1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an interprocedural pass that deduces and/or propagates 10 // attributes. This is done in an abstract interpretation style fixpoint 11 // iteration. See the Attributor.h file comment and the class descriptions in 12 // that file for more information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Attributor.h" 17 18 #include "llvm/ADT/GraphTraits.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/LazyValueInfo.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/MustExecute.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/NoFolder.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/FileSystem.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 44 #include <cassert> 45 #include <string> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "attributor" 50 51 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest", 52 "Determine what attributes are manifested in the IR"); 53 54 STATISTIC(NumFnDeleted, "Number of function deleted"); 55 STATISTIC(NumFnWithExactDefinition, 56 "Number of functions with exact definitions"); 57 STATISTIC(NumFnWithoutExactDefinition, 58 "Number of functions without exact definitions"); 59 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created"); 60 STATISTIC(NumAttributesTimedOut, 61 "Number of abstract attributes timed out before fixpoint"); 62 STATISTIC(NumAttributesValidFixpoint, 63 "Number of abstract attributes in a valid fixpoint state"); 64 STATISTIC(NumAttributesManifested, 65 "Number of abstract attributes manifested in IR"); 66 STATISTIC(NumAttributesFixedDueToRequiredDependences, 67 "Number of abstract attributes fixed due to required dependences"); 68 69 // TODO: Determine a good default value. 70 // 71 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads 72 // (when run with the first 5 abstract attributes). The results also indicate 73 // that we never reach 32 iterations but always find a fixpoint sooner. 74 // 75 // This will become more evolved once we perform two interleaved fixpoint 76 // iterations: bottom-up and top-down. 77 static cl::opt<unsigned> 78 MaxFixpointIterations("attributor-max-iterations", cl::Hidden, 79 cl::desc("Maximal number of fixpoint iterations."), 80 cl::init(32)); 81 82 static cl::opt<unsigned, true> MaxInitializationChainLengthX( 83 "attributor-max-initialization-chain-length", cl::Hidden, 84 cl::desc( 85 "Maximal number of chained initializations (to avoid stack overflows)"), 86 cl::location(MaxInitializationChainLength), cl::init(1024)); 87 unsigned llvm::MaxInitializationChainLength; 88 89 static cl::opt<bool> VerifyMaxFixpointIterations( 90 "attributor-max-iterations-verify", cl::Hidden, 91 cl::desc("Verify that max-iterations is a tight bound for a fixpoint"), 92 cl::init(false)); 93 94 static cl::opt<bool> AnnotateDeclarationCallSites( 95 "attributor-annotate-decl-cs", cl::Hidden, 96 cl::desc("Annotate call sites of function declarations."), cl::init(false)); 97 98 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion", 99 cl::init(true), cl::Hidden); 100 101 static cl::opt<bool> 102 AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden, 103 cl::desc("Allow the Attributor to create shallow " 104 "wrappers for non-exact definitions."), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden, 109 cl::desc("Allow the Attributor to use IP information " 110 "derived from non-exact functions via cloning"), 111 cl::init(false)); 112 113 // These options can only used for debug builds. 114 #ifndef NDEBUG 115 static cl::list<std::string> 116 SeedAllowList("attributor-seed-allow-list", cl::Hidden, 117 cl::desc("Comma seperated list of attribute names that are " 118 "allowed to be seeded."), 119 cl::ZeroOrMore, cl::CommaSeparated); 120 121 static cl::list<std::string> FunctionSeedAllowList( 122 "attributor-function-seed-allow-list", cl::Hidden, 123 cl::desc("Comma seperated list of function names that are " 124 "allowed to be seeded."), 125 cl::ZeroOrMore, cl::CommaSeparated); 126 #endif 127 128 static cl::opt<bool> 129 DumpDepGraph("attributor-dump-dep-graph", cl::Hidden, 130 cl::desc("Dump the dependency graph to dot files."), 131 cl::init(false)); 132 133 static cl::opt<std::string> DepGraphDotFileNamePrefix( 134 "attributor-depgraph-dot-filename-prefix", cl::Hidden, 135 cl::desc("The prefix used for the CallGraph dot file names.")); 136 137 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden, 138 cl::desc("View the dependency graph."), 139 cl::init(false)); 140 141 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden, 142 cl::desc("Print attribute dependencies"), 143 cl::init(false)); 144 145 /// Logic operators for the change status enum class. 146 /// 147 ///{ 148 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) { 149 return L == ChangeStatus::CHANGED ? L : R; 150 } 151 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) { 152 return L == ChangeStatus::UNCHANGED ? L : R; 153 } 154 ///} 155 156 /// Return true if \p New is equal or worse than \p Old. 157 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { 158 if (!Old.isIntAttribute()) 159 return true; 160 161 return Old.getValueAsInt() >= New.getValueAsInt(); 162 } 163 164 /// Return true if the information provided by \p Attr was added to the 165 /// attribute list \p Attrs. This is only the case if it was not already present 166 /// in \p Attrs at the position describe by \p PK and \p AttrIdx. 167 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, 168 AttributeList &Attrs, int AttrIdx) { 169 170 if (Attr.isEnumAttribute()) { 171 Attribute::AttrKind Kind = Attr.getKindAsEnum(); 172 if (Attrs.hasAttribute(AttrIdx, Kind)) 173 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 174 return false; 175 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 176 return true; 177 } 178 if (Attr.isStringAttribute()) { 179 StringRef Kind = Attr.getKindAsString(); 180 if (Attrs.hasAttribute(AttrIdx, Kind)) 181 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 182 return false; 183 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 184 return true; 185 } 186 if (Attr.isIntAttribute()) { 187 Attribute::AttrKind Kind = Attr.getKindAsEnum(); 188 if (Attrs.hasAttribute(AttrIdx, Kind)) 189 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind))) 190 return false; 191 Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind); 192 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr); 193 return true; 194 } 195 196 llvm_unreachable("Expected enum or string attribute!"); 197 } 198 199 Argument *IRPosition::getAssociatedArgument() const { 200 if (getPositionKind() == IRP_ARGUMENT) 201 return cast<Argument>(&getAnchorValue()); 202 203 // Not an Argument and no argument number means this is not a call site 204 // argument, thus we cannot find a callback argument to return. 205 int ArgNo = getCallSiteArgNo(); 206 if (ArgNo < 0) 207 return nullptr; 208 209 // Use abstract call sites to make the connection between the call site 210 // values and the ones in callbacks. If a callback was found that makes use 211 // of the underlying call site operand, we want the corresponding callback 212 // callee argument and not the direct callee argument. 213 Optional<Argument *> CBCandidateArg; 214 SmallVector<const Use *, 4> CallbackUses; 215 const auto &CB = cast<CallBase>(getAnchorValue()); 216 AbstractCallSite::getCallbackUses(CB, CallbackUses); 217 for (const Use *U : CallbackUses) { 218 AbstractCallSite ACS(U); 219 assert(ACS && ACS.isCallbackCall()); 220 if (!ACS.getCalledFunction()) 221 continue; 222 223 for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) { 224 225 // Test if the underlying call site operand is argument number u of the 226 // callback callee. 227 if (ACS.getCallArgOperandNo(u) != ArgNo) 228 continue; 229 230 assert(ACS.getCalledFunction()->arg_size() > u && 231 "ACS mapped into var-args arguments!"); 232 if (CBCandidateArg.hasValue()) { 233 CBCandidateArg = nullptr; 234 break; 235 } 236 CBCandidateArg = ACS.getCalledFunction()->getArg(u); 237 } 238 } 239 240 // If we found a unique callback candidate argument, return it. 241 if (CBCandidateArg.hasValue() && CBCandidateArg.getValue()) 242 return CBCandidateArg.getValue(); 243 244 // If no callbacks were found, or none used the underlying call site operand 245 // exclusively, use the direct callee argument if available. 246 const Function *Callee = CB.getCalledFunction(); 247 if (Callee && Callee->arg_size() > unsigned(ArgNo)) 248 return Callee->getArg(ArgNo); 249 250 return nullptr; 251 } 252 253 ChangeStatus AbstractAttribute::update(Attributor &A) { 254 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 255 if (getState().isAtFixpoint()) 256 return HasChanged; 257 258 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n"); 259 260 HasChanged = updateImpl(A); 261 262 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this 263 << "\n"); 264 265 return HasChanged; 266 } 267 268 ChangeStatus 269 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP, 270 const ArrayRef<Attribute> &DeducedAttrs) { 271 Function *ScopeFn = IRP.getAnchorScope(); 272 IRPosition::Kind PK = IRP.getPositionKind(); 273 274 // In the following some generic code that will manifest attributes in 275 // DeducedAttrs if they improve the current IR. Due to the different 276 // annotation positions we use the underlying AttributeList interface. 277 278 AttributeList Attrs; 279 switch (PK) { 280 case IRPosition::IRP_INVALID: 281 case IRPosition::IRP_FLOAT: 282 return ChangeStatus::UNCHANGED; 283 case IRPosition::IRP_ARGUMENT: 284 case IRPosition::IRP_FUNCTION: 285 case IRPosition::IRP_RETURNED: 286 Attrs = ScopeFn->getAttributes(); 287 break; 288 case IRPosition::IRP_CALL_SITE: 289 case IRPosition::IRP_CALL_SITE_RETURNED: 290 case IRPosition::IRP_CALL_SITE_ARGUMENT: 291 Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes(); 292 break; 293 } 294 295 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 296 LLVMContext &Ctx = IRP.getAnchorValue().getContext(); 297 for (const Attribute &Attr : DeducedAttrs) { 298 if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx())) 299 continue; 300 301 HasChanged = ChangeStatus::CHANGED; 302 } 303 304 if (HasChanged == ChangeStatus::UNCHANGED) 305 return HasChanged; 306 307 switch (PK) { 308 case IRPosition::IRP_ARGUMENT: 309 case IRPosition::IRP_FUNCTION: 310 case IRPosition::IRP_RETURNED: 311 ScopeFn->setAttributes(Attrs); 312 break; 313 case IRPosition::IRP_CALL_SITE: 314 case IRPosition::IRP_CALL_SITE_RETURNED: 315 case IRPosition::IRP_CALL_SITE_ARGUMENT: 316 cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs); 317 break; 318 case IRPosition::IRP_INVALID: 319 case IRPosition::IRP_FLOAT: 320 break; 321 } 322 323 return HasChanged; 324 } 325 326 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey()); 327 const IRPosition 328 IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey()); 329 330 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) { 331 IRPositions.emplace_back(IRP); 332 333 // Helper to determine if operand bundles on a call site are benin or 334 // potentially problematic. We handle only llvm.assume for now. 335 auto CanIgnoreOperandBundles = [](const CallBase &CB) { 336 return (isa<IntrinsicInst>(CB) && 337 cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume); 338 }; 339 340 const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue()); 341 switch (IRP.getPositionKind()) { 342 case IRPosition::IRP_INVALID: 343 case IRPosition::IRP_FLOAT: 344 case IRPosition::IRP_FUNCTION: 345 return; 346 case IRPosition::IRP_ARGUMENT: 347 case IRPosition::IRP_RETURNED: 348 IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope())); 349 return; 350 case IRPosition::IRP_CALL_SITE: 351 assert(CB && "Expected call site!"); 352 // TODO: We need to look at the operand bundles similar to the redirection 353 // in CallBase. 354 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) 355 if (const Function *Callee = CB->getCalledFunction()) 356 IRPositions.emplace_back(IRPosition::function(*Callee)); 357 return; 358 case IRPosition::IRP_CALL_SITE_RETURNED: 359 assert(CB && "Expected call site!"); 360 // TODO: We need to look at the operand bundles similar to the redirection 361 // in CallBase. 362 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { 363 if (const Function *Callee = CB->getCalledFunction()) { 364 IRPositions.emplace_back(IRPosition::returned(*Callee)); 365 IRPositions.emplace_back(IRPosition::function(*Callee)); 366 for (const Argument &Arg : Callee->args()) 367 if (Arg.hasReturnedAttr()) { 368 IRPositions.emplace_back( 369 IRPosition::callsite_argument(*CB, Arg.getArgNo())); 370 IRPositions.emplace_back( 371 IRPosition::value(*CB->getArgOperand(Arg.getArgNo()))); 372 IRPositions.emplace_back(IRPosition::argument(Arg)); 373 } 374 } 375 } 376 IRPositions.emplace_back(IRPosition::callsite_function(*CB)); 377 return; 378 case IRPosition::IRP_CALL_SITE_ARGUMENT: { 379 assert(CB && "Expected call site!"); 380 // TODO: We need to look at the operand bundles similar to the redirection 381 // in CallBase. 382 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { 383 const Function *Callee = CB->getCalledFunction(); 384 if (Callee) { 385 if (Argument *Arg = IRP.getAssociatedArgument()) 386 IRPositions.emplace_back(IRPosition::argument(*Arg)); 387 IRPositions.emplace_back(IRPosition::function(*Callee)); 388 } 389 } 390 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue())); 391 return; 392 } 393 } 394 } 395 396 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs, 397 bool IgnoreSubsumingPositions, Attributor *A) const { 398 SmallVector<Attribute, 4> Attrs; 399 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { 400 for (Attribute::AttrKind AK : AKs) 401 if (EquivIRP.getAttrsFromIRAttr(AK, Attrs)) 402 return true; 403 // The first position returned by the SubsumingPositionIterator is 404 // always the position itself. If we ignore subsuming positions we 405 // are done after the first iteration. 406 if (IgnoreSubsumingPositions) 407 break; 408 } 409 if (A) 410 for (Attribute::AttrKind AK : AKs) 411 if (getAttrsFromAssumes(AK, Attrs, *A)) 412 return true; 413 return false; 414 } 415 416 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs, 417 SmallVectorImpl<Attribute> &Attrs, 418 bool IgnoreSubsumingPositions, Attributor *A) const { 419 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { 420 for (Attribute::AttrKind AK : AKs) 421 EquivIRP.getAttrsFromIRAttr(AK, Attrs); 422 // The first position returned by the SubsumingPositionIterator is 423 // always the position itself. If we ignore subsuming positions we 424 // are done after the first iteration. 425 if (IgnoreSubsumingPositions) 426 break; 427 } 428 if (A) 429 for (Attribute::AttrKind AK : AKs) 430 getAttrsFromAssumes(AK, Attrs, *A); 431 } 432 433 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK, 434 SmallVectorImpl<Attribute> &Attrs) const { 435 if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) 436 return false; 437 438 AttributeList AttrList; 439 if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue())) 440 AttrList = CB->getAttributes(); 441 else 442 AttrList = getAssociatedFunction()->getAttributes(); 443 444 bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK); 445 if (HasAttr) 446 Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK)); 447 return HasAttr; 448 } 449 450 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK, 451 SmallVectorImpl<Attribute> &Attrs, 452 Attributor &A) const { 453 assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!"); 454 Value &AssociatedValue = getAssociatedValue(); 455 456 const Assume2KnowledgeMap &A2K = 457 A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK}); 458 459 // Check if we found any potential assume use, if not we don't need to create 460 // explorer iterators. 461 if (A2K.empty()) 462 return false; 463 464 LLVMContext &Ctx = AssociatedValue.getContext(); 465 unsigned AttrsSize = Attrs.size(); 466 MustBeExecutedContextExplorer &Explorer = 467 A.getInfoCache().getMustBeExecutedContextExplorer(); 468 auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI()); 469 for (auto &It : A2K) 470 if (Explorer.findInContextOf(It.first, EIt, EEnd)) 471 Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max)); 472 return AttrsSize != Attrs.size(); 473 } 474 475 void IRPosition::verify() { 476 #ifdef EXPENSIVE_CHECKS 477 switch (getPositionKind()) { 478 case IRP_INVALID: 479 assert(!Enc.getOpaqueValue() && 480 "Expected a nullptr for an invalid position!"); 481 return; 482 case IRP_FLOAT: 483 assert((!isa<CallBase>(&getAssociatedValue()) && 484 !isa<Argument>(&getAssociatedValue())) && 485 "Expected specialized kind for call base and argument values!"); 486 return; 487 case IRP_RETURNED: 488 assert(isa<Function>(getAsValuePtr()) && 489 "Expected function for a 'returned' position!"); 490 assert(getAsValuePtr() == &getAssociatedValue() && 491 "Associated value mismatch!"); 492 return; 493 case IRP_CALL_SITE_RETURNED: 494 assert((isa<CallBase>(getAsValuePtr())) && 495 "Expected call base for 'call site returned' position!"); 496 assert(getAsValuePtr() == &getAssociatedValue() && 497 "Associated value mismatch!"); 498 return; 499 case IRP_CALL_SITE: 500 assert((isa<CallBase>(getAsValuePtr())) && 501 "Expected call base for 'call site function' position!"); 502 assert(getAsValuePtr() == &getAssociatedValue() && 503 "Associated value mismatch!"); 504 return; 505 case IRP_FUNCTION: 506 assert(isa<Function>(getAsValuePtr()) && 507 "Expected function for a 'function' position!"); 508 assert(getAsValuePtr() == &getAssociatedValue() && 509 "Associated value mismatch!"); 510 return; 511 case IRP_ARGUMENT: 512 assert(isa<Argument>(getAsValuePtr()) && 513 "Expected argument for a 'argument' position!"); 514 assert(getAsValuePtr() == &getAssociatedValue() && 515 "Associated value mismatch!"); 516 return; 517 case IRP_CALL_SITE_ARGUMENT: { 518 Use *U = getAsUsePtr(); 519 assert(U && "Expected use for a 'call site argument' position!"); 520 assert(isa<CallBase>(U->getUser()) && 521 "Expected call base user for a 'call site argument' position!"); 522 assert(cast<CallBase>(U->getUser())->isArgOperand(U) && 523 "Expected call base argument operand for a 'call site argument' " 524 "position"); 525 assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) == 526 unsigned(getCallSiteArgNo()) && 527 "Argument number mismatch!"); 528 assert(U->get() == &getAssociatedValue() && "Associated value mismatch!"); 529 return; 530 } 531 } 532 #endif 533 } 534 535 Optional<Constant *> 536 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA, 537 bool &UsedAssumedInformation) { 538 const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>( 539 AA, IRPosition::value(V), /* TrackDependence */ false); 540 Optional<Value *> SimplifiedV = 541 ValueSimplifyAA.getAssumedSimplifiedValue(*this); 542 bool IsKnown = ValueSimplifyAA.isKnown(); 543 UsedAssumedInformation |= !IsKnown; 544 if (!SimplifiedV.hasValue()) { 545 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 546 return llvm::None; 547 } 548 if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) { 549 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 550 return llvm::None; 551 } 552 Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue()); 553 if (CI && CI->getType() != V.getType()) { 554 // TODO: Check for a save conversion. 555 return nullptr; 556 } 557 if (CI) 558 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); 559 return CI; 560 } 561 562 Attributor::~Attributor() { 563 // The abstract attributes are allocated via the BumpPtrAllocator Allocator, 564 // thus we cannot delete them. We can, and want to, destruct them though. 565 for (auto &DepAA : DG.SyntheticRoot.Deps) { 566 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer()); 567 AA->~AbstractAttribute(); 568 } 569 } 570 571 bool Attributor::isAssumedDead(const AbstractAttribute &AA, 572 const AAIsDead *FnLivenessAA, 573 bool CheckBBLivenessOnly, DepClassTy DepClass) { 574 const IRPosition &IRP = AA.getIRPosition(); 575 if (!Functions.count(IRP.getAnchorScope())) 576 return false; 577 return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass); 578 } 579 580 bool Attributor::isAssumedDead(const Use &U, 581 const AbstractAttribute *QueryingAA, 582 const AAIsDead *FnLivenessAA, 583 bool CheckBBLivenessOnly, DepClassTy DepClass) { 584 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 585 if (!UserI) 586 return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA, 587 CheckBBLivenessOnly, DepClass); 588 589 if (auto *CB = dyn_cast<CallBase>(UserI)) { 590 // For call site argument uses we can check if the argument is 591 // unused/dead. 592 if (CB->isArgOperand(&U)) { 593 const IRPosition &CSArgPos = 594 IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)); 595 return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA, 596 CheckBBLivenessOnly, DepClass); 597 } 598 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) { 599 const IRPosition &RetPos = IRPosition::returned(*RI->getFunction()); 600 return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly, 601 DepClass); 602 } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) { 603 BasicBlock *IncomingBB = PHI->getIncomingBlock(U); 604 return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA, 605 CheckBBLivenessOnly, DepClass); 606 } 607 608 return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA, 609 CheckBBLivenessOnly, DepClass); 610 } 611 612 bool Attributor::isAssumedDead(const Instruction &I, 613 const AbstractAttribute *QueryingAA, 614 const AAIsDead *FnLivenessAA, 615 bool CheckBBLivenessOnly, DepClassTy DepClass) { 616 if (!FnLivenessAA) 617 FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()), 618 QueryingAA, 619 /* TrackDependence */ false); 620 621 // If we have a context instruction and a liveness AA we use it. 622 if (FnLivenessAA && 623 FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() && 624 FnLivenessAA->isAssumedDead(&I)) { 625 if (QueryingAA) 626 recordDependence(*FnLivenessAA, *QueryingAA, DepClass); 627 return true; 628 } 629 630 if (CheckBBLivenessOnly) 631 return false; 632 633 const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>( 634 IRPosition::value(I), QueryingAA, /* TrackDependence */ false); 635 // Don't check liveness for AAIsDead. 636 if (QueryingAA == &IsDeadAA) 637 return false; 638 639 if (IsDeadAA.isAssumedDead()) { 640 if (QueryingAA) 641 recordDependence(IsDeadAA, *QueryingAA, DepClass); 642 return true; 643 } 644 645 return false; 646 } 647 648 bool Attributor::isAssumedDead(const IRPosition &IRP, 649 const AbstractAttribute *QueryingAA, 650 const AAIsDead *FnLivenessAA, 651 bool CheckBBLivenessOnly, DepClassTy DepClass) { 652 Instruction *CtxI = IRP.getCtxI(); 653 if (CtxI && 654 isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, 655 /* CheckBBLivenessOnly */ true, 656 CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL)) 657 return true; 658 659 if (CheckBBLivenessOnly) 660 return false; 661 662 // If we haven't succeeded we query the specific liveness info for the IRP. 663 const AAIsDead *IsDeadAA; 664 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE) 665 IsDeadAA = &getOrCreateAAFor<AAIsDead>( 666 IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())), 667 QueryingAA, /* TrackDependence */ false); 668 else 669 IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, 670 /* TrackDependence */ false); 671 // Don't check liveness for AAIsDead. 672 if (QueryingAA == IsDeadAA) 673 return false; 674 675 if (IsDeadAA->isAssumedDead()) { 676 if (QueryingAA) 677 recordDependence(*IsDeadAA, *QueryingAA, DepClass); 678 return true; 679 } 680 681 return false; 682 } 683 684 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred, 685 const AbstractAttribute &QueryingAA, 686 const Value &V, DepClassTy LivenessDepClass) { 687 688 // Check the trivial case first as it catches void values. 689 if (V.use_empty()) 690 return true; 691 692 // If the value is replaced by another one, for now a constant, we do not have 693 // uses. Note that this requires users of `checkForAllUses` to not recurse but 694 // instead use the `follow` callback argument to look at transitive users, 695 // however, that should be clear from the presence of the argument. 696 bool UsedAssumedInformation = false; 697 Optional<Constant *> C = 698 getAssumedConstant(V, QueryingAA, UsedAssumedInformation); 699 if (C.hasValue() && C.getValue()) { 700 LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V 701 << " -> " << *C.getValue() << "\n"); 702 return true; 703 } 704 705 const IRPosition &IRP = QueryingAA.getIRPosition(); 706 SmallVector<const Use *, 16> Worklist; 707 SmallPtrSet<const Use *, 16> Visited; 708 709 for (const Use &U : V.uses()) 710 Worklist.push_back(&U); 711 712 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size() 713 << " initial uses to check\n"); 714 715 const Function *ScopeFn = IRP.getAnchorScope(); 716 const auto *LivenessAA = 717 ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn), 718 /* TrackDependence */ false) 719 : nullptr; 720 721 while (!Worklist.empty()) { 722 const Use *U = Worklist.pop_back_val(); 723 if (!Visited.insert(U).second) 724 continue; 725 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in " 726 << *U->getUser() << "\n"); 727 if (isAssumedDead(*U, &QueryingAA, LivenessAA, 728 /* CheckBBLivenessOnly */ false, LivenessDepClass)) { 729 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); 730 continue; 731 } 732 if (U->getUser()->isDroppable()) { 733 LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n"); 734 continue; 735 } 736 737 bool Follow = false; 738 if (!Pred(*U, Follow)) 739 return false; 740 if (!Follow) 741 continue; 742 for (const Use &UU : U->getUser()->uses()) 743 Worklist.push_back(&UU); 744 } 745 746 return true; 747 } 748 749 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, 750 const AbstractAttribute &QueryingAA, 751 bool RequireAllCallSites, 752 bool &AllCallSitesKnown) { 753 // We can try to determine information from 754 // the call sites. However, this is only possible all call sites are known, 755 // hence the function has internal linkage. 756 const IRPosition &IRP = QueryingAA.getIRPosition(); 757 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 758 if (!AssociatedFunction) { 759 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP 760 << "\n"); 761 AllCallSitesKnown = false; 762 return false; 763 } 764 765 return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites, 766 &QueryingAA, AllCallSitesKnown); 767 } 768 769 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, 770 const Function &Fn, 771 bool RequireAllCallSites, 772 const AbstractAttribute *QueryingAA, 773 bool &AllCallSitesKnown) { 774 if (RequireAllCallSites && !Fn.hasLocalLinkage()) { 775 LLVM_DEBUG( 776 dbgs() 777 << "[Attributor] Function " << Fn.getName() 778 << " has no internal linkage, hence not all call sites are known\n"); 779 AllCallSitesKnown = false; 780 return false; 781 } 782 783 // If we do not require all call sites we might not see all. 784 AllCallSitesKnown = RequireAllCallSites; 785 786 SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses())); 787 for (unsigned u = 0; u < Uses.size(); ++u) { 788 const Use &U = *Uses[u]; 789 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in " 790 << *U.getUser() << "\n"); 791 if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) { 792 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); 793 continue; 794 } 795 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { 796 if (CE->isCast() && CE->getType()->isPointerTy() && 797 CE->getType()->getPointerElementType()->isFunctionTy()) { 798 for (const Use &CEU : CE->uses()) 799 Uses.push_back(&CEU); 800 continue; 801 } 802 } 803 804 AbstractCallSite ACS(&U); 805 if (!ACS) { 806 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName() 807 << " has non call site use " << *U.get() << " in " 808 << *U.getUser() << "\n"); 809 // BlockAddress users are allowed. 810 if (isa<BlockAddress>(U.getUser())) 811 continue; 812 return false; 813 } 814 815 const Use *EffectiveUse = 816 ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U; 817 if (!ACS.isCallee(EffectiveUse)) { 818 if (!RequireAllCallSites) 819 continue; 820 LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser() 821 << " is an invalid use of " << Fn.getName() << "\n"); 822 return false; 823 } 824 825 // Make sure the arguments that can be matched between the call site and the 826 // callee argee on their type. It is unlikely they do not and it doesn't 827 // make sense for all attributes to know/care about this. 828 assert(&Fn == ACS.getCalledFunction() && "Expected known callee"); 829 unsigned MinArgsParams = 830 std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size()); 831 for (unsigned u = 0; u < MinArgsParams; ++u) { 832 Value *CSArgOp = ACS.getCallArgOperand(u); 833 if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) { 834 LLVM_DEBUG( 835 dbgs() << "[Attributor] Call site / callee argument type mismatch [" 836 << u << "@" << Fn.getName() << ": " 837 << *Fn.getArg(u)->getType() << " vs. " 838 << *ACS.getCallArgOperand(u)->getType() << "\n"); 839 return false; 840 } 841 } 842 843 if (Pred(ACS)) 844 continue; 845 846 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for " 847 << *ACS.getInstruction() << "\n"); 848 return false; 849 } 850 851 return true; 852 } 853 854 bool Attributor::checkForAllReturnedValuesAndReturnInsts( 855 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred, 856 const AbstractAttribute &QueryingAA) { 857 858 const IRPosition &IRP = QueryingAA.getIRPosition(); 859 // Since we need to provide return instructions we have to have an exact 860 // definition. 861 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 862 if (!AssociatedFunction) 863 return false; 864 865 // If this is a call site query we use the call site specific return values 866 // and liveness information. 867 // TODO: use the function scope once we have call site AAReturnedValues. 868 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 869 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); 870 if (!AARetVal.getState().isValidState()) 871 return false; 872 873 return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred); 874 } 875 876 bool Attributor::checkForAllReturnedValues( 877 function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) { 878 879 const IRPosition &IRP = QueryingAA.getIRPosition(); 880 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 881 if (!AssociatedFunction) 882 return false; 883 884 // TODO: use the function scope once we have call site AAReturnedValues. 885 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 886 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP); 887 if (!AARetVal.getState().isValidState()) 888 return false; 889 890 return AARetVal.checkForAllReturnedValuesAndReturnInsts( 891 [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) { 892 return Pred(RV); 893 }); 894 } 895 896 static bool checkForAllInstructionsImpl( 897 Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap, 898 function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA, 899 const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes, 900 bool CheckBBLivenessOnly = false) { 901 for (unsigned Opcode : Opcodes) { 902 // Check if we have instructions with this opcode at all first. 903 auto *Insts = OpcodeInstMap.lookup(Opcode); 904 if (!Insts) 905 continue; 906 907 for (Instruction *I : *Insts) { 908 // Skip dead instructions. 909 if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA, 910 CheckBBLivenessOnly)) 911 continue; 912 913 if (!Pred(*I)) 914 return false; 915 } 916 } 917 return true; 918 } 919 920 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred, 921 const AbstractAttribute &QueryingAA, 922 const ArrayRef<unsigned> &Opcodes, 923 bool CheckBBLivenessOnly) { 924 925 const IRPosition &IRP = QueryingAA.getIRPosition(); 926 // Since we need to provide instructions we have to have an exact definition. 927 const Function *AssociatedFunction = IRP.getAssociatedFunction(); 928 if (!AssociatedFunction) 929 return false; 930 931 // TODO: use the function scope once we have call site AAReturnedValues. 932 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 933 const auto *LivenessAA = 934 CheckBBLivenessOnly ? nullptr 935 : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, 936 /* TrackDependence */ false)); 937 938 auto &OpcodeInstMap = 939 InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction); 940 if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA, 941 LivenessAA, Opcodes, CheckBBLivenessOnly)) 942 return false; 943 944 return true; 945 } 946 947 bool Attributor::checkForAllReadWriteInstructions( 948 function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) { 949 950 const Function *AssociatedFunction = 951 QueryingAA.getIRPosition().getAssociatedFunction(); 952 if (!AssociatedFunction) 953 return false; 954 955 // TODO: use the function scope once we have call site AAReturnedValues. 956 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); 957 const auto &LivenessAA = 958 getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false); 959 960 for (Instruction *I : 961 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) { 962 // Skip dead instructions. 963 if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA)) 964 continue; 965 966 if (!Pred(*I)) 967 return false; 968 } 969 970 return true; 971 } 972 973 void Attributor::runTillFixpoint() { 974 TimeTraceScope TimeScope("Attributor::runTillFixpoint"); 975 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " 976 << DG.SyntheticRoot.Deps.size() 977 << " abstract attributes.\n"); 978 979 // Now that all abstract attributes are collected and initialized we start 980 // the abstract analysis. 981 982 unsigned IterationCounter = 1; 983 984 SmallVector<AbstractAttribute *, 32> ChangedAAs; 985 SetVector<AbstractAttribute *> Worklist, InvalidAAs; 986 Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end()); 987 988 do { 989 // Remember the size to determine new attributes. 990 size_t NumAAs = DG.SyntheticRoot.Deps.size(); 991 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter 992 << ", Worklist size: " << Worklist.size() << "\n"); 993 994 // For invalid AAs we can fix dependent AAs that have a required dependence, 995 // thereby folding long dependence chains in a single step without the need 996 // to run updates. 997 for (unsigned u = 0; u < InvalidAAs.size(); ++u) { 998 AbstractAttribute *InvalidAA = InvalidAAs[u]; 999 1000 // Check the dependences to fast track invalidation. 1001 LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has " 1002 << InvalidAA->Deps.size() 1003 << " required & optional dependences\n"); 1004 while (!InvalidAA->Deps.empty()) { 1005 const auto &Dep = InvalidAA->Deps.back(); 1006 InvalidAA->Deps.pop_back(); 1007 AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer()); 1008 if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) { 1009 Worklist.insert(DepAA); 1010 continue; 1011 } 1012 DepAA->getState().indicatePessimisticFixpoint(); 1013 assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!"); 1014 if (!DepAA->getState().isValidState()) 1015 InvalidAAs.insert(DepAA); 1016 else 1017 ChangedAAs.push_back(DepAA); 1018 } 1019 } 1020 1021 // Add all abstract attributes that are potentially dependent on one that 1022 // changed to the work list. 1023 for (AbstractAttribute *ChangedAA : ChangedAAs) 1024 while (!ChangedAA->Deps.empty()) { 1025 Worklist.insert( 1026 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer())); 1027 ChangedAA->Deps.pop_back(); 1028 } 1029 1030 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter 1031 << ", Worklist+Dependent size: " << Worklist.size() 1032 << "\n"); 1033 1034 // Reset the changed and invalid set. 1035 ChangedAAs.clear(); 1036 InvalidAAs.clear(); 1037 1038 // Update all abstract attribute in the work list and record the ones that 1039 // changed. 1040 for (AbstractAttribute *AA : Worklist) { 1041 const auto &AAState = AA->getState(); 1042 if (!AAState.isAtFixpoint()) 1043 if (updateAA(*AA) == ChangeStatus::CHANGED) 1044 ChangedAAs.push_back(AA); 1045 1046 // Use the InvalidAAs vector to propagate invalid states fast transitively 1047 // without requiring updates. 1048 if (!AAState.isValidState()) 1049 InvalidAAs.insert(AA); 1050 } 1051 1052 // Add attributes to the changed set if they have been created in the last 1053 // iteration. 1054 ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs, 1055 DG.SyntheticRoot.end()); 1056 1057 // Reset the work list and repopulate with the changed abstract attributes. 1058 // Note that dependent ones are added above. 1059 Worklist.clear(); 1060 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end()); 1061 1062 } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations || 1063 VerifyMaxFixpointIterations)); 1064 1065 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " 1066 << IterationCounter << "/" << MaxFixpointIterations 1067 << " iterations\n"); 1068 1069 // Reset abstract arguments not settled in a sound fixpoint by now. This 1070 // happens when we stopped the fixpoint iteration early. Note that only the 1071 // ones marked as "changed" *and* the ones transitively depending on them 1072 // need to be reverted to a pessimistic state. Others might not be in a 1073 // fixpoint state but we can use the optimistic results for them anyway. 1074 SmallPtrSet<AbstractAttribute *, 32> Visited; 1075 for (unsigned u = 0; u < ChangedAAs.size(); u++) { 1076 AbstractAttribute *ChangedAA = ChangedAAs[u]; 1077 if (!Visited.insert(ChangedAA).second) 1078 continue; 1079 1080 AbstractState &State = ChangedAA->getState(); 1081 if (!State.isAtFixpoint()) { 1082 State.indicatePessimisticFixpoint(); 1083 1084 NumAttributesTimedOut++; 1085 } 1086 1087 while (!ChangedAA->Deps.empty()) { 1088 ChangedAAs.push_back( 1089 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer())); 1090 ChangedAA->Deps.pop_back(); 1091 } 1092 } 1093 1094 LLVM_DEBUG({ 1095 if (!Visited.empty()) 1096 dbgs() << "\n[Attributor] Finalized " << Visited.size() 1097 << " abstract attributes.\n"; 1098 }); 1099 1100 if (VerifyMaxFixpointIterations && 1101 IterationCounter != MaxFixpointIterations) { 1102 errs() << "\n[Attributor] Fixpoint iteration done after: " 1103 << IterationCounter << "/" << MaxFixpointIterations 1104 << " iterations\n"; 1105 llvm_unreachable("The fixpoint was not reached with exactly the number of " 1106 "specified iterations!"); 1107 } 1108 } 1109 1110 ChangeStatus Attributor::manifestAttributes() { 1111 TimeTraceScope TimeScope("Attributor::manifestAttributes"); 1112 size_t NumFinalAAs = DG.SyntheticRoot.Deps.size(); 1113 1114 unsigned NumManifested = 0; 1115 unsigned NumAtFixpoint = 0; 1116 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; 1117 for (auto &DepAA : DG.SyntheticRoot.Deps) { 1118 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer()); 1119 AbstractState &State = AA->getState(); 1120 1121 // If there is not already a fixpoint reached, we can now take the 1122 // optimistic state. This is correct because we enforced a pessimistic one 1123 // on abstract attributes that were transitively dependent on a changed one 1124 // already above. 1125 if (!State.isAtFixpoint()) 1126 State.indicateOptimisticFixpoint(); 1127 1128 // If the state is invalid, we do not try to manifest it. 1129 if (!State.isValidState()) 1130 continue; 1131 1132 // Skip dead code. 1133 if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true)) 1134 continue; 1135 // Check if the manifest debug counter that allows skipping manifestation of 1136 // AAs 1137 if (!DebugCounter::shouldExecute(ManifestDBGCounter)) 1138 continue; 1139 // Manifest the state and record if we changed the IR. 1140 ChangeStatus LocalChange = AA->manifest(*this); 1141 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled()) 1142 AA->trackStatistics(); 1143 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA 1144 << "\n"); 1145 1146 ManifestChange = ManifestChange | LocalChange; 1147 1148 NumAtFixpoint++; 1149 NumManifested += (LocalChange == ChangeStatus::CHANGED); 1150 } 1151 1152 (void)NumManifested; 1153 (void)NumAtFixpoint; 1154 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested 1155 << " arguments while " << NumAtFixpoint 1156 << " were in a valid fixpoint state\n"); 1157 1158 NumAttributesManifested += NumManifested; 1159 NumAttributesValidFixpoint += NumAtFixpoint; 1160 1161 (void)NumFinalAAs; 1162 if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) { 1163 for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u) 1164 errs() << "Unexpected abstract attribute: " 1165 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer()) 1166 << " :: " 1167 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer()) 1168 ->getIRPosition() 1169 .getAssociatedValue() 1170 << "\n"; 1171 llvm_unreachable("Expected the final number of abstract attributes to " 1172 "remain unchanged!"); 1173 } 1174 return ManifestChange; 1175 } 1176 1177 void Attributor::identifyDeadInternalFunctions() { 1178 // Identify dead internal functions and delete them. This happens outside 1179 // the other fixpoint analysis as we might treat potentially dead functions 1180 // as live to lower the number of iterations. If they happen to be dead, the 1181 // below fixpoint loop will identify and eliminate them. 1182 SmallVector<Function *, 8> InternalFns; 1183 for (Function *F : Functions) 1184 if (F->hasLocalLinkage()) 1185 InternalFns.push_back(F); 1186 1187 SmallPtrSet<Function *, 8> LiveInternalFns; 1188 bool FoundLiveInternal = true; 1189 while (FoundLiveInternal) { 1190 FoundLiveInternal = false; 1191 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) { 1192 Function *F = InternalFns[u]; 1193 if (!F) 1194 continue; 1195 1196 bool AllCallSitesKnown; 1197 if (checkForAllCallSites( 1198 [&](AbstractCallSite ACS) { 1199 Function *Callee = ACS.getInstruction()->getFunction(); 1200 return ToBeDeletedFunctions.count(Callee) || 1201 (Functions.count(Callee) && Callee->hasLocalLinkage() && 1202 !LiveInternalFns.count(Callee)); 1203 }, 1204 *F, true, nullptr, AllCallSitesKnown)) { 1205 continue; 1206 } 1207 1208 LiveInternalFns.insert(F); 1209 InternalFns[u] = nullptr; 1210 FoundLiveInternal = true; 1211 } 1212 } 1213 1214 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) 1215 if (Function *F = InternalFns[u]) 1216 ToBeDeletedFunctions.insert(F); 1217 } 1218 1219 ChangeStatus Attributor::cleanupIR() { 1220 TimeTraceScope TimeScope("Attributor::cleanupIR"); 1221 // Delete stuff at the end to avoid invalid references and a nice order. 1222 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least " 1223 << ToBeDeletedFunctions.size() << " functions and " 1224 << ToBeDeletedBlocks.size() << " blocks and " 1225 << ToBeDeletedInsts.size() << " instructions and " 1226 << ToBeChangedUses.size() << " uses\n"); 1227 1228 SmallVector<WeakTrackingVH, 32> DeadInsts; 1229 SmallVector<Instruction *, 32> TerminatorsToFold; 1230 1231 for (auto &It : ToBeChangedUses) { 1232 Use *U = It.first; 1233 Value *NewV = It.second; 1234 Value *OldV = U->get(); 1235 1236 // Do not replace uses in returns if the value is a must-tail call we will 1237 // not delete. 1238 if (isa<ReturnInst>(U->getUser())) 1239 if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts())) 1240 if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI)) 1241 continue; 1242 1243 LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser() 1244 << " instead of " << *OldV << "\n"); 1245 U->set(NewV); 1246 // Do not modify call instructions outside the SCC. 1247 if (auto *CB = dyn_cast<CallBase>(OldV)) 1248 if (!Functions.count(CB->getCaller())) 1249 continue; 1250 if (Instruction *I = dyn_cast<Instruction>(OldV)) { 1251 CGModifiedFunctions.insert(I->getFunction()); 1252 if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) && 1253 isInstructionTriviallyDead(I)) 1254 DeadInsts.push_back(I); 1255 } 1256 if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) { 1257 auto *CB = cast<CallBase>(U->getUser()); 1258 if (CB->isArgOperand(U)) { 1259 unsigned Idx = CB->getArgOperandNo(U); 1260 CB->removeParamAttr(Idx, Attribute::NoUndef); 1261 Function *Fn = CB->getCalledFunction(); 1262 assert(Fn && "Expected callee when call argument is replaced!"); 1263 if (Fn->arg_size() > Idx) 1264 Fn->removeParamAttr(Idx, Attribute::NoUndef); 1265 } 1266 } 1267 if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) { 1268 Instruction *UserI = cast<Instruction>(U->getUser()); 1269 if (isa<UndefValue>(NewV)) { 1270 ToBeChangedToUnreachableInsts.insert(UserI); 1271 } else { 1272 TerminatorsToFold.push_back(UserI); 1273 } 1274 } 1275 } 1276 for (auto &V : InvokeWithDeadSuccessor) 1277 if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) { 1278 bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind); 1279 bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn); 1280 bool Invoke2CallAllowed = 1281 !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction()); 1282 assert((UnwindBBIsDead || NormalBBIsDead) && 1283 "Invoke does not have dead successors!"); 1284 BasicBlock *BB = II->getParent(); 1285 BasicBlock *NormalDestBB = II->getNormalDest(); 1286 if (UnwindBBIsDead) { 1287 Instruction *NormalNextIP = &NormalDestBB->front(); 1288 if (Invoke2CallAllowed) { 1289 changeToCall(II); 1290 NormalNextIP = BB->getTerminator(); 1291 } 1292 if (NormalBBIsDead) 1293 ToBeChangedToUnreachableInsts.insert(NormalNextIP); 1294 } else { 1295 assert(NormalBBIsDead && "Broken invariant!"); 1296 if (!NormalDestBB->getUniquePredecessor()) 1297 NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead"); 1298 ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front()); 1299 } 1300 } 1301 for (Instruction *I : TerminatorsToFold) { 1302 CGModifiedFunctions.insert(I->getFunction()); 1303 ConstantFoldTerminator(I->getParent()); 1304 } 1305 for (auto &V : ToBeChangedToUnreachableInsts) 1306 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) { 1307 CGModifiedFunctions.insert(I->getFunction()); 1308 changeToUnreachable(I, /* UseLLVMTrap */ false); 1309 } 1310 1311 for (auto &V : ToBeDeletedInsts) { 1312 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) { 1313 I->dropDroppableUses(); 1314 CGModifiedFunctions.insert(I->getFunction()); 1315 if (!I->getType()->isVoidTy()) 1316 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1317 if (!isa<PHINode>(I) && isInstructionTriviallyDead(I)) 1318 DeadInsts.push_back(I); 1319 else 1320 I->eraseFromParent(); 1321 } 1322 } 1323 1324 LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() 1325 << "\n"); 1326 1327 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 1328 1329 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) { 1330 SmallVector<BasicBlock *, 8> ToBeDeletedBBs; 1331 ToBeDeletedBBs.reserve(NumDeadBlocks); 1332 for (BasicBlock *BB : ToBeDeletedBlocks) { 1333 CGModifiedFunctions.insert(BB->getParent()); 1334 ToBeDeletedBBs.push_back(BB); 1335 } 1336 // Actually we do not delete the blocks but squash them into a single 1337 // unreachable but untangling branches that jump here is something we need 1338 // to do in a more generic way. 1339 DetatchDeadBlocks(ToBeDeletedBBs, nullptr); 1340 } 1341 1342 identifyDeadInternalFunctions(); 1343 1344 // Rewrite the functions as requested during manifest. 1345 ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions); 1346 1347 for (Function *Fn : CGModifiedFunctions) 1348 if (!ToBeDeletedFunctions.count(Fn)) 1349 CGUpdater.reanalyzeFunction(*Fn); 1350 1351 for (Function *Fn : ToBeDeletedFunctions) { 1352 if (!Functions.count(Fn)) 1353 continue; 1354 CGUpdater.removeFunction(*Fn); 1355 } 1356 1357 if (!ToBeChangedUses.empty()) 1358 ManifestChange = ChangeStatus::CHANGED; 1359 1360 if (!ToBeChangedToUnreachableInsts.empty()) 1361 ManifestChange = ChangeStatus::CHANGED; 1362 1363 if (!ToBeDeletedFunctions.empty()) 1364 ManifestChange = ChangeStatus::CHANGED; 1365 1366 if (!ToBeDeletedBlocks.empty()) 1367 ManifestChange = ChangeStatus::CHANGED; 1368 1369 if (!ToBeDeletedInsts.empty()) 1370 ManifestChange = ChangeStatus::CHANGED; 1371 1372 if (!InvokeWithDeadSuccessor.empty()) 1373 ManifestChange = ChangeStatus::CHANGED; 1374 1375 if (!DeadInsts.empty()) 1376 ManifestChange = ChangeStatus::CHANGED; 1377 1378 NumFnDeleted += ToBeDeletedFunctions.size(); 1379 1380 LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size() 1381 << " functions after manifest.\n"); 1382 1383 #ifdef EXPENSIVE_CHECKS 1384 for (Function *F : Functions) { 1385 if (ToBeDeletedFunctions.count(F)) 1386 continue; 1387 assert(!verifyFunction(*F, &errs()) && "Module verification failed!"); 1388 } 1389 #endif 1390 1391 return ManifestChange; 1392 } 1393 1394 ChangeStatus Attributor::run() { 1395 TimeTraceScope TimeScope("Attributor::run"); 1396 1397 Phase = AttributorPhase::UPDATE; 1398 runTillFixpoint(); 1399 1400 // dump graphs on demand 1401 if (DumpDepGraph) 1402 DG.dumpGraph(); 1403 1404 if (ViewDepGraph) 1405 DG.viewGraph(); 1406 1407 if (PrintDependencies) 1408 DG.print(); 1409 1410 Phase = AttributorPhase::MANIFEST; 1411 ChangeStatus ManifestChange = manifestAttributes(); 1412 1413 Phase = AttributorPhase::CLEANUP; 1414 ChangeStatus CleanupChange = cleanupIR(); 1415 1416 return ManifestChange | CleanupChange; 1417 } 1418 1419 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) { 1420 TimeTraceScope TimeScope( 1421 AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) + 1422 "::updateAA"); 1423 assert(Phase == AttributorPhase::UPDATE && 1424 "We can update AA only in the update stage!"); 1425 1426 // Use a new dependence vector for this update. 1427 DependenceVector DV; 1428 DependenceStack.push_back(&DV); 1429 1430 auto &AAState = AA.getState(); 1431 ChangeStatus CS = ChangeStatus::UNCHANGED; 1432 if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true)) 1433 CS = AA.update(*this); 1434 1435 if (DV.empty()) { 1436 // If the attribute did not query any non-fix information, the state 1437 // will not change and we can indicate that right away. 1438 AAState.indicateOptimisticFixpoint(); 1439 } 1440 1441 if (!AAState.isAtFixpoint()) 1442 rememberDependences(); 1443 1444 // Verify the stack was used properly, that is we pop the dependence vector we 1445 // put there earlier. 1446 DependenceVector *PoppedDV = DependenceStack.pop_back_val(); 1447 (void)PoppedDV; 1448 assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!"); 1449 1450 return CS; 1451 } 1452 1453 void Attributor::createShallowWrapper(Function &F) { 1454 assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!"); 1455 1456 Module &M = *F.getParent(); 1457 LLVMContext &Ctx = M.getContext(); 1458 FunctionType *FnTy = F.getFunctionType(); 1459 1460 Function *Wrapper = 1461 Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName()); 1462 F.setName(""); // set the inside function anonymous 1463 M.getFunctionList().insert(F.getIterator(), Wrapper); 1464 1465 F.setLinkage(GlobalValue::InternalLinkage); 1466 1467 F.replaceAllUsesWith(Wrapper); 1468 assert(F.use_empty() && "Uses remained after wrapper was created!"); 1469 1470 // Move the COMDAT section to the wrapper. 1471 // TODO: Check if we need to keep it for F as well. 1472 Wrapper->setComdat(F.getComdat()); 1473 F.setComdat(nullptr); 1474 1475 // Copy all metadata and attributes but keep them on F as well. 1476 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1477 F.getAllMetadata(MDs); 1478 for (auto MDIt : MDs) 1479 Wrapper->addMetadata(MDIt.first, *MDIt.second); 1480 Wrapper->setAttributes(F.getAttributes()); 1481 1482 // Create the call in the wrapper. 1483 BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper); 1484 1485 SmallVector<Value *, 8> Args; 1486 Argument *FArgIt = F.arg_begin(); 1487 for (Argument &Arg : Wrapper->args()) { 1488 Args.push_back(&Arg); 1489 Arg.setName((FArgIt++)->getName()); 1490 } 1491 1492 CallInst *CI = CallInst::Create(&F, Args, "", EntryBB); 1493 CI->setTailCall(true); 1494 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline); 1495 ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB); 1496 1497 NumFnShallowWrappersCreated++; 1498 } 1499 1500 /// Make another copy of the function \p F such that the copied version has 1501 /// internal linkage afterwards and can be analysed. Then we replace all uses 1502 /// of the original function to the copied one 1503 /// 1504 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr` 1505 /// linkage can be internalized because these linkages guarantee that other 1506 /// definitions with the same name have the same semantics as this one 1507 /// 1508 static Function *internalizeFunction(Function &F) { 1509 assert(AllowDeepWrapper && "Cannot create a copy if not allowed."); 1510 assert(!F.isDeclaration() && !F.hasExactDefinition() && 1511 !GlobalValue::isInterposableLinkage(F.getLinkage()) && 1512 "Trying to internalize function which cannot be internalized."); 1513 1514 Module &M = *F.getParent(); 1515 FunctionType *FnTy = F.getFunctionType(); 1516 1517 // create a copy of the current function 1518 Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), 1519 F.getName() + ".internalized"); 1520 ValueToValueMapTy VMap; 1521 auto *NewFArgIt = Copied->arg_begin(); 1522 for (auto &Arg : F.args()) { 1523 auto ArgName = Arg.getName(); 1524 NewFArgIt->setName(ArgName); 1525 VMap[&Arg] = &(*NewFArgIt++); 1526 } 1527 SmallVector<ReturnInst *, 8> Returns; 1528 1529 // Copy the body of the original function to the new one 1530 CloneFunctionInto(Copied, &F, VMap, CloneFunctionChangeType::LocalChangesOnly, 1531 Returns); 1532 1533 // Set the linakage and visibility late as CloneFunctionInto has some implicit 1534 // requirements. 1535 Copied->setVisibility(GlobalValue::DefaultVisibility); 1536 Copied->setLinkage(GlobalValue::PrivateLinkage); 1537 1538 // Copy metadata 1539 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1540 F.getAllMetadata(MDs); 1541 for (auto MDIt : MDs) 1542 Copied->addMetadata(MDIt.first, *MDIt.second); 1543 1544 M.getFunctionList().insert(F.getIterator(), Copied); 1545 F.replaceAllUsesWith(Copied); 1546 Copied->setDSOLocal(true); 1547 1548 return Copied; 1549 } 1550 1551 bool Attributor::isValidFunctionSignatureRewrite( 1552 Argument &Arg, ArrayRef<Type *> ReplacementTypes) { 1553 1554 auto CallSiteCanBeChanged = [](AbstractCallSite ACS) { 1555 // Forbid the call site to cast the function return type. If we need to 1556 // rewrite these functions we need to re-create a cast for the new call site 1557 // (if the old had uses). 1558 if (!ACS.getCalledFunction() || 1559 ACS.getInstruction()->getType() != 1560 ACS.getCalledFunction()->getReturnType()) 1561 return false; 1562 // Forbid must-tail calls for now. 1563 return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall(); 1564 }; 1565 1566 Function *Fn = Arg.getParent(); 1567 // Avoid var-arg functions for now. 1568 if (Fn->isVarArg()) { 1569 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n"); 1570 return false; 1571 } 1572 1573 // Avoid functions with complicated argument passing semantics. 1574 AttributeList FnAttributeList = Fn->getAttributes(); 1575 if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) || 1576 FnAttributeList.hasAttrSomewhere(Attribute::StructRet) || 1577 FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) || 1578 FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) { 1579 LLVM_DEBUG( 1580 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n"); 1581 return false; 1582 } 1583 1584 // Avoid callbacks for now. 1585 bool AllCallSitesKnown; 1586 if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr, 1587 AllCallSitesKnown)) { 1588 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n"); 1589 return false; 1590 } 1591 1592 auto InstPred = [](Instruction &I) { 1593 if (auto *CI = dyn_cast<CallInst>(&I)) 1594 return !CI->isMustTailCall(); 1595 return true; 1596 }; 1597 1598 // Forbid must-tail calls for now. 1599 // TODO: 1600 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn); 1601 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr, 1602 nullptr, {Instruction::Call})) { 1603 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n"); 1604 return false; 1605 } 1606 1607 return true; 1608 } 1609 1610 bool Attributor::registerFunctionSignatureRewrite( 1611 Argument &Arg, ArrayRef<Type *> ReplacementTypes, 1612 ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, 1613 ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) { 1614 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " 1615 << Arg.getParent()->getName() << " with " 1616 << ReplacementTypes.size() << " replacements\n"); 1617 assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) && 1618 "Cannot register an invalid rewrite"); 1619 1620 Function *Fn = Arg.getParent(); 1621 SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs = 1622 ArgumentReplacementMap[Fn]; 1623 if (ARIs.empty()) 1624 ARIs.resize(Fn->arg_size()); 1625 1626 // If we have a replacement already with less than or equal new arguments, 1627 // ignore this request. 1628 std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()]; 1629 if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) { 1630 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n"); 1631 return false; 1632 } 1633 1634 // If we have a replacement already but we like the new one better, delete 1635 // the old. 1636 ARI.reset(); 1637 1638 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " 1639 << Arg.getParent()->getName() << " with " 1640 << ReplacementTypes.size() << " replacements\n"); 1641 1642 // Remember the replacement. 1643 ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes, 1644 std::move(CalleeRepairCB), 1645 std::move(ACSRepairCB))); 1646 1647 return true; 1648 } 1649 1650 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) { 1651 bool Result = true; 1652 #ifndef NDEBUG 1653 if (SeedAllowList.size() != 0) 1654 Result = 1655 std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName()); 1656 Function *Fn = AA.getAnchorScope(); 1657 if (FunctionSeedAllowList.size() != 0 && Fn) 1658 Result &= std::count(FunctionSeedAllowList.begin(), 1659 FunctionSeedAllowList.end(), Fn->getName()); 1660 #endif 1661 return Result; 1662 } 1663 1664 ChangeStatus Attributor::rewriteFunctionSignatures( 1665 SmallPtrSetImpl<Function *> &ModifiedFns) { 1666 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1667 1668 for (auto &It : ArgumentReplacementMap) { 1669 Function *OldFn = It.getFirst(); 1670 1671 // Deleted functions do not require rewrites. 1672 if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn)) 1673 continue; 1674 1675 const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs = 1676 It.getSecond(); 1677 assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!"); 1678 1679 SmallVector<Type *, 16> NewArgumentTypes; 1680 SmallVector<AttributeSet, 16> NewArgumentAttributes; 1681 1682 // Collect replacement argument types and copy over existing attributes. 1683 AttributeList OldFnAttributeList = OldFn->getAttributes(); 1684 for (Argument &Arg : OldFn->args()) { 1685 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = 1686 ARIs[Arg.getArgNo()]) { 1687 NewArgumentTypes.append(ARI->ReplacementTypes.begin(), 1688 ARI->ReplacementTypes.end()); 1689 NewArgumentAttributes.append(ARI->getNumReplacementArgs(), 1690 AttributeSet()); 1691 } else { 1692 NewArgumentTypes.push_back(Arg.getType()); 1693 NewArgumentAttributes.push_back( 1694 OldFnAttributeList.getParamAttributes(Arg.getArgNo())); 1695 } 1696 } 1697 1698 FunctionType *OldFnTy = OldFn->getFunctionType(); 1699 Type *RetTy = OldFnTy->getReturnType(); 1700 1701 // Construct the new function type using the new arguments types. 1702 FunctionType *NewFnTy = 1703 FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg()); 1704 1705 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName() 1706 << "' from " << *OldFn->getFunctionType() << " to " 1707 << *NewFnTy << "\n"); 1708 1709 // Create the new function body and insert it into the module. 1710 Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(), 1711 OldFn->getAddressSpace(), ""); 1712 OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn); 1713 NewFn->takeName(OldFn); 1714 NewFn->copyAttributesFrom(OldFn); 1715 1716 // Patch the pointer to LLVM function in debug info descriptor. 1717 NewFn->setSubprogram(OldFn->getSubprogram()); 1718 OldFn->setSubprogram(nullptr); 1719 1720 // Recompute the parameter attributes list based on the new arguments for 1721 // the function. 1722 LLVMContext &Ctx = OldFn->getContext(); 1723 NewFn->setAttributes(AttributeList::get( 1724 Ctx, OldFnAttributeList.getFnAttributes(), 1725 OldFnAttributeList.getRetAttributes(), NewArgumentAttributes)); 1726 1727 // Since we have now created the new function, splice the body of the old 1728 // function right into the new function, leaving the old rotting hulk of the 1729 // function empty. 1730 NewFn->getBasicBlockList().splice(NewFn->begin(), 1731 OldFn->getBasicBlockList()); 1732 1733 // Fixup block addresses to reference new function. 1734 SmallVector<BlockAddress *, 8u> BlockAddresses; 1735 for (User *U : OldFn->users()) 1736 if (auto *BA = dyn_cast<BlockAddress>(U)) 1737 BlockAddresses.push_back(BA); 1738 for (auto *BA : BlockAddresses) 1739 BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock())); 1740 1741 // Set of all "call-like" instructions that invoke the old function mapped 1742 // to their new replacements. 1743 SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs; 1744 1745 // Callback to create a new "call-like" instruction for a given one. 1746 auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) { 1747 CallBase *OldCB = cast<CallBase>(ACS.getInstruction()); 1748 const AttributeList &OldCallAttributeList = OldCB->getAttributes(); 1749 1750 // Collect the new argument operands for the replacement call site. 1751 SmallVector<Value *, 16> NewArgOperands; 1752 SmallVector<AttributeSet, 16> NewArgOperandAttributes; 1753 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) { 1754 unsigned NewFirstArgNum = NewArgOperands.size(); 1755 (void)NewFirstArgNum; // only used inside assert. 1756 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = 1757 ARIs[OldArgNum]) { 1758 if (ARI->ACSRepairCB) 1759 ARI->ACSRepairCB(*ARI, ACS, NewArgOperands); 1760 assert(ARI->getNumReplacementArgs() + NewFirstArgNum == 1761 NewArgOperands.size() && 1762 "ACS repair callback did not provide as many operand as new " 1763 "types were registered!"); 1764 // TODO: Exose the attribute set to the ACS repair callback 1765 NewArgOperandAttributes.append(ARI->ReplacementTypes.size(), 1766 AttributeSet()); 1767 } else { 1768 NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum)); 1769 NewArgOperandAttributes.push_back( 1770 OldCallAttributeList.getParamAttributes(OldArgNum)); 1771 } 1772 } 1773 1774 assert(NewArgOperands.size() == NewArgOperandAttributes.size() && 1775 "Mismatch # argument operands vs. # argument operand attributes!"); 1776 assert(NewArgOperands.size() == NewFn->arg_size() && 1777 "Mismatch # argument operands vs. # function arguments!"); 1778 1779 SmallVector<OperandBundleDef, 4> OperandBundleDefs; 1780 OldCB->getOperandBundlesAsDefs(OperandBundleDefs); 1781 1782 // Create a new call or invoke instruction to replace the old one. 1783 CallBase *NewCB; 1784 if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) { 1785 NewCB = 1786 InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(), 1787 NewArgOperands, OperandBundleDefs, "", OldCB); 1788 } else { 1789 auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs, 1790 "", OldCB); 1791 NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind()); 1792 NewCB = NewCI; 1793 } 1794 1795 // Copy over various properties and the new attributes. 1796 NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 1797 NewCB->setCallingConv(OldCB->getCallingConv()); 1798 NewCB->takeName(OldCB); 1799 NewCB->setAttributes(AttributeList::get( 1800 Ctx, OldCallAttributeList.getFnAttributes(), 1801 OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes)); 1802 1803 CallSitePairs.push_back({OldCB, NewCB}); 1804 return true; 1805 }; 1806 1807 // Use the CallSiteReplacementCreator to create replacement call sites. 1808 bool AllCallSitesKnown; 1809 bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn, 1810 true, nullptr, AllCallSitesKnown); 1811 (void)Success; 1812 assert(Success && "Assumed call site replacement to succeed!"); 1813 1814 // Rewire the arguments. 1815 Argument *OldFnArgIt = OldFn->arg_begin(); 1816 Argument *NewFnArgIt = NewFn->arg_begin(); 1817 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); 1818 ++OldArgNum, ++OldFnArgIt) { 1819 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI = 1820 ARIs[OldArgNum]) { 1821 if (ARI->CalleeRepairCB) 1822 ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt); 1823 NewFnArgIt += ARI->ReplacementTypes.size(); 1824 } else { 1825 NewFnArgIt->takeName(&*OldFnArgIt); 1826 OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt); 1827 ++NewFnArgIt; 1828 } 1829 } 1830 1831 // Eliminate the instructions *after* we visited all of them. 1832 for (auto &CallSitePair : CallSitePairs) { 1833 CallBase &OldCB = *CallSitePair.first; 1834 CallBase &NewCB = *CallSitePair.second; 1835 assert(OldCB.getType() == NewCB.getType() && 1836 "Cannot handle call sites with different types!"); 1837 ModifiedFns.insert(OldCB.getFunction()); 1838 CGUpdater.replaceCallSite(OldCB, NewCB); 1839 OldCB.replaceAllUsesWith(&NewCB); 1840 OldCB.eraseFromParent(); 1841 } 1842 1843 // Replace the function in the call graph (if any). 1844 CGUpdater.replaceFunctionWith(*OldFn, *NewFn); 1845 1846 // If the old function was modified and needed to be reanalyzed, the new one 1847 // does now. 1848 if (ModifiedFns.erase(OldFn)) 1849 ModifiedFns.insert(NewFn); 1850 1851 Changed = ChangeStatus::CHANGED; 1852 } 1853 1854 return Changed; 1855 } 1856 1857 void InformationCache::initializeInformationCache(const Function &CF, 1858 FunctionInfo &FI) { 1859 // As we do not modify the function here we can remove the const 1860 // withouth breaking implicit assumptions. At the end of the day, we could 1861 // initialize the cache eagerly which would look the same to the users. 1862 Function &F = const_cast<Function &>(CF); 1863 1864 // Walk all instructions to find interesting instructions that might be 1865 // queried by abstract attributes during their initialization or update. 1866 // This has to happen before we create attributes. 1867 1868 for (Instruction &I : instructions(&F)) { 1869 bool IsInterestingOpcode = false; 1870 1871 // To allow easy access to all instructions in a function with a given 1872 // opcode we store them in the InfoCache. As not all opcodes are interesting 1873 // to concrete attributes we only cache the ones that are as identified in 1874 // the following switch. 1875 // Note: There are no concrete attributes now so this is initially empty. 1876 switch (I.getOpcode()) { 1877 default: 1878 assert(!isa<CallBase>(&I) && 1879 "New call base instruction type needs to be known in the " 1880 "Attributor."); 1881 break; 1882 case Instruction::Call: 1883 // Calls are interesting on their own, additionally: 1884 // For `llvm.assume` calls we also fill the KnowledgeMap as we find them. 1885 // For `must-tail` calls we remember the caller and callee. 1886 if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) { 1887 if (Assume->getIntrinsicID() == Intrinsic::assume) 1888 fillMapFromAssume(*Assume, KnowledgeMap); 1889 } else if (cast<CallInst>(I).isMustTailCall()) { 1890 FI.ContainsMustTailCall = true; 1891 if (const Function *Callee = cast<CallInst>(I).getCalledFunction()) 1892 getFunctionInfo(*Callee).CalledViaMustTail = true; 1893 } 1894 LLVM_FALLTHROUGH; 1895 case Instruction::CallBr: 1896 case Instruction::Invoke: 1897 case Instruction::CleanupRet: 1898 case Instruction::CatchSwitch: 1899 case Instruction::AtomicRMW: 1900 case Instruction::AtomicCmpXchg: 1901 case Instruction::Br: 1902 case Instruction::Resume: 1903 case Instruction::Ret: 1904 case Instruction::Load: 1905 // The alignment of a pointer is interesting for loads. 1906 case Instruction::Store: 1907 // The alignment of a pointer is interesting for stores. 1908 IsInterestingOpcode = true; 1909 } 1910 if (IsInterestingOpcode) { 1911 auto *&Insts = FI.OpcodeInstMap[I.getOpcode()]; 1912 if (!Insts) 1913 Insts = new (Allocator) InstructionVectorTy(); 1914 Insts->push_back(&I); 1915 } 1916 if (I.mayReadOrWriteMemory()) 1917 FI.RWInsts.push_back(&I); 1918 } 1919 1920 if (F.hasFnAttribute(Attribute::AlwaysInline) && 1921 isInlineViable(F).isSuccess()) 1922 InlineableFunctions.insert(&F); 1923 } 1924 1925 AAResults *InformationCache::getAAResultsForFunction(const Function &F) { 1926 return AG.getAnalysis<AAManager>(F); 1927 } 1928 1929 InformationCache::FunctionInfo::~FunctionInfo() { 1930 // The instruction vectors are allocated using a BumpPtrAllocator, we need to 1931 // manually destroy them. 1932 for (auto &It : OpcodeInstMap) 1933 It.getSecond()->~InstructionVectorTy(); 1934 } 1935 1936 void Attributor::recordDependence(const AbstractAttribute &FromAA, 1937 const AbstractAttribute &ToAA, 1938 DepClassTy DepClass) { 1939 // If we are outside of an update, thus before the actual fixpoint iteration 1940 // started (= when we create AAs), we do not track dependences because we will 1941 // put all AAs into the initial worklist anyway. 1942 if (DependenceStack.empty()) 1943 return; 1944 if (FromAA.getState().isAtFixpoint()) 1945 return; 1946 DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass}); 1947 } 1948 1949 void Attributor::rememberDependences() { 1950 assert(!DependenceStack.empty() && "No dependences to remember!"); 1951 1952 for (DepInfo &DI : *DependenceStack.back()) { 1953 auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps; 1954 DepAAs.push_back(AbstractAttribute::DepTy( 1955 const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass))); 1956 } 1957 } 1958 1959 void Attributor::identifyDefaultAbstractAttributes(Function &F) { 1960 if (!VisitedFunctions.insert(&F).second) 1961 return; 1962 if (F.isDeclaration()) 1963 return; 1964 1965 // In non-module runs we need to look at the call sites of a function to 1966 // determine if it is part of a must-tail call edge. This will influence what 1967 // attributes we can derive. 1968 InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F); 1969 if (!isModulePass() && !FI.CalledViaMustTail) { 1970 for (const Use &U : F.uses()) 1971 if (const auto *CB = dyn_cast<CallBase>(U.getUser())) 1972 if (CB->isCallee(&U) && CB->isMustTailCall()) 1973 FI.CalledViaMustTail = true; 1974 } 1975 1976 IRPosition FPos = IRPosition::function(F); 1977 1978 // Check for dead BasicBlocks in every function. 1979 // We need dead instruction detection because we do not want to deal with 1980 // broken IR in which SSA rules do not apply. 1981 getOrCreateAAFor<AAIsDead>(FPos); 1982 1983 // Every function might be "will-return". 1984 getOrCreateAAFor<AAWillReturn>(FPos); 1985 1986 // Every function might contain instructions that cause "undefined behavior". 1987 getOrCreateAAFor<AAUndefinedBehavior>(FPos); 1988 1989 // Every function can be nounwind. 1990 getOrCreateAAFor<AANoUnwind>(FPos); 1991 1992 // Every function might be marked "nosync" 1993 getOrCreateAAFor<AANoSync>(FPos); 1994 1995 // Every function might be "no-free". 1996 getOrCreateAAFor<AANoFree>(FPos); 1997 1998 // Every function might be "no-return". 1999 getOrCreateAAFor<AANoReturn>(FPos); 2000 2001 // Every function might be "no-recurse". 2002 getOrCreateAAFor<AANoRecurse>(FPos); 2003 2004 // Every function might be "readnone/readonly/writeonly/...". 2005 getOrCreateAAFor<AAMemoryBehavior>(FPos); 2006 2007 // Every function can be "readnone/argmemonly/inaccessiblememonly/...". 2008 getOrCreateAAFor<AAMemoryLocation>(FPos); 2009 2010 // Every function might be applicable for Heap-To-Stack conversion. 2011 if (EnableHeapToStack) 2012 getOrCreateAAFor<AAHeapToStack>(FPos); 2013 2014 // Return attributes are only appropriate if the return type is non void. 2015 Type *ReturnType = F.getReturnType(); 2016 if (!ReturnType->isVoidTy()) { 2017 // Argument attribute "returned" --- Create only one per function even 2018 // though it is an argument attribute. 2019 getOrCreateAAFor<AAReturnedValues>(FPos); 2020 2021 IRPosition RetPos = IRPosition::returned(F); 2022 2023 // Every returned value might be dead. 2024 getOrCreateAAFor<AAIsDead>(RetPos); 2025 2026 // Every function might be simplified. 2027 getOrCreateAAFor<AAValueSimplify>(RetPos); 2028 2029 // Every returned value might be marked noundef. 2030 getOrCreateAAFor<AANoUndef>(RetPos); 2031 2032 if (ReturnType->isPointerTy()) { 2033 2034 // Every function with pointer return type might be marked align. 2035 getOrCreateAAFor<AAAlign>(RetPos); 2036 2037 // Every function with pointer return type might be marked nonnull. 2038 getOrCreateAAFor<AANonNull>(RetPos); 2039 2040 // Every function with pointer return type might be marked noalias. 2041 getOrCreateAAFor<AANoAlias>(RetPos); 2042 2043 // Every function with pointer return type might be marked 2044 // dereferenceable. 2045 getOrCreateAAFor<AADereferenceable>(RetPos); 2046 } 2047 } 2048 2049 for (Argument &Arg : F.args()) { 2050 IRPosition ArgPos = IRPosition::argument(Arg); 2051 2052 // Every argument might be simplified. 2053 getOrCreateAAFor<AAValueSimplify>(ArgPos); 2054 2055 // Every argument might be dead. 2056 getOrCreateAAFor<AAIsDead>(ArgPos); 2057 2058 // Every argument might be marked noundef. 2059 getOrCreateAAFor<AANoUndef>(ArgPos); 2060 2061 if (Arg.getType()->isPointerTy()) { 2062 // Every argument with pointer type might be marked nonnull. 2063 getOrCreateAAFor<AANonNull>(ArgPos); 2064 2065 // Every argument with pointer type might be marked noalias. 2066 getOrCreateAAFor<AANoAlias>(ArgPos); 2067 2068 // Every argument with pointer type might be marked dereferenceable. 2069 getOrCreateAAFor<AADereferenceable>(ArgPos); 2070 2071 // Every argument with pointer type might be marked align. 2072 getOrCreateAAFor<AAAlign>(ArgPos); 2073 2074 // Every argument with pointer type might be marked nocapture. 2075 getOrCreateAAFor<AANoCapture>(ArgPos); 2076 2077 // Every argument with pointer type might be marked 2078 // "readnone/readonly/writeonly/..." 2079 getOrCreateAAFor<AAMemoryBehavior>(ArgPos); 2080 2081 // Every argument with pointer type might be marked nofree. 2082 getOrCreateAAFor<AANoFree>(ArgPos); 2083 2084 // Every argument with pointer type might be privatizable (or promotable) 2085 getOrCreateAAFor<AAPrivatizablePtr>(ArgPos); 2086 } 2087 } 2088 2089 auto CallSitePred = [&](Instruction &I) -> bool { 2090 auto &CB = cast<CallBase>(I); 2091 IRPosition CBRetPos = IRPosition::callsite_returned(CB); 2092 2093 // Call sites might be dead if they do not have side effects and no live 2094 // users. The return value might be dead if there are no live users. 2095 getOrCreateAAFor<AAIsDead>(CBRetPos); 2096 2097 Function *Callee = CB.getCalledFunction(); 2098 // TODO: Even if the callee is not known now we might be able to simplify 2099 // the call/callee. 2100 if (!Callee) 2101 return true; 2102 2103 // Skip declarations except if annotations on their call sites were 2104 // explicitly requested. 2105 if (!AnnotateDeclarationCallSites && Callee->isDeclaration() && 2106 !Callee->hasMetadata(LLVMContext::MD_callback)) 2107 return true; 2108 2109 if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) { 2110 2111 IRPosition CBRetPos = IRPosition::callsite_returned(CB); 2112 2113 // Call site return integer values might be limited by a constant range. 2114 if (Callee->getReturnType()->isIntegerTy()) 2115 getOrCreateAAFor<AAValueConstantRange>(CBRetPos); 2116 } 2117 2118 for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) { 2119 2120 IRPosition CBArgPos = IRPosition::callsite_argument(CB, I); 2121 2122 // Every call site argument might be dead. 2123 getOrCreateAAFor<AAIsDead>(CBArgPos); 2124 2125 // Call site argument might be simplified. 2126 getOrCreateAAFor<AAValueSimplify>(CBArgPos); 2127 2128 // Every call site argument might be marked "noundef". 2129 getOrCreateAAFor<AANoUndef>(CBArgPos); 2130 2131 if (!CB.getArgOperand(I)->getType()->isPointerTy()) 2132 continue; 2133 2134 // Call site argument attribute "non-null". 2135 getOrCreateAAFor<AANonNull>(CBArgPos); 2136 2137 // Call site argument attribute "nocapture". 2138 getOrCreateAAFor<AANoCapture>(CBArgPos); 2139 2140 // Call site argument attribute "no-alias". 2141 getOrCreateAAFor<AANoAlias>(CBArgPos); 2142 2143 // Call site argument attribute "dereferenceable". 2144 getOrCreateAAFor<AADereferenceable>(CBArgPos); 2145 2146 // Call site argument attribute "align". 2147 getOrCreateAAFor<AAAlign>(CBArgPos); 2148 2149 // Call site argument attribute 2150 // "readnone/readonly/writeonly/..." 2151 getOrCreateAAFor<AAMemoryBehavior>(CBArgPos); 2152 2153 // Call site argument attribute "nofree". 2154 getOrCreateAAFor<AANoFree>(CBArgPos); 2155 } 2156 return true; 2157 }; 2158 2159 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); 2160 bool Success; 2161 Success = checkForAllInstructionsImpl( 2162 nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr, 2163 {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, 2164 (unsigned)Instruction::Call}); 2165 (void)Success; 2166 assert(Success && "Expected the check call to be successful!"); 2167 2168 auto LoadStorePred = [&](Instruction &I) -> bool { 2169 if (isa<LoadInst>(I)) 2170 getOrCreateAAFor<AAAlign>( 2171 IRPosition::value(*cast<LoadInst>(I).getPointerOperand())); 2172 else 2173 getOrCreateAAFor<AAAlign>( 2174 IRPosition::value(*cast<StoreInst>(I).getPointerOperand())); 2175 return true; 2176 }; 2177 Success = checkForAllInstructionsImpl( 2178 nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr, 2179 {(unsigned)Instruction::Load, (unsigned)Instruction::Store}); 2180 (void)Success; 2181 assert(Success && "Expected the check call to be successful!"); 2182 } 2183 2184 /// Helpers to ease debugging through output streams and print calls. 2185 /// 2186 ///{ 2187 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { 2188 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged"); 2189 } 2190 2191 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) { 2192 switch (AP) { 2193 case IRPosition::IRP_INVALID: 2194 return OS << "inv"; 2195 case IRPosition::IRP_FLOAT: 2196 return OS << "flt"; 2197 case IRPosition::IRP_RETURNED: 2198 return OS << "fn_ret"; 2199 case IRPosition::IRP_CALL_SITE_RETURNED: 2200 return OS << "cs_ret"; 2201 case IRPosition::IRP_FUNCTION: 2202 return OS << "fn"; 2203 case IRPosition::IRP_CALL_SITE: 2204 return OS << "cs"; 2205 case IRPosition::IRP_ARGUMENT: 2206 return OS << "arg"; 2207 case IRPosition::IRP_CALL_SITE_ARGUMENT: 2208 return OS << "cs_arg"; 2209 } 2210 llvm_unreachable("Unknown attribute position!"); 2211 } 2212 2213 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) { 2214 const Value &AV = Pos.getAssociatedValue(); 2215 return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " [" 2216 << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() 2217 << "]}"; 2218 } 2219 2220 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) { 2221 OS << "range-state(" << S.getBitWidth() << ")<"; 2222 S.getKnown().print(OS); 2223 OS << " / "; 2224 S.getAssumed().print(OS); 2225 OS << ">"; 2226 2227 return OS << static_cast<const AbstractState &>(S); 2228 } 2229 2230 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { 2231 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "")); 2232 } 2233 2234 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { 2235 AA.print(OS); 2236 return OS; 2237 } 2238 2239 raw_ostream &llvm::operator<<(raw_ostream &OS, 2240 const PotentialConstantIntValuesState &S) { 2241 OS << "set-state(< {"; 2242 if (!S.isValidState()) 2243 OS << "full-set"; 2244 else { 2245 for (auto &it : S.getAssumedSet()) 2246 OS << it << ", "; 2247 if (S.undefIsContained()) 2248 OS << "undef "; 2249 } 2250 OS << "} >)"; 2251 2252 return OS; 2253 } 2254 2255 void AbstractAttribute::print(raw_ostream &OS) const { 2256 OS << "["; 2257 OS << getName(); 2258 OS << "] for CtxI "; 2259 2260 if (auto *I = getCtxI()) { 2261 OS << "'"; 2262 I->print(OS); 2263 OS << "'"; 2264 } else 2265 OS << "<<null inst>>"; 2266 2267 OS << " at position " << getIRPosition() << " with state " << getAsStr() 2268 << '\n'; 2269 } 2270 2271 void AbstractAttribute::printWithDeps(raw_ostream &OS) const { 2272 print(OS); 2273 2274 for (const auto &DepAA : Deps) { 2275 auto *AA = DepAA.getPointer(); 2276 OS << " updates "; 2277 AA->print(OS); 2278 } 2279 2280 OS << '\n'; 2281 } 2282 ///} 2283 2284 /// ---------------------------------------------------------------------------- 2285 /// Pass (Manager) Boilerplate 2286 /// ---------------------------------------------------------------------------- 2287 2288 static bool runAttributorOnFunctions(InformationCache &InfoCache, 2289 SetVector<Function *> &Functions, 2290 AnalysisGetter &AG, 2291 CallGraphUpdater &CGUpdater) { 2292 if (Functions.empty()) 2293 return false; 2294 2295 LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size() 2296 << " functions.\n"); 2297 2298 // Create an Attributor and initially empty information cache that is filled 2299 // while we identify default attribute opportunities. 2300 Attributor A(Functions, InfoCache, CGUpdater); 2301 2302 // Create shallow wrappers for all functions that are not IPO amendable 2303 if (AllowShallowWrappers) 2304 for (Function *F : Functions) 2305 if (!A.isFunctionIPOAmendable(*F)) 2306 Attributor::createShallowWrapper(*F); 2307 2308 // Internalize non-exact functions 2309 // TODO: for now we eagerly internalize functions without calculating the 2310 // cost, we need a cost interface to determine whether internalizing 2311 // a function is "benefitial" 2312 if (AllowDeepWrapper) { 2313 unsigned FunSize = Functions.size(); 2314 for (unsigned u = 0; u < FunSize; u++) { 2315 Function *F = Functions[u]; 2316 if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() && 2317 !GlobalValue::isInterposableLinkage(F->getLinkage())) { 2318 Function *NewF = internalizeFunction(*F); 2319 Functions.insert(NewF); 2320 2321 // Update call graph 2322 CGUpdater.replaceFunctionWith(*F, *NewF); 2323 for (const Use &U : NewF->uses()) 2324 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) { 2325 auto *CallerF = CB->getCaller(); 2326 CGUpdater.reanalyzeFunction(*CallerF); 2327 } 2328 } 2329 } 2330 } 2331 2332 for (Function *F : Functions) { 2333 if (F->hasExactDefinition()) 2334 NumFnWithExactDefinition++; 2335 else 2336 NumFnWithoutExactDefinition++; 2337 2338 // We look at internal functions only on-demand but if any use is not a 2339 // direct call or outside the current set of analyzed functions, we have 2340 // to do it eagerly. 2341 if (F->hasLocalLinkage()) { 2342 if (llvm::all_of(F->uses(), [&Functions](const Use &U) { 2343 const auto *CB = dyn_cast<CallBase>(U.getUser()); 2344 return CB && CB->isCallee(&U) && 2345 Functions.count(const_cast<Function *>(CB->getCaller())); 2346 })) 2347 continue; 2348 } 2349 2350 // Populate the Attributor with abstract attribute opportunities in the 2351 // function and the information cache with IR information. 2352 A.identifyDefaultAbstractAttributes(*F); 2353 } 2354 2355 ChangeStatus Changed = A.run(); 2356 2357 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size() 2358 << " functions, result: " << Changed << ".\n"); 2359 return Changed == ChangeStatus::CHANGED; 2360 } 2361 2362 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); } 2363 2364 void AADepGraph::dumpGraph() { 2365 static std::atomic<int> CallTimes; 2366 std::string Prefix; 2367 2368 if (!DepGraphDotFileNamePrefix.empty()) 2369 Prefix = DepGraphDotFileNamePrefix; 2370 else 2371 Prefix = "dep_graph"; 2372 std::string Filename = 2373 Prefix + "_" + std::to_string(CallTimes.load()) + ".dot"; 2374 2375 outs() << "Dependency graph dump to " << Filename << ".\n"; 2376 2377 std::error_code EC; 2378 2379 raw_fd_ostream File(Filename, EC, sys::fs::OF_Text); 2380 if (!EC) 2381 llvm::WriteGraph(File, this); 2382 2383 CallTimes++; 2384 } 2385 2386 void AADepGraph::print() { 2387 for (auto DepAA : SyntheticRoot.Deps) 2388 cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs()); 2389 } 2390 2391 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { 2392 FunctionAnalysisManager &FAM = 2393 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2394 AnalysisGetter AG(FAM); 2395 2396 SetVector<Function *> Functions; 2397 for (Function &F : M) 2398 Functions.insert(&F); 2399 2400 CallGraphUpdater CGUpdater; 2401 BumpPtrAllocator Allocator; 2402 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); 2403 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) { 2404 // FIXME: Think about passes we will preserve and add them here. 2405 return PreservedAnalyses::none(); 2406 } 2407 return PreservedAnalyses::all(); 2408 } 2409 2410 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C, 2411 CGSCCAnalysisManager &AM, 2412 LazyCallGraph &CG, 2413 CGSCCUpdateResult &UR) { 2414 FunctionAnalysisManager &FAM = 2415 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 2416 AnalysisGetter AG(FAM); 2417 2418 SetVector<Function *> Functions; 2419 for (LazyCallGraph::Node &N : C) 2420 Functions.insert(&N.getFunction()); 2421 2422 if (Functions.empty()) 2423 return PreservedAnalyses::all(); 2424 2425 Module &M = *Functions.back()->getParent(); 2426 CallGraphUpdater CGUpdater; 2427 CGUpdater.initialize(CG, C, AM, UR); 2428 BumpPtrAllocator Allocator; 2429 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); 2430 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) { 2431 // FIXME: Think about passes we will preserve and add them here. 2432 PreservedAnalyses PA; 2433 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 2434 return PA; 2435 } 2436 return PreservedAnalyses::all(); 2437 } 2438 2439 namespace llvm { 2440 2441 template <> struct GraphTraits<AADepGraphNode *> { 2442 using NodeRef = AADepGraphNode *; 2443 using DepTy = PointerIntPair<AADepGraphNode *, 1>; 2444 using EdgeRef = PointerIntPair<AADepGraphNode *, 1>; 2445 2446 static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; } 2447 static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); } 2448 2449 using ChildIteratorType = 2450 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>; 2451 using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator; 2452 2453 static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); } 2454 2455 static ChildIteratorType child_end(NodeRef N) { return N->child_end(); } 2456 }; 2457 2458 template <> 2459 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> { 2460 static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); } 2461 2462 using nodes_iterator = 2463 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>; 2464 2465 static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); } 2466 2467 static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); } 2468 }; 2469 2470 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits { 2471 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2472 2473 static std::string getNodeLabel(const AADepGraphNode *Node, 2474 const AADepGraph *DG) { 2475 std::string AAString; 2476 raw_string_ostream O(AAString); 2477 Node->print(O); 2478 return AAString; 2479 } 2480 }; 2481 2482 } // end namespace llvm 2483 2484 namespace { 2485 2486 struct AttributorLegacyPass : public ModulePass { 2487 static char ID; 2488 2489 AttributorLegacyPass() : ModulePass(ID) { 2490 initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry()); 2491 } 2492 2493 bool runOnModule(Module &M) override { 2494 if (skipModule(M)) 2495 return false; 2496 2497 AnalysisGetter AG; 2498 SetVector<Function *> Functions; 2499 for (Function &F : M) 2500 Functions.insert(&F); 2501 2502 CallGraphUpdater CGUpdater; 2503 BumpPtrAllocator Allocator; 2504 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); 2505 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater); 2506 } 2507 2508 void getAnalysisUsage(AnalysisUsage &AU) const override { 2509 // FIXME: Think about passes we will preserve and add them here. 2510 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2511 } 2512 }; 2513 2514 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass { 2515 static char ID; 2516 2517 AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) { 2518 initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 2519 } 2520 2521 bool runOnSCC(CallGraphSCC &SCC) override { 2522 if (skipSCC(SCC)) 2523 return false; 2524 2525 SetVector<Function *> Functions; 2526 for (CallGraphNode *CGN : SCC) 2527 if (Function *Fn = CGN->getFunction()) 2528 if (!Fn->isDeclaration()) 2529 Functions.insert(Fn); 2530 2531 if (Functions.empty()) 2532 return false; 2533 2534 AnalysisGetter AG; 2535 CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph()); 2536 CallGraphUpdater CGUpdater; 2537 CGUpdater.initialize(CG, SCC); 2538 Module &M = *Functions.back()->getParent(); 2539 BumpPtrAllocator Allocator; 2540 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); 2541 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater); 2542 } 2543 2544 void getAnalysisUsage(AnalysisUsage &AU) const override { 2545 // FIXME: Think about passes we will preserve and add them here. 2546 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2547 CallGraphSCCPass::getAnalysisUsage(AU); 2548 } 2549 }; 2550 2551 } // end anonymous namespace 2552 2553 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); } 2554 Pass *llvm::createAttributorCGSCCLegacyPass() { 2555 return new AttributorCGSCCLegacyPass(); 2556 } 2557 2558 char AttributorLegacyPass::ID = 0; 2559 char AttributorCGSCCLegacyPass::ID = 0; 2560 2561 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor", 2562 "Deduce and propagate attributes", false, false) 2563 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2564 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor", 2565 "Deduce and propagate attributes", false, false) 2566 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc", 2567 "Deduce and propagate attributes (CGSCC pass)", false, 2568 false) 2569 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2570 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 2571 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc", 2572 "Deduce and propagate attributes (CGSCC pass)", false, 2573 false) 2574