1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "argpromotion"
91 
92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
96 
97 /// A vector used to hold the indices of a single GEP instruction
98 using IndicesVector = std::vector<uint64_t>;
99 
100 /// DoPromotion - This method actually performs the promotion of the specified
101 /// arguments, and returns the new function.  At this point, we know that it's
102 /// safe to do so.
103 static Function *
104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
106             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
107                 ReplaceCallSite) {
108   // Start by computing a new prototype for the function, which is the same as
109   // the old function, but has modified arguments.
110   FunctionType *FTy = F->getFunctionType();
111   std::vector<Type *> Params;
112 
113   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
114 
115   // ScalarizedElements - If we are promoting a pointer that has elements
116   // accessed out of it, keep track of which elements are accessed so that we
117   // can add one argument for each.
118   //
119   // Arguments that are directly loaded will have a zero element value here, to
120   // handle cases where there are both a direct load and GEP accesses.
121   std::map<Argument *, ScalarizeTable> ScalarizedElements;
122 
123   // OriginalLoads - Keep track of a representative load instruction from the
124   // original function so that we can tell the alias analysis implementation
125   // what the new GEP/Load instructions we are inserting look like.
126   // We need to keep the original loads for each argument and the elements
127   // of the argument that are accessed.
128   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
129 
130   // Attribute - Keep track of the parameter attributes for the arguments
131   // that we are *not* promoting. For the ones that we do promote, the parameter
132   // attributes are lost
133   SmallVector<AttributeSet, 8> ArgAttrVec;
134   AttributeList PAL = F->getAttributes();
135 
136   // First, determine the new argument list
137   unsigned ArgNo = 0;
138   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
139        ++I, ++ArgNo) {
140     if (ByValArgsToTransform.count(&*I)) {
141       // Simple byval argument? Just add all the struct element types.
142       Type *AgTy = I->getParamByValType();
143       StructType *STy = cast<StructType>(AgTy);
144       llvm::append_range(Params, STy->elements());
145       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
146                         AttributeSet());
147       ++NumByValArgsPromoted;
148     } else if (!ArgsToPromote.count(&*I)) {
149       // Unchanged argument
150       Params.push_back(I->getType());
151       ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
152     } else if (I->use_empty()) {
153       // Dead argument (which are always marked as promotable)
154       ++NumArgumentsDead;
155     } else {
156       // Okay, this is being promoted. This means that the only uses are loads
157       // or GEPs which are only used by loads
158 
159       // In this table, we will track which indices are loaded from the argument
160       // (where direct loads are tracked as no indices).
161       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
162       for (User *U : make_early_inc_range(I->users())) {
163         Instruction *UI = cast<Instruction>(U);
164         Type *SrcTy;
165         if (LoadInst *L = dyn_cast<LoadInst>(UI))
166           SrcTy = L->getType();
167         else
168           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
169         // Skip dead GEPs and remove them.
170         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
171           UI->eraseFromParent();
172           continue;
173         }
174 
175         IndicesVector Indices;
176         Indices.reserve(UI->getNumOperands() - 1);
177         // Since loads will only have a single operand, and GEPs only a single
178         // non-index operand, this will record direct loads without any indices,
179         // and gep+loads with the GEP indices.
180         for (const Use &I : llvm::drop_begin(UI->operands()))
181           Indices.push_back(cast<ConstantInt>(I)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             I->getType()->getPointerElementType(), ArgIndex.second));
200         ArgAttrVec.push_back(AttributeSet());
201         assert(Params.back());
202       }
203 
204       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
205         ++NumArgumentsPromoted;
206       else
207         ++NumAggregatesPromoted;
208     }
209   }
210 
211   Type *RetTy = FTy->getReturnType();
212 
213   // Construct the new function type using the new arguments.
214   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
215 
216   // Create the new function body and insert it into the module.
217   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
218                                   F->getName());
219   NF->copyAttributesFrom(F);
220   NF->copyMetadata(F, 0);
221 
222   // The new function will have the !dbg metadata copied from the original
223   // function. The original function may not be deleted, and dbg metadata need
224   // to be unique so we need to drop it.
225   F->setSubprogram(nullptr);
226 
227   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
228                     << "From: " << *F);
229 
230   // Recompute the parameter attributes list based on the new arguments for
231   // the function.
232   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
233                                        PAL.getRetAttrs(), ArgAttrVec));
234   ArgAttrVec.clear();
235 
236   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
237   NF->takeName(F);
238 
239   // Loop over all of the callers of the function, transforming the call sites
240   // to pass in the loaded pointers.
241   //
242   SmallVector<Value *, 16> Args;
243   const DataLayout &DL = F->getParent()->getDataLayout();
244   while (!F->use_empty()) {
245     CallBase &CB = cast<CallBase>(*F->user_back());
246     assert(CB.getCalledFunction() == F);
247     const AttributeList &CallPAL = CB.getAttributes();
248     IRBuilder<NoFolder> IRB(&CB);
249 
250     // Loop over the operands, inserting GEP and loads in the caller as
251     // appropriate.
252     auto AI = CB.arg_begin();
253     ArgNo = 0;
254     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
255          ++I, ++AI, ++ArgNo)
256       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
257         Args.push_back(*AI); // Unmodified argument
258         ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
259       } else if (ByValArgsToTransform.count(&*I)) {
260         // Emit a GEP and load for each element of the struct.
261         Type *AgTy = I->getParamByValType();
262         StructType *STy = cast<StructType>(AgTy);
263         Value *Idxs[2] = {
264             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
265         const StructLayout *SL = DL.getStructLayout(STy);
266         Align StructAlign = *I->getParamAlign();
267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
268           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
269           auto *Idx =
270               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
271           // TODO: Tell AA about the new values?
272           Align Alignment =
273               commonAlignment(StructAlign, SL->getElementOffset(i));
274           Args.push_back(IRB.CreateAlignedLoad(
275               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
276           ArgAttrVec.push_back(AttributeSet());
277         }
278       } else if (!I->use_empty()) {
279         // Non-dead argument: insert GEPs and loads as appropriate.
280         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
281         // Store the Value* version of the indices in here, but declare it now
282         // for reuse.
283         std::vector<Value *> Ops;
284         for (const auto &ArgIndex : ArgIndices) {
285           Value *V = *AI;
286           LoadInst *OrigLoad =
287               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
288           if (!ArgIndex.second.empty()) {
289             Ops.reserve(ArgIndex.second.size());
290             Type *ElTy = V->getType();
291             for (auto II : ArgIndex.second) {
292               // Use i32 to index structs, and i64 for others (pointers/arrays).
293               // This satisfies GEP constraints.
294               Type *IdxTy =
295                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
296                                       : Type::getInt64Ty(F->getContext()));
297               Ops.push_back(ConstantInt::get(IdxTy, II));
298               // Keep track of the type we're currently indexing.
299               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
300                 ElTy = ElPTy->getPointerElementType();
301               else
302                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
303             }
304             // And create a GEP to extract those indices.
305             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
306             Ops.clear();
307           }
308           // Since we're replacing a load make sure we take the alignment
309           // of the previous load.
310           LoadInst *newLoad =
311               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
312           newLoad->setAlignment(OrigLoad->getAlign());
313           // Transfer the AA info too.
314           newLoad->setAAMetadata(OrigLoad->getAAMetadata());
315 
316           Args.push_back(newLoad);
317           ArgAttrVec.push_back(AttributeSet());
318         }
319       }
320 
321     // Push any varargs arguments on the list.
322     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
323       Args.push_back(*AI);
324       ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
325     }
326 
327     SmallVector<OperandBundleDef, 1> OpBundles;
328     CB.getOperandBundlesAsDefs(OpBundles);
329 
330     CallBase *NewCS = nullptr;
331     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
332       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
333                                  Args, OpBundles, "", &CB);
334     } else {
335       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
336       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
337       NewCS = NewCall;
338     }
339     NewCS->setCallingConv(CB.getCallingConv());
340     NewCS->setAttributes(AttributeList::get(F->getContext(),
341                                             CallPAL.getFnAttrs(),
342                                             CallPAL.getRetAttrs(), ArgAttrVec));
343     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CB, *NewCS);
350 
351     if (!CB.use_empty()) {
352       CB.replaceAllUsesWith(NewCS);
353       NewCS->takeName(&CB);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     CB.eraseFromParent();
359   }
360 
361   // Since we have now created the new function, splice the body of the old
362   // function right into the new function, leaving the old rotting hulk of the
363   // function empty.
364   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
365 
366   // Loop over the argument list, transferring uses of the old arguments over to
367   // the new arguments, also transferring over the names as well.
368   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
369                               I2 = NF->arg_begin();
370        I != E; ++I) {
371     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
372       // If this is an unmodified argument, move the name and users over to the
373       // new version.
374       I->replaceAllUsesWith(&*I2);
375       I2->takeName(&*I);
376       ++I2;
377       continue;
378     }
379 
380     if (ByValArgsToTransform.count(&*I)) {
381       // In the callee, we create an alloca, and store each of the new incoming
382       // arguments into the alloca.
383       Instruction *InsertPt = &NF->begin()->front();
384 
385       // Just add all the struct element types.
386       Type *AgTy = I->getParamByValType();
387       Align StructAlign = *I->getParamAlign();
388       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
389                                         StructAlign, "", InsertPt);
390       StructType *STy = cast<StructType>(AgTy);
391       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
392                         nullptr};
393       const StructLayout *SL = DL.getStructLayout(STy);
394 
395       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
396         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
397         Value *Idx = GetElementPtrInst::Create(
398             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
399             InsertPt);
400         I2->setName(I->getName() + "." + Twine(i));
401         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
402         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
403       }
404 
405       // Anything that used the arg should now use the alloca.
406       I->replaceAllUsesWith(TheAlloca);
407       TheAlloca->takeName(&*I);
408       continue;
409     }
410 
411     // There potentially are metadata uses for things like llvm.dbg.value.
412     // Replace them with undef, after handling the other regular uses.
413     auto RauwUndefMetadata = make_scope_exit(
414         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
415 
416     if (I->use_empty())
417       continue;
418 
419     // Otherwise, if we promoted this argument, then all users are load
420     // instructions (or GEPs with only load users), and all loads should be
421     // using the new argument that we added.
422     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
423 
424     while (!I->use_empty()) {
425       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
426         assert(ArgIndices.begin()->second.empty() &&
427                "Load element should sort to front!");
428         I2->setName(I->getName() + ".val");
429         LI->replaceAllUsesWith(&*I2);
430         LI->eraseFromParent();
431         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
432                           << "' in function '" << F->getName() << "'\n");
433       } else {
434         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
435         assert(!GEP->use_empty() &&
436                "GEPs without uses should be cleaned up already");
437         IndicesVector Operands;
438         Operands.reserve(GEP->getNumIndices());
439         for (const Use &Idx : GEP->indices())
440           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
441 
442         // GEPs with a single 0 index can be merged with direct loads
443         if (Operands.size() == 1 && Operands.front() == 0)
444           Operands.clear();
445 
446         Function::arg_iterator TheArg = I2;
447         for (ScalarizeTable::iterator It = ArgIndices.begin();
448              It->second != Operands; ++It, ++TheArg) {
449           assert(It != ArgIndices.end() && "GEP not handled??");
450         }
451 
452         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
453                                 make_range(Operands.begin(), Operands.end())));
454 
455         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
456                           << "' of function '" << NF->getName() << "'\n");
457 
458         // All of the uses must be load instructions.  Replace them all with
459         // the argument specified by ArgNo.
460         while (!GEP->use_empty()) {
461           LoadInst *L = cast<LoadInst>(GEP->user_back());
462           L->replaceAllUsesWith(&*TheArg);
463           L->eraseFromParent();
464         }
465         GEP->eraseFromParent();
466       }
467     }
468     // Increment I2 past all of the arguments added for this promoted pointer.
469     std::advance(I2, ArgIndices.size());
470   }
471 
472   return NF;
473 }
474 
475 /// Return true if we can prove that all callees pass in a valid pointer for the
476 /// specified function argument.
477 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
478   Function *Callee = Arg->getParent();
479   const DataLayout &DL = Callee->getParent()->getDataLayout();
480 
481   unsigned ArgNo = Arg->getArgNo();
482 
483   // Look at all call sites of the function.  At this point we know we only have
484   // direct callees.
485   for (User *U : Callee->users()) {
486     CallBase &CB = cast<CallBase>(*U);
487 
488     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
489       return false;
490   }
491   return true;
492 }
493 
494 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
495 /// that is greater than or equal to the size of prefix, and each of the
496 /// elements in Prefix is the same as the corresponding elements in Longer.
497 ///
498 /// This means it also returns true when Prefix and Longer are equal!
499 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
500   if (Prefix.size() > Longer.size())
501     return false;
502   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
503 }
504 
505 /// Checks if Indices, or a prefix of Indices, is in Set.
506 static bool prefixIn(const IndicesVector &Indices,
507                      std::set<IndicesVector> &Set) {
508   std::set<IndicesVector>::iterator Low;
509   Low = Set.upper_bound(Indices);
510   if (Low != Set.begin())
511     Low--;
512   // Low is now the last element smaller than or equal to Indices. This means
513   // it points to a prefix of Indices (possibly Indices itself), if such
514   // prefix exists.
515   //
516   // This load is safe if any prefix of its operands is safe to load.
517   return Low != Set.end() && isPrefix(*Low, Indices);
518 }
519 
520 /// Mark the given indices (ToMark) as safe in the given set of indices
521 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
522 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
523 /// already. Furthermore, any indices that Indices is itself a prefix of, are
524 /// removed from Safe (since they are implicitely safe because of Indices now).
525 static void markIndicesSafe(const IndicesVector &ToMark,
526                             std::set<IndicesVector> &Safe) {
527   std::set<IndicesVector>::iterator Low;
528   Low = Safe.upper_bound(ToMark);
529   // Guard against the case where Safe is empty
530   if (Low != Safe.begin())
531     Low--;
532   // Low is now the last element smaller than or equal to Indices. This
533   // means it points to a prefix of Indices (possibly Indices itself), if
534   // such prefix exists.
535   if (Low != Safe.end()) {
536     if (isPrefix(*Low, ToMark))
537       // If there is already a prefix of these indices (or exactly these
538       // indices) marked a safe, don't bother adding these indices
539       return;
540 
541     // Increment Low, so we can use it as a "insert before" hint
542     ++Low;
543   }
544   // Insert
545   Low = Safe.insert(Low, ToMark);
546   ++Low;
547   // If there we're a prefix of longer index list(s), remove those
548   std::set<IndicesVector>::iterator End = Safe.end();
549   while (Low != End && isPrefix(ToMark, *Low)) {
550     std::set<IndicesVector>::iterator Remove = Low;
551     ++Low;
552     Safe.erase(Remove);
553   }
554 }
555 
556 /// isSafeToPromoteArgument - As you might guess from the name of this method,
557 /// it checks to see if it is both safe and useful to promote the argument.
558 /// This method limits promotion of aggregates to only promote up to three
559 /// elements of the aggregate in order to avoid exploding the number of
560 /// arguments passed in.
561 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
562                                     unsigned MaxElements) {
563   using GEPIndicesSet = std::set<IndicesVector>;
564 
565   // Quick exit for unused arguments
566   if (Arg->use_empty())
567     return true;
568 
569   // We can only promote this argument if all of the uses are loads, or are GEP
570   // instructions (with constant indices) that are subsequently loaded.
571   //
572   // Promoting the argument causes it to be loaded in the caller
573   // unconditionally. This is only safe if we can prove that either the load
574   // would have happened in the callee anyway (ie, there is a load in the entry
575   // block) or the pointer passed in at every call site is guaranteed to be
576   // valid.
577   // In the former case, invalid loads can happen, but would have happened
578   // anyway, in the latter case, invalid loads won't happen. This prevents us
579   // from introducing an invalid load that wouldn't have happened in the
580   // original code.
581   //
582   // This set will contain all sets of indices that are loaded in the entry
583   // block, and thus are safe to unconditionally load in the caller.
584   GEPIndicesSet SafeToUnconditionallyLoad;
585 
586   // This set contains all the sets of indices that we are planning to promote.
587   // This makes it possible to limit the number of arguments added.
588   GEPIndicesSet ToPromote;
589 
590   // If the pointer is always valid, any load with first index 0 is valid.
591 
592   if (ByValTy)
593     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
594 
595   // Whenever a new underlying type for the operand is found, make sure it's
596   // consistent with the GEPs and loads we've already seen and, if necessary,
597   // use it to see if all incoming pointers are valid (which implies the 0-index
598   // is safe).
599   Type *BaseTy = ByValTy;
600   auto UpdateBaseTy = [&](Type *NewBaseTy) {
601     if (BaseTy)
602       return BaseTy == NewBaseTy;
603 
604     BaseTy = NewBaseTy;
605     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
606       assert(SafeToUnconditionallyLoad.empty());
607       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
608     }
609 
610     return true;
611   };
612 
613   // First, iterate the entry block and mark loads of (geps of) arguments as
614   // safe.
615   BasicBlock &EntryBlock = Arg->getParent()->front();
616   // Declare this here so we can reuse it
617   IndicesVector Indices;
618   for (Instruction &I : EntryBlock)
619     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
620       Value *V = LI->getPointerOperand();
621       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
622         V = GEP->getPointerOperand();
623         if (V == Arg) {
624           // This load actually loads (part of) Arg? Check the indices then.
625           Indices.reserve(GEP->getNumIndices());
626           for (Use &Idx : GEP->indices())
627             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
628               Indices.push_back(CI->getSExtValue());
629             else
630               // We found a non-constant GEP index for this argument? Bail out
631               // right away, can't promote this argument at all.
632               return false;
633 
634           if (!UpdateBaseTy(GEP->getSourceElementType()))
635             return false;
636 
637           // Indices checked out, mark them as safe
638           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
639           Indices.clear();
640         }
641       } else if (V == Arg) {
642         // Direct loads are equivalent to a GEP with a single 0 index.
643         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
644 
645         if (BaseTy && LI->getType() != BaseTy)
646           return false;
647 
648         BaseTy = LI->getType();
649       }
650     }
651 
652   // Now, iterate all uses of the argument to see if there are any uses that are
653   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
654   SmallVector<LoadInst *, 16> Loads;
655   IndicesVector Operands;
656   for (Use &U : Arg->uses()) {
657     User *UR = U.getUser();
658     Operands.clear();
659     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
660       // Don't hack volatile/atomic loads
661       if (!LI->isSimple())
662         return false;
663       Loads.push_back(LI);
664       // Direct loads are equivalent to a GEP with a zero index and then a load.
665       Operands.push_back(0);
666 
667       if (!UpdateBaseTy(LI->getType()))
668         return false;
669     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
670       if (GEP->use_empty()) {
671         // Dead GEP's cause trouble later.  Just remove them if we run into
672         // them.
673         continue;
674       }
675 
676       if (!UpdateBaseTy(GEP->getSourceElementType()))
677         return false;
678 
679       // Ensure that all of the indices are constants.
680       for (Use &Idx : GEP->indices())
681         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
682           Operands.push_back(C->getSExtValue());
683         else
684           return false; // Not a constant operand GEP!
685 
686       // Ensure that the only users of the GEP are load instructions.
687       for (User *GEPU : GEP->users())
688         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
689           // Don't hack volatile/atomic loads
690           if (!LI->isSimple())
691             return false;
692           Loads.push_back(LI);
693         } else {
694           // Other uses than load?
695           return false;
696         }
697     } else {
698       return false; // Not a load or a GEP.
699     }
700 
701     // Now, see if it is safe to promote this load / loads of this GEP. Loading
702     // is safe if Operands, or a prefix of Operands, is marked as safe.
703     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
704       return false;
705 
706     // See if we are already promoting a load with these indices. If not, check
707     // to make sure that we aren't promoting too many elements.  If so, nothing
708     // to do.
709     if (ToPromote.find(Operands) == ToPromote.end()) {
710       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
711         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
712                           << Arg->getName()
713                           << "' because it would require adding more "
714                           << "than " << MaxElements
715                           << " arguments to the function.\n");
716         // We limit aggregate promotion to only promoting up to a fixed number
717         // of elements of the aggregate.
718         return false;
719       }
720       ToPromote.insert(std::move(Operands));
721     }
722   }
723 
724   if (Loads.empty())
725     return true; // No users, this is a dead argument.
726 
727   // Okay, now we know that the argument is only used by load instructions and
728   // it is safe to unconditionally perform all of them. Use alias analysis to
729   // check to see if the pointer is guaranteed to not be modified from entry of
730   // the function to each of the load instructions.
731 
732   // Because there could be several/many load instructions, remember which
733   // blocks we know to be transparent to the load.
734   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
735 
736   for (LoadInst *Load : Loads) {
737     // Check to see if the load is invalidated from the start of the block to
738     // the load itself.
739     BasicBlock *BB = Load->getParent();
740 
741     MemoryLocation Loc = MemoryLocation::get(Load);
742     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
743       return false; // Pointer is invalidated!
744 
745     // Now check every path from the entry block to the load for transparency.
746     // To do this, we perform a depth first search on the inverse CFG from the
747     // loading block.
748     for (BasicBlock *P : predecessors(BB)) {
749       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
750         if (AAR.canBasicBlockModify(*TranspBB, Loc))
751           return false;
752     }
753   }
754 
755   // If the path from the entry of the function to each load is free of
756   // instructions that potentially invalidate the load, we can make the
757   // transformation!
758   return true;
759 }
760 
761 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
762   // There is no size information, so be conservative.
763   if (!type->isSized())
764     return false;
765 
766   // If the alloc size is not equal to the storage size, then there are padding
767   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
768   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
769     return false;
770 
771   // FIXME: This isn't the right way to check for padding in vectors with
772   // non-byte-size elements.
773   if (VectorType *seqTy = dyn_cast<VectorType>(type))
774     return isDenselyPacked(seqTy->getElementType(), DL);
775 
776   // For array types, check for padding within members.
777   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
778     return isDenselyPacked(seqTy->getElementType(), DL);
779 
780   if (!isa<StructType>(type))
781     return true;
782 
783   // Check for padding within and between elements of a struct.
784   StructType *StructTy = cast<StructType>(type);
785   const StructLayout *Layout = DL.getStructLayout(StructTy);
786   uint64_t StartPos = 0;
787   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
788     Type *ElTy = StructTy->getElementType(i);
789     if (!isDenselyPacked(ElTy, DL))
790       return false;
791     if (StartPos != Layout->getElementOffsetInBits(i))
792       return false;
793     StartPos += DL.getTypeAllocSizeInBits(ElTy);
794   }
795 
796   return true;
797 }
798 
799 /// Checks if the padding bytes of an argument could be accessed.
800 static bool canPaddingBeAccessed(Argument *arg) {
801   assert(arg->hasByValAttr());
802 
803   // Track all the pointers to the argument to make sure they are not captured.
804   SmallPtrSet<Value *, 16> PtrValues;
805   PtrValues.insert(arg);
806 
807   // Track all of the stores.
808   SmallVector<StoreInst *, 16> Stores;
809 
810   // Scan through the uses recursively to make sure the pointer is always used
811   // sanely.
812   SmallVector<Value *, 16> WorkList(arg->users());
813   while (!WorkList.empty()) {
814     Value *V = WorkList.pop_back_val();
815     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
816       if (PtrValues.insert(V).second)
817         llvm::append_range(WorkList, V->users());
818     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
819       Stores.push_back(Store);
820     } else if (!isa<LoadInst>(V)) {
821       return true;
822     }
823   }
824 
825   // Check to make sure the pointers aren't captured
826   for (StoreInst *Store : Stores)
827     if (PtrValues.count(Store->getValueOperand()))
828       return true;
829 
830   return false;
831 }
832 
833 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
834     const Function &F, const TargetTransformInfo &TTI,
835     SmallPtrSetImpl<Argument *> &ArgsToPromote,
836     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
837   // TODO: Check individual arguments so we can promote a subset?
838   SmallVector<Type *, 32> Types;
839   for (Argument *Arg : ArgsToPromote)
840     Types.push_back(Arg->getType()->getPointerElementType());
841   for (Argument *Arg : ByValArgsToTransform)
842     Types.push_back(Arg->getParamByValType());
843 
844   for (const Use &U : F.uses()) {
845     CallBase *CB = dyn_cast<CallBase>(U.getUser());
846     if (!CB)
847       return false;
848     const Function *Caller = CB->getCaller();
849     const Function *Callee = CB->getCalledFunction();
850     if (!TTI.areTypesABICompatible(Caller, Callee, Types))
851       return false;
852   }
853   return true;
854 }
855 
856 /// PromoteArguments - This method checks the specified function to see if there
857 /// are any promotable arguments and if it is safe to promote the function (for
858 /// example, all callers are direct).  If safe to promote some arguments, it
859 /// calls the DoPromotion method.
860 static Function *
861 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
862                  unsigned MaxElements,
863                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
864                      ReplaceCallSite,
865                  const TargetTransformInfo &TTI) {
866   // Don't perform argument promotion for naked functions; otherwise we can end
867   // up removing parameters that are seemingly 'not used' as they are referred
868   // to in the assembly.
869   if(F->hasFnAttribute(Attribute::Naked))
870     return nullptr;
871 
872   // Make sure that it is local to this module.
873   if (!F->hasLocalLinkage())
874     return nullptr;
875 
876   // Don't promote arguments for variadic functions. Adding, removing, or
877   // changing non-pack parameters can change the classification of pack
878   // parameters. Frontends encode that classification at the call site in the
879   // IR, while in the callee the classification is determined dynamically based
880   // on the number of registers consumed so far.
881   if (F->isVarArg())
882     return nullptr;
883 
884   // Don't transform functions that receive inallocas, as the transformation may
885   // not be safe depending on calling convention.
886   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
887     return nullptr;
888 
889   // First check: see if there are any pointer arguments!  If not, quick exit.
890   SmallVector<Argument *, 16> PointerArgs;
891   for (Argument &I : F->args())
892     if (I.getType()->isPointerTy())
893       PointerArgs.push_back(&I);
894   if (PointerArgs.empty())
895     return nullptr;
896 
897   // Second check: make sure that all callers are direct callers.  We can't
898   // transform functions that have indirect callers.  Also see if the function
899   // is self-recursive and check that target features are compatible.
900   bool isSelfRecursive = false;
901   for (Use &U : F->uses()) {
902     CallBase *CB = dyn_cast<CallBase>(U.getUser());
903     // Must be a direct call.
904     if (CB == nullptr || !CB->isCallee(&U))
905       return nullptr;
906 
907     // Can't change signature of musttail callee
908     if (CB->isMustTailCall())
909       return nullptr;
910 
911     if (CB->getParent()->getParent() == F)
912       isSelfRecursive = true;
913   }
914 
915   // Can't change signature of musttail caller
916   // FIXME: Support promoting whole chain of musttail functions
917   for (BasicBlock &BB : *F)
918     if (BB.getTerminatingMustTailCall())
919       return nullptr;
920 
921   const DataLayout &DL = F->getParent()->getDataLayout();
922 
923   AAResults &AAR = AARGetter(*F);
924 
925   // Check to see which arguments are promotable.  If an argument is promotable,
926   // add it to ArgsToPromote.
927   SmallPtrSet<Argument *, 8> ArgsToPromote;
928   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
929   for (Argument *PtrArg : PointerArgs) {
930     Type *AgTy = PtrArg->getType()->getPointerElementType();
931 
932     // Replace sret attribute with noalias. This reduces register pressure by
933     // avoiding a register copy.
934     if (PtrArg->hasStructRetAttr()) {
935       unsigned ArgNo = PtrArg->getArgNo();
936       F->removeParamAttr(ArgNo, Attribute::StructRet);
937       F->addParamAttr(ArgNo, Attribute::NoAlias);
938       for (Use &U : F->uses()) {
939         CallBase &CB = cast<CallBase>(*U.getUser());
940         CB.removeParamAttr(ArgNo, Attribute::StructRet);
941         CB.addParamAttr(ArgNo, Attribute::NoAlias);
942       }
943     }
944 
945     // If this is a byval argument, and if the aggregate type is small, just
946     // pass the elements, which is always safe, if the passed value is densely
947     // packed or if we can prove the padding bytes are never accessed.
948     //
949     // Only handle arguments with specified alignment; if it's unspecified, the
950     // actual alignment of the argument is target-specific.
951     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
952                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
953                             !canPaddingBeAccessed(PtrArg));
954     if (isSafeToPromote) {
955       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
956         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
957           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
958                             << PtrArg->getName()
959                             << "' because it would require adding more"
960                             << " than " << MaxElements
961                             << " arguments to the function.\n");
962           continue;
963         }
964 
965         // If all the elements are single-value types, we can promote it.
966         bool AllSimple = true;
967         for (const auto *EltTy : STy->elements()) {
968           if (!EltTy->isSingleValueType()) {
969             AllSimple = false;
970             break;
971           }
972         }
973 
974         // Safe to transform, don't even bother trying to "promote" it.
975         // Passing the elements as a scalar will allow sroa to hack on
976         // the new alloca we introduce.
977         if (AllSimple) {
978           ByValArgsToTransform.insert(PtrArg);
979           continue;
980         }
981       }
982     }
983 
984     // If the argument is a recursive type and we're in a recursive
985     // function, we could end up infinitely peeling the function argument.
986     if (isSelfRecursive) {
987       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
988         bool RecursiveType =
989             llvm::is_contained(STy->elements(), PtrArg->getType());
990         if (RecursiveType)
991           continue;
992       }
993     }
994 
995     // Otherwise, see if we can promote the pointer to its value.
996     Type *ByValTy =
997         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
998     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
999       ArgsToPromote.insert(PtrArg);
1000   }
1001 
1002   // No promotable pointer arguments.
1003   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1004     return nullptr;
1005 
1006   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1007           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1008     return nullptr;
1009 
1010   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1011 }
1012 
1013 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1014                                              CGSCCAnalysisManager &AM,
1015                                              LazyCallGraph &CG,
1016                                              CGSCCUpdateResult &UR) {
1017   bool Changed = false, LocalChange;
1018 
1019   // Iterate until we stop promoting from this SCC.
1020   do {
1021     LocalChange = false;
1022 
1023     FunctionAnalysisManager &FAM =
1024         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1025 
1026     for (LazyCallGraph::Node &N : C) {
1027       Function &OldF = N.getFunction();
1028 
1029       // FIXME: This lambda must only be used with this function. We should
1030       // skip the lambda and just get the AA results directly.
1031       auto AARGetter = [&](Function &F) -> AAResults & {
1032         assert(&F == &OldF && "Called with an unexpected function!");
1033         return FAM.getResult<AAManager>(F);
1034       };
1035 
1036       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1037       Function *NewF =
1038           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1039       if (!NewF)
1040         continue;
1041       LocalChange = true;
1042 
1043       // Directly substitute the functions in the call graph. Note that this
1044       // requires the old function to be completely dead and completely
1045       // replaced by the new function. It does no call graph updates, it merely
1046       // swaps out the particular function mapped to a particular node in the
1047       // graph.
1048       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1049       FAM.clear(OldF, OldF.getName());
1050       OldF.eraseFromParent();
1051 
1052       PreservedAnalyses FuncPA;
1053       FuncPA.preserveSet<CFGAnalyses>();
1054       for (auto *U : NewF->users()) {
1055         auto *UserF = cast<CallBase>(U)->getFunction();
1056         FAM.invalidate(*UserF, FuncPA);
1057       }
1058     }
1059 
1060     Changed |= LocalChange;
1061   } while (LocalChange);
1062 
1063   if (!Changed)
1064     return PreservedAnalyses::all();
1065 
1066   PreservedAnalyses PA;
1067   // We've cleared out analyses for deleted functions.
1068   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1069   // We've manually invalidated analyses for functions we've modified.
1070   PA.preserveSet<AllAnalysesOn<Function>>();
1071   return PA;
1072 }
1073 
1074 namespace {
1075 
1076 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1077 struct ArgPromotion : public CallGraphSCCPass {
1078   // Pass identification, replacement for typeid
1079   static char ID;
1080 
1081   explicit ArgPromotion(unsigned MaxElements = 3)
1082       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1083     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1084   }
1085 
1086   void getAnalysisUsage(AnalysisUsage &AU) const override {
1087     AU.addRequired<AssumptionCacheTracker>();
1088     AU.addRequired<TargetLibraryInfoWrapperPass>();
1089     AU.addRequired<TargetTransformInfoWrapperPass>();
1090     getAAResultsAnalysisUsage(AU);
1091     CallGraphSCCPass::getAnalysisUsage(AU);
1092   }
1093 
1094   bool runOnSCC(CallGraphSCC &SCC) override;
1095 
1096 private:
1097   using llvm::Pass::doInitialization;
1098 
1099   bool doInitialization(CallGraph &CG) override;
1100 
1101   /// The maximum number of elements to expand, or 0 for unlimited.
1102   unsigned MaxElements;
1103 };
1104 
1105 } // end anonymous namespace
1106 
1107 char ArgPromotion::ID = 0;
1108 
1109 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1110                       "Promote 'by reference' arguments to scalars", false,
1111                       false)
1112 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1113 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1114 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1115 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1116 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1117                     "Promote 'by reference' arguments to scalars", false, false)
1118 
1119 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1120   return new ArgPromotion(MaxElements);
1121 }
1122 
1123 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1124   if (skipSCC(SCC))
1125     return false;
1126 
1127   // Get the callgraph information that we need to update to reflect our
1128   // changes.
1129   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1130 
1131   LegacyAARGetter AARGetter(*this);
1132 
1133   bool Changed = false, LocalChange;
1134 
1135   // Iterate until we stop promoting from this SCC.
1136   do {
1137     LocalChange = false;
1138     // Attempt to promote arguments from all functions in this SCC.
1139     for (CallGraphNode *OldNode : SCC) {
1140       Function *OldF = OldNode->getFunction();
1141       if (!OldF)
1142         continue;
1143 
1144       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1145         Function *Caller = OldCS.getParent()->getParent();
1146         CallGraphNode *NewCalleeNode =
1147             CG.getOrInsertFunction(NewCS.getCalledFunction());
1148         CallGraphNode *CallerNode = CG[Caller];
1149         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1150                                     cast<CallBase>(NewCS), NewCalleeNode);
1151       };
1152 
1153       const TargetTransformInfo &TTI =
1154           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1155       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1156                                             {ReplaceCallSite}, TTI)) {
1157         LocalChange = true;
1158 
1159         // Update the call graph for the newly promoted function.
1160         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1161         NewNode->stealCalledFunctionsFrom(OldNode);
1162         if (OldNode->getNumReferences() == 0)
1163           delete CG.removeFunctionFromModule(OldNode);
1164         else
1165           OldF->setLinkage(Function::ExternalLinkage);
1166 
1167         // And updat ethe SCC we're iterating as well.
1168         SCC.ReplaceNode(OldNode, NewNode);
1169       }
1170     }
1171     // Remember that we changed something.
1172     Changed |= LocalChange;
1173   } while (LocalChange);
1174 
1175   return Changed;
1176 }
1177 
1178 bool ArgPromotion::doInitialization(CallGraph &CG) {
1179   return CallGraphSCCPass::doInitialization(CG);
1180 }
1181