPos);
2042 
2043   // Return attributes are only appropriate if the return type is non void.
2044   Type *ReturnType = F.getReturnType();
2045   if (!ReturnType->isVoidTy()) {
2046     // Argument attribute "returned" --- Create only one per function even
2047     // though it is an argument attribute.
2048     getOrCreateAAFor<AAReturnedValues>(FPos);
2049 
2050     IRPosition RetPos = IRPosition::returned(F);
2051 
2052     // Every returned value might be dead.
2053     getOrCreateAAFor<AAIsDead>(RetPos);
2054 
2055     // Every function might be simplified.
2056     getOrCreateAAFor<AAValueSimplify>(RetPos);
2057 
2058     // Every returned value might be marked noundef.
2059     getOrCreateAAFor<AANoUndef>(RetPos);
2060 
2061     if (ReturnType->isPointerTy()) {
2062 
2063       // Every function with pointer return type might be marked align.
2064       getOrCreateAAFor<AAAlign>(RetPos);
2065 
2066       // Every function with pointer return type might be marked nonnull.
2067       getOrCreateAAFor<AANonNull>(RetPos);
2068 
2069       // Every function with pointer return type might be marked noalias.
2070       getOrCreateAAFor<AANoAlias>(RetPos);
2071 
2072       // Every function with pointer return type might be marked
2073       // dereferenceable.
2074       getOrCreateAAFor<AADereferenceable>(RetPos);
2075     }
2076   }
2077 
2078   for (Argument &Arg : F.args()) {
2079     IRPosition ArgPos = IRPosition::argument(Arg);
2080 
2081     // Every argument might be simplified.
2082     getOrCreateAAFor<AAValueSimplify>(ArgPos);
2083 
2084     // Every argument might be dead.
2085     getOrCreateAAFor<AAIsDead>(ArgPos);
2086 
2087     // Every argument might be marked noundef.
2088     getOrCreateAAFor<AANoUndef>(ArgPos);
2089 
2090     if (Arg.getType()->isPointerTy()) {
2091       // Every argument with pointer type might be marked nonnull.
2092       getOrCreateAAFor<AANonNull>(ArgPos);
2093 
2094       // Every argument with pointer type might be marked noalias.
2095       getOrCreateAAFor<AANoAlias>(ArgPos);
2096 
2097       // Every argument with pointer type might be marked dereferenceable.
2098       getOrCreateAAFor<AADereferenceable>(ArgPos);
2099 
2100       // Every argument with pointer type might be marked align.
2101       getOrCreateAAFor<AAAlign>(ArgPos);
2102 
2103       // Every argument with pointer type might be marked nocapture.
2104       getOrCreateAAFor<AANoCapture>(ArgPos);
2105 
2106       // Every argument with pointer type might be marked
2107       // "readnone/readonly/writeonly/..."
2108       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2109 
2110       // Every argument with pointer type might be marked nofree.
2111       getOrCreateAAFor<AANoFree>(ArgPos);
2112 
2113       // Every argument with pointer type might be privatizable (or promotable)
2114       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2115     }
2116   }
2117 
2118   auto CallSitePred = [&](Instruction &I) -> bool {
2119     auto &CB = cast<CallBase>(I);
2120     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2121 
2122     // Call sites might be dead if they do not have side effects and no live
2123     // users. The return value might be dead if there are no live users.
2124     getOrCreateAAFor<AAIsDead>(CBRetPos);
2125 
2126     Function *Callee = CB.getCalledFunction();
2127     // TODO: Even if the callee is not known now we might be able to simplify
2128     //       the call/callee.
2129     if (!Callee)
2130       return true;
2131 
2132     // Skip declarations except if annotations on their call sites were
2133     // explicitly requested.
2134     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2135         !Callee->hasMetadata(LLVMContext::MD_callback))
2136       return true;
2137 
2138     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2139 
2140       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2141 
2142       // Call site return integer values might be limited by a constant range.
2143       if (Callee->getReturnType()->isIntegerTy())
2144         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2145     }
2146 
2147     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2148 
2149       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2150 
2151       // Every call site argument might be dead.
2152       getOrCreateAAFor<AAIsDead>(CBArgPos);
2153 
2154       // Call site argument might be simplified.
2155       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2156 
2157       // Every call site argument might be marked "noundef".
2158       getOrCreateAAFor<AANoUndef>(CBArgPos);
2159 
2160       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2161         continue;
2162 
2163       // Call site argument attribute "non-null".
2164       getOrCreateAAFor<AANonNull>(CBArgPos);
2165 
2166       // Call site argument attribute "nocapture".
2167       getOrCreateAAFor<AANoCapture>(CBArgPos);
2168 
2169       // Call site argument attribute "no-alias".
2170       getOrCreateAAFor<AANoAlias>(CBArgPos);
2171 
2172       // Call site argument attribute "dereferenceable".
2173       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2174 
2175       // Call site argument attribute "align".
2176       getOrCreateAAFor<AAAlign>(CBArgPos);
2177 
2178       // Call site argument attribute
2179       // "readnone/readonly/writeonly/..."
2180       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2181 
2182       // Call site argument attribute "nofree".
2183       getOrCreateAAFor<AANoFree>(CBArgPos);
2184     }
2185     return true;
2186   };
2187 
2188   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2189   bool Success;
2190   Success = checkForAllInstructionsImpl(
2191       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2192       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2193        (unsigned)Instruction::Call});
2194   (void)Success;
2195   assert(Success && "Expected the check call to be successful!");
2196 
2197   auto LoadStorePred = [&](Instruction &I) -> bool {
2198     if (isa<LoadInst>(I))
2199       getOrCreateAAFor<AAAlign>(
2200           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2201     else
2202       getOrCreateAAFor<AAAlign>(
2203           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2204     return true;
2205   };
2206   Success = checkForAllInstructionsImpl(
2207       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2208       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2209   (void)Success;
2210   assert(Success && "Expected the check call to be successful!");
2211 }
2212 
2213 /// Helpers to ease debugging through output streams and print calls.
2214 ///
2215 ///{
2216 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2217   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2218 }
2219 
2220 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2221   switch (AP) {
2222   case IRPosition::IRP_INVALID:
2223     return OS << "inv";
2224   case IRPosition::IRP_FLOAT:
2225     return OS << "flt";
2226   case IRPosition::IRP_RETURNED:
2227     return OS << "fn_ret";
2228   case IRPosition::IRP_CALL_SITE_RETURNED:
2229     return OS << "cs_ret";
2230   case IRPosition::IRP_FUNCTION:
2231     return OS << "fn";
2232   case IRPosition::IRP_CALL_SITE:
2233     return OS << "cs";
2234   case IRPosition::IRP_ARGUMENT:
2235     return OS << "arg";
2236   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2237     return OS << "cs_arg";
2238   }
2239   llvm_unreachable("Unknown attribute position!");
2240 }
2241 
2242 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2243   const Value &AV = Pos.getAssociatedValue();
2244   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2245      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2246 
2247   if (Pos.hasCallBaseContext())
2248     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2249   return OS << "}";
2250 }
2251 
2252 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2253   OS << "range-state(" << S.getBitWidth() << ")<";
2254   S.getKnown().print(OS);
2255   OS << " / ";
2256   S.getAssumed().print(OS);
2257   OS << ">";
2258 
2259   return OS << static_cast<const AbstractState &>(S);
2260 }
2261 
2262 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2263   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2264 }
2265 
2266 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2267   AA.print(OS);
2268   return OS;
2269 }
2270 
2271 raw_ostream &llvm::operator<<(raw_ostream &OS,
2272                               const PotentialConstantIntValuesState &S) {
2273   OS << "set-state(< {";
2274   if (!S.isValidState())
2275     OS << "full-set";
2276   else {
2277     for (auto &it : S.getAssumedSet())
2278       OS << it << ", ";
2279     if (S.undefIsContained())
2280       OS << "undef ";
2281   }
2282   OS << "} >)";
2283 
2284   return OS;
2285 }
2286 
2287 void AbstractAttribute::print(raw_ostream &OS) const {
2288   OS << "[";
2289   OS << getName();
2290   OS << "] for CtxI ";
2291 
2292   if (auto *I = getCtxI()) {
2293     OS << "'";
2294     I->print(OS);
2295     OS << "'";
2296   } else
2297     OS << "<<null inst>>";
2298 
2299   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2300      << '\n';
2301 }
2302 
2303 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2304   print(OS);
2305 
2306   for (const auto &DepAA : Deps) {
2307     auto *AA = DepAA.getPointer();
2308     OS << "  updates ";
2309     AA->print(OS);
2310   }
2311 
2312   OS << '\n';
2313 }
2314 ///}
2315 
2316 /// ----------------------------------------------------------------------------
2317 ///                       Pass (Manager) Boilerplate
2318 /// ----------------------------------------------------------------------------
2319 
2320 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2321                                      SetVector<Function *> &Functions,
2322                                      AnalysisGetter &AG,
2323                                      CallGraphUpdater &CGUpdater,
2324                                      bool DeleteFns) {
2325   if (Functions.empty())
2326     return false;
2327 
2328   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2329                     << " functions.\n");
2330 
2331   // Create an Attributor and initially empty information cache that is filled
2332   // while we identify default attribute opportunities.
2333   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2334                DeleteFns);
2335 
2336   // Create shallow wrappers for all functions that are not IPO amendable
2337   if (AllowShallowWrappers)
2338     for (Function *F : Functions)
2339       if (!A.isFunctionIPOAmendable(*F))
2340         Attributor::createShallowWrapper(*F);
2341 
2342   // Internalize non-exact functions
2343   // TODO: for now we eagerly internalize functions without calculating the
2344   //       cost, we need a cost interface to determine whether internalizing
2345   //       a function is "benefitial"
2346   if (AllowDeepWrapper) {
2347     unsigned FunSize = Functions.size();
2348     for (unsigned u = 0; u < FunSize; u++) {
2349       Function *F = Functions[u];
2350       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2351           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2352         Function *NewF = internalizeFunction(*F);
2353         Functions.insert(NewF);
2354 
2355         // Update call graph
2356         CGUpdater.replaceFunctionWith(*F, *NewF);
2357         for (const Use &U : NewF->uses())
2358           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2359             auto *CallerF = CB->getCaller();
2360             CGUpdater.reanalyzeFunction(*CallerF);
2361           }
2362       }
2363     }
2364   }
2365 
2366   for (Function *F : Functions) {
2367     if (F->hasExactDefinition())
2368       NumFnWithExactDefinition++;
2369     else
2370       NumFnWithoutExactDefinition++;
2371 
2372     // We look at internal functions only on-demand but if any use is not a
2373     // direct call or outside the current set of analyzed functions, we have
2374     // to do it eagerly.
2375     if (F->hasLocalLinkage()) {
2376       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2377             const auto *CB = dyn_cast<CallBase>(U.getUser());
2378             return CB && CB->isCallee(&U) &&
2379                    Functions.count(const_cast<Function *>(CB->getCaller()));
2380           }))
2381         continue;
2382     }
2383 
2384     // Populate the Attributor with abstract attribute opportunities in the
2385     // function and the information cache with IR information.
2386     A.identifyDefaultAbstractAttributes(*F);
2387   }
2388 
2389   ChangeStatus Changed = A.run();
2390 
2391   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2392                     << " functions, result: " << Changed << ".\n");
2393   return Changed == ChangeStatus::CHANGED;
2394 }
2395 
2396 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2397 
2398 void AADepGraph::dumpGraph() {
2399   static std::atomic<int> CallTimes;
2400   std::string Prefix;
2401 
2402   if (!DepGraphDotFileNamePrefix.empty())
2403     Prefix = DepGraphDotFileNamePrefix;
2404   else
2405     Prefix = "dep_graph";
2406   std::string Filename =
2407       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2408 
2409   outs() << "Dependency graph dump to " << Filename << ".\n";
2410 
2411   std::error_code EC;
2412 
2413   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2414   if (!EC)
2415     llvm::WriteGraph(File, this);
2416 
2417   CallTimes++;
2418 }
2419 
2420 void AADepGraph::print() {
2421   for (auto DepAA : SyntheticRoot.Deps)
2422     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2423 }
2424 
2425 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2426   FunctionAnalysisManager &FAM =
2427       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2428   AnalysisGetter AG(FAM);
2429 
2430   SetVector<Function *> Functions;
2431   for (Function &F : M)
2432     Functions.insert(&F);
2433 
2434   CallGraphUpdater CGUpdater;
2435   BumpPtrAllocator Allocator;
2436   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2437   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2438                                /* DeleteFns */ true)) {
2439     // FIXME: Think about passes we will preserve and add them here.
2440     return PreservedAnalyses::none();
2441   }
2442   return PreservedAnalyses::all();
2443 }
2444 
2445 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2446                                            CGSCCAnalysisManager &AM,
2447                                            LazyCallGraph &CG,
2448                                            CGSCCUpdateResult &UR) {
2449   FunctionAnalysisManager &FAM =
2450       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2451   AnalysisGetter AG(FAM);
2452 
2453   SetVector<Function *> Functions;
2454   for (LazyCallGraph::Node &N : C)
2455     Functions.insert(&N.getFunction());
2456 
2457   if (Functions.empty())
2458     return PreservedAnalyses::all();
2459 
2460   Module &M = *Functions.back()->getParent();
2461   CallGraphUpdater CGUpdater;
2462   CGUpdater.initialize(CG, C, AM, UR);
2463   BumpPtrAllocator Allocator;
2464   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2465   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2466                                /* DeleteFns */ false)) {
2467     // FIXME: Think about passes we will preserve and add them here.
2468     PreservedAnalyses PA;
2469     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2470     return PA;
2471   }
2472   return PreservedAnalyses::all();
2473 }
2474 
2475 namespace llvm {
2476 
2477 template <> struct GraphTraits<AADepGraphNode *> {
2478   using NodeRef = AADepGraphNode *;
2479   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2480   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2481 
2482   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2483   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2484 
2485   using ChildIteratorType =
2486       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2487   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2488 
2489   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2490 
2491   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2492 };
2493 
2494 template <>
2495 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2496   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2497 
2498   using nodes_iterator =
2499       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2500 
2501   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2502 
2503   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2504 };
2505 
2506 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2507   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2508 
2509   static std::string getNodeLabel(const AADepGraphNode *Node,
2510                                   const AADepGraph *DG) {
2511     std::string AAString;
2512     raw_string_ostream O(AAString);
2513     Node->print(O);
2514     return AAString;
2515   }
2516 };
2517 
2518 } // end namespace llvm
2519 
2520 namespace {
2521 
2522 struct AttributorLegacyPass : public ModulePass {
2523   static char ID;
2524 
2525   AttributorLegacyPass() : ModulePass(ID) {
2526     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2527   }
2528 
2529   bool runOnModule(Module &M) override {
2530     if (skipModule(M))
2531       return false;
2532 
2533     AnalysisGetter AG;
2534     SetVector<Function *> Functions;
2535     for (Function &F : M)
2536       Functions.insert(&F);
2537 
2538     CallGraphUpdater CGUpdater;
2539     BumpPtrAllocator Allocator;
2540     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2541     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2542                                     /* DeleteFns*/ true);
2543   }
2544 
2545   void getAnalysisUsage(AnalysisUsage &AU) const override {
2546     // FIXME: Think about passes we will preserve and add them here.
2547     AU.addRequired<TargetLibraryInfoWrapperPass>();
2548   }
2549 };
2550 
2551 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2552   static char ID;
2553 
2554   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2555     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2556   }
2557 
2558   bool runOnSCC(CallGraphSCC &SCC) override {
2559     if (skipSCC(SCC))
2560       return false;
2561 
2562     SetVector<Function *> Functions;
2563     for (CallGraphNode *CGN : SCC)
2564       if (Function *Fn = CGN->getFunction())
2565         if (!Fn->isDeclaration())
2566           Functions.insert(Fn);
2567 
2568     if (Functions.empty())
2569       return false;
2570 
2571     AnalysisGetter AG;
2572     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2573     CallGraphUpdater CGUpdater;
2574     CGUpdater.initialize(CG, SCC);
2575     Module &M = *Functions.back()->getParent();
2576     BumpPtrAllocator Allocator;
2577     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2578     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2579                                     /* DeleteFns */ false);
2580   }
2581 
2582   void getAnalysisUsage(AnalysisUsage &AU) const override {
2583     // FIXME: Think about passes we will preserve and add them here.
2584     AU.addRequired<TargetLibraryInfoWrapperPass>();
2585     CallGraphSCCPass::getAnalysisUsage(AU);
2586   }
2587 };
2588 
2589 } // end anonymous namespace
2590 
2591 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2592 Pass *llvm::createAttributorCGSCCLegacyPass() {
2593   return new AttributorCGSCCLegacyPass();
2594 }
2595 
2596 char AttributorLegacyPass::ID = 0;
2597 char AttributorCGSCCLegacyPass::ID = 0;
2598 
2599 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2600                       "Deduce and propagate attributes", false, false)
2601 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2602 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2603                     "Deduce and propagate attributes", false, false)
2604 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2605                       "Deduce and propagate attributes (CGSCC pass)", false,
2606                       false)
2607 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2608 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2609 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2610                     "Deduce and propagate attributes (CGSCC pass)", false,
2611                     false)
2612