1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/None.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CGSCCPassManager.h"
46 #include "llvm/Analysis/CallGraph.h"
47 #include "llvm/Analysis/CallGraphSCCPass.h"
48 #include "llvm/Analysis/LazyCallGraph.h"
49 #include "llvm/Analysis/Loads.h"
50 #include "llvm/Analysis/MemoryLocation.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/IPO.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <iterator>
81 #include <map>
82 #include <set>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "argpromotion"
90 
91 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
92 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
93 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
94 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
95 
96 /// A vector used to hold the indices of a single GEP instruction
97 using IndicesVector = std::vector<uint64_t>;
98 
99 /// DoPromotion - This method actually performs the promotion of the specified
100 /// arguments, and returns the new function.  At this point, we know that it's
101 /// safe to do so.
102 static Function *
103 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
104             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
105             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
106                 ReplaceCallSite) {
107   // Start by computing a new prototype for the function, which is the same as
108   // the old function, but has modified arguments.
109   FunctionType *FTy = F->getFunctionType();
110   std::vector<Type *> Params;
111 
112   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
113 
114   // ScalarizedElements - If we are promoting a pointer that has elements
115   // accessed out of it, keep track of which elements are accessed so that we
116   // can add one argument for each.
117   //
118   // Arguments that are directly loaded will have a zero element value here, to
119   // handle cases where there are both a direct load and GEP accesses.
120   std::map<Argument *, ScalarizeTable> ScalarizedElements;
121 
122   // OriginalLoads - Keep track of a representative load instruction from the
123   // original function so that we can tell the alias analysis implementation
124   // what the new GEP/Load instructions we are inserting look like.
125   // We need to keep the original loads for each argument and the elements
126   // of the argument that are accessed.
127   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
128 
129   // Attribute - Keep track of the parameter attributes for the arguments
130   // that we are *not* promoting. For the ones that we do promote, the parameter
131   // attributes are lost
132   SmallVector<AttributeSet, 8> ArgAttrVec;
133   AttributeList PAL = F->getAttributes();
134 
135   // First, determine the new argument list
136   unsigned ArgNo = 0;
137   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
138        ++I, ++ArgNo) {
139     if (ByValArgsToTransform.count(&*I)) {
140       // Simple byval argument? Just add all the struct element types.
141       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
142       StructType *STy = cast<StructType>(AgTy);
143       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
144       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
145                         AttributeSet());
146       ++NumByValArgsPromoted;
147     } else if (!ArgsToPromote.count(&*I)) {
148       // Unchanged argument
149       Params.push_back(I->getType());
150       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
151     } else if (I->use_empty()) {
152       // Dead argument (which are always marked as promotable)
153       ++NumArgumentsDead;
154 
155       // There may be remaining metadata uses of the argument for things like
156       // llvm.dbg.value. Replace them with undef.
157       I->replaceAllUsesWith(UndefValue::get(I->getType()));
158     } else {
159       // Okay, this is being promoted. This means that the only uses are loads
160       // or GEPs which are only used by loads
161 
162       // In this table, we will track which indices are loaded from the argument
163       // (where direct loads are tracked as no indices).
164       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
165       for (User *U : I->users()) {
166         Instruction *UI = cast<Instruction>(U);
167         Type *SrcTy;
168         if (LoadInst *L = dyn_cast<LoadInst>(UI))
169           SrcTy = L->getType();
170         else
171           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
172         IndicesVector Indices;
173         Indices.reserve(UI->getNumOperands() - 1);
174         // Since loads will only have a single operand, and GEPs only a single
175         // non-index operand, this will record direct loads without any indices,
176         // and gep+loads with the GEP indices.
177         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
178              II != IE; ++II)
179           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
180         // GEPs with a single 0 index can be merged with direct loads
181         if (Indices.size() == 1 && Indices.front() == 0)
182           Indices.clear();
183         ArgIndices.insert(std::make_pair(SrcTy, Indices));
184         LoadInst *OrigLoad;
185         if (LoadInst *L = dyn_cast<LoadInst>(UI))
186           OrigLoad = L;
187         else
188           // Take any load, we will use it only to update Alias Analysis
189           OrigLoad = cast<LoadInst>(UI->user_back());
190         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
191       }
192 
193       // Add a parameter to the function for each element passed in.
194       for (const auto &ArgIndex : ArgIndices) {
195         // not allowed to dereference ->begin() if size() is 0
196         Params.push_back(GetElementPtrInst::getIndexedType(
197             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
198             ArgIndex.second));
199         ArgAttrVec.push_back(AttributeSet());
200         assert(Params.back());
201       }
202 
203       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
204         ++NumArgumentsPromoted;
205       else
206         ++NumAggregatesPromoted;
207     }
208   }
209 
210   Type *RetTy = FTy->getReturnType();
211 
212   // Construct the new function type using the new arguments.
213   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
214 
215   // Create the new function body and insert it into the module.
216   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
217                                   F->getName());
218   NF->copyAttributesFrom(F);
219 
220   // Patch the pointer to LLVM function in debug info descriptor.
221   NF->setSubprogram(F->getSubprogram());
222   F->setSubprogram(nullptr);
223 
224   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
225                     << "From: " << *F);
226 
227   // Recompute the parameter attributes list based on the new arguments for
228   // the function.
229   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
230                                        PAL.getRetAttributes(), ArgAttrVec));
231   ArgAttrVec.clear();
232 
233   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
234   NF->takeName(F);
235 
236   // Loop over all of the callers of the function, transforming the call sites
237   // to pass in the loaded pointers.
238   //
239   SmallVector<Value *, 16> Args;
240   while (!F->use_empty()) {
241     CallSite CS(F->user_back());
242     assert(CS.getCalledFunction() == F);
243     Instruction *Call = CS.getInstruction();
244     const AttributeList &CallPAL = CS.getAttributes();
245 
246     // Loop over the operands, inserting GEP and loads in the caller as
247     // appropriate.
248     CallSite::arg_iterator AI = CS.arg_begin();
249     ArgNo = 0;
250     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
251          ++I, ++AI, ++ArgNo)
252       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
253         Args.push_back(*AI); // Unmodified argument
254         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
255       } else if (ByValArgsToTransform.count(&*I)) {
256         // Emit a GEP and load for each element of the struct.
257         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
258         StructType *STy = cast<StructType>(AgTy);
259         Value *Idxs[2] = {
260             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
261         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
262           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
263           Value *Idx = GetElementPtrInst::Create(
264               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
265           // TODO: Tell AA about the new values?
266           Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
267           ArgAttrVec.push_back(AttributeSet());
268         }
269       } else if (!I->use_empty()) {
270         // Non-dead argument: insert GEPs and loads as appropriate.
271         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
272         // Store the Value* version of the indices in here, but declare it now
273         // for reuse.
274         std::vector<Value *> Ops;
275         for (const auto &ArgIndex : ArgIndices) {
276           Value *V = *AI;
277           LoadInst *OrigLoad =
278               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
279           if (!ArgIndex.second.empty()) {
280             Ops.reserve(ArgIndex.second.size());
281             Type *ElTy = V->getType();
282             for (auto II : ArgIndex.second) {
283               // Use i32 to index structs, and i64 for others (pointers/arrays).
284               // This satisfies GEP constraints.
285               Type *IdxTy =
286                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
287                                       : Type::getInt64Ty(F->getContext()));
288               Ops.push_back(ConstantInt::get(IdxTy, II));
289               // Keep track of the type we're currently indexing.
290               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
291                 ElTy = ElPTy->getElementType();
292               else
293                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
294             }
295             // And create a GEP to extract those indices.
296             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
297                                           V->getName() + ".idx", Call);
298             Ops.clear();
299           }
300           // Since we're replacing a load make sure we take the alignment
301           // of the previous load.
302           LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
303           newLoad->setAlignment(OrigLoad->getAlignment());
304           // Transfer the AA info too.
305           AAMDNodes AAInfo;
306           OrigLoad->getAAMetadata(AAInfo);
307           newLoad->setAAMetadata(AAInfo);
308 
309           Args.push_back(newLoad);
310           ArgAttrVec.push_back(AttributeSet());
311         }
312       }
313 
314     // Push any varargs arguments on the list.
315     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
316       Args.push_back(*AI);
317       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
318     }
319 
320     SmallVector<OperandBundleDef, 1> OpBundles;
321     CS.getOperandBundlesAsDefs(OpBundles);
322 
323     CallSite NewCS;
324     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
325       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
326                                  Args, OpBundles, "", Call);
327     } else {
328       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
329       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
330       NewCS = NewCall;
331     }
332     NewCS.setCallingConv(CS.getCallingConv());
333     NewCS.setAttributes(
334         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
335                            CallPAL.getRetAttributes(), ArgAttrVec));
336     NewCS->setDebugLoc(Call->getDebugLoc());
337     uint64_t W;
338     if (Call->extractProfTotalWeight(W))
339       NewCS->setProfWeight(W);
340     Args.clear();
341     ArgAttrVec.clear();
342 
343     // Update the callgraph to know that the callsite has been transformed.
344     if (ReplaceCallSite)
345       (*ReplaceCallSite)(CS, NewCS);
346 
347     if (!Call->use_empty()) {
348       Call->replaceAllUsesWith(NewCS.getInstruction());
349       NewCS->takeName(Call);
350     }
351 
352     // Finally, remove the old call from the program, reducing the use-count of
353     // F.
354     Call->eraseFromParent();
355   }
356 
357   const DataLayout &DL = F->getParent()->getDataLayout();
358 
359   // Since we have now created the new function, splice the body of the old
360   // function right into the new function, leaving the old rotting hulk of the
361   // function empty.
362   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
363 
364   // Loop over the argument list, transferring uses of the old arguments over to
365   // the new arguments, also transferring over the names as well.
366   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
367                               I2 = NF->arg_begin();
368        I != E; ++I) {
369     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
370       // If this is an unmodified argument, move the name and users over to the
371       // new version.
372       I->replaceAllUsesWith(&*I2);
373       I2->takeName(&*I);
374       ++I2;
375       continue;
376     }
377 
378     if (ByValArgsToTransform.count(&*I)) {
379       // In the callee, we create an alloca, and store each of the new incoming
380       // arguments into the alloca.
381       Instruction *InsertPt = &NF->begin()->front();
382 
383       // Just add all the struct element types.
384       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
385       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
386                                         I->getParamAlignment(), "", InsertPt);
387       StructType *STy = cast<StructType>(AgTy);
388       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
389                         nullptr};
390 
391       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
392         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
393         Value *Idx = GetElementPtrInst::Create(
394             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
395             InsertPt);
396         I2->setName(I->getName() + "." + Twine(i));
397         new StoreInst(&*I2++, Idx, InsertPt);
398       }
399 
400       // Anything that used the arg should now use the alloca.
401       I->replaceAllUsesWith(TheAlloca);
402       TheAlloca->takeName(&*I);
403 
404       // If the alloca is used in a call, we must clear the tail flag since
405       // the callee now uses an alloca from the caller.
406       for (User *U : TheAlloca->users()) {
407         CallInst *Call = dyn_cast<CallInst>(U);
408         if (!Call)
409           continue;
410         Call->setTailCall(false);
411       }
412       continue;
413     }
414 
415     if (I->use_empty())
416       continue;
417 
418     // Otherwise, if we promoted this argument, then all users are load
419     // instructions (or GEPs with only load users), and all loads should be
420     // using the new argument that we added.
421     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
422 
423     while (!I->use_empty()) {
424       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
425         assert(ArgIndices.begin()->second.empty() &&
426                "Load element should sort to front!");
427         I2->setName(I->getName() + ".val");
428         LI->replaceAllUsesWith(&*I2);
429         LI->eraseFromParent();
430         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
431                           << "' in function '" << F->getName() << "'\n");
432       } else {
433         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
434         IndicesVector Operands;
435         Operands.reserve(GEP->getNumIndices());
436         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
437              II != IE; ++II)
438           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
439 
440         // GEPs with a single 0 index can be merged with direct loads
441         if (Operands.size() == 1 && Operands.front() == 0)
442           Operands.clear();
443 
444         Function::arg_iterator TheArg = I2;
445         for (ScalarizeTable::iterator It = ArgIndices.begin();
446              It->second != Operands; ++It, ++TheArg) {
447           assert(It != ArgIndices.end() && "GEP not handled??");
448         }
449 
450         std::string NewName = I->getName();
451         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
452           NewName += "." + utostr(Operands[i]);
453         }
454         NewName += ".val";
455         TheArg->setName(NewName);
456 
457         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
458                           << "' of function '" << NF->getName() << "'\n");
459 
460         // All of the uses must be load instructions.  Replace them all with
461         // the argument specified by ArgNo.
462         while (!GEP->use_empty()) {
463           LoadInst *L = cast<LoadInst>(GEP->user_back());
464           L->replaceAllUsesWith(&*TheArg);
465           L->eraseFromParent();
466         }
467         GEP->eraseFromParent();
468       }
469     }
470 
471     // Increment I2 past all of the arguments added for this promoted pointer.
472     std::advance(I2, ArgIndices.size());
473   }
474 
475   return NF;
476 }
477 
478 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
479 /// all callees pass in a valid pointer for the specified function argument.
480 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
481   Function *Callee = Arg->getParent();
482   const DataLayout &DL = Callee->getParent()->getDataLayout();
483 
484   unsigned ArgNo = Arg->getArgNo();
485 
486   // Look at all call sites of the function.  At this point we know we only have
487   // direct callees.
488   for (User *U : Callee->users()) {
489     CallSite CS(U);
490     assert(CS && "Should only have direct calls!");
491 
492     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
493       return false;
494   }
495   return true;
496 }
497 
498 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
499 /// that is greater than or equal to the size of prefix, and each of the
500 /// elements in Prefix is the same as the corresponding elements in Longer.
501 ///
502 /// This means it also returns true when Prefix and Longer are equal!
503 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
504   if (Prefix.size() > Longer.size())
505     return false;
506   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
507 }
508 
509 /// Checks if Indices, or a prefix of Indices, is in Set.
510 static bool prefixIn(const IndicesVector &Indices,
511                      std::set<IndicesVector> &Set) {
512   std::set<IndicesVector>::iterator Low;
513   Low = Set.upper_bound(Indices);
514   if (Low != Set.begin())
515     Low--;
516   // Low is now the last element smaller than or equal to Indices. This means
517   // it points to a prefix of Indices (possibly Indices itself), if such
518   // prefix exists.
519   //
520   // This load is safe if any prefix of its operands is safe to load.
521   return Low != Set.end() && isPrefix(*Low, Indices);
522 }
523 
524 /// Mark the given indices (ToMark) as safe in the given set of indices
525 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
526 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
527 /// already. Furthermore, any indices that Indices is itself a prefix of, are
528 /// removed from Safe (since they are implicitely safe because of Indices now).
529 static void markIndicesSafe(const IndicesVector &ToMark,
530                             std::set<IndicesVector> &Safe) {
531   std::set<IndicesVector>::iterator Low;
532   Low = Safe.upper_bound(ToMark);
533   // Guard against the case where Safe is empty
534   if (Low != Safe.begin())
535     Low--;
536   // Low is now the last element smaller than or equal to Indices. This
537   // means it points to a prefix of Indices (possibly Indices itself), if
538   // such prefix exists.
539   if (Low != Safe.end()) {
540     if (isPrefix(*Low, ToMark))
541       // If there is already a prefix of these indices (or exactly these
542       // indices) marked a safe, don't bother adding these indices
543       return;
544 
545     // Increment Low, so we can use it as a "insert before" hint
546     ++Low;
547   }
548   // Insert
549   Low = Safe.insert(Low, ToMark);
550   ++Low;
551   // If there we're a prefix of longer index list(s), remove those
552   std::set<IndicesVector>::iterator End = Safe.end();
553   while (Low != End && isPrefix(ToMark, *Low)) {
554     std::set<IndicesVector>::iterator Remove = Low;
555     ++Low;
556     Safe.erase(Remove);
557   }
558 }
559 
560 /// isSafeToPromoteArgument - As you might guess from the name of this method,
561 /// it checks to see if it is both safe and useful to promote the argument.
562 /// This method limits promotion of aggregates to only promote up to three
563 /// elements of the aggregate in order to avoid exploding the number of
564 /// arguments passed in.
565 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
566                                     AAResults &AAR, unsigned MaxElements) {
567   using GEPIndicesSet = std::set<IndicesVector>;
568 
569   // Quick exit for unused arguments
570   if (Arg->use_empty())
571     return true;
572 
573   // We can only promote this argument if all of the uses are loads, or are GEP
574   // instructions (with constant indices) that are subsequently loaded.
575   //
576   // Promoting the argument causes it to be loaded in the caller
577   // unconditionally. This is only safe if we can prove that either the load
578   // would have happened in the callee anyway (ie, there is a load in the entry
579   // block) or the pointer passed in at every call site is guaranteed to be
580   // valid.
581   // In the former case, invalid loads can happen, but would have happened
582   // anyway, in the latter case, invalid loads won't happen. This prevents us
583   // from introducing an invalid load that wouldn't have happened in the
584   // original code.
585   //
586   // This set will contain all sets of indices that are loaded in the entry
587   // block, and thus are safe to unconditionally load in the caller.
588   //
589   // This optimization is also safe for InAlloca parameters, because it verifies
590   // that the address isn't captured.
591   GEPIndicesSet SafeToUnconditionallyLoad;
592 
593   // This set contains all the sets of indices that we are planning to promote.
594   // This makes it possible to limit the number of arguments added.
595   GEPIndicesSet ToPromote;
596 
597   // If the pointer is always valid, any load with first index 0 is valid.
598   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
599     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
600 
601   // First, iterate the entry block and mark loads of (geps of) arguments as
602   // safe.
603   BasicBlock &EntryBlock = Arg->getParent()->front();
604   // Declare this here so we can reuse it
605   IndicesVector Indices;
606   for (Instruction &I : EntryBlock)
607     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
608       Value *V = LI->getPointerOperand();
609       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
610         V = GEP->getPointerOperand();
611         if (V == Arg) {
612           // This load actually loads (part of) Arg? Check the indices then.
613           Indices.reserve(GEP->getNumIndices());
614           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
615                II != IE; ++II)
616             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
617               Indices.push_back(CI->getSExtValue());
618             else
619               // We found a non-constant GEP index for this argument? Bail out
620               // right away, can't promote this argument at all.
621               return false;
622 
623           // Indices checked out, mark them as safe
624           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
625           Indices.clear();
626         }
627       } else if (V == Arg) {
628         // Direct loads are equivalent to a GEP with a single 0 index.
629         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
630       }
631     }
632 
633   // Now, iterate all uses of the argument to see if there are any uses that are
634   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
635   SmallVector<LoadInst *, 16> Loads;
636   IndicesVector Operands;
637   for (Use &U : Arg->uses()) {
638     User *UR = U.getUser();
639     Operands.clear();
640     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
641       // Don't hack volatile/atomic loads
642       if (!LI->isSimple())
643         return false;
644       Loads.push_back(LI);
645       // Direct loads are equivalent to a GEP with a zero index and then a load.
646       Operands.push_back(0);
647     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
648       if (GEP->use_empty()) {
649         // Dead GEP's cause trouble later.  Just remove them if we run into
650         // them.
651         GEP->eraseFromParent();
652         // TODO: This runs the above loop over and over again for dead GEPs
653         // Couldn't we just do increment the UI iterator earlier and erase the
654         // use?
655         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
656                                        MaxElements);
657       }
658 
659       // Ensure that all of the indices are constants.
660       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
661            ++i)
662         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
663           Operands.push_back(C->getSExtValue());
664         else
665           return false; // Not a constant operand GEP!
666 
667       // Ensure that the only users of the GEP are load instructions.
668       for (User *GEPU : GEP->users())
669         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
670           // Don't hack volatile/atomic loads
671           if (!LI->isSimple())
672             return false;
673           Loads.push_back(LI);
674         } else {
675           // Other uses than load?
676           return false;
677         }
678     } else {
679       return false; // Not a load or a GEP.
680     }
681 
682     // Now, see if it is safe to promote this load / loads of this GEP. Loading
683     // is safe if Operands, or a prefix of Operands, is marked as safe.
684     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
685       return false;
686 
687     // See if we are already promoting a load with these indices. If not, check
688     // to make sure that we aren't promoting too many elements.  If so, nothing
689     // to do.
690     if (ToPromote.find(Operands) == ToPromote.end()) {
691       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
692         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
693                           << Arg->getName()
694                           << "' because it would require adding more "
695                           << "than " << MaxElements
696                           << " arguments to the function.\n");
697         // We limit aggregate promotion to only promoting up to a fixed number
698         // of elements of the aggregate.
699         return false;
700       }
701       ToPromote.insert(std::move(Operands));
702     }
703   }
704 
705   if (Loads.empty())
706     return true; // No users, this is a dead argument.
707 
708   // Okay, now we know that the argument is only used by load instructions and
709   // it is safe to unconditionally perform all of them. Use alias analysis to
710   // check to see if the pointer is guaranteed to not be modified from entry of
711   // the function to each of the load instructions.
712 
713   // Because there could be several/many load instructions, remember which
714   // blocks we know to be transparent to the load.
715   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
716 
717   for (LoadInst *Load : Loads) {
718     // Check to see if the load is invalidated from the start of the block to
719     // the load itself.
720     BasicBlock *BB = Load->getParent();
721 
722     MemoryLocation Loc = MemoryLocation::get(Load);
723     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
724       return false; // Pointer is invalidated!
725 
726     // Now check every path from the entry block to the load for transparency.
727     // To do this, we perform a depth first search on the inverse CFG from the
728     // loading block.
729     for (BasicBlock *P : predecessors(BB)) {
730       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
731         if (AAR.canBasicBlockModify(*TranspBB, Loc))
732           return false;
733     }
734   }
735 
736   // If the path from the entry of the function to each load is free of
737   // instructions that potentially invalidate the load, we can make the
738   // transformation!
739   return true;
740 }
741 
742 /// Checks if a type could have padding bytes.
743 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
744   // There is no size information, so be conservative.
745   if (!type->isSized())
746     return false;
747 
748   // If the alloc size is not equal to the storage size, then there are padding
749   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
750   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
751     return false;
752 
753   if (!isa<CompositeType>(type))
754     return true;
755 
756   // For homogenous sequential types, check for padding within members.
757   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
758     return isDenselyPacked(seqTy->getElementType(), DL);
759 
760   // Check for padding within and between elements of a struct.
761   StructType *StructTy = cast<StructType>(type);
762   const StructLayout *Layout = DL.getStructLayout(StructTy);
763   uint64_t StartPos = 0;
764   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
765     Type *ElTy = StructTy->getElementType(i);
766     if (!isDenselyPacked(ElTy, DL))
767       return false;
768     if (StartPos != Layout->getElementOffsetInBits(i))
769       return false;
770     StartPos += DL.getTypeAllocSizeInBits(ElTy);
771   }
772 
773   return true;
774 }
775 
776 /// Checks if the padding bytes of an argument could be accessed.
777 static bool canPaddingBeAccessed(Argument *arg) {
778   assert(arg->hasByValAttr());
779 
780   // Track all the pointers to the argument to make sure they are not captured.
781   SmallPtrSet<Value *, 16> PtrValues;
782   PtrValues.insert(arg);
783 
784   // Track all of the stores.
785   SmallVector<StoreInst *, 16> Stores;
786 
787   // Scan through the uses recursively to make sure the pointer is always used
788   // sanely.
789   SmallVector<Value *, 16> WorkList;
790   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
791   while (!WorkList.empty()) {
792     Value *V = WorkList.back();
793     WorkList.pop_back();
794     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
795       if (PtrValues.insert(V).second)
796         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
797     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
798       Stores.push_back(Store);
799     } else if (!isa<LoadInst>(V)) {
800       return true;
801     }
802   }
803 
804   // Check to make sure the pointers aren't captured
805   for (StoreInst *Store : Stores)
806     if (PtrValues.count(Store->getValueOperand()))
807       return true;
808 
809   return false;
810 }
811 
812 /// PromoteArguments - This method checks the specified function to see if there
813 /// are any promotable arguments and if it is safe to promote the function (for
814 /// example, all callers are direct).  If safe to promote some arguments, it
815 /// calls the DoPromotion method.
816 static Function *
817 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
818                  unsigned MaxElements,
819                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
820                      ReplaceCallSite) {
821   // Don't perform argument promotion for naked functions; otherwise we can end
822   // up removing parameters that are seemingly 'not used' as they are referred
823   // to in the assembly.
824   if(F->hasFnAttribute(Attribute::Naked))
825     return nullptr;
826 
827   // Make sure that it is local to this module.
828   if (!F->hasLocalLinkage())
829     return nullptr;
830 
831   // Don't promote arguments for variadic functions. Adding, removing, or
832   // changing non-pack parameters can change the classification of pack
833   // parameters. Frontends encode that classification at the call site in the
834   // IR, while in the callee the classification is determined dynamically based
835   // on the number of registers consumed so far.
836   if (F->isVarArg())
837     return nullptr;
838 
839   // First check: see if there are any pointer arguments!  If not, quick exit.
840   SmallVector<Argument *, 16> PointerArgs;
841   for (Argument &I : F->args())
842     if (I.getType()->isPointerTy())
843       PointerArgs.push_back(&I);
844   if (PointerArgs.empty())
845     return nullptr;
846 
847   // Second check: make sure that all callers are direct callers.  We can't
848   // transform functions that have indirect callers.  Also see if the function
849   // is self-recursive.
850   bool isSelfRecursive = false;
851   for (Use &U : F->uses()) {
852     CallSite CS(U.getUser());
853     // Must be a direct call.
854     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
855       return nullptr;
856 
857     // Can't change signature of musttail callee
858     if (CS.isMustTailCall())
859       return nullptr;
860 
861     if (CS.getInstruction()->getParent()->getParent() == F)
862       isSelfRecursive = true;
863   }
864 
865   // Can't change signature of musttail caller
866   // FIXME: Support promoting whole chain of musttail functions
867   for (BasicBlock &BB : *F)
868     if (BB.getTerminatingMustTailCall())
869       return nullptr;
870 
871   const DataLayout &DL = F->getParent()->getDataLayout();
872 
873   AAResults &AAR = AARGetter(*F);
874 
875   // Check to see which arguments are promotable.  If an argument is promotable,
876   // add it to ArgsToPromote.
877   SmallPtrSet<Argument *, 8> ArgsToPromote;
878   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
879   for (Argument *PtrArg : PointerArgs) {
880     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
881 
882     // Replace sret attribute with noalias. This reduces register pressure by
883     // avoiding a register copy.
884     if (PtrArg->hasStructRetAttr()) {
885       unsigned ArgNo = PtrArg->getArgNo();
886       F->removeParamAttr(ArgNo, Attribute::StructRet);
887       F->addParamAttr(ArgNo, Attribute::NoAlias);
888       for (Use &U : F->uses()) {
889         CallSite CS(U.getUser());
890         CS.removeParamAttr(ArgNo, Attribute::StructRet);
891         CS.addParamAttr(ArgNo, Attribute::NoAlias);
892       }
893     }
894 
895     // If this is a byval argument, and if the aggregate type is small, just
896     // pass the elements, which is always safe, if the passed value is densely
897     // packed or if we can prove the padding bytes are never accessed. This does
898     // not apply to inalloca.
899     bool isSafeToPromote =
900         PtrArg->hasByValAttr() &&
901         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
902     if (isSafeToPromote) {
903       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
904         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
905           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
906                             << PtrArg->getName()
907                             << "' because it would require adding more"
908                             << " than " << MaxElements
909                             << " arguments to the function.\n");
910           continue;
911         }
912 
913         // If all the elements are single-value types, we can promote it.
914         bool AllSimple = true;
915         for (const auto *EltTy : STy->elements()) {
916           if (!EltTy->isSingleValueType()) {
917             AllSimple = false;
918             break;
919           }
920         }
921 
922         // Safe to transform, don't even bother trying to "promote" it.
923         // Passing the elements as a scalar will allow sroa to hack on
924         // the new alloca we introduce.
925         if (AllSimple) {
926           ByValArgsToTransform.insert(PtrArg);
927           continue;
928         }
929       }
930     }
931 
932     // If the argument is a recursive type and we're in a recursive
933     // function, we could end up infinitely peeling the function argument.
934     if (isSelfRecursive) {
935       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
936         bool RecursiveType = false;
937         for (const auto *EltTy : STy->elements()) {
938           if (EltTy == PtrArg->getType()) {
939             RecursiveType = true;
940             break;
941           }
942         }
943         if (RecursiveType)
944           continue;
945       }
946     }
947 
948     // Otherwise, see if we can promote the pointer to its value.
949     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
950                                 MaxElements))
951       ArgsToPromote.insert(PtrArg);
952   }
953 
954   // No promotable pointer arguments.
955   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
956     return nullptr;
957 
958   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
959 }
960 
961 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
962                                              CGSCCAnalysisManager &AM,
963                                              LazyCallGraph &CG,
964                                              CGSCCUpdateResult &UR) {
965   bool Changed = false, LocalChange;
966 
967   // Iterate until we stop promoting from this SCC.
968   do {
969     LocalChange = false;
970 
971     for (LazyCallGraph::Node &N : C) {
972       Function &OldF = N.getFunction();
973 
974       FunctionAnalysisManager &FAM =
975           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
976       // FIXME: This lambda must only be used with this function. We should
977       // skip the lambda and just get the AA results directly.
978       auto AARGetter = [&](Function &F) -> AAResults & {
979         assert(&F == &OldF && "Called with an unexpected function!");
980         return FAM.getResult<AAManager>(F);
981       };
982 
983       Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None);
984       if (!NewF)
985         continue;
986       LocalChange = true;
987 
988       // Directly substitute the functions in the call graph. Note that this
989       // requires the old function to be completely dead and completely
990       // replaced by the new function. It does no call graph updates, it merely
991       // swaps out the particular function mapped to a particular node in the
992       // graph.
993       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
994       OldF.eraseFromParent();
995     }
996 
997     Changed |= LocalChange;
998   } while (LocalChange);
999 
1000   if (!Changed)
1001     return PreservedAnalyses::all();
1002 
1003   return PreservedAnalyses::none();
1004 }
1005 
1006 namespace {
1007 
1008 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1009 struct ArgPromotion : public CallGraphSCCPass {
1010   // Pass identification, replacement for typeid
1011   static char ID;
1012 
1013   explicit ArgPromotion(unsigned MaxElements = 3)
1014       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1015     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1016   }
1017 
1018   void getAnalysisUsage(AnalysisUsage &AU) const override {
1019     AU.addRequired<AssumptionCacheTracker>();
1020     AU.addRequired<TargetLibraryInfoWrapperPass>();
1021     getAAResultsAnalysisUsage(AU);
1022     CallGraphSCCPass::getAnalysisUsage(AU);
1023   }
1024 
1025   bool runOnSCC(CallGraphSCC &SCC) override;
1026 
1027 private:
1028   using llvm::Pass::doInitialization;
1029 
1030   bool doInitialization(CallGraph &CG) override;
1031 
1032   /// The maximum number of elements to expand, or 0 for unlimited.
1033   unsigned MaxElements;
1034 };
1035 
1036 } // end anonymous namespace
1037 
1038 char ArgPromotion::ID = 0;
1039 
1040 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1041                       "Promote 'by reference' arguments to scalars", false,
1042                       false)
1043 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1044 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1045 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1046 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1047                     "Promote 'by reference' arguments to scalars", false, false)
1048 
1049 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1050   return new ArgPromotion(MaxElements);
1051 }
1052 
1053 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1054   if (skipSCC(SCC))
1055     return false;
1056 
1057   // Get the callgraph information that we need to update to reflect our
1058   // changes.
1059   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1060 
1061   LegacyAARGetter AARGetter(*this);
1062 
1063   bool Changed = false, LocalChange;
1064 
1065   // Iterate until we stop promoting from this SCC.
1066   do {
1067     LocalChange = false;
1068     // Attempt to promote arguments from all functions in this SCC.
1069     for (CallGraphNode *OldNode : SCC) {
1070       Function *OldF = OldNode->getFunction();
1071       if (!OldF)
1072         continue;
1073 
1074       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1075         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1076         CallGraphNode *NewCalleeNode =
1077             CG.getOrInsertFunction(NewCS.getCalledFunction());
1078         CallGraphNode *CallerNode = CG[Caller];
1079         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1080       };
1081 
1082       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1083                                             {ReplaceCallSite})) {
1084         LocalChange = true;
1085 
1086         // Update the call graph for the newly promoted function.
1087         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1088         NewNode->stealCalledFunctionsFrom(OldNode);
1089         if (OldNode->getNumReferences() == 0)
1090           delete CG.removeFunctionFromModule(OldNode);
1091         else
1092           OldF->setLinkage(Function::ExternalLinkage);
1093 
1094         // And updat ethe SCC we're iterating as well.
1095         SCC.ReplaceNode(OldNode, NewNode);
1096       }
1097     }
1098     // Remember that we changed something.
1099     Changed |= LocalChange;
1100   } while (LocalChange);
1101 
1102   return Changed;
1103 }
1104 
1105 bool ArgPromotion::doInitialization(CallGraph &CG) {
1106   return CallGraphSCCPass::doInitialization(CG);
1107 }
1108