1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/None.h" 35 #include "llvm/ADT/Optional.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/ADT/Twine.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/CGSCCPassManager.h" 46 #include "llvm/Analysis/CallGraph.h" 47 #include "llvm/Analysis/CallGraphSCCPass.h" 48 #include "llvm/Analysis/LazyCallGraph.h" 49 #include "llvm/Analysis/Loads.h" 50 #include "llvm/Analysis/MemoryLocation.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/Pass.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/IPO.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <iterator> 81 #include <map> 82 #include <set> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "argpromotion" 90 91 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 92 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 93 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 94 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 95 96 /// A vector used to hold the indices of a single GEP instruction 97 using IndicesVector = std::vector<uint64_t>; 98 99 /// DoPromotion - This method actually performs the promotion of the specified 100 /// arguments, and returns the new function. At this point, we know that it's 101 /// safe to do so. 102 static Function * 103 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 104 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 105 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 106 ReplaceCallSite) { 107 // Start by computing a new prototype for the function, which is the same as 108 // the old function, but has modified arguments. 109 FunctionType *FTy = F->getFunctionType(); 110 std::vector<Type *> Params; 111 112 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 113 114 // ScalarizedElements - If we are promoting a pointer that has elements 115 // accessed out of it, keep track of which elements are accessed so that we 116 // can add one argument for each. 117 // 118 // Arguments that are directly loaded will have a zero element value here, to 119 // handle cases where there are both a direct load and GEP accesses. 120 std::map<Argument *, ScalarizeTable> ScalarizedElements; 121 122 // OriginalLoads - Keep track of a representative load instruction from the 123 // original function so that we can tell the alias analysis implementation 124 // what the new GEP/Load instructions we are inserting look like. 125 // We need to keep the original loads for each argument and the elements 126 // of the argument that are accessed. 127 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 128 129 // Attribute - Keep track of the parameter attributes for the arguments 130 // that we are *not* promoting. For the ones that we do promote, the parameter 131 // attributes are lost 132 SmallVector<AttributeSet, 8> ArgAttrVec; 133 AttributeList PAL = F->getAttributes(); 134 135 // First, determine the new argument list 136 unsigned ArgNo = 0; 137 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 138 ++I, ++ArgNo) { 139 if (ByValArgsToTransform.count(&*I)) { 140 // Simple byval argument? Just add all the struct element types. 141 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 142 StructType *STy = cast<StructType>(AgTy); 143 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 144 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 145 AttributeSet()); 146 ++NumByValArgsPromoted; 147 } else if (!ArgsToPromote.count(&*I)) { 148 // Unchanged argument 149 Params.push_back(I->getType()); 150 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 151 } else if (I->use_empty()) { 152 // Dead argument (which are always marked as promotable) 153 ++NumArgumentsDead; 154 155 // There may be remaining metadata uses of the argument for things like 156 // llvm.dbg.value. Replace them with undef. 157 I->replaceAllUsesWith(UndefValue::get(I->getType())); 158 } else { 159 // Okay, this is being promoted. This means that the only uses are loads 160 // or GEPs which are only used by loads 161 162 // In this table, we will track which indices are loaded from the argument 163 // (where direct loads are tracked as no indices). 164 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 165 for (User *U : I->users()) { 166 Instruction *UI = cast<Instruction>(U); 167 Type *SrcTy; 168 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 169 SrcTy = L->getType(); 170 else 171 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 172 IndicesVector Indices; 173 Indices.reserve(UI->getNumOperands() - 1); 174 // Since loads will only have a single operand, and GEPs only a single 175 // non-index operand, this will record direct loads without any indices, 176 // and gep+loads with the GEP indices. 177 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 178 II != IE; ++II) 179 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 180 // GEPs with a single 0 index can be merged with direct loads 181 if (Indices.size() == 1 && Indices.front() == 0) 182 Indices.clear(); 183 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 184 LoadInst *OrigLoad; 185 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 186 OrigLoad = L; 187 else 188 // Take any load, we will use it only to update Alias Analysis 189 OrigLoad = cast<LoadInst>(UI->user_back()); 190 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 191 } 192 193 // Add a parameter to the function for each element passed in. 194 for (const auto &ArgIndex : ArgIndices) { 195 // not allowed to dereference ->begin() if size() is 0 196 Params.push_back(GetElementPtrInst::getIndexedType( 197 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 198 ArgIndex.second)); 199 ArgAttrVec.push_back(AttributeSet()); 200 assert(Params.back()); 201 } 202 203 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 204 ++NumArgumentsPromoted; 205 else 206 ++NumAggregatesPromoted; 207 } 208 } 209 210 Type *RetTy = FTy->getReturnType(); 211 212 // Construct the new function type using the new arguments. 213 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 214 215 // Create the new function body and insert it into the module. 216 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 217 NF->copyAttributesFrom(F); 218 219 // Patch the pointer to LLVM function in debug info descriptor. 220 NF->setSubprogram(F->getSubprogram()); 221 F->setSubprogram(nullptr); 222 223 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 224 << "From: " << *F); 225 226 // Recompute the parameter attributes list based on the new arguments for 227 // the function. 228 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 229 PAL.getRetAttributes(), ArgAttrVec)); 230 ArgAttrVec.clear(); 231 232 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 233 NF->takeName(F); 234 235 // Loop over all of the callers of the function, transforming the call sites 236 // to pass in the loaded pointers. 237 // 238 SmallVector<Value *, 16> Args; 239 while (!F->use_empty()) { 240 CallSite CS(F->user_back()); 241 assert(CS.getCalledFunction() == F); 242 Instruction *Call = CS.getInstruction(); 243 const AttributeList &CallPAL = CS.getAttributes(); 244 245 // Loop over the operands, inserting GEP and loads in the caller as 246 // appropriate. 247 CallSite::arg_iterator AI = CS.arg_begin(); 248 ArgNo = 0; 249 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 250 ++I, ++AI, ++ArgNo) 251 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 252 Args.push_back(*AI); // Unmodified argument 253 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 254 } else if (ByValArgsToTransform.count(&*I)) { 255 // Emit a GEP and load for each element of the struct. 256 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 257 StructType *STy = cast<StructType>(AgTy); 258 Value *Idxs[2] = { 259 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 260 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 261 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 262 Value *Idx = GetElementPtrInst::Create( 263 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 264 // TODO: Tell AA about the new values? 265 Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call)); 266 ArgAttrVec.push_back(AttributeSet()); 267 } 268 } else if (!I->use_empty()) { 269 // Non-dead argument: insert GEPs and loads as appropriate. 270 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 271 // Store the Value* version of the indices in here, but declare it now 272 // for reuse. 273 std::vector<Value *> Ops; 274 for (const auto &ArgIndex : ArgIndices) { 275 Value *V = *AI; 276 LoadInst *OrigLoad = 277 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 278 if (!ArgIndex.second.empty()) { 279 Ops.reserve(ArgIndex.second.size()); 280 Type *ElTy = V->getType(); 281 for (auto II : ArgIndex.second) { 282 // Use i32 to index structs, and i64 for others (pointers/arrays). 283 // This satisfies GEP constraints. 284 Type *IdxTy = 285 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 286 : Type::getInt64Ty(F->getContext())); 287 Ops.push_back(ConstantInt::get(IdxTy, II)); 288 // Keep track of the type we're currently indexing. 289 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 290 ElTy = ElPTy->getElementType(); 291 else 292 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 293 } 294 // And create a GEP to extract those indices. 295 V = GetElementPtrInst::Create(ArgIndex.first, V, Ops, 296 V->getName() + ".idx", Call); 297 Ops.clear(); 298 } 299 // Since we're replacing a load make sure we take the alignment 300 // of the previous load. 301 LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call); 302 newLoad->setAlignment(OrigLoad->getAlignment()); 303 // Transfer the AA info too. 304 AAMDNodes AAInfo; 305 OrigLoad->getAAMetadata(AAInfo); 306 newLoad->setAAMetadata(AAInfo); 307 308 Args.push_back(newLoad); 309 ArgAttrVec.push_back(AttributeSet()); 310 } 311 } 312 313 // Push any varargs arguments on the list. 314 for (; AI != CS.arg_end(); ++AI, ++ArgNo) { 315 Args.push_back(*AI); 316 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 317 } 318 319 SmallVector<OperandBundleDef, 1> OpBundles; 320 CS.getOperandBundlesAsDefs(OpBundles); 321 322 CallSite NewCS; 323 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 324 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 325 Args, OpBundles, "", Call); 326 } else { 327 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); 328 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 329 NewCS = NewCall; 330 } 331 NewCS.setCallingConv(CS.getCallingConv()); 332 NewCS.setAttributes( 333 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 334 CallPAL.getRetAttributes(), ArgAttrVec)); 335 NewCS->setDebugLoc(Call->getDebugLoc()); 336 uint64_t W; 337 if (Call->extractProfTotalWeight(W)) 338 NewCS->setProfWeight(W); 339 Args.clear(); 340 ArgAttrVec.clear(); 341 342 // Update the callgraph to know that the callsite has been transformed. 343 if (ReplaceCallSite) 344 (*ReplaceCallSite)(CS, NewCS); 345 346 if (!Call->use_empty()) { 347 Call->replaceAllUsesWith(NewCS.getInstruction()); 348 NewCS->takeName(Call); 349 } 350 351 // Finally, remove the old call from the program, reducing the use-count of 352 // F. 353 Call->eraseFromParent(); 354 } 355 356 const DataLayout &DL = F->getParent()->getDataLayout(); 357 358 // Since we have now created the new function, splice the body of the old 359 // function right into the new function, leaving the old rotting hulk of the 360 // function empty. 361 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 362 363 // Loop over the argument list, transferring uses of the old arguments over to 364 // the new arguments, also transferring over the names as well. 365 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 366 I2 = NF->arg_begin(); 367 I != E; ++I) { 368 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 369 // If this is an unmodified argument, move the name and users over to the 370 // new version. 371 I->replaceAllUsesWith(&*I2); 372 I2->takeName(&*I); 373 ++I2; 374 continue; 375 } 376 377 if (ByValArgsToTransform.count(&*I)) { 378 // In the callee, we create an alloca, and store each of the new incoming 379 // arguments into the alloca. 380 Instruction *InsertPt = &NF->begin()->front(); 381 382 // Just add all the struct element types. 383 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 384 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 385 I->getParamAlignment(), "", InsertPt); 386 StructType *STy = cast<StructType>(AgTy); 387 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 388 nullptr}; 389 390 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 391 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 392 Value *Idx = GetElementPtrInst::Create( 393 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 394 InsertPt); 395 I2->setName(I->getName() + "." + Twine(i)); 396 new StoreInst(&*I2++, Idx, InsertPt); 397 } 398 399 // Anything that used the arg should now use the alloca. 400 I->replaceAllUsesWith(TheAlloca); 401 TheAlloca->takeName(&*I); 402 403 // If the alloca is used in a call, we must clear the tail flag since 404 // the callee now uses an alloca from the caller. 405 for (User *U : TheAlloca->users()) { 406 CallInst *Call = dyn_cast<CallInst>(U); 407 if (!Call) 408 continue; 409 Call->setTailCall(false); 410 } 411 continue; 412 } 413 414 if (I->use_empty()) 415 continue; 416 417 // Otherwise, if we promoted this argument, then all users are load 418 // instructions (or GEPs with only load users), and all loads should be 419 // using the new argument that we added. 420 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 421 422 while (!I->use_empty()) { 423 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 424 assert(ArgIndices.begin()->second.empty() && 425 "Load element should sort to front!"); 426 I2->setName(I->getName() + ".val"); 427 LI->replaceAllUsesWith(&*I2); 428 LI->eraseFromParent(); 429 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 430 << "' in function '" << F->getName() << "'\n"); 431 } else { 432 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 433 IndicesVector Operands; 434 Operands.reserve(GEP->getNumIndices()); 435 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 436 II != IE; ++II) 437 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 438 439 // GEPs with a single 0 index can be merged with direct loads 440 if (Operands.size() == 1 && Operands.front() == 0) 441 Operands.clear(); 442 443 Function::arg_iterator TheArg = I2; 444 for (ScalarizeTable::iterator It = ArgIndices.begin(); 445 It->second != Operands; ++It, ++TheArg) { 446 assert(It != ArgIndices.end() && "GEP not handled??"); 447 } 448 449 std::string NewName = I->getName(); 450 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 451 NewName += "." + utostr(Operands[i]); 452 } 453 NewName += ".val"; 454 TheArg->setName(NewName); 455 456 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 457 << "' of function '" << NF->getName() << "'\n"); 458 459 // All of the uses must be load instructions. Replace them all with 460 // the argument specified by ArgNo. 461 while (!GEP->use_empty()) { 462 LoadInst *L = cast<LoadInst>(GEP->user_back()); 463 L->replaceAllUsesWith(&*TheArg); 464 L->eraseFromParent(); 465 } 466 GEP->eraseFromParent(); 467 } 468 } 469 470 // Increment I2 past all of the arguments added for this promoted pointer. 471 std::advance(I2, ArgIndices.size()); 472 } 473 474 return NF; 475 } 476 477 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 478 /// all callees pass in a valid pointer for the specified function argument. 479 static bool allCallersPassInValidPointerForArgument(Argument *Arg) { 480 Function *Callee = Arg->getParent(); 481 const DataLayout &DL = Callee->getParent()->getDataLayout(); 482 483 unsigned ArgNo = Arg->getArgNo(); 484 485 // Look at all call sites of the function. At this point we know we only have 486 // direct callees. 487 for (User *U : Callee->users()) { 488 CallSite CS(U); 489 assert(CS && "Should only have direct calls!"); 490 491 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 492 return false; 493 } 494 return true; 495 } 496 497 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 498 /// that is greater than or equal to the size of prefix, and each of the 499 /// elements in Prefix is the same as the corresponding elements in Longer. 500 /// 501 /// This means it also returns true when Prefix and Longer are equal! 502 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 503 if (Prefix.size() > Longer.size()) 504 return false; 505 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 506 } 507 508 /// Checks if Indices, or a prefix of Indices, is in Set. 509 static bool prefixIn(const IndicesVector &Indices, 510 std::set<IndicesVector> &Set) { 511 std::set<IndicesVector>::iterator Low; 512 Low = Set.upper_bound(Indices); 513 if (Low != Set.begin()) 514 Low--; 515 // Low is now the last element smaller than or equal to Indices. This means 516 // it points to a prefix of Indices (possibly Indices itself), if such 517 // prefix exists. 518 // 519 // This load is safe if any prefix of its operands is safe to load. 520 return Low != Set.end() && isPrefix(*Low, Indices); 521 } 522 523 /// Mark the given indices (ToMark) as safe in the given set of indices 524 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 525 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 526 /// already. Furthermore, any indices that Indices is itself a prefix of, are 527 /// removed from Safe (since they are implicitely safe because of Indices now). 528 static void markIndicesSafe(const IndicesVector &ToMark, 529 std::set<IndicesVector> &Safe) { 530 std::set<IndicesVector>::iterator Low; 531 Low = Safe.upper_bound(ToMark); 532 // Guard against the case where Safe is empty 533 if (Low != Safe.begin()) 534 Low--; 535 // Low is now the last element smaller than or equal to Indices. This 536 // means it points to a prefix of Indices (possibly Indices itself), if 537 // such prefix exists. 538 if (Low != Safe.end()) { 539 if (isPrefix(*Low, ToMark)) 540 // If there is already a prefix of these indices (or exactly these 541 // indices) marked a safe, don't bother adding these indices 542 return; 543 544 // Increment Low, so we can use it as a "insert before" hint 545 ++Low; 546 } 547 // Insert 548 Low = Safe.insert(Low, ToMark); 549 ++Low; 550 // If there we're a prefix of longer index list(s), remove those 551 std::set<IndicesVector>::iterator End = Safe.end(); 552 while (Low != End && isPrefix(ToMark, *Low)) { 553 std::set<IndicesVector>::iterator Remove = Low; 554 ++Low; 555 Safe.erase(Remove); 556 } 557 } 558 559 /// isSafeToPromoteArgument - As you might guess from the name of this method, 560 /// it checks to see if it is both safe and useful to promote the argument. 561 /// This method limits promotion of aggregates to only promote up to three 562 /// elements of the aggregate in order to avoid exploding the number of 563 /// arguments passed in. 564 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, 565 AAResults &AAR, unsigned MaxElements) { 566 using GEPIndicesSet = std::set<IndicesVector>; 567 568 // Quick exit for unused arguments 569 if (Arg->use_empty()) 570 return true; 571 572 // We can only promote this argument if all of the uses are loads, or are GEP 573 // instructions (with constant indices) that are subsequently loaded. 574 // 575 // Promoting the argument causes it to be loaded in the caller 576 // unconditionally. This is only safe if we can prove that either the load 577 // would have happened in the callee anyway (ie, there is a load in the entry 578 // block) or the pointer passed in at every call site is guaranteed to be 579 // valid. 580 // In the former case, invalid loads can happen, but would have happened 581 // anyway, in the latter case, invalid loads won't happen. This prevents us 582 // from introducing an invalid load that wouldn't have happened in the 583 // original code. 584 // 585 // This set will contain all sets of indices that are loaded in the entry 586 // block, and thus are safe to unconditionally load in the caller. 587 // 588 // This optimization is also safe for InAlloca parameters, because it verifies 589 // that the address isn't captured. 590 GEPIndicesSet SafeToUnconditionallyLoad; 591 592 // This set contains all the sets of indices that we are planning to promote. 593 // This makes it possible to limit the number of arguments added. 594 GEPIndicesSet ToPromote; 595 596 // If the pointer is always valid, any load with first index 0 is valid. 597 if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg)) 598 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 599 600 // First, iterate the entry block and mark loads of (geps of) arguments as 601 // safe. 602 BasicBlock &EntryBlock = Arg->getParent()->front(); 603 // Declare this here so we can reuse it 604 IndicesVector Indices; 605 for (Instruction &I : EntryBlock) 606 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 607 Value *V = LI->getPointerOperand(); 608 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 609 V = GEP->getPointerOperand(); 610 if (V == Arg) { 611 // This load actually loads (part of) Arg? Check the indices then. 612 Indices.reserve(GEP->getNumIndices()); 613 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 614 II != IE; ++II) 615 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 616 Indices.push_back(CI->getSExtValue()); 617 else 618 // We found a non-constant GEP index for this argument? Bail out 619 // right away, can't promote this argument at all. 620 return false; 621 622 // Indices checked out, mark them as safe 623 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 624 Indices.clear(); 625 } 626 } else if (V == Arg) { 627 // Direct loads are equivalent to a GEP with a single 0 index. 628 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 629 } 630 } 631 632 // Now, iterate all uses of the argument to see if there are any uses that are 633 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 634 SmallVector<LoadInst *, 16> Loads; 635 IndicesVector Operands; 636 for (Use &U : Arg->uses()) { 637 User *UR = U.getUser(); 638 Operands.clear(); 639 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 640 // Don't hack volatile/atomic loads 641 if (!LI->isSimple()) 642 return false; 643 Loads.push_back(LI); 644 // Direct loads are equivalent to a GEP with a zero index and then a load. 645 Operands.push_back(0); 646 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 647 if (GEP->use_empty()) { 648 // Dead GEP's cause trouble later. Just remove them if we run into 649 // them. 650 GEP->eraseFromParent(); 651 // TODO: This runs the above loop over and over again for dead GEPs 652 // Couldn't we just do increment the UI iterator earlier and erase the 653 // use? 654 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, 655 MaxElements); 656 } 657 658 // Ensure that all of the indices are constants. 659 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 660 ++i) 661 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 662 Operands.push_back(C->getSExtValue()); 663 else 664 return false; // Not a constant operand GEP! 665 666 // Ensure that the only users of the GEP are load instructions. 667 for (User *GEPU : GEP->users()) 668 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 669 // Don't hack volatile/atomic loads 670 if (!LI->isSimple()) 671 return false; 672 Loads.push_back(LI); 673 } else { 674 // Other uses than load? 675 return false; 676 } 677 } else { 678 return false; // Not a load or a GEP. 679 } 680 681 // Now, see if it is safe to promote this load / loads of this GEP. Loading 682 // is safe if Operands, or a prefix of Operands, is marked as safe. 683 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 684 return false; 685 686 // See if we are already promoting a load with these indices. If not, check 687 // to make sure that we aren't promoting too many elements. If so, nothing 688 // to do. 689 if (ToPromote.find(Operands) == ToPromote.end()) { 690 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 691 DEBUG(dbgs() << "argpromotion not promoting argument '" 692 << Arg->getName() 693 << "' because it would require adding more " 694 << "than " << MaxElements 695 << " arguments to the function.\n"); 696 // We limit aggregate promotion to only promoting up to a fixed number 697 // of elements of the aggregate. 698 return false; 699 } 700 ToPromote.insert(std::move(Operands)); 701 } 702 } 703 704 if (Loads.empty()) 705 return true; // No users, this is a dead argument. 706 707 // Okay, now we know that the argument is only used by load instructions and 708 // it is safe to unconditionally perform all of them. Use alias analysis to 709 // check to see if the pointer is guaranteed to not be modified from entry of 710 // the function to each of the load instructions. 711 712 // Because there could be several/many load instructions, remember which 713 // blocks we know to be transparent to the load. 714 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 715 716 for (LoadInst *Load : Loads) { 717 // Check to see if the load is invalidated from the start of the block to 718 // the load itself. 719 BasicBlock *BB = Load->getParent(); 720 721 MemoryLocation Loc = MemoryLocation::get(Load); 722 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 723 return false; // Pointer is invalidated! 724 725 // Now check every path from the entry block to the load for transparency. 726 // To do this, we perform a depth first search on the inverse CFG from the 727 // loading block. 728 for (BasicBlock *P : predecessors(BB)) { 729 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 730 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 731 return false; 732 } 733 } 734 735 // If the path from the entry of the function to each load is free of 736 // instructions that potentially invalidate the load, we can make the 737 // transformation! 738 return true; 739 } 740 741 /// \brief Checks if a type could have padding bytes. 742 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 743 // There is no size information, so be conservative. 744 if (!type->isSized()) 745 return false; 746 747 // If the alloc size is not equal to the storage size, then there are padding 748 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 749 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 750 return false; 751 752 if (!isa<CompositeType>(type)) 753 return true; 754 755 // For homogenous sequential types, check for padding within members. 756 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 757 return isDenselyPacked(seqTy->getElementType(), DL); 758 759 // Check for padding within and between elements of a struct. 760 StructType *StructTy = cast<StructType>(type); 761 const StructLayout *Layout = DL.getStructLayout(StructTy); 762 uint64_t StartPos = 0; 763 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 764 Type *ElTy = StructTy->getElementType(i); 765 if (!isDenselyPacked(ElTy, DL)) 766 return false; 767 if (StartPos != Layout->getElementOffsetInBits(i)) 768 return false; 769 StartPos += DL.getTypeAllocSizeInBits(ElTy); 770 } 771 772 return true; 773 } 774 775 /// \brief Checks if the padding bytes of an argument could be accessed. 776 static bool canPaddingBeAccessed(Argument *arg) { 777 assert(arg->hasByValAttr()); 778 779 // Track all the pointers to the argument to make sure they are not captured. 780 SmallPtrSet<Value *, 16> PtrValues; 781 PtrValues.insert(arg); 782 783 // Track all of the stores. 784 SmallVector<StoreInst *, 16> Stores; 785 786 // Scan through the uses recursively to make sure the pointer is always used 787 // sanely. 788 SmallVector<Value *, 16> WorkList; 789 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 790 while (!WorkList.empty()) { 791 Value *V = WorkList.back(); 792 WorkList.pop_back(); 793 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 794 if (PtrValues.insert(V).second) 795 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 796 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 797 Stores.push_back(Store); 798 } else if (!isa<LoadInst>(V)) { 799 return true; 800 } 801 } 802 803 // Check to make sure the pointers aren't captured 804 for (StoreInst *Store : Stores) 805 if (PtrValues.count(Store->getValueOperand())) 806 return true; 807 808 return false; 809 } 810 811 /// PromoteArguments - This method checks the specified function to see if there 812 /// are any promotable arguments and if it is safe to promote the function (for 813 /// example, all callers are direct). If safe to promote some arguments, it 814 /// calls the DoPromotion method. 815 static Function * 816 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 817 unsigned MaxElements, 818 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 819 ReplaceCallSite) { 820 // Make sure that it is local to this module. 821 if (!F->hasLocalLinkage()) 822 return nullptr; 823 824 // Don't promote arguments for variadic functions. Adding, removing, or 825 // changing non-pack parameters can change the classification of pack 826 // parameters. Frontends encode that classification at the call site in the 827 // IR, while in the callee the classification is determined dynamically based 828 // on the number of registers consumed so far. 829 if (F->isVarArg()) 830 return nullptr; 831 832 // First check: see if there are any pointer arguments! If not, quick exit. 833 SmallVector<Argument *, 16> PointerArgs; 834 for (Argument &I : F->args()) 835 if (I.getType()->isPointerTy()) 836 PointerArgs.push_back(&I); 837 if (PointerArgs.empty()) 838 return nullptr; 839 840 // Second check: make sure that all callers are direct callers. We can't 841 // transform functions that have indirect callers. Also see if the function 842 // is self-recursive. 843 bool isSelfRecursive = false; 844 for (Use &U : F->uses()) { 845 CallSite CS(U.getUser()); 846 // Must be a direct call. 847 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) 848 return nullptr; 849 850 if (CS.getInstruction()->getParent()->getParent() == F) 851 isSelfRecursive = true; 852 } 853 854 const DataLayout &DL = F->getParent()->getDataLayout(); 855 856 AAResults &AAR = AARGetter(*F); 857 858 // Check to see which arguments are promotable. If an argument is promotable, 859 // add it to ArgsToPromote. 860 SmallPtrSet<Argument *, 8> ArgsToPromote; 861 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 862 for (Argument *PtrArg : PointerArgs) { 863 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 864 865 // Replace sret attribute with noalias. This reduces register pressure by 866 // avoiding a register copy. 867 if (PtrArg->hasStructRetAttr()) { 868 unsigned ArgNo = PtrArg->getArgNo(); 869 F->removeParamAttr(ArgNo, Attribute::StructRet); 870 F->addParamAttr(ArgNo, Attribute::NoAlias); 871 for (Use &U : F->uses()) { 872 CallSite CS(U.getUser()); 873 CS.removeParamAttr(ArgNo, Attribute::StructRet); 874 CS.addParamAttr(ArgNo, Attribute::NoAlias); 875 } 876 } 877 878 // If this is a byval argument, and if the aggregate type is small, just 879 // pass the elements, which is always safe, if the passed value is densely 880 // packed or if we can prove the padding bytes are never accessed. This does 881 // not apply to inalloca. 882 bool isSafeToPromote = 883 PtrArg->hasByValAttr() && 884 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 885 if (isSafeToPromote) { 886 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 887 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 888 DEBUG(dbgs() << "argpromotion disable promoting argument '" 889 << PtrArg->getName() 890 << "' because it would require adding more" 891 << " than " << MaxElements 892 << " arguments to the function.\n"); 893 continue; 894 } 895 896 // If all the elements are single-value types, we can promote it. 897 bool AllSimple = true; 898 for (const auto *EltTy : STy->elements()) { 899 if (!EltTy->isSingleValueType()) { 900 AllSimple = false; 901 break; 902 } 903 } 904 905 // Safe to transform, don't even bother trying to "promote" it. 906 // Passing the elements as a scalar will allow sroa to hack on 907 // the new alloca we introduce. 908 if (AllSimple) { 909 ByValArgsToTransform.insert(PtrArg); 910 continue; 911 } 912 } 913 } 914 915 // If the argument is a recursive type and we're in a recursive 916 // function, we could end up infinitely peeling the function argument. 917 if (isSelfRecursive) { 918 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 919 bool RecursiveType = false; 920 for (const auto *EltTy : STy->elements()) { 921 if (EltTy == PtrArg->getType()) { 922 RecursiveType = true; 923 break; 924 } 925 } 926 if (RecursiveType) 927 continue; 928 } 929 } 930 931 // Otherwise, see if we can promote the pointer to its value. 932 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, 933 MaxElements)) 934 ArgsToPromote.insert(PtrArg); 935 } 936 937 // No promotable pointer arguments. 938 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 939 return nullptr; 940 941 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 942 } 943 944 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 945 CGSCCAnalysisManager &AM, 946 LazyCallGraph &CG, 947 CGSCCUpdateResult &UR) { 948 bool Changed = false, LocalChange; 949 950 // Iterate until we stop promoting from this SCC. 951 do { 952 LocalChange = false; 953 954 for (LazyCallGraph::Node &N : C) { 955 Function &OldF = N.getFunction(); 956 957 FunctionAnalysisManager &FAM = 958 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 959 // FIXME: This lambda must only be used with this function. We should 960 // skip the lambda and just get the AA results directly. 961 auto AARGetter = [&](Function &F) -> AAResults & { 962 assert(&F == &OldF && "Called with an unexpected function!"); 963 return FAM.getResult<AAManager>(F); 964 }; 965 966 Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None); 967 if (!NewF) 968 continue; 969 LocalChange = true; 970 971 // Directly substitute the functions in the call graph. Note that this 972 // requires the old function to be completely dead and completely 973 // replaced by the new function. It does no call graph updates, it merely 974 // swaps out the particular function mapped to a particular node in the 975 // graph. 976 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 977 OldF.eraseFromParent(); 978 } 979 980 Changed |= LocalChange; 981 } while (LocalChange); 982 983 if (!Changed) 984 return PreservedAnalyses::all(); 985 986 return PreservedAnalyses::none(); 987 } 988 989 namespace { 990 991 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 992 struct ArgPromotion : public CallGraphSCCPass { 993 // Pass identification, replacement for typeid 994 static char ID; 995 996 explicit ArgPromotion(unsigned MaxElements = 3) 997 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 998 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 999 } 1000 1001 void getAnalysisUsage(AnalysisUsage &AU) const override { 1002 AU.addRequired<AssumptionCacheTracker>(); 1003 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1004 getAAResultsAnalysisUsage(AU); 1005 CallGraphSCCPass::getAnalysisUsage(AU); 1006 } 1007 1008 bool runOnSCC(CallGraphSCC &SCC) override; 1009 1010 private: 1011 using llvm::Pass::doInitialization; 1012 1013 bool doInitialization(CallGraph &CG) override; 1014 1015 /// The maximum number of elements to expand, or 0 for unlimited. 1016 unsigned MaxElements; 1017 }; 1018 1019 } // end anonymous namespace 1020 1021 char ArgPromotion::ID = 0; 1022 1023 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1024 "Promote 'by reference' arguments to scalars", false, 1025 false) 1026 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1027 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1028 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1029 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1030 "Promote 'by reference' arguments to scalars", false, false) 1031 1032 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1033 return new ArgPromotion(MaxElements); 1034 } 1035 1036 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1037 if (skipSCC(SCC)) 1038 return false; 1039 1040 // Get the callgraph information that we need to update to reflect our 1041 // changes. 1042 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1043 1044 LegacyAARGetter AARGetter(*this); 1045 1046 bool Changed = false, LocalChange; 1047 1048 // Iterate until we stop promoting from this SCC. 1049 do { 1050 LocalChange = false; 1051 // Attempt to promote arguments from all functions in this SCC. 1052 for (CallGraphNode *OldNode : SCC) { 1053 Function *OldF = OldNode->getFunction(); 1054 if (!OldF) 1055 continue; 1056 1057 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { 1058 Function *Caller = OldCS.getInstruction()->getParent()->getParent(); 1059 CallGraphNode *NewCalleeNode = 1060 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1061 CallGraphNode *CallerNode = CG[Caller]; 1062 CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode); 1063 }; 1064 1065 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1066 {ReplaceCallSite})) { 1067 LocalChange = true; 1068 1069 // Update the call graph for the newly promoted function. 1070 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1071 NewNode->stealCalledFunctionsFrom(OldNode); 1072 if (OldNode->getNumReferences() == 0) 1073 delete CG.removeFunctionFromModule(OldNode); 1074 else 1075 OldF->setLinkage(Function::ExternalLinkage); 1076 1077 // And updat ethe SCC we're iterating as well. 1078 SCC.ReplaceNode(OldNode, NewNode); 1079 } 1080 } 1081 // Remember that we changed something. 1082 Changed |= LocalChange; 1083 } while (LocalChange); 1084 1085 return Changed; 1086 } 1087 1088 bool ArgPromotion::doInitialization(CallGraph &CG) { 1089 return CallGraphSCCPass::doInitialization(CG); 1090 } 1091