1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/BasicAliasAnalysis.h"
39 #include "llvm/Analysis/CallGraph.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/Analysis/Loads.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <set>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "argpromotion"
58 
59 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
60 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
61 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
62 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
63 
64 namespace {
65   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
66   ///
67   struct ArgPromotion : public CallGraphSCCPass {
68     void getAnalysisUsage(AnalysisUsage &AU) const override {
69       AU.addRequired<AssumptionCacheTracker>();
70       AU.addRequired<TargetLibraryInfoWrapperPass>();
71       getAAResultsAnalysisUsage(AU);
72       CallGraphSCCPass::getAnalysisUsage(AU);
73     }
74 
75     bool runOnSCC(CallGraphSCC &SCC) override;
76     static char ID; // Pass identification, replacement for typeid
77     explicit ArgPromotion(unsigned maxElements = 3)
78         : CallGraphSCCPass(ID), maxElements(maxElements) {
79       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
80     }
81 
82   private:
83 
84     using llvm::Pass::doInitialization;
85     bool doInitialization(CallGraph &CG) override;
86     /// The maximum number of elements to expand, or 0 for unlimited.
87     unsigned maxElements;
88   };
89 }
90 
91 /// A vector used to hold the indices of a single GEP instruction
92 typedef std::vector<uint64_t> IndicesVector;
93 
94 static CallGraphNode *
95 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
96                  function_ref<AAResults &(Function &F)> AARGetter,
97                  unsigned MaxElements);
98 static bool isDenselyPacked(Type *type, const DataLayout &DL);
99 static bool canPaddingBeAccessed(Argument *Arg);
100 static bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, AAResults &AAR,
101                                     unsigned MaxElements);
102 static CallGraphNode *
103 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
104             SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG);
105 
106 char ArgPromotion::ID = 0;
107 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
108                 "Promote 'by reference' arguments to scalars", false, false)
109 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
110 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
112 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
113                 "Promote 'by reference' arguments to scalars", false, false)
114 
115 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
116   return new ArgPromotion(maxElements);
117 }
118 
119 static bool runImpl(CallGraphSCC &SCC, CallGraph &CG,
120                     function_ref<AAResults &(Function &F)> AARGetter,
121                     unsigned MaxElements) {
122   bool Changed = false, LocalChange;
123 
124   do {  // Iterate until we stop promoting from this SCC.
125     LocalChange = false;
126     // Attempt to promote arguments from all functions in this SCC.
127     for (CallGraphNode *OldNode : SCC) {
128       if (CallGraphNode *NewNode =
129               PromoteArguments(OldNode, CG, AARGetter, MaxElements)) {
130         LocalChange = true;
131         SCC.ReplaceNode(OldNode, NewNode);
132       }
133     }
134     Changed |= LocalChange;               // Remember that we changed something.
135   } while (LocalChange);
136 
137   return Changed;
138 }
139 
140 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
141   if (skipSCC(SCC))
142     return false;
143 
144   // Get the callgraph information that we need to update to reflect our
145   // changes.
146   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
147 
148   // We compute dedicated AA results for each function in the SCC as needed. We
149   // use a lambda referencing external objects so that they live long enough to
150   // be queried, but we re-use them each time.
151   Optional<BasicAAResult> BAR;
152   Optional<AAResults> AAR;
153   auto AARGetter = [&](Function &F) -> AAResults & {
154     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
155     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
156     return *AAR;
157   };
158 
159   return runImpl(SCC, CG, AARGetter, maxElements);
160 }
161 
162 /// \brief Checks if a type could have padding bytes.
163 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
164 
165   // There is no size information, so be conservative.
166   if (!type->isSized())
167     return false;
168 
169   // If the alloc size is not equal to the storage size, then there are padding
170   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
171   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
172     return false;
173 
174   if (!isa<CompositeType>(type))
175     return true;
176 
177   // For homogenous sequential types, check for padding within members.
178   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
179     return isa<PointerType>(seqTy) ||
180            isDenselyPacked(seqTy->getElementType(), DL);
181 
182   // Check for padding within and between elements of a struct.
183   StructType *StructTy = cast<StructType>(type);
184   const StructLayout *Layout = DL.getStructLayout(StructTy);
185   uint64_t StartPos = 0;
186   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
187     Type *ElTy = StructTy->getElementType(i);
188     if (!isDenselyPacked(ElTy, DL))
189       return false;
190     if (StartPos != Layout->getElementOffsetInBits(i))
191       return false;
192     StartPos += DL.getTypeAllocSizeInBits(ElTy);
193   }
194 
195   return true;
196 }
197 
198 /// \brief Checks if the padding bytes of an argument could be accessed.
199 static bool canPaddingBeAccessed(Argument *arg) {
200 
201   assert(arg->hasByValAttr());
202 
203   // Track all the pointers to the argument to make sure they are not captured.
204   SmallPtrSet<Value *, 16> PtrValues;
205   PtrValues.insert(arg);
206 
207   // Track all of the stores.
208   SmallVector<StoreInst *, 16> Stores;
209 
210   // Scan through the uses recursively to make sure the pointer is always used
211   // sanely.
212   SmallVector<Value *, 16> WorkList;
213   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
214   while (!WorkList.empty()) {
215     Value *V = WorkList.back();
216     WorkList.pop_back();
217     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
218       if (PtrValues.insert(V).second)
219         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
220     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
221       Stores.push_back(Store);
222     } else if (!isa<LoadInst>(V)) {
223       return true;
224     }
225   }
226 
227 // Check to make sure the pointers aren't captured
228   for (StoreInst *Store : Stores)
229     if (PtrValues.count(Store->getValueOperand()))
230       return true;
231 
232   return false;
233 }
234 
235 /// PromoteArguments - This method checks the specified function to see if there
236 /// are any promotable arguments and if it is safe to promote the function (for
237 /// example, all callers are direct).  If safe to promote some arguments, it
238 /// calls the DoPromotion method.
239 ///
240 static CallGraphNode *
241 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
242                  function_ref<AAResults &(Function &F)> AARGetter,
243                  unsigned MaxElements) {
244   Function *F = CGN->getFunction();
245 
246   // Make sure that it is local to this module.
247   if (!F || !F->hasLocalLinkage()) return nullptr;
248 
249   // Don't promote arguments for variadic functions. Adding, removing, or
250   // changing non-pack parameters can change the classification of pack
251   // parameters. Frontends encode that classification at the call site in the
252   // IR, while in the callee the classification is determined dynamically based
253   // on the number of registers consumed so far.
254   if (F->isVarArg()) return nullptr;
255 
256   // First check: see if there are any pointer arguments!  If not, quick exit.
257   SmallVector<Argument*, 16> PointerArgs;
258   for (Argument &I : F->args())
259     if (I.getType()->isPointerTy())
260       PointerArgs.push_back(&I);
261   if (PointerArgs.empty()) return nullptr;
262 
263   // Second check: make sure that all callers are direct callers.  We can't
264   // transform functions that have indirect callers.  Also see if the function
265   // is self-recursive.
266   bool isSelfRecursive = false;
267   for (Use &U : F->uses()) {
268     CallSite CS(U.getUser());
269     // Must be a direct call.
270     if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
271 
272     if (CS.getInstruction()->getParent()->getParent() == F)
273       isSelfRecursive = true;
274   }
275 
276   const DataLayout &DL = F->getParent()->getDataLayout();
277 
278   AAResults &AAR = AARGetter(*F);
279 
280   // Check to see which arguments are promotable.  If an argument is promotable,
281   // add it to ArgsToPromote.
282   SmallPtrSet<Argument*, 8> ArgsToPromote;
283   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
284   for (Argument *PtrArg : PointerArgs) {
285     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
286 
287     // Replace sret attribute with noalias. This reduces register pressure by
288     // avoiding a register copy.
289     if (PtrArg->hasStructRetAttr()) {
290       unsigned ArgNo = PtrArg->getArgNo();
291       F->setAttributes(
292           F->getAttributes()
293               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
294               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
295       for (Use &U : F->uses()) {
296         CallSite CS(U.getUser());
297         CS.setAttributes(
298             CS.getAttributes()
299                 .removeAttribute(F->getContext(), ArgNo + 1,
300                                  Attribute::StructRet)
301                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
302       }
303     }
304 
305     // If this is a byval argument, and if the aggregate type is small, just
306     // pass the elements, which is always safe, if the passed value is densely
307     // packed or if we can prove the padding bytes are never accessed. This does
308     // not apply to inalloca.
309     bool isSafeToPromote =
310         PtrArg->hasByValAttr() &&
311         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
312     if (isSafeToPromote) {
313       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
314         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
315           DEBUG(dbgs() << "argpromotion disable promoting argument '"
316                 << PtrArg->getName() << "' because it would require adding more"
317                 << " than " << MaxElements << " arguments to the function.\n");
318           continue;
319         }
320 
321         // If all the elements are single-value types, we can promote it.
322         bool AllSimple = true;
323         for (const auto *EltTy : STy->elements()) {
324           if (!EltTy->isSingleValueType()) {
325             AllSimple = false;
326             break;
327           }
328         }
329 
330         // Safe to transform, don't even bother trying to "promote" it.
331         // Passing the elements as a scalar will allow sroa to hack on
332         // the new alloca we introduce.
333         if (AllSimple) {
334           ByValArgsToTransform.insert(PtrArg);
335           continue;
336         }
337       }
338     }
339 
340     // If the argument is a recursive type and we're in a recursive
341     // function, we could end up infinitely peeling the function argument.
342     if (isSelfRecursive) {
343       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
344         bool RecursiveType = false;
345         for (const auto *EltTy : STy->elements()) {
346           if (EltTy == PtrArg->getType()) {
347             RecursiveType = true;
348             break;
349           }
350         }
351         if (RecursiveType)
352           continue;
353       }
354     }
355 
356     // Otherwise, see if we can promote the pointer to its value.
357     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
358                                 MaxElements))
359       ArgsToPromote.insert(PtrArg);
360   }
361 
362   // No promotable pointer arguments.
363   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
364     return nullptr;
365 
366   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG);
367 }
368 
369 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
370 /// all callees pass in a valid pointer for the specified function argument.
371 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
372   Function *Callee = Arg->getParent();
373   const DataLayout &DL = Callee->getParent()->getDataLayout();
374 
375   unsigned ArgNo = Arg->getArgNo();
376 
377   // Look at all call sites of the function.  At this point we know we only have
378   // direct callees.
379   for (User *U : Callee->users()) {
380     CallSite CS(U);
381     assert(CS && "Should only have direct calls!");
382 
383     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
384       return false;
385   }
386   return true;
387 }
388 
389 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
390 /// that is greater than or equal to the size of prefix, and each of the
391 /// elements in Prefix is the same as the corresponding elements in Longer.
392 ///
393 /// This means it also returns true when Prefix and Longer are equal!
394 static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
395   if (Prefix.size() > Longer.size())
396     return false;
397   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
398 }
399 
400 
401 /// Checks if Indices, or a prefix of Indices, is in Set.
402 static bool PrefixIn(const IndicesVector &Indices,
403                      std::set<IndicesVector> &Set) {
404     std::set<IndicesVector>::iterator Low;
405     Low = Set.upper_bound(Indices);
406     if (Low != Set.begin())
407       Low--;
408     // Low is now the last element smaller than or equal to Indices. This means
409     // it points to a prefix of Indices (possibly Indices itself), if such
410     // prefix exists.
411     //
412     // This load is safe if any prefix of its operands is safe to load.
413     return Low != Set.end() && IsPrefix(*Low, Indices);
414 }
415 
416 /// Mark the given indices (ToMark) as safe in the given set of indices
417 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
418 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
419 /// already. Furthermore, any indices that Indices is itself a prefix of, are
420 /// removed from Safe (since they are implicitely safe because of Indices now).
421 static void MarkIndicesSafe(const IndicesVector &ToMark,
422                             std::set<IndicesVector> &Safe) {
423   std::set<IndicesVector>::iterator Low;
424   Low = Safe.upper_bound(ToMark);
425   // Guard against the case where Safe is empty
426   if (Low != Safe.begin())
427     Low--;
428   // Low is now the last element smaller than or equal to Indices. This
429   // means it points to a prefix of Indices (possibly Indices itself), if
430   // such prefix exists.
431   if (Low != Safe.end()) {
432     if (IsPrefix(*Low, ToMark))
433       // If there is already a prefix of these indices (or exactly these
434       // indices) marked a safe, don't bother adding these indices
435       return;
436 
437     // Increment Low, so we can use it as a "insert before" hint
438     ++Low;
439   }
440   // Insert
441   Low = Safe.insert(Low, ToMark);
442   ++Low;
443   // If there we're a prefix of longer index list(s), remove those
444   std::set<IndicesVector>::iterator End = Safe.end();
445   while (Low != End && IsPrefix(ToMark, *Low)) {
446     std::set<IndicesVector>::iterator Remove = Low;
447     ++Low;
448     Safe.erase(Remove);
449   }
450 }
451 
452 /// isSafeToPromoteArgument - As you might guess from the name of this method,
453 /// it checks to see if it is both safe and useful to promote the argument.
454 /// This method limits promotion of aggregates to only promote up to three
455 /// elements of the aggregate in order to avoid exploding the number of
456 /// arguments passed in.
457 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
458                                     AAResults &AAR, unsigned MaxElements) {
459   typedef std::set<IndicesVector> GEPIndicesSet;
460 
461   // Quick exit for unused arguments
462   if (Arg->use_empty())
463     return true;
464 
465   // We can only promote this argument if all of the uses are loads, or are GEP
466   // instructions (with constant indices) that are subsequently loaded.
467   //
468   // Promoting the argument causes it to be loaded in the caller
469   // unconditionally. This is only safe if we can prove that either the load
470   // would have happened in the callee anyway (ie, there is a load in the entry
471   // block) or the pointer passed in at every call site is guaranteed to be
472   // valid.
473   // In the former case, invalid loads can happen, but would have happened
474   // anyway, in the latter case, invalid loads won't happen. This prevents us
475   // from introducing an invalid load that wouldn't have happened in the
476   // original code.
477   //
478   // This set will contain all sets of indices that are loaded in the entry
479   // block, and thus are safe to unconditionally load in the caller.
480   //
481   // This optimization is also safe for InAlloca parameters, because it verifies
482   // that the address isn't captured.
483   GEPIndicesSet SafeToUnconditionallyLoad;
484 
485   // This set contains all the sets of indices that we are planning to promote.
486   // This makes it possible to limit the number of arguments added.
487   GEPIndicesSet ToPromote;
488 
489   // If the pointer is always valid, any load with first index 0 is valid.
490   if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
491     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
492 
493   // First, iterate the entry block and mark loads of (geps of) arguments as
494   // safe.
495   BasicBlock &EntryBlock = Arg->getParent()->front();
496   // Declare this here so we can reuse it
497   IndicesVector Indices;
498   for (Instruction &I : EntryBlock)
499     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
500       Value *V = LI->getPointerOperand();
501       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
502         V = GEP->getPointerOperand();
503         if (V == Arg) {
504           // This load actually loads (part of) Arg? Check the indices then.
505           Indices.reserve(GEP->getNumIndices());
506           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
507                II != IE; ++II)
508             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
509               Indices.push_back(CI->getSExtValue());
510             else
511               // We found a non-constant GEP index for this argument? Bail out
512               // right away, can't promote this argument at all.
513               return false;
514 
515           // Indices checked out, mark them as safe
516           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
517           Indices.clear();
518         }
519       } else if (V == Arg) {
520         // Direct loads are equivalent to a GEP with a single 0 index.
521         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
522       }
523     }
524 
525   // Now, iterate all uses of the argument to see if there are any uses that are
526   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
527   SmallVector<LoadInst*, 16> Loads;
528   IndicesVector Operands;
529   for (Use &U : Arg->uses()) {
530     User *UR = U.getUser();
531     Operands.clear();
532     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
533       // Don't hack volatile/atomic loads
534       if (!LI->isSimple()) return false;
535       Loads.push_back(LI);
536       // Direct loads are equivalent to a GEP with a zero index and then a load.
537       Operands.push_back(0);
538     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
539       if (GEP->use_empty()) {
540         // Dead GEP's cause trouble later.  Just remove them if we run into
541         // them.
542         GEP->eraseFromParent();
543         // TODO: This runs the above loop over and over again for dead GEPs
544         // Couldn't we just do increment the UI iterator earlier and erase the
545         // use?
546         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
547                                        MaxElements);
548       }
549 
550       // Ensure that all of the indices are constants.
551       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
552         i != e; ++i)
553         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
554           Operands.push_back(C->getSExtValue());
555         else
556           return false;  // Not a constant operand GEP!
557 
558       // Ensure that the only users of the GEP are load instructions.
559       for (User *GEPU : GEP->users())
560         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
561           // Don't hack volatile/atomic loads
562           if (!LI->isSimple()) return false;
563           Loads.push_back(LI);
564         } else {
565           // Other uses than load?
566           return false;
567         }
568     } else {
569       return false;  // Not a load or a GEP.
570     }
571 
572     // Now, see if it is safe to promote this load / loads of this GEP. Loading
573     // is safe if Operands, or a prefix of Operands, is marked as safe.
574     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
575       return false;
576 
577     // See if we are already promoting a load with these indices. If not, check
578     // to make sure that we aren't promoting too many elements.  If so, nothing
579     // to do.
580     if (ToPromote.find(Operands) == ToPromote.end()) {
581       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
582         DEBUG(dbgs() << "argpromotion not promoting argument '"
583               << Arg->getName() << "' because it would require adding more "
584               << "than " << MaxElements << " arguments to the function.\n");
585         // We limit aggregate promotion to only promoting up to a fixed number
586         // of elements of the aggregate.
587         return false;
588       }
589       ToPromote.insert(std::move(Operands));
590     }
591   }
592 
593   if (Loads.empty()) return true;  // No users, this is a dead argument.
594 
595   // Okay, now we know that the argument is only used by load instructions and
596   // it is safe to unconditionally perform all of them. Use alias analysis to
597   // check to see if the pointer is guaranteed to not be modified from entry of
598   // the function to each of the load instructions.
599 
600   // Because there could be several/many load instructions, remember which
601   // blocks we know to be transparent to the load.
602   df_iterator_default_set<BasicBlock*, 16> TranspBlocks;
603 
604   for (LoadInst *Load : Loads) {
605     // Check to see if the load is invalidated from the start of the block to
606     // the load itself.
607     BasicBlock *BB = Load->getParent();
608 
609     MemoryLocation Loc = MemoryLocation::get(Load);
610     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
611       return false;  // Pointer is invalidated!
612 
613     // Now check every path from the entry block to the load for transparency.
614     // To do this, we perform a depth first search on the inverse CFG from the
615     // loading block.
616     for (BasicBlock *P : predecessors(BB)) {
617       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
618         if (AAR.canBasicBlockModify(*TranspBB, Loc))
619           return false;
620     }
621   }
622 
623   // If the path from the entry of the function to each load is free of
624   // instructions that potentially invalidate the load, we can make the
625   // transformation!
626   return true;
627 }
628 
629 /// DoPromotion - This method actually performs the promotion of the specified
630 /// arguments, and returns the new function.  At this point, we know that it's
631 /// safe to do so.
632 static CallGraphNode *
633 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
634             SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG) {
635 
636   // Start by computing a new prototype for the function, which is the same as
637   // the old function, but has modified arguments.
638   FunctionType *FTy = F->getFunctionType();
639   std::vector<Type*> Params;
640 
641   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
642 
643   // ScalarizedElements - If we are promoting a pointer that has elements
644   // accessed out of it, keep track of which elements are accessed so that we
645   // can add one argument for each.
646   //
647   // Arguments that are directly loaded will have a zero element value here, to
648   // handle cases where there are both a direct load and GEP accesses.
649   //
650   std::map<Argument*, ScalarizeTable> ScalarizedElements;
651 
652   // OriginalLoads - Keep track of a representative load instruction from the
653   // original function so that we can tell the alias analysis implementation
654   // what the new GEP/Load instructions we are inserting look like.
655   // We need to keep the original loads for each argument and the elements
656   // of the argument that are accessed.
657   std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
658 
659   // Attribute - Keep track of the parameter attributes for the arguments
660   // that we are *not* promoting. For the ones that we do promote, the parameter
661   // attributes are lost
662   SmallVector<AttributeSet, 8> AttributesVec;
663   const AttributeSet &PAL = F->getAttributes();
664 
665   // Add any return attributes.
666   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
667     AttributesVec.push_back(AttributeSet::get(F->getContext(),
668                                               PAL.getRetAttributes()));
669 
670   // First, determine the new argument list
671   unsigned ArgIndex = 1;
672   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
673        ++I, ++ArgIndex) {
674     if (ByValArgsToTransform.count(&*I)) {
675       // Simple byval argument? Just add all the struct element types.
676       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
677       StructType *STy = cast<StructType>(AgTy);
678       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
679       ++NumByValArgsPromoted;
680     } else if (!ArgsToPromote.count(&*I)) {
681       // Unchanged argument
682       Params.push_back(I->getType());
683       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
684       if (attrs.hasAttributes(ArgIndex)) {
685         AttrBuilder B(attrs, ArgIndex);
686         AttributesVec.
687           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
688       }
689     } else if (I->use_empty()) {
690       // Dead argument (which are always marked as promotable)
691       ++NumArgumentsDead;
692     } else {
693       // Okay, this is being promoted. This means that the only uses are loads
694       // or GEPs which are only used by loads
695 
696       // In this table, we will track which indices are loaded from the argument
697       // (where direct loads are tracked as no indices).
698       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
699       for (User *U : I->users()) {
700         Instruction *UI = cast<Instruction>(U);
701         Type *SrcTy;
702         if (LoadInst *L = dyn_cast<LoadInst>(UI))
703           SrcTy = L->getType();
704         else
705           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
706         IndicesVector Indices;
707         Indices.reserve(UI->getNumOperands() - 1);
708         // Since loads will only have a single operand, and GEPs only a single
709         // non-index operand, this will record direct loads without any indices,
710         // and gep+loads with the GEP indices.
711         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
712              II != IE; ++II)
713           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
714         // GEPs with a single 0 index can be merged with direct loads
715         if (Indices.size() == 1 && Indices.front() == 0)
716           Indices.clear();
717         ArgIndices.insert(std::make_pair(SrcTy, Indices));
718         LoadInst *OrigLoad;
719         if (LoadInst *L = dyn_cast<LoadInst>(UI))
720           OrigLoad = L;
721         else
722           // Take any load, we will use it only to update Alias Analysis
723           OrigLoad = cast<LoadInst>(UI->user_back());
724         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
725       }
726 
727       // Add a parameter to the function for each element passed in.
728       for (const auto &ArgIndex : ArgIndices) {
729         // not allowed to dereference ->begin() if size() is 0
730         Params.push_back(GetElementPtrInst::getIndexedType(
731             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
732             ArgIndex.second));
733         assert(Params.back());
734       }
735 
736       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
737         ++NumArgumentsPromoted;
738       else
739         ++NumAggregatesPromoted;
740     }
741   }
742 
743   // Add any function attributes.
744   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
745     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
746                                               PAL.getFnAttributes()));
747 
748   Type *RetTy = FTy->getReturnType();
749 
750   // Construct the new function type using the new arguments.
751   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
752 
753   // Create the new function body and insert it into the module.
754   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
755   NF->copyAttributesFrom(F);
756 
757   // Patch the pointer to LLVM function in debug info descriptor.
758   NF->setSubprogram(F->getSubprogram());
759   F->setSubprogram(nullptr);
760 
761   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
762         << "From: " << *F);
763 
764   // Recompute the parameter attributes list based on the new arguments for
765   // the function.
766   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
767   AttributesVec.clear();
768 
769   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
770   NF->takeName(F);
771 
772   // Get a new callgraph node for NF.
773   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
774 
775   // Loop over all of the callers of the function, transforming the call sites
776   // to pass in the loaded pointers.
777   //
778   SmallVector<Value*, 16> Args;
779   while (!F->use_empty()) {
780     CallSite CS(F->user_back());
781     assert(CS.getCalledFunction() == F);
782     Instruction *Call = CS.getInstruction();
783     const AttributeSet &CallPAL = CS.getAttributes();
784 
785     // Add any return attributes.
786     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
787       AttributesVec.push_back(AttributeSet::get(F->getContext(),
788                                                 CallPAL.getRetAttributes()));
789 
790     // Loop over the operands, inserting GEP and loads in the caller as
791     // appropriate.
792     CallSite::arg_iterator AI = CS.arg_begin();
793     ArgIndex = 1;
794     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
795          I != E; ++I, ++AI, ++ArgIndex)
796       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
797         Args.push_back(*AI);          // Unmodified argument
798 
799         if (CallPAL.hasAttributes(ArgIndex)) {
800           AttrBuilder B(CallPAL, ArgIndex);
801           AttributesVec.
802             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
803         }
804       } else if (ByValArgsToTransform.count(&*I)) {
805         // Emit a GEP and load for each element of the struct.
806         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
807         StructType *STy = cast<StructType>(AgTy);
808         Value *Idxs[2] = {
809               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
810         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
811           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
812           Value *Idx = GetElementPtrInst::Create(
813               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
814           // TODO: Tell AA about the new values?
815           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
816         }
817       } else if (!I->use_empty()) {
818         // Non-dead argument: insert GEPs and loads as appropriate.
819         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
820         // Store the Value* version of the indices in here, but declare it now
821         // for reuse.
822         std::vector<Value*> Ops;
823         for (const auto &ArgIndex : ArgIndices) {
824           Value *V = *AI;
825           LoadInst *OrigLoad =
826               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
827           if (!ArgIndex.second.empty()) {
828             Ops.reserve(ArgIndex.second.size());
829             Type *ElTy = V->getType();
830             for (unsigned long II : ArgIndex.second) {
831               // Use i32 to index structs, and i64 for others (pointers/arrays).
832               // This satisfies GEP constraints.
833               Type *IdxTy = (ElTy->isStructTy() ?
834                     Type::getInt32Ty(F->getContext()) :
835                     Type::getInt64Ty(F->getContext()));
836               Ops.push_back(ConstantInt::get(IdxTy, II));
837               // Keep track of the type we're currently indexing.
838               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
839             }
840             // And create a GEP to extract those indices.
841             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
842                                           V->getName() + ".idx", Call);
843             Ops.clear();
844           }
845           // Since we're replacing a load make sure we take the alignment
846           // of the previous load.
847           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
848           newLoad->setAlignment(OrigLoad->getAlignment());
849           // Transfer the AA info too.
850           AAMDNodes AAInfo;
851           OrigLoad->getAAMetadata(AAInfo);
852           newLoad->setAAMetadata(AAInfo);
853 
854           Args.push_back(newLoad);
855         }
856       }
857 
858     // Push any varargs arguments on the list.
859     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
860       Args.push_back(*AI);
861       if (CallPAL.hasAttributes(ArgIndex)) {
862         AttrBuilder B(CallPAL, ArgIndex);
863         AttributesVec.
864           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
865       }
866     }
867 
868     // Add any function attributes.
869     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
870       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
871                                                 CallPAL.getFnAttributes()));
872 
873     SmallVector<OperandBundleDef, 1> OpBundles;
874     CS.getOperandBundlesAsDefs(OpBundles);
875 
876     Instruction *New;
877     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
878       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
879                                Args, OpBundles, "", Call);
880       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
881       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
882                                                             AttributesVec));
883     } else {
884       New = CallInst::Create(NF, Args, OpBundles, "", Call);
885       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
886       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
887                                                           AttributesVec));
888       if (cast<CallInst>(Call)->isTailCall())
889         cast<CallInst>(New)->setTailCall();
890     }
891     New->setDebugLoc(Call->getDebugLoc());
892     Args.clear();
893     AttributesVec.clear();
894 
895     // Update the callgraph to know that the callsite has been transformed.
896     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
897     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
898 
899     if (!Call->use_empty()) {
900       Call->replaceAllUsesWith(New);
901       New->takeName(Call);
902     }
903 
904     // Finally, remove the old call from the program, reducing the use-count of
905     // F.
906     Call->eraseFromParent();
907   }
908 
909   // Since we have now created the new function, splice the body of the old
910   // function right into the new function, leaving the old rotting hulk of the
911   // function empty.
912   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
913 
914   // Loop over the argument list, transferring uses of the old arguments over to
915   // the new arguments, also transferring over the names as well.
916   //
917   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
918        I2 = NF->arg_begin(); I != E; ++I) {
919     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
920       // If this is an unmodified argument, move the name and users over to the
921       // new version.
922       I->replaceAllUsesWith(&*I2);
923       I2->takeName(&*I);
924       ++I2;
925       continue;
926     }
927 
928     if (ByValArgsToTransform.count(&*I)) {
929       // In the callee, we create an alloca, and store each of the new incoming
930       // arguments into the alloca.
931       Instruction *InsertPt = &NF->begin()->front();
932 
933       // Just add all the struct element types.
934       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
935       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
936       StructType *STy = cast<StructType>(AgTy);
937       Value *Idxs[2] = {
938             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
939 
940       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
941         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
942         Value *Idx = GetElementPtrInst::Create(
943             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
944             InsertPt);
945         I2->setName(I->getName()+"."+Twine(i));
946         new StoreInst(&*I2++, Idx, InsertPt);
947       }
948 
949       // Anything that used the arg should now use the alloca.
950       I->replaceAllUsesWith(TheAlloca);
951       TheAlloca->takeName(&*I);
952 
953       // If the alloca is used in a call, we must clear the tail flag since
954       // the callee now uses an alloca from the caller.
955       for (User *U : TheAlloca->users()) {
956         CallInst *Call = dyn_cast<CallInst>(U);
957         if (!Call)
958           continue;
959         Call->setTailCall(false);
960       }
961       continue;
962     }
963 
964     if (I->use_empty())
965       continue;
966 
967     // Otherwise, if we promoted this argument, then all users are load
968     // instructions (or GEPs with only load users), and all loads should be
969     // using the new argument that we added.
970     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
971 
972     while (!I->use_empty()) {
973       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
974         assert(ArgIndices.begin()->second.empty() &&
975                "Load element should sort to front!");
976         I2->setName(I->getName()+".val");
977         LI->replaceAllUsesWith(&*I2);
978         LI->eraseFromParent();
979         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
980               << "' in function '" << F->getName() << "'\n");
981       } else {
982         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
983         IndicesVector Operands;
984         Operands.reserve(GEP->getNumIndices());
985         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
986              II != IE; ++II)
987           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
988 
989         // GEPs with a single 0 index can be merged with direct loads
990         if (Operands.size() == 1 && Operands.front() == 0)
991           Operands.clear();
992 
993         Function::arg_iterator TheArg = I2;
994         for (ScalarizeTable::iterator It = ArgIndices.begin();
995              It->second != Operands; ++It, ++TheArg) {
996           assert(It != ArgIndices.end() && "GEP not handled??");
997         }
998 
999         std::string NewName = I->getName();
1000         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
1001             NewName += "." + utostr(Operands[i]);
1002         }
1003         NewName += ".val";
1004         TheArg->setName(NewName);
1005 
1006         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
1007               << "' of function '" << NF->getName() << "'\n");
1008 
1009         // All of the uses must be load instructions.  Replace them all with
1010         // the argument specified by ArgNo.
1011         while (!GEP->use_empty()) {
1012           LoadInst *L = cast<LoadInst>(GEP->user_back());
1013           L->replaceAllUsesWith(&*TheArg);
1014           L->eraseFromParent();
1015         }
1016         GEP->eraseFromParent();
1017       }
1018     }
1019 
1020     // Increment I2 past all of the arguments added for this promoted pointer.
1021     std::advance(I2, ArgIndices.size());
1022   }
1023 
1024   NF_CGN->stealCalledFunctionsFrom(CG[F]);
1025 
1026   // Now that the old function is dead, delete it.  If there is a dangling
1027   // reference to the CallgraphNode, just leave the dead function around for
1028   // someone else to nuke.
1029   CallGraphNode *CGN = CG[F];
1030   if (CGN->getNumReferences() == 0)
1031     delete CG.removeFunctionFromModule(CGN);
1032   else
1033     F->setLinkage(Function::ExternalLinkage);
1034 
1035   return NF_CGN;
1036 }
1037 
1038 bool ArgPromotion::doInitialization(CallGraph &CG) {
1039   return CallGraphSCCPass::doInitialization(CG);
1040 }
1041