1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/NoFolder.h"
31 #include "llvm/IR/Verifier.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FileSystem.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 
44 #include <cassert>
45 #include <string>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
52               "Determine what attributes are manifested in the IR");
53 
54 STATISTIC(NumFnDeleted, "Number of function deleted");
55 STATISTIC(NumFnWithExactDefinition,
56           "Number of functions with exact definitions");
57 STATISTIC(NumFnWithoutExactDefinition,
58           "Number of functions without exact definitions");
59 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
60 STATISTIC(NumAttributesTimedOut,
61           "Number of abstract attributes timed out before fixpoint");
62 STATISTIC(NumAttributesValidFixpoint,
63           "Number of abstract attributes in a valid fixpoint state");
64 STATISTIC(NumAttributesManifested,
65           "Number of abstract attributes manifested in IR");
66 STATISTIC(NumAttributesFixedDueToRequiredDependences,
67           "Number of abstract attributes fixed due to required dependences");
68 
69 // TODO: Determine a good default value.
70 //
71 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
72 // (when run with the first 5 abstract attributes). The results also indicate
73 // that we never reach 32 iterations but always find a fixpoint sooner.
74 //
75 // This will become more evolved once we perform two interleaved fixpoint
76 // iterations: bottom-up and top-down.
77 static cl::opt<unsigned>
78     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
79                           cl::desc("Maximal number of fixpoint iterations."),
80                           cl::init(32));
81 
82 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
83     "attributor-max-initialization-chain-length", cl::Hidden,
84     cl::desc(
85         "Maximal number of chained initializations (to avoid stack overflows)"),
86     cl::location(MaxInitializationChainLength), cl::init(1024));
87 unsigned llvm::MaxInitializationChainLength;
88 
89 static cl::opt<bool> VerifyMaxFixpointIterations(
90     "attributor-max-iterations-verify", cl::Hidden,
91     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
92     cl::init(false));
93 
94 static cl::opt<bool> AnnotateDeclarationCallSites(
95     "attributor-annotate-decl-cs", cl::Hidden,
96     cl::desc("Annotate call sites of function declarations."), cl::init(false));
97 
98 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
99                                        cl::init(true), cl::Hidden);
100 
101 static cl::opt<bool>
102     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
103                          cl::desc("Allow the Attributor to create shallow "
104                                   "wrappers for non-exact definitions."),
105                          cl::init(false));
106 
107 static cl::opt<bool>
108     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
109                      cl::desc("Allow the Attributor to use IP information "
110                               "derived from non-exact functions via cloning"),
111                      cl::init(false));
112 
113 // These options can only used for debug builds.
114 #ifndef NDEBUG
115 static cl::list<std::string>
116     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
117                   cl::desc("Comma seperated list of attribute names that are "
118                            "allowed to be seeded."),
119                   cl::ZeroOrMore, cl::CommaSeparated);
120 
121 static cl::list<std::string> FunctionSeedAllowList(
122     "attributor-function-seed-allow-list", cl::Hidden,
123     cl::desc("Comma seperated list of function names that are "
124              "allowed to be seeded."),
125     cl::ZeroOrMore, cl::CommaSeparated);
126 #endif
127 
128 static cl::opt<bool>
129     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
130                  cl::desc("Dump the dependency graph to dot files."),
131                  cl::init(false));
132 
133 static cl::opt<std::string> DepGraphDotFileNamePrefix(
134     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
135     cl::desc("The prefix used for the CallGraph dot file names."));
136 
137 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
138                                   cl::desc("View the dependency graph."),
139                                   cl::init(false));
140 
141 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
142                                        cl::desc("Print attribute dependencies"),
143                                        cl::init(false));
144 
145 static cl::opt<bool> EnableCallSiteSpecific(
146     "attributor-enable-call-site-specific-deduction", cl::Hidden,
147     cl::desc("Allow the Attributor to do call site specific analysis"),
148     cl::init(false));
149 
150 /// Logic operators for the change status enum class.
151 ///
152 ///{
153 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
154   return L == ChangeStatus::CHANGED ? L : R;
155 }
156 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
157   return L == ChangeStatus::UNCHANGED ? L : R;
158 }
159 ///}
160 
161 /// Return true if \p New is equal or worse than \p Old.
162 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
163   if (!Old.isIntAttribute())
164     return true;
165 
166   return Old.getValueAsInt() >= New.getValueAsInt();
167 }
168 
169 /// Return true if the information provided by \p Attr was added to the
170 /// attribute list \p Attrs. This is only the case if it was not already present
171 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
172 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
173                              AttributeList &Attrs, int AttrIdx) {
174 
175   if (Attr.isEnumAttribute()) {
176     Attribute::AttrKind Kind = Attr.getKindAsEnum();
177     if (Attrs.hasAttribute(AttrIdx, Kind))
178       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
179         return false;
180     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
181     return true;
182   }
183   if (Attr.isStringAttribute()) {
184     StringRef Kind = Attr.getKindAsString();
185     if (Attrs.hasAttribute(AttrIdx, Kind))
186       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
187         return false;
188     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
189     return true;
190   }
191   if (Attr.isIntAttribute()) {
192     Attribute::AttrKind Kind = Attr.getKindAsEnum();
193     if (Attrs.hasAttribute(AttrIdx, Kind))
194       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
195         return false;
196     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
197     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
198     return true;
199   }
200 
201   llvm_unreachable("Expected enum or string attribute!");
202 }
203 
204 Argument *IRPosition::getAssociatedArgument() const {
205   if (getPositionKind() == IRP_ARGUMENT)
206     return cast<Argument>(&getAnchorValue());
207 
208   // Not an Argument and no argument number means this is not a call site
209   // argument, thus we cannot find a callback argument to return.
210   int ArgNo = getCallSiteArgNo();
211   if (ArgNo < 0)
212     return nullptr;
213 
214   // Use abstract call sites to make the connection between the call site
215   // values and the ones in callbacks. If a callback was found that makes use
216   // of the underlying call site operand, we want the corresponding callback
217   // callee argument and not the direct callee argument.
218   Optional<Argument *> CBCandidateArg;
219   SmallVector<const Use *, 4> CallbackUses;
220   const auto &CB = cast<CallBase>(getAnchorValue());
221   AbstractCallSite::getCallbackUses(CB, CallbackUses);
222   for (const Use *U : CallbackUses) {
223     AbstractCallSite ACS(U);
224     assert(ACS && ACS.isCallbackCall());
225     if (!ACS.getCalledFunction())
226       continue;
227 
228     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
229 
230       // Test if the underlying call site operand is argument number u of the
231       // callback callee.
232       if (ACS.getCallArgOperandNo(u) != ArgNo)
233         continue;
234 
235       assert(ACS.getCalledFunction()->arg_size() > u &&
236              "ACS mapped into var-args arguments!");
237       if (CBCandidateArg.hasValue()) {
238         CBCandidateArg = nullptr;
239         break;
240       }
241       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
242     }
243   }
244 
245   // If we found a unique callback candidate argument, return it.
246   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
247     return CBCandidateArg.getValue();
248 
249   // If no callbacks were found, or none used the underlying call site operand
250   // exclusively, use the direct callee argument if available.
251   const Function *Callee = CB.getCalledFunction();
252   if (Callee && Callee->arg_size() > unsigned(ArgNo))
253     return Callee->getArg(ArgNo);
254 
255   return nullptr;
256 }
257 
258 ChangeStatus AbstractAttribute::update(Attributor &A) {
259   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
260   if (getState().isAtFixpoint())
261     return HasChanged;
262 
263   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
264 
265   HasChanged = updateImpl(A);
266 
267   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
268                     << "\n");
269 
270   return HasChanged;
271 }
272 
273 ChangeStatus
274 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
275                                    const ArrayRef<Attribute> &DeducedAttrs) {
276   Function *ScopeFn = IRP.getAnchorScope();
277   IRPosition::Kind PK = IRP.getPositionKind();
278 
279   // In the following some generic code that will manifest attributes in
280   // DeducedAttrs if they improve the current IR. Due to the different
281   // annotation positions we use the underlying AttributeList interface.
282 
283   AttributeList Attrs;
284   switch (PK) {
285   case IRPosition::IRP_INVALID:
286   case IRPosition::IRP_FLOAT:
287     return ChangeStatus::UNCHANGED;
288   case IRPosition::IRP_ARGUMENT:
289   case IRPosition::IRP_FUNCTION:
290   case IRPosition::IRP_RETURNED:
291     Attrs = ScopeFn->getAttributes();
292     break;
293   case IRPosition::IRP_CALL_SITE:
294   case IRPosition::IRP_CALL_SITE_RETURNED:
295   case IRPosition::IRP_CALL_SITE_ARGUMENT:
296     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
297     break;
298   }
299 
300   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
301   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
302   for (const Attribute &Attr : DeducedAttrs) {
303     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
304       continue;
305 
306     HasChanged = ChangeStatus::CHANGED;
307   }
308 
309   if (HasChanged == ChangeStatus::UNCHANGED)
310     return HasChanged;
311 
312   switch (PK) {
313   case IRPosition::IRP_ARGUMENT:
314   case IRPosition::IRP_FUNCTION:
315   case IRPosition::IRP_RETURNED:
316     ScopeFn->setAttributes(Attrs);
317     break;
318   case IRPosition::IRP_CALL_SITE:
319   case IRPosition::IRP_CALL_SITE_RETURNED:
320   case IRPosition::IRP_CALL_SITE_ARGUMENT:
321     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
322     break;
323   case IRPosition::IRP_INVALID:
324   case IRPosition::IRP_FLOAT:
325     break;
326   }
327 
328   return HasChanged;
329 }
330 
331 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
332 const IRPosition
333     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
334 
335 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
336   IRPositions.emplace_back(IRP);
337 
338   // Helper to determine if operand bundles on a call site are benin or
339   // potentially problematic. We handle only llvm.assume for now.
340   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
341     return (isa<IntrinsicInst>(CB) &&
342             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
343   };
344 
345   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
346   switch (IRP.getPositionKind()) {
347   case IRPosition::IRP_INVALID:
348   case IRPosition::IRP_FLOAT:
349   case IRPosition::IRP_FUNCTION:
350     return;
351   case IRPosition::IRP_ARGUMENT:
352   case IRPosition::IRP_RETURNED:
353     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
354     return;
355   case IRPosition::IRP_CALL_SITE:
356     assert(CB && "Expected call site!");
357     // TODO: We need to look at the operand bundles similar to the redirection
358     //       in CallBase.
359     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
360       if (const Function *Callee = CB->getCalledFunction())
361         IRPositions.emplace_back(IRPosition::function(*Callee));
362     return;
363   case IRPosition::IRP_CALL_SITE_RETURNED:
364     assert(CB && "Expected call site!");
365     // TODO: We need to look at the operand bundles similar to the redirection
366     //       in CallBase.
367     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
368       if (const Function *Callee = CB->getCalledFunction()) {
369         IRPositions.emplace_back(IRPosition::returned(*Callee));
370         IRPositions.emplace_back(IRPosition::function(*Callee));
371         for (const Argument &Arg : Callee->args())
372           if (Arg.hasReturnedAttr()) {
373             IRPositions.emplace_back(
374                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
375             IRPositions.emplace_back(
376                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
377             IRPositions.emplace_back(IRPosition::argument(Arg));
378           }
379       }
380     }
381     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
382     return;
383   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
384     assert(CB && "Expected call site!");
385     // TODO: We need to look at the operand bundles similar to the redirection
386     //       in CallBase.
387     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
388       const Function *Callee = CB->getCalledFunction();
389       if (Callee) {
390         if (Argument *Arg = IRP.getAssociatedArgument())
391           IRPositions.emplace_back(IRPosition::argument(*Arg));
392         IRPositions.emplace_back(IRPosition::function(*Callee));
393       }
394     }
395     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
396     return;
397   }
398   }
399 }
400 
401 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
402                          bool IgnoreSubsumingPositions, Attributor *A) const {
403   SmallVector<Attribute, 4> Attrs;
404   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
405     for (Attribute::AttrKind AK : AKs)
406       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
407         return true;
408     // The first position returned by the SubsumingPositionIterator is
409     // always the position itself. If we ignore subsuming positions we
410     // are done after the first iteration.
411     if (IgnoreSubsumingPositions)
412       break;
413   }
414   if (A)
415     for (Attribute::AttrKind AK : AKs)
416       if (getAttrsFromAssumes(AK, Attrs, *A))
417         return true;
418   return false;
419 }
420 
421 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
422                           SmallVectorImpl<Attribute> &Attrs,
423                           bool IgnoreSubsumingPositions, Attributor *A) const {
424   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
425     for (Attribute::AttrKind AK : AKs)
426       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
427     // The first position returned by the SubsumingPositionIterator is
428     // always the position itself. If we ignore subsuming positions we
429     // are done after the first iteration.
430     if (IgnoreSubsumingPositions)
431       break;
432   }
433   if (A)
434     for (Attribute::AttrKind AK : AKs)
435       getAttrsFromAssumes(AK, Attrs, *A);
436 }
437 
438 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
439                                     SmallVectorImpl<Attribute> &Attrs) const {
440   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
441     return false;
442 
443   AttributeList AttrList;
444   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
445     AttrList = CB->getAttributes();
446   else
447     AttrList = getAssociatedFunction()->getAttributes();
448 
449   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
450   if (HasAttr)
451     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
452   return HasAttr;
453 }
454 
455 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
456                                      SmallVectorImpl<Attribute> &Attrs,
457                                      Attributor &A) const {
458   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
459   Value &AssociatedValue = getAssociatedValue();
460 
461   const Assume2KnowledgeMap &A2K =
462       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
463 
464   // Check if we found any potential assume use, if not we don't need to create
465   // explorer iterators.
466   if (A2K.empty())
467     return false;
468 
469   LLVMContext &Ctx = AssociatedValue.getContext();
470   unsigned AttrsSize = Attrs.size();
471   MustBeExecutedContextExplorer &Explorer =
472       A.getInfoCache().getMustBeExecutedContextExplorer();
473   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
474   for (auto &It : A2K)
475     if (Explorer.findInContextOf(It.first, EIt, EEnd))
476       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
477   return AttrsSize != Attrs.size();
478 }
479 
480 void IRPosition::verify() {
481 #ifdef EXPENSIVE_CHECKS
482   switch (getPositionKind()) {
483   case IRP_INVALID:
484     assert((CBContext == nullptr) &&
485            "Invalid position must not have CallBaseContext!");
486     assert(!Enc.getOpaqueValue() &&
487            "Expected a nullptr for an invalid position!");
488     return;
489   case IRP_FLOAT:
490     assert((!isa<CallBase>(&getAssociatedValue()) &&
491             !isa<Argument>(&getAssociatedValue())) &&
492            "Expected specialized kind for call base and argument values!");
493     return;
494   case IRP_RETURNED:
495     assert(isa<Function>(getAsValuePtr()) &&
496            "Expected function for a 'returned' position!");
497     assert(getAsValuePtr() == &getAssociatedValue() &&
498            "Associated value mismatch!");
499     return;
500   case IRP_CALL_SITE_RETURNED:
501     assert((CBContext == nullptr) &&
502            "'call site returned' position must not have CallBaseContext!");
503     assert((isa<CallBase>(getAsValuePtr())) &&
504            "Expected call base for 'call site returned' position!");
505     assert(getAsValuePtr() == &getAssociatedValue() &&
506            "Associated value mismatch!");
507     return;
508   case IRP_CALL_SITE:
509     assert((CBContext == nullptr) &&
510            "'call site function' position must not have CallBaseContext!");
511     assert((isa<CallBase>(getAsValuePtr())) &&
512            "Expected call base for 'call site function' position!");
513     assert(getAsValuePtr() == &getAssociatedValue() &&
514            "Associated value mismatch!");
515     return;
516   case IRP_FUNCTION:
517     assert(isa<Function>(getAsValuePtr()) &&
518            "Expected function for a 'function' position!");
519     assert(getAsValuePtr() == &getAssociatedValue() &&
520            "Associated value mismatch!");
521     return;
522   case IRP_ARGUMENT:
523     assert(isa<Argument>(getAsValuePtr()) &&
524            "Expected argument for a 'argument' position!");
525     assert(getAsValuePtr() == &getAssociatedValue() &&
526            "Associated value mismatch!");
527     return;
528   case IRP_CALL_SITE_ARGUMENT: {
529     assert((CBContext == nullptr) &&
530            "'call site argument' position must not have CallBaseContext!");
531     Use *U = getAsUsePtr();
532     assert(U && "Expected use for a 'call site argument' position!");
533     assert(isa<CallBase>(U->getUser()) &&
534            "Expected call base user for a 'call site argument' position!");
535     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
536            "Expected call base argument operand for a 'call site argument' "
537            "position");
538     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
539                unsigned(getCallSiteArgNo()) &&
540            "Argument number mismatch!");
541     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
542     return;
543   }
544   }
545 #endif
546 }
547 
548 Optional<Constant *>
549 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
550                                bool &UsedAssumedInformation) {
551   const auto &ValueSimplifyAA =
552       getAAFor<AAValueSimplify>(AA, IRPosition::value(V), DepClassTy::NONE);
553   Optional<Value *> SimplifiedV =
554       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
555   bool IsKnown = ValueSimplifyAA.isKnown();
556   UsedAssumedInformation |= !IsKnown;
557   if (!SimplifiedV.hasValue()) {
558     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
559     return llvm::None;
560   }
561   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
562     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
563     return llvm::None;
564   }
565   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
566   if (CI && CI->getType() != V.getType()) {
567     // TODO: Check for a save conversion.
568     return nullptr;
569   }
570   if (CI)
571     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
572   return CI;
573 }
574 
575 Attributor::~Attributor() {
576   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
577   // thus we cannot delete them. We can, and want to, destruct them though.
578   for (auto &DepAA : DG.SyntheticRoot.Deps) {
579     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
580     AA->~AbstractAttribute();
581   }
582 }
583 
584 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
585                                const AAIsDead *FnLivenessAA,
586                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
587   const IRPosition &IRP = AA.getIRPosition();
588   if (!Functions.count(IRP.getAnchorScope()))
589     return false;
590   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
591 }
592 
593 bool Attributor::isAssumedDead(const Use &U,
594                                const AbstractAttribute *QueryingAA,
595                                const AAIsDead *FnLivenessAA,
596                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
597   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
598   if (!UserI)
599     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
600                          CheckBBLivenessOnly, DepClass);
601 
602   if (auto *CB = dyn_cast<CallBase>(UserI)) {
603     // For call site argument uses we can check if the argument is
604     // unused/dead.
605     if (CB->isArgOperand(&U)) {
606       const IRPosition &CSArgPos =
607           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
608       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
609                            CheckBBLivenessOnly, DepClass);
610     }
611   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
612     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
613     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
614                          DepClass);
615   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
616     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
617     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
618                          CheckBBLivenessOnly, DepClass);
619   }
620 
621   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
622                        CheckBBLivenessOnly, DepClass);
623 }
624 
625 bool Attributor::isAssumedDead(const Instruction &I,
626                                const AbstractAttribute *QueryingAA,
627                                const AAIsDead *FnLivenessAA,
628                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
629   if (!FnLivenessAA)
630     FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
631                                          QueryingAA, DepClassTy::NONE);
632 
633   // If we have a context instruction and a liveness AA we use it.
634   if (FnLivenessAA &&
635       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
636       FnLivenessAA->isAssumedDead(&I)) {
637     if (QueryingAA)
638       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
639     return true;
640   }
641 
642   if (CheckBBLivenessOnly)
643     return false;
644 
645   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
646       IRPosition::value(I), QueryingAA, DepClassTy::NONE);
647   // Don't check liveness for AAIsDead.
648   if (QueryingAA == &IsDeadAA)
649     return false;
650 
651   if (IsDeadAA.isAssumedDead()) {
652     if (QueryingAA)
653       recordDependence(IsDeadAA, *QueryingAA, DepClass);
654     return true;
655   }
656 
657   return false;
658 }
659 
660 bool Attributor::isAssumedDead(const IRPosition &IRP,
661                                const AbstractAttribute *QueryingAA,
662                                const AAIsDead *FnLivenessAA,
663                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
664   Instruction *CtxI = IRP.getCtxI();
665   if (CtxI &&
666       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
667                     /* CheckBBLivenessOnly */ true,
668                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
669     return true;
670 
671   if (CheckBBLivenessOnly)
672     return false;
673 
674   // If we haven't succeeded we query the specific liveness info for the IRP.
675   const AAIsDead *IsDeadAA;
676   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
677     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
678         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
679         QueryingAA, DepClassTy::NONE);
680   else
681     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
682   // Don't check liveness for AAIsDead.
683   if (QueryingAA == IsDeadAA)
684     return false;
685 
686   if (IsDeadAA->isAssumedDead()) {
687     if (QueryingAA)
688       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
689     return true;
690   }
691 
692   return false;
693 }
694 
695 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
696                                  const AbstractAttribute &QueryingAA,
697                                  const Value &V, DepClassTy LivenessDepClass) {
698 
699   // Check the trivial case first as it catches void values.
700   if (V.use_empty())
701     return true;
702 
703   // If the value is replaced by another one, for now a constant, we do not have
704   // uses. Note that this requires users of `checkForAllUses` to not recurse but
705   // instead use the `follow` callback argument to look at transitive users,
706   // however, that should be clear from the presence of the argument.
707   bool UsedAssumedInformation = false;
708   Optional<Constant *> C =
709       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
710   if (C.hasValue() && C.getValue()) {
711     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
712                       << " -> " << *C.getValue() << "\n");
713     return true;
714   }
715 
716   const IRPosition &IRP = QueryingAA.getIRPosition();
717   SmallVector<const Use *, 16> Worklist;
718   SmallPtrSet<const Use *, 16> Visited;
719 
720   for (const Use &U : V.uses())
721     Worklist.push_back(&U);
722 
723   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
724                     << " initial uses to check\n");
725 
726   const Function *ScopeFn = IRP.getAnchorScope();
727   const auto *LivenessAA =
728       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
729                                     DepClassTy::NONE)
730               : nullptr;
731 
732   while (!Worklist.empty()) {
733     const Use *U = Worklist.pop_back_val();
734     if (!Visited.insert(U).second)
735       continue;
736     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
737                       << *U->getUser() << "\n");
738     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
739                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
740       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
741       continue;
742     }
743     if (U->getUser()->isDroppable()) {
744       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
745       continue;
746     }
747 
748     bool Follow = false;
749     if (!Pred(*U, Follow))
750       return false;
751     if (!Follow)
752       continue;
753     for (const Use &UU : U->getUser()->uses())
754       Worklist.push_back(&UU);
755   }
756 
757   return true;
758 }
759 
760 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
761                                       const AbstractAttribute &QueryingAA,
762                                       bool RequireAllCallSites,
763                                       bool &AllCallSitesKnown) {
764   // We can try to determine information from
765   // the call sites. However, this is only possible all call sites are known,
766   // hence the function has internal linkage.
767   const IRPosition &IRP = QueryingAA.getIRPosition();
768   const Function *AssociatedFunction = IRP.getAssociatedFunction();
769   if (!AssociatedFunction) {
770     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
771                       << "\n");
772     AllCallSitesKnown = false;
773     return false;
774   }
775 
776   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
777                               &QueryingAA, AllCallSitesKnown);
778 }
779 
780 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
781                                       const Function &Fn,
782                                       bool RequireAllCallSites,
783                                       const AbstractAttribute *QueryingAA,
784                                       bool &AllCallSitesKnown) {
785   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
786     LLVM_DEBUG(
787         dbgs()
788         << "[Attributor] Function " << Fn.getName()
789         << " has no internal linkage, hence not all call sites are known\n");
790     AllCallSitesKnown = false;
791     return false;
792   }
793 
794   // If we do not require all call sites we might not see all.
795   AllCallSitesKnown = RequireAllCallSites;
796 
797   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
798   for (unsigned u = 0; u < Uses.size(); ++u) {
799     const Use &U = *Uses[u];
800     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
801                       << *U.getUser() << "\n");
802     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
803       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
804       continue;
805     }
806     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
807       if (CE->isCast() && CE->getType()->isPointerTy() &&
808           CE->getType()->getPointerElementType()->isFunctionTy()) {
809         for (const Use &CEU : CE->uses())
810           Uses.push_back(&CEU);
811         continue;
812       }
813     }
814 
815     AbstractCallSite ACS(&U);
816     if (!ACS) {
817       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
818                         << " has non call site use " << *U.get() << " in "
819                         << *U.getUser() << "\n");
820       // BlockAddress users are allowed.
821       if (isa<BlockAddress>(U.getUser()))
822         continue;
823       return false;
824     }
825 
826     const Use *EffectiveUse =
827         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
828     if (!ACS.isCallee(EffectiveUse)) {
829       if (!RequireAllCallSites)
830         continue;
831       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
832                         << " is an invalid use of " << Fn.getName() << "\n");
833       return false;
834     }
835 
836     // Make sure the arguments that can be matched between the call site and the
837     // callee argee on their type. It is unlikely they do not and it doesn't
838     // make sense for all attributes to know/care about this.
839     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
840     unsigned MinArgsParams =
841         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
842     for (unsigned u = 0; u < MinArgsParams; ++u) {
843       Value *CSArgOp = ACS.getCallArgOperand(u);
844       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
845         LLVM_DEBUG(
846             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
847                    << u << "@" << Fn.getName() << ": "
848                    << *Fn.getArg(u)->getType() << " vs. "
849                    << *ACS.getCallArgOperand(u)->getType() << "\n");
850         return false;
851       }
852     }
853 
854     if (Pred(ACS))
855       continue;
856 
857     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
858                       << *ACS.getInstruction() << "\n");
859     return false;
860   }
861 
862   return true;
863 }
864 
865 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
866   // TODO: Maintain a cache of Values that are
867   // on the pathway from a Argument to a Instruction that would effect the
868   // liveness/return state etc.
869   return EnableCallSiteSpecific;
870 }
871 
872 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
873     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
874     const AbstractAttribute &QueryingAA) {
875 
876   const IRPosition &IRP = QueryingAA.getIRPosition();
877   // Since we need to provide return instructions we have to have an exact
878   // definition.
879   const Function *AssociatedFunction = IRP.getAssociatedFunction();
880   if (!AssociatedFunction)
881     return false;
882 
883   // If this is a call site query we use the call site specific return values
884   // and liveness information.
885   // TODO: use the function scope once we have call site AAReturnedValues.
886   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
887   const auto &AARetVal =
888       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
889   if (!AARetVal.getState().isValidState())
890     return false;
891 
892   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
893 }
894 
895 bool Attributor::checkForAllReturnedValues(
896     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
897 
898   const IRPosition &IRP = QueryingAA.getIRPosition();
899   const Function *AssociatedFunction = IRP.getAssociatedFunction();
900   if (!AssociatedFunction)
901     return false;
902 
903   // TODO: use the function scope once we have call site AAReturnedValues.
904   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
905   const auto &AARetVal =
906       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
907   if (!AARetVal.getState().isValidState())
908     return false;
909 
910   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
911       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
912         return Pred(RV);
913       });
914 }
915 
916 static bool checkForAllInstructionsImpl(
917     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
918     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
919     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
920     bool CheckBBLivenessOnly = false) {
921   for (unsigned Opcode : Opcodes) {
922     // Check if we have instructions with this opcode at all first.
923     auto *Insts = OpcodeInstMap.lookup(Opcode);
924     if (!Insts)
925       continue;
926 
927     for (Instruction *I : *Insts) {
928       // Skip dead instructions.
929       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
930                                 CheckBBLivenessOnly))
931         continue;
932 
933       if (!Pred(*I))
934         return false;
935     }
936   }
937   return true;
938 }
939 
940 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
941                                          const AbstractAttribute &QueryingAA,
942                                          const ArrayRef<unsigned> &Opcodes,
943                                          bool CheckBBLivenessOnly) {
944 
945   const IRPosition &IRP = QueryingAA.getIRPosition();
946   // Since we need to provide instructions we have to have an exact definition.
947   const Function *AssociatedFunction = IRP.getAssociatedFunction();
948   if (!AssociatedFunction)
949     return false;
950 
951   // TODO: use the function scope once we have call site AAReturnedValues.
952   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
953   const auto *LivenessAA =
954       CheckBBLivenessOnly
955           ? nullptr
956           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
957 
958   auto &OpcodeInstMap =
959       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
960   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
961                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
962     return false;
963 
964   return true;
965 }
966 
967 bool Attributor::checkForAllReadWriteInstructions(
968     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
969 
970   const Function *AssociatedFunction =
971       QueryingAA.getIRPosition().getAssociatedFunction();
972   if (!AssociatedFunction)
973     return false;
974 
975   // TODO: use the function scope once we have call site AAReturnedValues.
976   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
977   const auto &LivenessAA =
978       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
979 
980   for (Instruction *I :
981        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
982     // Skip dead instructions.
983     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
984       continue;
985 
986     if (!Pred(*I))
987       return false;
988   }
989 
990   return true;
991 }
992 
993 void Attributor::runTillFixpoint() {
994   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
995   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
996                     << DG.SyntheticRoot.Deps.size()
997                     << " abstract attributes.\n");
998 
999   // Now that all abstract attributes are collected and initialized we start
1000   // the abstract analysis.
1001 
1002   unsigned IterationCounter = 1;
1003 
1004   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1005   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1006   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1007 
1008   do {
1009     // Remember the size to determine new attributes.
1010     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1011     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1012                       << ", Worklist size: " << Worklist.size() << "\n");
1013 
1014     // For invalid AAs we can fix dependent AAs that have a required dependence,
1015     // thereby folding long dependence chains in a single step without the need
1016     // to run updates.
1017     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1018       AbstractAttribute *InvalidAA = InvalidAAs[u];
1019 
1020       // Check the dependences to fast track invalidation.
1021       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1022                         << InvalidAA->Deps.size()
1023                         << " required & optional dependences\n");
1024       while (!InvalidAA->Deps.empty()) {
1025         const auto &Dep = InvalidAA->Deps.back();
1026         InvalidAA->Deps.pop_back();
1027         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1028         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1029           Worklist.insert(DepAA);
1030           continue;
1031         }
1032         DepAA->getState().indicatePessimisticFixpoint();
1033         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1034         if (!DepAA->getState().isValidState())
1035           InvalidAAs.insert(DepAA);
1036         else
1037           ChangedAAs.push_back(DepAA);
1038       }
1039     }
1040 
1041     // Add all abstract attributes that are potentially dependent on one that
1042     // changed to the work list.
1043     for (AbstractAttribute *ChangedAA : ChangedAAs)
1044       while (!ChangedAA->Deps.empty()) {
1045         Worklist.insert(
1046             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1047         ChangedAA->Deps.pop_back();
1048       }
1049 
1050     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1051                       << ", Worklist+Dependent size: " << Worklist.size()
1052                       << "\n");
1053 
1054     // Reset the changed and invalid set.
1055     ChangedAAs.clear();
1056     InvalidAAs.clear();
1057 
1058     // Update all abstract attribute in the work list and record the ones that
1059     // changed.
1060     for (AbstractAttribute *AA : Worklist) {
1061       const auto &AAState = AA->getState();
1062       if (!AAState.isAtFixpoint())
1063         if (updateAA(*AA) == ChangeStatus::CHANGED)
1064           ChangedAAs.push_back(AA);
1065 
1066       // Use the InvalidAAs vector to propagate invalid states fast transitively
1067       // without requiring updates.
1068       if (!AAState.isValidState())
1069         InvalidAAs.insert(AA);
1070     }
1071 
1072     // Add attributes to the changed set if they have been created in the last
1073     // iteration.
1074     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1075                       DG.SyntheticRoot.end());
1076 
1077     // Reset the work list and repopulate with the changed abstract attributes.
1078     // Note that dependent ones are added above.
1079     Worklist.clear();
1080     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1081 
1082   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1083                                  VerifyMaxFixpointIterations));
1084 
1085   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1086                     << IterationCounter << "/" << MaxFixpointIterations
1087                     << " iterations\n");
1088 
1089   // Reset abstract arguments not settled in a sound fixpoint by now. This
1090   // happens when we stopped the fixpoint iteration early. Note that only the
1091   // ones marked as "changed" *and* the ones transitively depending on them
1092   // need to be reverted to a pessimistic state. Others might not be in a
1093   // fixpoint state but we can use the optimistic results for them anyway.
1094   SmallPtrSet<AbstractAttribute *, 32> Visited;
1095   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1096     AbstractAttribute *ChangedAA = ChangedAAs[u];
1097     if (!Visited.insert(ChangedAA).second)
1098       continue;
1099 
1100     AbstractState &State = ChangedAA->getState();
1101     if (!State.isAtFixpoint()) {
1102       State.indicatePessimisticFixpoint();
1103 
1104       NumAttributesTimedOut++;
1105     }
1106 
1107     while (!ChangedAA->Deps.empty()) {
1108       ChangedAAs.push_back(
1109           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1110       ChangedAA->Deps.pop_back();
1111     }
1112   }
1113 
1114   LLVM_DEBUG({
1115     if (!Visited.empty())
1116       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1117              << " abstract attributes.\n";
1118   });
1119 
1120   if (VerifyMaxFixpointIterations &&
1121       IterationCounter != MaxFixpointIterations) {
1122     errs() << "\n[Attributor] Fixpoint iteration done after: "
1123            << IterationCounter << "/" << MaxFixpointIterations
1124            << " iterations\n";
1125     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1126                      "specified iterations!");
1127   }
1128 }
1129 
1130 ChangeStatus Attributor::manifestAttributes() {
1131   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1132   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1133 
1134   unsigned NumManifested = 0;
1135   unsigned NumAtFixpoint = 0;
1136   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1137   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1138     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1139     AbstractState &State = AA->getState();
1140 
1141     // If there is not already a fixpoint reached, we can now take the
1142     // optimistic state. This is correct because we enforced a pessimistic one
1143     // on abstract attributes that were transitively dependent on a changed one
1144     // already above.
1145     if (!State.isAtFixpoint())
1146       State.indicateOptimisticFixpoint();
1147 
1148     // We must not manifest Attributes that use Callbase info.
1149     if (AA->hasCallBaseContext())
1150       continue;
1151     // If the state is invalid, we do not try to manifest it.
1152     if (!State.isValidState())
1153       continue;
1154 
1155     // Skip dead code.
1156     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1157       continue;
1158     // Check if the manifest debug counter that allows skipping manifestation of
1159     // AAs
1160     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1161       continue;
1162     // Manifest the state and record if we changed the IR.
1163     ChangeStatus LocalChange = AA->manifest(*this);
1164     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1165       AA->trackStatistics();
1166     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1167                       << "\n");
1168 
1169     ManifestChange = ManifestChange | LocalChange;
1170 
1171     NumAtFixpoint++;
1172     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1173   }
1174 
1175   (void)NumManifested;
1176   (void)NumAtFixpoint;
1177   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1178                     << " arguments while " << NumAtFixpoint
1179                     << " were in a valid fixpoint state\n");
1180 
1181   NumAttributesManifested += NumManifested;
1182   NumAttributesValidFixpoint += NumAtFixpoint;
1183 
1184   (void)NumFinalAAs;
1185   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1186     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1187       errs() << "Unexpected abstract attribute: "
1188              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1189              << " :: "
1190              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1191                     ->getIRPosition()
1192                     .getAssociatedValue()
1193              << "\n";
1194     llvm_unreachable("Expected the final number of abstract attributes to "
1195                      "remain unchanged!");
1196   }
1197   return ManifestChange;
1198 }
1199 
1200 void Attributor::identifyDeadInternalFunctions() {
1201   // Early exit if we don't intend to delete functions.
1202   if (!DeleteFns)
1203     return;
1204 
1205   // Identify dead internal functions and delete them. This happens outside
1206   // the other fixpoint analysis as we might treat potentially dead functions
1207   // as live to lower the number of iterations. If they happen to be dead, the
1208   // below fixpoint loop will identify and eliminate them.
1209   SmallVector<Function *, 8> InternalFns;
1210   for (Function *F : Functions)
1211     if (F->hasLocalLinkage())
1212       InternalFns.push_back(F);
1213 
1214   SmallPtrSet<Function *, 8> LiveInternalFns;
1215   bool FoundLiveInternal = true;
1216   while (FoundLiveInternal) {
1217     FoundLiveInternal = false;
1218     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1219       Function *F = InternalFns[u];
1220       if (!F)
1221         continue;
1222 
1223       bool AllCallSitesKnown;
1224       if (checkForAllCallSites(
1225               [&](AbstractCallSite ACS) {
1226                 Function *Callee = ACS.getInstruction()->getFunction();
1227                 return ToBeDeletedFunctions.count(Callee) ||
1228                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1229                         !LiveInternalFns.count(Callee));
1230               },
1231               *F, true, nullptr, AllCallSitesKnown)) {
1232         continue;
1233       }
1234 
1235       LiveInternalFns.insert(F);
1236       InternalFns[u] = nullptr;
1237       FoundLiveInternal = true;
1238     }
1239   }
1240 
1241   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1242     if (Function *F = InternalFns[u])
1243       ToBeDeletedFunctions.insert(F);
1244 }
1245 
1246 ChangeStatus Attributor::cleanupIR() {
1247   TimeTraceScope TimeScope("Attributor::cleanupIR");
1248   // Delete stuff at the end to avoid invalid references and a nice order.
1249   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1250                     << ToBeDeletedFunctions.size() << " functions and "
1251                     << ToBeDeletedBlocks.size() << " blocks and "
1252                     << ToBeDeletedInsts.size() << " instructions and "
1253                     << ToBeChangedUses.size() << " uses\n");
1254 
1255   SmallVector<WeakTrackingVH, 32> DeadInsts;
1256   SmallVector<Instruction *, 32> TerminatorsToFold;
1257 
1258   for (auto &It : ToBeChangedUses) {
1259     Use *U = It.first;
1260     Value *NewV = It.second;
1261     Value *OldV = U->get();
1262 
1263     // Do not replace uses in returns if the value is a must-tail call we will
1264     // not delete.
1265     if (isa<ReturnInst>(U->getUser()))
1266       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1267         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1268           continue;
1269 
1270     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1271                       << " instead of " << *OldV << "\n");
1272     U->set(NewV);
1273     // Do not modify call instructions outside the SCC.
1274     if (auto *CB = dyn_cast<CallBase>(OldV))
1275       if (!Functions.count(CB->getCaller()))
1276         continue;
1277     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1278       CGModifiedFunctions.insert(I->getFunction());
1279       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1280           isInstructionTriviallyDead(I))
1281         DeadInsts.push_back(I);
1282     }
1283     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1284       auto *CB = cast<CallBase>(U->getUser());
1285       if (CB->isArgOperand(U)) {
1286         unsigned Idx = CB->getArgOperandNo(U);
1287         CB->removeParamAttr(Idx, Attribute::NoUndef);
1288         Function *Fn = CB->getCalledFunction();
1289         assert(Fn && "Expected callee when call argument is replaced!");
1290         if (Fn->arg_size() > Idx)
1291           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1292       }
1293     }
1294     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1295       Instruction *UserI = cast<Instruction>(U->getUser());
1296       if (isa<UndefValue>(NewV)) {
1297         ToBeChangedToUnreachableInsts.insert(UserI);
1298       } else {
1299         TerminatorsToFold.push_back(UserI);
1300       }
1301     }
1302   }
1303   for (auto &V : InvokeWithDeadSuccessor)
1304     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1305       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1306       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1307       bool Invoke2CallAllowed =
1308           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1309       assert((UnwindBBIsDead || NormalBBIsDead) &&
1310              "Invoke does not have dead successors!");
1311       BasicBlock *BB = II->getParent();
1312       BasicBlock *NormalDestBB = II->getNormalDest();
1313       if (UnwindBBIsDead) {
1314         Instruction *NormalNextIP = &NormalDestBB->front();
1315         if (Invoke2CallAllowed) {
1316           changeToCall(II);
1317           NormalNextIP = BB->getTerminator();
1318         }
1319         if (NormalBBIsDead)
1320           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1321       } else {
1322         assert(NormalBBIsDead && "Broken invariant!");
1323         if (!NormalDestBB->getUniquePredecessor())
1324           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1325         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1326       }
1327     }
1328   for (Instruction *I : TerminatorsToFold) {
1329     CGModifiedFunctions.insert(I->getFunction());
1330     ConstantFoldTerminator(I->getParent());
1331   }
1332   for (auto &V : ToBeChangedToUnreachableInsts)
1333     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1334       CGModifiedFunctions.insert(I->getFunction());
1335       changeToUnreachable(I, /* UseLLVMTrap */ false);
1336     }
1337 
1338   for (auto &V : ToBeDeletedInsts) {
1339     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1340       I->dropDroppableUses();
1341       CGModifiedFunctions.insert(I->getFunction());
1342       if (!I->getType()->isVoidTy())
1343         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1344       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1345         DeadInsts.push_back(I);
1346       else
1347         I->eraseFromParent();
1348     }
1349   }
1350 
1351   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1352                     << "\n");
1353 
1354   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1355 
1356   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1357     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1358     ToBeDeletedBBs.reserve(NumDeadBlocks);
1359     for (BasicBlock *BB : ToBeDeletedBlocks) {
1360       CGModifiedFunctions.insert(BB->getParent());
1361       ToBeDeletedBBs.push_back(BB);
1362     }
1363     // Actually we do not delete the blocks but squash them into a single
1364     // unreachable but untangling branches that jump here is something we need
1365     // to do in a more generic way.
1366     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1367   }
1368 
1369   identifyDeadInternalFunctions();
1370 
1371   // Rewrite the functions as requested during manifest.
1372   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1373 
1374   for (Function *Fn : CGModifiedFunctions)
1375     if (!ToBeDeletedFunctions.count(Fn))
1376       CGUpdater.reanalyzeFunction(*Fn);
1377 
1378   for (Function *Fn : ToBeDeletedFunctions) {
1379     if (!Functions.count(Fn))
1380       continue;
1381     CGUpdater.removeFunction(*Fn);
1382   }
1383 
1384   if (!ToBeChangedUses.empty())
1385     ManifestChange = ChangeStatus::CHANGED;
1386 
1387   if (!ToBeChangedToUnreachableInsts.empty())
1388     ManifestChange = ChangeStatus::CHANGED;
1389 
1390   if (!ToBeDeletedFunctions.empty())
1391     ManifestChange = ChangeStatus::CHANGED;
1392 
1393   if (!ToBeDeletedBlocks.empty())
1394     ManifestChange = ChangeStatus::CHANGED;
1395 
1396   if (!ToBeDeletedInsts.empty())
1397     ManifestChange = ChangeStatus::CHANGED;
1398 
1399   if (!InvokeWithDeadSuccessor.empty())
1400     ManifestChange = ChangeStatus::CHANGED;
1401 
1402   if (!DeadInsts.empty())
1403     ManifestChange = ChangeStatus::CHANGED;
1404 
1405   NumFnDeleted += ToBeDeletedFunctions.size();
1406 
1407   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1408                     << " functions after manifest.\n");
1409 
1410 #ifdef EXPENSIVE_CHECKS
1411   for (Function *F : Functions) {
1412     if (ToBeDeletedFunctions.count(F))
1413       continue;
1414     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1415   }
1416 #endif
1417 
1418   return ManifestChange;
1419 }
1420 
1421 ChangeStatus Attributor::run() {
1422   TimeTraceScope TimeScope("Attributor::run");
1423 
1424   Phase = AttributorPhase::UPDATE;
1425   runTillFixpoint();
1426 
1427   // dump graphs on demand
1428   if (DumpDepGraph)
1429     DG.dumpGraph();
1430 
1431   if (ViewDepGraph)
1432     DG.viewGraph();
1433 
1434   if (PrintDependencies)
1435     DG.print();
1436 
1437   Phase = AttributorPhase::MANIFEST;
1438   ChangeStatus ManifestChange = manifestAttributes();
1439 
1440   Phase = AttributorPhase::CLEANUP;
1441   ChangeStatus CleanupChange = cleanupIR();
1442 
1443   return ManifestChange | CleanupChange;
1444 }
1445 
1446 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1447   TimeTraceScope TimeScope(
1448       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1449       "::updateAA");
1450   assert(Phase == AttributorPhase::UPDATE &&
1451          "We can update AA only in the update stage!");
1452 
1453   // Use a new dependence vector for this update.
1454   DependenceVector DV;
1455   DependenceStack.push_back(&DV);
1456 
1457   auto &AAState = AA.getState();
1458   ChangeStatus CS = ChangeStatus::UNCHANGED;
1459   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1460     CS = AA.update(*this);
1461 
1462   if (DV.empty()) {
1463     // If the attribute did not query any non-fix information, the state
1464     // will not change and we can indicate that right away.
1465     AAState.indicateOptimisticFixpoint();
1466   }
1467 
1468   if (!AAState.isAtFixpoint())
1469     rememberDependences();
1470 
1471   // Verify the stack was used properly, that is we pop the dependence vector we
1472   // put there earlier.
1473   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1474   (void)PoppedDV;
1475   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1476 
1477   return CS;
1478 }
1479 
1480 void Attributor::createShallowWrapper(Function &F) {
1481   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1482 
1483   Module &M = *F.getParent();
1484   LLVMContext &Ctx = M.getContext();
1485   FunctionType *FnTy = F.getFunctionType();
1486 
1487   Function *Wrapper =
1488       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1489   F.setName(""); // set the inside function anonymous
1490   M.getFunctionList().insert(F.getIterator(), Wrapper);
1491 
1492   F.setLinkage(GlobalValue::InternalLinkage);
1493 
1494   F.replaceAllUsesWith(Wrapper);
1495   assert(F.use_empty() && "Uses remained after wrapper was created!");
1496 
1497   // Move the COMDAT section to the wrapper.
1498   // TODO: Check if we need to keep it for F as well.
1499   Wrapper->setComdat(F.getComdat());
1500   F.setComdat(nullptr);
1501 
1502   // Copy all metadata and attributes but keep them on F as well.
1503   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1504   F.getAllMetadata(MDs);
1505   for (auto MDIt : MDs)
1506     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1507   Wrapper->setAttributes(F.getAttributes());
1508 
1509   // Create the call in the wrapper.
1510   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1511 
1512   SmallVector<Value *, 8> Args;
1513   Argument *FArgIt = F.arg_begin();
1514   for (Argument &Arg : Wrapper->args()) {
1515     Args.push_back(&Arg);
1516     Arg.setName((FArgIt++)->getName());
1517   }
1518 
1519   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1520   CI->setTailCall(true);
1521   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1522   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1523 
1524   NumFnShallowWrappersCreated++;
1525 }
1526 
1527 /// Make another copy of the function \p F such that the copied version has
1528 /// internal linkage afterwards and can be analysed. Then we replace all uses
1529 /// of the original function to the copied one
1530 ///
1531 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1532 /// linkage can be internalized because these linkages guarantee that other
1533 /// definitions with the same name have the same semantics as this one
1534 ///
1535 static Function *internalizeFunction(Function &F) {
1536   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1537   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1538          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1539          "Trying to internalize function which cannot be internalized.");
1540 
1541   Module &M = *F.getParent();
1542   FunctionType *FnTy = F.getFunctionType();
1543 
1544   // create a copy of the current function
1545   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1546                                       F.getName() + ".internalized");
1547   ValueToValueMapTy VMap;
1548   auto *NewFArgIt = Copied->arg_begin();
1549   for (auto &Arg : F.args()) {
1550     auto ArgName = Arg.getName();
1551     NewFArgIt->setName(ArgName);
1552     VMap[&Arg] = &(*NewFArgIt++);
1553   }
1554   SmallVector<ReturnInst *, 8> Returns;
1555 
1556   // Copy the body of the original function to the new one
1557   CloneFunctionInto(Copied, &F, VMap, CloneFunctionChangeType::LocalChangesOnly,
1558                     Returns);
1559 
1560   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1561   // requirements.
1562   Copied->setVisibility(GlobalValue::DefaultVisibility);
1563   Copied->setLinkage(GlobalValue::PrivateLinkage);
1564 
1565   // Copy metadata
1566   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1567   F.getAllMetadata(MDs);
1568   for (auto MDIt : MDs)
1569     Copied->addMetadata(MDIt.first, *MDIt.second);
1570 
1571   M.getFunctionList().insert(F.getIterator(), Copied);
1572   F.replaceAllUsesWith(Copied);
1573   Copied->setDSOLocal(true);
1574 
1575   return Copied;
1576 }
1577 
1578 bool Attributor::isValidFunctionSignatureRewrite(
1579     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1580 
1581   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1582     // Forbid the call site to cast the function return type. If we need to
1583     // rewrite these functions we need to re-create a cast for the new call site
1584     // (if the old had uses).
1585     if (!ACS.getCalledFunction() ||
1586         ACS.getInstruction()->getType() !=
1587             ACS.getCalledFunction()->getReturnType())
1588       return false;
1589     // Forbid must-tail calls for now.
1590     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1591   };
1592 
1593   Function *Fn = Arg.getParent();
1594   // Avoid var-arg functions for now.
1595   if (Fn->isVarArg()) {
1596     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1597     return false;
1598   }
1599 
1600   // Avoid functions with complicated argument passing semantics.
1601   AttributeList FnAttributeList = Fn->getAttributes();
1602   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1603       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1604       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1605       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1606     LLVM_DEBUG(
1607         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1608     return false;
1609   }
1610 
1611   // Avoid callbacks for now.
1612   bool AllCallSitesKnown;
1613   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1614                             AllCallSitesKnown)) {
1615     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1616     return false;
1617   }
1618 
1619   auto InstPred = [](Instruction &I) {
1620     if (auto *CI = dyn_cast<CallInst>(&I))
1621       return !CI->isMustTailCall();
1622     return true;
1623   };
1624 
1625   // Forbid must-tail calls for now.
1626   // TODO:
1627   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1628   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1629                                    nullptr, {Instruction::Call})) {
1630     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1631     return false;
1632   }
1633 
1634   return true;
1635 }
1636 
1637 bool Attributor::registerFunctionSignatureRewrite(
1638     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1639     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1640     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1641   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1642                     << Arg.getParent()->getName() << " with "
1643                     << ReplacementTypes.size() << " replacements\n");
1644   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1645          "Cannot register an invalid rewrite");
1646 
1647   Function *Fn = Arg.getParent();
1648   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1649       ArgumentReplacementMap[Fn];
1650   if (ARIs.empty())
1651     ARIs.resize(Fn->arg_size());
1652 
1653   // If we have a replacement already with less than or equal new arguments,
1654   // ignore this request.
1655   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1656   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1657     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1658     return false;
1659   }
1660 
1661   // If we have a replacement already but we like the new one better, delete
1662   // the old.
1663   ARI.reset();
1664 
1665   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1666                     << Arg.getParent()->getName() << " with "
1667                     << ReplacementTypes.size() << " replacements\n");
1668 
1669   // Remember the replacement.
1670   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1671                                         std::move(CalleeRepairCB),
1672                                         std::move(ACSRepairCB)));
1673 
1674   return true;
1675 }
1676 
1677 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1678   bool Result = true;
1679 #ifndef NDEBUG
1680   if (SeedAllowList.size() != 0)
1681     Result =
1682         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1683   Function *Fn = AA.getAnchorScope();
1684   if (FunctionSeedAllowList.size() != 0 && Fn)
1685     Result &= std::count(FunctionSeedAllowList.begin(),
1686                          FunctionSeedAllowList.end(), Fn->getName());
1687 #endif
1688   return Result;
1689 }
1690 
1691 ChangeStatus Attributor::rewriteFunctionSignatures(
1692     SmallPtrSetImpl<Function *> &ModifiedFns) {
1693   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1694 
1695   for (auto &It : ArgumentReplacementMap) {
1696     Function *OldFn = It.getFirst();
1697 
1698     // Deleted functions do not require rewrites.
1699     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1700       continue;
1701 
1702     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1703         It.getSecond();
1704     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1705 
1706     SmallVector<Type *, 16> NewArgumentTypes;
1707     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1708 
1709     // Collect replacement argument types and copy over existing attributes.
1710     AttributeList OldFnAttributeList = OldFn->getAttributes();
1711     for (Argument &Arg : OldFn->args()) {
1712       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1713               ARIs[Arg.getArgNo()]) {
1714         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1715                                 ARI->ReplacementTypes.end());
1716         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1717                                      AttributeSet());
1718       } else {
1719         NewArgumentTypes.push_back(Arg.getType());
1720         NewArgumentAttributes.push_back(
1721             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1722       }
1723     }
1724 
1725     FunctionType *OldFnTy = OldFn->getFunctionType();
1726     Type *RetTy = OldFnTy->getReturnType();
1727 
1728     // Construct the new function type using the new arguments types.
1729     FunctionType *NewFnTy =
1730         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1731 
1732     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1733                       << "' from " << *OldFn->getFunctionType() << " to "
1734                       << *NewFnTy << "\n");
1735 
1736     // Create the new function body and insert it into the module.
1737     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1738                                        OldFn->getAddressSpace(), "");
1739     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1740     NewFn->takeName(OldFn);
1741     NewFn->copyAttributesFrom(OldFn);
1742 
1743     // Patch the pointer to LLVM function in debug info descriptor.
1744     NewFn->setSubprogram(OldFn->getSubprogram());
1745     OldFn->setSubprogram(nullptr);
1746 
1747     // Recompute the parameter attributes list based on the new arguments for
1748     // the function.
1749     LLVMContext &Ctx = OldFn->getContext();
1750     NewFn->setAttributes(AttributeList::get(
1751         Ctx, OldFnAttributeList.getFnAttributes(),
1752         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1753 
1754     // Since we have now created the new function, splice the body of the old
1755     // function right into the new function, leaving the old rotting hulk of the
1756     // function empty.
1757     NewFn->getBasicBlockList().splice(NewFn->begin(),
1758                                       OldFn->getBasicBlockList());
1759 
1760     // Fixup block addresses to reference new function.
1761     SmallVector<BlockAddress *, 8u> BlockAddresses;
1762     for (User *U : OldFn->users())
1763       if (auto *BA = dyn_cast<BlockAddress>(U))
1764         BlockAddresses.push_back(BA);
1765     for (auto *BA : BlockAddresses)
1766       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1767 
1768     // Set of all "call-like" instructions that invoke the old function mapped
1769     // to their new replacements.
1770     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1771 
1772     // Callback to create a new "call-like" instruction for a given one.
1773     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1774       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1775       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1776 
1777       // Collect the new argument operands for the replacement call site.
1778       SmallVector<Value *, 16> NewArgOperands;
1779       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1780       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1781         unsigned NewFirstArgNum = NewArgOperands.size();
1782         (void)NewFirstArgNum; // only used inside assert.
1783         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1784                 ARIs[OldArgNum]) {
1785           if (ARI->ACSRepairCB)
1786             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1787           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1788                      NewArgOperands.size() &&
1789                  "ACS repair callback did not provide as many operand as new "
1790                  "types were registered!");
1791           // TODO: Exose the attribute set to the ACS repair callback
1792           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1793                                          AttributeSet());
1794         } else {
1795           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1796           NewArgOperandAttributes.push_back(
1797               OldCallAttributeList.getParamAttributes(OldArgNum));
1798         }
1799       }
1800 
1801       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1802              "Mismatch # argument operands vs. # argument operand attributes!");
1803       assert(NewArgOperands.size() == NewFn->arg_size() &&
1804              "Mismatch # argument operands vs. # function arguments!");
1805 
1806       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1807       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1808 
1809       // Create a new call or invoke instruction to replace the old one.
1810       CallBase *NewCB;
1811       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1812         NewCB =
1813             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1814                                NewArgOperands, OperandBundleDefs, "", OldCB);
1815       } else {
1816         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1817                                        "", OldCB);
1818         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1819         NewCB = NewCI;
1820       }
1821 
1822       // Copy over various properties and the new attributes.
1823       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1824       NewCB->setCallingConv(OldCB->getCallingConv());
1825       NewCB->takeName(OldCB);
1826       NewCB->setAttributes(AttributeList::get(
1827           Ctx, OldCallAttributeList.getFnAttributes(),
1828           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1829 
1830       CallSitePairs.push_back({OldCB, NewCB});
1831       return true;
1832     };
1833 
1834     // Use the CallSiteReplacementCreator to create replacement call sites.
1835     bool AllCallSitesKnown;
1836     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1837                                         true, nullptr, AllCallSitesKnown);
1838     (void)Success;
1839     assert(Success && "Assumed call site replacement to succeed!");
1840 
1841     // Rewire the arguments.
1842     Argument *OldFnArgIt = OldFn->arg_begin();
1843     Argument *NewFnArgIt = NewFn->arg_begin();
1844     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1845          ++OldArgNum, ++OldFnArgIt) {
1846       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1847               ARIs[OldArgNum]) {
1848         if (ARI->CalleeRepairCB)
1849           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1850         NewFnArgIt += ARI->ReplacementTypes.size();
1851       } else {
1852         NewFnArgIt->takeName(&*OldFnArgIt);
1853         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1854         ++NewFnArgIt;
1855       }
1856     }
1857 
1858     // Eliminate the instructions *after* we visited all of them.
1859     for (auto &CallSitePair : CallSitePairs) {
1860       CallBase &OldCB = *CallSitePair.first;
1861       CallBase &NewCB = *CallSitePair.second;
1862       assert(OldCB.getType() == NewCB.getType() &&
1863              "Cannot handle call sites with different types!");
1864       ModifiedFns.insert(OldCB.getFunction());
1865       CGUpdater.replaceCallSite(OldCB, NewCB);
1866       OldCB.replaceAllUsesWith(&NewCB);
1867       OldCB.eraseFromParent();
1868     }
1869 
1870     // Replace the function in the call graph (if any).
1871     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1872 
1873     // If the old function was modified and needed to be reanalyzed, the new one
1874     // does now.
1875     if (ModifiedFns.erase(OldFn))
1876       ModifiedFns.insert(NewFn);
1877 
1878     Changed = ChangeStatus::CHANGED;
1879   }
1880 
1881   return Changed;
1882 }
1883 
1884 void InformationCache::initializeInformationCache(const Function &CF,
1885                                                   FunctionInfo &FI) {
1886   // As we do not modify the function here we can remove the const
1887   // withouth breaking implicit assumptions. At the end of the day, we could
1888   // initialize the cache eagerly which would look the same to the users.
1889   Function &F = const_cast<Function &>(CF);
1890 
1891   // Walk all instructions to find interesting instructions that might be
1892   // queried by abstract attributes during their initialization or update.
1893   // This has to happen before we create attributes.
1894 
1895   for (Instruction &I : instructions(&F)) {
1896     bool IsInterestingOpcode = false;
1897 
1898     // To allow easy access to all instructions in a function with a given
1899     // opcode we store them in the InfoCache. As not all opcodes are interesting
1900     // to concrete attributes we only cache the ones that are as identified in
1901     // the following switch.
1902     // Note: There are no concrete attributes now so this is initially empty.
1903     switch (I.getOpcode()) {
1904     default:
1905       assert(!isa<CallBase>(&I) &&
1906              "New call base instruction type needs to be known in the "
1907              "Attributor.");
1908       break;
1909     case Instruction::Call:
1910       // Calls are interesting on their own, additionally:
1911       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1912       // For `must-tail` calls we remember the caller and callee.
1913       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
1914         fillMapFromAssume(*Assume, KnowledgeMap);
1915       } else if (cast<CallInst>(I).isMustTailCall()) {
1916         FI.ContainsMustTailCall = true;
1917         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1918           getFunctionInfo(*Callee).CalledViaMustTail = true;
1919       }
1920       LLVM_FALLTHROUGH;
1921     case Instruction::CallBr:
1922     case Instruction::Invoke:
1923     case Instruction::CleanupRet:
1924     case Instruction::CatchSwitch:
1925     case Instruction::AtomicRMW:
1926     case Instruction::AtomicCmpXchg:
1927     case Instruction::Br:
1928     case Instruction::Resume:
1929     case Instruction::Ret:
1930     case Instruction::Load:
1931       // The alignment of a pointer is interesting for loads.
1932     case Instruction::Store:
1933       // The alignment of a pointer is interesting for stores.
1934       IsInterestingOpcode = true;
1935     }
1936     if (IsInterestingOpcode) {
1937       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1938       if (!Insts)
1939         Insts = new (Allocator) InstructionVectorTy();
1940       Insts->push_back(&I);
1941     }
1942     if (I.mayReadOrWriteMemory())
1943       FI.RWInsts.push_back(&I);
1944   }
1945 
1946   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1947       isInlineViable(F).isSuccess())
1948     InlineableFunctions.insert(&F);
1949 }
1950 
1951 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
1952   return AG.getAnalysis<AAManager>(F);
1953 }
1954 
1955 InformationCache::FunctionInfo::~FunctionInfo() {
1956   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1957   // manually destroy them.
1958   for (auto &It : OpcodeInstMap)
1959     It.getSecond()->~InstructionVectorTy();
1960 }
1961 
1962 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1963                                   const AbstractAttribute &ToAA,
1964                                   DepClassTy DepClass) {
1965   if (DepClass == DepClassTy::NONE)
1966     return;
1967   // If we are outside of an update, thus before the actual fixpoint iteration
1968   // started (= when we create AAs), we do not track dependences because we will
1969   // put all AAs into the initial worklist anyway.
1970   if (DependenceStack.empty())
1971     return;
1972   if (FromAA.getState().isAtFixpoint())
1973     return;
1974   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1975 }
1976 
1977 void Attributor::rememberDependences() {
1978   assert(!DependenceStack.empty() && "No dependences to remember!");
1979 
1980   for (DepInfo &DI : *DependenceStack.back()) {
1981     assert((DI.DepClass == DepClassTy::REQUIRED ||
1982             DI.DepClass == DepClassTy::OPTIONAL) &&
1983            "Expected required or optional dependence (1 bit)!");
1984     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1985     DepAAs.push_back(AbstractAttribute::DepTy(
1986         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1987   }
1988 }
1989 
1990 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1991   if (!VisitedFunctions.insert(&F).second)
1992     return;
1993   if (F.isDeclaration())
1994     return;
1995 
1996   // In non-module runs we need to look at the call sites of a function to
1997   // determine if it is part of a must-tail call edge. This will influence what
1998   // attributes we can derive.
1999   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2000   if (!isModulePass() && !FI.CalledViaMustTail) {
2001     for (const Use &U : F.uses())
2002       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2003         if (CB->isCallee(&U) && CB->isMustTailCall())
2004           FI.CalledViaMustTail = true;
2005   }
2006 
2007   IRPosition FPos = IRPosition::function(F);
2008 
2009   // Check for dead BasicBlocks in every function.
2010   // We need dead instruction detection because we do not want to deal with
2011   // broken IR in which SSA rules do not apply.
2012   getOrCreateAAFor<AAIsDead>(FPos);
2013 
2014   // Every function might be "will-return".
2015   getOrCreateAAFor<AAWillReturn>(FPos);
2016 
2017   // Every function might contain instructions that cause "undefined behavior".
2018   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2019 
2020   // Every function can be nounwind.
2021   getOrCreateAAFor<AANoUnwind>(FPos);
2022 
2023   // Every function might be marked "nosync"
2024   getOrCreateAAFor<AANoSync>(FPos);
2025 
2026   // Every function might be "no-free".
2027   getOrCreateAAFor<AANoFree>(FPos);
2028 
2029   // Every function might be "no-return".
2030   getOrCreateAAFor<AANoReturn>(FPos);
2031 
2032   // Every function might be "no-recurse".
2033   getOrCreateAAFor<AANoRecurse>(FPos);
2034 
2035   // Every function might be "readnone/readonly/writeonly/...".
2036   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2037 
2038   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2039   getOrCreateAAFor<AAMemoryLocation>(FPos);
2040 
2041   // Every function might be applicable for Heap-To-Stack conversion.
2042   if (EnableHeapToStack)
2043     getOrCreateAAFor<AAHeapToStack>(FPos);
2044 
2045   // Return attributes are only appropriate if the return type is non void.
2046   Type *ReturnType = F.getReturnType();
2047   if (!ReturnType->isVoidTy()) {
2048     // Argument attribute "returned" --- Create only one per function even
2049     // though it is an argument attribute.
2050     getOrCreateAAFor<AAReturnedValues>(FPos);
2051 
2052     IRPosition RetPos = IRPosition::returned(F);
2053 
2054     // Every returned value might be dead.
2055     getOrCreateAAFor<AAIsDead>(RetPos);
2056 
2057     // Every function might be simplified.
2058     getOrCreateAAFor<AAValueSimplify>(RetPos);
2059 
2060     // Every returned value might be marked noundef.
2061     getOrCreateAAFor<AANoUndef>(RetPos);
2062 
2063     if (ReturnType->isPointerTy()) {
2064 
2065       // Every function with pointer return type might be marked align.
2066       getOrCreateAAFor<AAAlign>(RetPos);
2067 
2068       // Every function with pointer return type might be marked nonnull.
2069       getOrCreateAAFor<AANonNull>(RetPos);
2070 
2071       // Every function with pointer return type might be marked noalias.
2072       getOrCreateAAFor<AANoAlias>(RetPos);
2073 
2074       // Every function with pointer return type might be marked
2075       // dereferenceable.
2076       getOrCreateAAFor<AADereferenceable>(RetPos);
2077     }
2078   }
2079 
2080   for (Argument &Arg : F.args()) {
2081     IRPosition ArgPos = IRPosition::argument(Arg);
2082 
2083     // Every argument might be simplified.
2084     getOrCreateAAFor<AAValueSimplify>(ArgPos);
2085 
2086     // Every argument might be dead.
2087     getOrCreateAAFor<AAIsDead>(ArgPos);
2088 
2089     // Every argument might be marked noundef.
2090     getOrCreateAAFor<AANoUndef>(ArgPos);
2091 
2092     if (Arg.getType()->isPointerTy()) {
2093       // Every argument with pointer type might be marked nonnull.
2094       getOrCreateAAFor<AANonNull>(ArgPos);
2095 
2096       // Every argument with pointer type might be marked noalias.
2097       getOrCreateAAFor<AANoAlias>(ArgPos);
2098 
2099       // Every argument with pointer type might be marked dereferenceable.
2100       getOrCreateAAFor<AADereferenceable>(ArgPos);
2101 
2102       // Every argument with pointer type might be marked align.
2103       getOrCreateAAFor<AAAlign>(ArgPos);
2104 
2105       // Every argument with pointer type might be marked nocapture.
2106       getOrCreateAAFor<AANoCapture>(ArgPos);
2107 
2108       // Every argument with pointer type might be marked
2109       // "readnone/readonly/writeonly/..."
2110       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2111 
2112       // Every argument with pointer type might be marked nofree.
2113       getOrCreateAAFor<AANoFree>(ArgPos);
2114 
2115       // Every argument with pointer type might be privatizable (or promotable)
2116       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2117     }
2118   }
2119 
2120   auto CallSitePred = [&](Instruction &I) -> bool {
2121     auto &CB = cast<CallBase>(I);
2122     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2123 
2124     // Call sites might be dead if they do not have side effects and no live
2125     // users. The return value might be dead if there are no live users.
2126     getOrCreateAAFor<AAIsDead>(CBRetPos);
2127 
2128     Function *Callee = CB.getCalledFunction();
2129     // TODO: Even if the callee is not known now we might be able to simplify
2130     //       the call/callee.
2131     if (!Callee)
2132       return true;
2133 
2134     // Skip declarations except if annotations on their call sites were
2135     // explicitly requested.
2136     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2137         !Callee->hasMetadata(LLVMContext::MD_callback))
2138       return true;
2139 
2140     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2141 
2142       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2143 
2144       // Call site return integer values might be limited by a constant range.
2145       if (Callee->getReturnType()->isIntegerTy())
2146         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2147     }
2148 
2149     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2150 
2151       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2152 
2153       // Every call site argument might be dead.
2154       getOrCreateAAFor<AAIsDead>(CBArgPos);
2155 
2156       // Call site argument might be simplified.
2157       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2158 
2159       // Every call site argument might be marked "noundef".
2160       getOrCreateAAFor<AANoUndef>(CBArgPos);
2161 
2162       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2163         continue;
2164 
2165       // Call site argument attribute "non-null".
2166       getOrCreateAAFor<AANonNull>(CBArgPos);
2167 
2168       // Call site argument attribute "nocapture".
2169       getOrCreateAAFor<AANoCapture>(CBArgPos);
2170 
2171       // Call site argument attribute "no-alias".
2172       getOrCreateAAFor<AANoAlias>(CBArgPos);
2173 
2174       // Call site argument attribute "dereferenceable".
2175       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2176 
2177       // Call site argument attribute "align".
2178       getOrCreateAAFor<AAAlign>(CBArgPos);
2179 
2180       // Call site argument attribute
2181       // "readnone/readonly/writeonly/..."
2182       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2183 
2184       // Call site argument attribute "nofree".
2185       getOrCreateAAFor<AANoFree>(CBArgPos);
2186     }
2187     return true;
2188   };
2189 
2190   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2191   bool Success;
2192   Success = checkForAllInstructionsImpl(
2193       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2194       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2195        (unsigned)Instruction::Call});
2196   (void)Success;
2197   assert(Success && "Expected the check call to be successful!");
2198 
2199   auto LoadStorePred = [&](Instruction &I) -> bool {
2200     if (isa<LoadInst>(I))
2201       getOrCreateAAFor<AAAlign>(
2202           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2203     else
2204       getOrCreateAAFor<AAAlign>(
2205           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2206     return true;
2207   };
2208   Success = checkForAllInstructionsImpl(
2209       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2210       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2211   (void)Success;
2212   assert(Success && "Expected the check call to be successful!");
2213 }
2214 
2215 /// Helpers to ease debugging through output streams and print calls.
2216 ///
2217 ///{
2218 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2219   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2220 }
2221 
2222 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2223   switch (AP) {
2224   case IRPosition::IRP_INVALID:
2225     return OS << "inv";
2226   case IRPosition::IRP_FLOAT:
2227     return OS << "flt";
2228   case IRPosition::IRP_RETURNED:
2229     return OS << "fn_ret";
2230   case IRPosition::IRP_CALL_SITE_RETURNED:
2231     return OS << "cs_ret";
2232   case IRPosition::IRP_FUNCTION:
2233     return OS << "fn";
2234   case IRPosition::IRP_CALL_SITE:
2235     return OS << "cs";
2236   case IRPosition::IRP_ARGUMENT:
2237     return OS << "arg";
2238   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2239     return OS << "cs_arg";
2240   }
2241   llvm_unreachable("Unknown attribute position!");
2242 }
2243 
2244 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2245   const Value &AV = Pos.getAssociatedValue();
2246   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2247      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2248 
2249   if (Pos.hasCallBaseContext())
2250     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2251   return OS << "}";
2252 }
2253 
2254 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2255   OS << "range-state(" << S.getBitWidth() << ")<";
2256   S.getKnown().print(OS);
2257   OS << " / ";
2258   S.getAssumed().print(OS);
2259   OS << ">";
2260 
2261   return OS << static_cast<const AbstractState &>(S);
2262 }
2263 
2264 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2265   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2266 }
2267 
2268 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2269   AA.print(OS);
2270   return OS;
2271 }
2272 
2273 raw_ostream &llvm::operator<<(raw_ostream &OS,
2274                               const PotentialConstantIntValuesState &S) {
2275   OS << "set-state(< {";
2276   if (!S.isValidState())
2277     OS << "full-set";
2278   else {
2279     for (auto &it : S.getAssumedSet())
2280       OS << it << ", ";
2281     if (S.undefIsContained())
2282       OS << "undef ";
2283   }
2284   OS << "} >)";
2285 
2286   return OS;
2287 }
2288 
2289 void AbstractAttribute::print(raw_ostream &OS) const {
2290   OS << "[";
2291   OS << getName();
2292   OS << "] for CtxI ";
2293 
2294   if (auto *I = getCtxI()) {
2295     OS << "'";
2296     I->print(OS);
2297     OS << "'";
2298   } else
2299     OS << "<<null inst>>";
2300 
2301   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2302      << '\n';
2303 }
2304 
2305 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2306   print(OS);
2307 
2308   for (const auto &DepAA : Deps) {
2309     auto *AA = DepAA.getPointer();
2310     OS << "  updates ";
2311     AA->print(OS);
2312   }
2313 
2314   OS << '\n';
2315 }
2316 ///}
2317 
2318 /// ----------------------------------------------------------------------------
2319 ///                       Pass (Manager) Boilerplate
2320 /// ----------------------------------------------------------------------------
2321 
2322 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2323                                      SetVector<Function *> &Functions,
2324                                      AnalysisGetter &AG,
2325                                      CallGraphUpdater &CGUpdater,
2326                                      bool DeleteFns) {
2327   if (Functions.empty())
2328     return false;
2329 
2330   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2331                     << " functions.\n");
2332 
2333   // Create an Attributor and initially empty information cache that is filled
2334   // while we identify default attribute opportunities.
2335   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2336                DeleteFns);
2337 
2338   // Create shallow wrappers for all functions that are not IPO amendable
2339   if (AllowShallowWrappers)
2340     for (Function *F : Functions)
2341       if (!A.isFunctionIPOAmendable(*F))
2342         Attributor::createShallowWrapper(*F);
2343 
2344   // Internalize non-exact functions
2345   // TODO: for now we eagerly internalize functions without calculating the
2346   //       cost, we need a cost interface to determine whether internalizing
2347   //       a function is "benefitial"
2348   if (AllowDeepWrapper) {
2349     unsigned FunSize = Functions.size();
2350     for (unsigned u = 0; u < FunSize; u++) {
2351       Function *F = Functions[u];
2352       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2353           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2354         Function *NewF = internalizeFunction(*F);
2355         Functions.insert(NewF);
2356 
2357         // Update call graph
2358         CGUpdater.replaceFunctionWith(*F, *NewF);
2359         for (const Use &U : NewF->uses())
2360           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2361             auto *CallerF = CB->getCaller();
2362             CGUpdater.reanalyzeFunction(*CallerF);
2363           }
2364       }
2365     }
2366   }
2367 
2368   for (Function *F : Functions) {
2369     if (F->hasExactDefinition())
2370       NumFnWithExactDefinition++;
2371     else
2372       NumFnWithoutExactDefinition++;
2373 
2374     // We look at internal functions only on-demand but if any use is not a
2375     // direct call or outside the current set of analyzed functions, we have
2376     // to do it eagerly.
2377     if (F->hasLocalLinkage()) {
2378       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2379             const auto *CB = dyn_cast<CallBase>(U.getUser());
2380             return CB && CB->isCallee(&U) &&
2381                    Functions.count(const_cast<Function *>(CB->getCaller()));
2382           }))
2383         continue;
2384     }
2385 
2386     // Populate the Attributor with abstract attribute opportunities in the
2387     // function and the information cache with IR information.
2388     A.identifyDefaultAbstractAttributes(*F);
2389   }
2390 
2391   ChangeStatus Changed = A.run();
2392 
2393   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2394                     << " functions, result: " << Changed << ".\n");
2395   return Changed == ChangeStatus::CHANGED;
2396 }
2397 
2398 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2399 
2400 void AADepGraph::dumpGraph() {
2401   static std::atomic<int> CallTimes;
2402   std::string Prefix;
2403 
2404   if (!DepGraphDotFileNamePrefix.empty())
2405     Prefix = DepGraphDotFileNamePrefix;
2406   else
2407     Prefix = "dep_graph";
2408   std::string Filename =
2409       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2410 
2411   outs() << "Dependency graph dump to " << Filename << ".\n";
2412 
2413   std::error_code EC;
2414 
2415   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2416   if (!EC)
2417     llvm::WriteGraph(File, this);
2418 
2419   CallTimes++;
2420 }
2421 
2422 void AADepGraph::print() {
2423   for (auto DepAA : SyntheticRoot.Deps)
2424     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2425 }
2426 
2427 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2428   FunctionAnalysisManager &FAM =
2429       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2430   AnalysisGetter AG(FAM);
2431 
2432   SetVector<Function *> Functions;
2433   for (Function &F : M)
2434     Functions.insert(&F);
2435 
2436   CallGraphUpdater CGUpdater;
2437   BumpPtrAllocator Allocator;
2438   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2439   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2440                                /* DeleteFns */ true)) {
2441     // FIXME: Think about passes we will preserve and add them here.
2442     return PreservedAnalyses::none();
2443   }
2444   return PreservedAnalyses::all();
2445 }
2446 
2447 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2448                                            CGSCCAnalysisManager &AM,
2449                                            LazyCallGraph &CG,
2450                                            CGSCCUpdateResult &UR) {
2451   FunctionAnalysisManager &FAM =
2452       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2453   AnalysisGetter AG(FAM);
2454 
2455   SetVector<Function *> Functions;
2456   for (LazyCallGraph::Node &N : C)
2457     Functions.insert(&N.getFunction());
2458 
2459   if (Functions.empty())
2460     return PreservedAnalyses::all();
2461 
2462   Module &M = *Functions.back()->getParent();
2463   CallGraphUpdater CGUpdater;
2464   CGUpdater.initialize(CG, C, AM, UR);
2465   BumpPtrAllocator Allocator;
2466   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2467   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2468                                /* DeleteFns */ false)) {
2469     // FIXME: Think about passes we will preserve and add them here.
2470     PreservedAnalyses PA;
2471     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2472     return PA;
2473   }
2474   return PreservedAnalyses::all();
2475 }
2476 
2477 namespace llvm {
2478 
2479 template <> struct GraphTraits<AADepGraphNode *> {
2480   using NodeRef = AADepGraphNode *;
2481   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2482   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2483 
2484   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2485   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2486 
2487   using ChildIteratorType =
2488       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2489   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2490 
2491   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2492 
2493   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2494 };
2495 
2496 template <>
2497 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2498   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2499 
2500   using nodes_iterator =
2501       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2502 
2503   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2504 
2505   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2506 };
2507 
2508 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2509   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2510 
2511   static std::string getNodeLabel(const AADepGraphNode *Node,
2512                                   const AADepGraph *DG) {
2513     std::string AAString;
2514     raw_string_ostream O(AAString);
2515     Node->print(O);
2516     return AAString;
2517   }
2518 };
2519 
2520 } // end namespace llvm
2521 
2522 namespace {
2523 
2524 struct AttributorLegacyPass : public ModulePass {
2525   static char ID;
2526 
2527   AttributorLegacyPass() : ModulePass(ID) {
2528     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2529   }
2530 
2531   bool runOnModule(Module &M) override {
2532     if (skipModule(M))
2533       return false;
2534 
2535     AnalysisGetter AG;
2536     SetVector<Function *> Functions;
2537     for (Function &F : M)
2538       Functions.insert(&F);
2539 
2540     CallGraphUpdater CGUpdater;
2541     BumpPtrAllocator Allocator;
2542     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2543     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2544                                     /* DeleteFns*/ true);
2545   }
2546 
2547   void getAnalysisUsage(AnalysisUsage &AU) const override {
2548     // FIXME: Think about passes we will preserve and add them here.
2549     AU.addRequired<TargetLibraryInfoWrapperPass>();
2550   }
2551 };
2552 
2553 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2554   static char ID;
2555 
2556   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2557     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2558   }
2559 
2560   bool runOnSCC(CallGraphSCC &SCC) override {
2561     if (skipSCC(SCC))
2562       return false;
2563 
2564     SetVector<Function *> Functions;
2565     for (CallGraphNode *CGN : SCC)
2566       if (Function *Fn = CGN->getFunction())
2567         if (!Fn->isDeclaration())
2568           Functions.insert(Fn);
2569 
2570     if (Functions.empty())
2571       return false;
2572 
2573     AnalysisGetter AG;
2574     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2575     CallGraphUpdater CGUpdater;
2576     CGUpdater.initialize(CG, SCC);
2577     Module &M = *Functions.back()->getParent();
2578     BumpPtrAllocator Allocator;
2579     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2580     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2581                                     /* DeleteFns */ false);
2582   }
2583 
2584   void getAnalysisUsage(AnalysisUsage &AU) const override {
2585     // FIXME: Think about passes we will preserve and add them here.
2586     AU.addRequired<TargetLibraryInfoWrapperPass>();
2587     CallGraphSCCPass::getAnalysisUsage(AU);
2588   }
2589 };
2590 
2591 } // end anonymous namespace
2592 
2593 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
2594 Pass *llvm::createAttributorCGSCCLegacyPass() {
2595   return new AttributorCGSCCLegacyPass();
2596 }
2597 
2598 char AttributorLegacyPass::ID = 0;
2599 char AttributorCGSCCLegacyPass::ID = 0;
2600 
2601 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2602                       "Deduce and propagate attributes", false, false)
2603 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2604 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2605                     "Deduce and propagate attributes", false, false)
2606 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2607                       "Deduce and propagate attributes (CGSCC pass)", false,
2608                       false)
2609 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2610 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2611 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2612                     "Deduce and propagate attributes (CGSCC pass)", false,
2613                     false)
2614