1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CallGraph.h" 38 #include "llvm/Analysis/CallGraphSCCPass.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/CallSite.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <set> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "argpromotion" 54 55 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 56 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 57 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 58 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 59 60 namespace { 61 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 62 /// 63 struct ArgPromotion : public CallGraphSCCPass { 64 void getAnalysisUsage(AnalysisUsage &AU) const override { 65 AU.addRequired<AliasAnalysis>(); 66 CallGraphSCCPass::getAnalysisUsage(AU); 67 } 68 69 bool runOnSCC(CallGraphSCC &SCC) override; 70 static char ID; // Pass identification, replacement for typeid 71 explicit ArgPromotion(unsigned maxElements = 3) 72 : CallGraphSCCPass(ID), DL(nullptr), maxElements(maxElements) { 73 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 74 } 75 76 /// A vector used to hold the indices of a single GEP instruction 77 typedef std::vector<uint64_t> IndicesVector; 78 79 const DataLayout *DL; 80 private: 81 bool isDenselyPacked(Type *type); 82 bool canPaddingBeAccessed(Argument *Arg); 83 CallGraphNode *PromoteArguments(CallGraphNode *CGN); 84 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const; 85 CallGraphNode *DoPromotion(Function *F, 86 SmallPtrSetImpl<Argument*> &ArgsToPromote, 87 SmallPtrSetImpl<Argument*> &ByValArgsToTransform); 88 89 using llvm::Pass::doInitialization; 90 bool doInitialization(CallGraph &CG) override; 91 /// The maximum number of elements to expand, or 0 for unlimited. 92 unsigned maxElements; 93 DenseMap<const Function *, DISubprogram> FunctionDIs; 94 }; 95 } 96 97 char ArgPromotion::ID = 0; 98 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 99 "Promote 'by reference' arguments to scalars", false, false) 100 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 101 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 103 "Promote 'by reference' arguments to scalars", false, false) 104 105 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 106 return new ArgPromotion(maxElements); 107 } 108 109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 110 bool Changed = false, LocalChange; 111 112 do { // Iterate until we stop promoting from this SCC. 113 LocalChange = false; 114 // Attempt to promote arguments from all functions in this SCC. 115 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 116 if (CallGraphNode *CGN = PromoteArguments(*I)) { 117 LocalChange = true; 118 SCC.ReplaceNode(*I, CGN); 119 } 120 } 121 Changed |= LocalChange; // Remember that we changed something. 122 } while (LocalChange); 123 124 return Changed; 125 } 126 127 /// \brief Checks if a type could have padding bytes. 128 bool ArgPromotion::isDenselyPacked(Type *type) { 129 130 // There is no size information, so be conservative. 131 if (!type->isSized()) 132 return false; 133 134 // If the alloc size is not equal to the storage size, then there are padding 135 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 136 if (!DL || DL->getTypeSizeInBits(type) != DL->getTypeAllocSizeInBits(type)) 137 return false; 138 139 if (!isa<CompositeType>(type)) 140 return true; 141 142 // For homogenous sequential types, check for padding within members. 143 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 144 return isa<PointerType>(seqTy) || isDenselyPacked(seqTy->getElementType()); 145 146 // Check for padding within and between elements of a struct. 147 StructType *StructTy = cast<StructType>(type); 148 const StructLayout *Layout = DL->getStructLayout(StructTy); 149 uint64_t StartPos = 0; 150 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 151 Type *ElTy = StructTy->getElementType(i); 152 if (!isDenselyPacked(ElTy)) 153 return false; 154 if (StartPos != Layout->getElementOffsetInBits(i)) 155 return false; 156 StartPos += DL->getTypeAllocSizeInBits(ElTy); 157 } 158 159 return true; 160 } 161 162 /// \brief Checks if the padding bytes of an argument could be accessed. 163 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) { 164 165 assert(arg->hasByValAttr()); 166 167 // Track all the pointers to the argument to make sure they are not captured. 168 SmallPtrSet<Value *, 16> PtrValues; 169 PtrValues.insert(arg); 170 171 // Track all of the stores. 172 SmallVector<StoreInst *, 16> Stores; 173 174 // Scan through the uses recursively to make sure the pointer is always used 175 // sanely. 176 SmallVector<Value *, 16> WorkList; 177 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 178 while (!WorkList.empty()) { 179 Value *V = WorkList.back(); 180 WorkList.pop_back(); 181 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 182 if (PtrValues.insert(V).second) 183 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 184 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 185 Stores.push_back(Store); 186 } else if (!isa<LoadInst>(V)) { 187 return true; 188 } 189 } 190 191 // Check to make sure the pointers aren't captured 192 for (StoreInst *Store : Stores) 193 if (PtrValues.count(Store->getValueOperand())) 194 return true; 195 196 return false; 197 } 198 199 /// PromoteArguments - This method checks the specified function to see if there 200 /// are any promotable arguments and if it is safe to promote the function (for 201 /// example, all callers are direct). If safe to promote some arguments, it 202 /// calls the DoPromotion method. 203 /// 204 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { 205 Function *F = CGN->getFunction(); 206 207 // Make sure that it is local to this module. 208 if (!F || !F->hasLocalLinkage()) return nullptr; 209 210 DL = &F->getParent()->getDataLayout(); 211 212 // First check: see if there are any pointer arguments! If not, quick exit. 213 SmallVector<Argument*, 16> PointerArgs; 214 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 215 if (I->getType()->isPointerTy()) 216 PointerArgs.push_back(I); 217 if (PointerArgs.empty()) return nullptr; 218 219 // Second check: make sure that all callers are direct callers. We can't 220 // transform functions that have indirect callers. Also see if the function 221 // is self-recursive. 222 bool isSelfRecursive = false; 223 for (Use &U : F->uses()) { 224 CallSite CS(U.getUser()); 225 // Must be a direct call. 226 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; 227 228 if (CS.getInstruction()->getParent()->getParent() == F) 229 isSelfRecursive = true; 230 } 231 232 // Don't promote arguments for variadic functions. Adding, removing, or 233 // changing non-pack parameters can change the classification of pack 234 // parameters. Frontends encode that classification at the call site in the 235 // IR, while in the callee the classification is determined dynamically based 236 // on the number of registers consumed so far. 237 if (F->isVarArg()) return nullptr; 238 239 // Check to see which arguments are promotable. If an argument is promotable, 240 // add it to ArgsToPromote. 241 SmallPtrSet<Argument*, 8> ArgsToPromote; 242 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 243 for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) { 244 Argument *PtrArg = PointerArgs[i]; 245 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 246 247 // If this is a byval argument, and if the aggregate type is small, just 248 // pass the elements, which is always safe, if the passed value is densely 249 // packed or if we can prove the padding bytes are never accessed. This does 250 // not apply to inalloca. 251 bool isSafeToPromote = 252 PtrArg->hasByValAttr() && 253 (isDenselyPacked(AgTy) || !canPaddingBeAccessed(PtrArg)); 254 if (isSafeToPromote) { 255 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 256 if (maxElements > 0 && STy->getNumElements() > maxElements) { 257 DEBUG(dbgs() << "argpromotion disable promoting argument '" 258 << PtrArg->getName() << "' because it would require adding more" 259 << " than " << maxElements << " arguments to the function.\n"); 260 continue; 261 } 262 263 // If all the elements are single-value types, we can promote it. 264 bool AllSimple = true; 265 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 266 if (!STy->getElementType(i)->isSingleValueType()) { 267 AllSimple = false; 268 break; 269 } 270 } 271 272 // Safe to transform, don't even bother trying to "promote" it. 273 // Passing the elements as a scalar will allow scalarrepl to hack on 274 // the new alloca we introduce. 275 if (AllSimple) { 276 ByValArgsToTransform.insert(PtrArg); 277 continue; 278 } 279 } 280 } 281 282 // If the argument is a recursive type and we're in a recursive 283 // function, we could end up infinitely peeling the function argument. 284 if (isSelfRecursive) { 285 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 286 bool RecursiveType = false; 287 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 288 if (STy->getElementType(i) == PtrArg->getType()) { 289 RecursiveType = true; 290 break; 291 } 292 } 293 if (RecursiveType) 294 continue; 295 } 296 } 297 298 // Otherwise, see if we can promote the pointer to its value. 299 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr())) 300 ArgsToPromote.insert(PtrArg); 301 } 302 303 // No promotable pointer arguments. 304 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 305 return nullptr; 306 307 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform); 308 } 309 310 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 311 /// all callees pass in a valid pointer for the specified function argument. 312 static bool AllCallersPassInValidPointerForArgument(Argument *Arg, 313 const DataLayout *DL) { 314 Function *Callee = Arg->getParent(); 315 316 unsigned ArgNo = Arg->getArgNo(); 317 318 // Look at all call sites of the function. At this pointer we know we only 319 // have direct callees. 320 for (User *U : Callee->users()) { 321 CallSite CS(U); 322 assert(CS && "Should only have direct calls!"); 323 324 if (!CS.getArgument(ArgNo)->isDereferenceablePointer(DL)) 325 return false; 326 } 327 return true; 328 } 329 330 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 331 /// that is greater than or equal to the size of prefix, and each of the 332 /// elements in Prefix is the same as the corresponding elements in Longer. 333 /// 334 /// This means it also returns true when Prefix and Longer are equal! 335 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix, 336 const ArgPromotion::IndicesVector &Longer) { 337 if (Prefix.size() > Longer.size()) 338 return false; 339 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 340 } 341 342 343 /// Checks if Indices, or a prefix of Indices, is in Set. 344 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices, 345 std::set<ArgPromotion::IndicesVector> &Set) { 346 std::set<ArgPromotion::IndicesVector>::iterator Low; 347 Low = Set.upper_bound(Indices); 348 if (Low != Set.begin()) 349 Low--; 350 // Low is now the last element smaller than or equal to Indices. This means 351 // it points to a prefix of Indices (possibly Indices itself), if such 352 // prefix exists. 353 // 354 // This load is safe if any prefix of its operands is safe to load. 355 return Low != Set.end() && IsPrefix(*Low, Indices); 356 } 357 358 /// Mark the given indices (ToMark) as safe in the given set of indices 359 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 360 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 361 /// already. Furthermore, any indices that Indices is itself a prefix of, are 362 /// removed from Safe (since they are implicitely safe because of Indices now). 363 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark, 364 std::set<ArgPromotion::IndicesVector> &Safe) { 365 std::set<ArgPromotion::IndicesVector>::iterator Low; 366 Low = Safe.upper_bound(ToMark); 367 // Guard against the case where Safe is empty 368 if (Low != Safe.begin()) 369 Low--; 370 // Low is now the last element smaller than or equal to Indices. This 371 // means it points to a prefix of Indices (possibly Indices itself), if 372 // such prefix exists. 373 if (Low != Safe.end()) { 374 if (IsPrefix(*Low, ToMark)) 375 // If there is already a prefix of these indices (or exactly these 376 // indices) marked a safe, don't bother adding these indices 377 return; 378 379 // Increment Low, so we can use it as a "insert before" hint 380 ++Low; 381 } 382 // Insert 383 Low = Safe.insert(Low, ToMark); 384 ++Low; 385 // If there we're a prefix of longer index list(s), remove those 386 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end(); 387 while (Low != End && IsPrefix(ToMark, *Low)) { 388 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low; 389 ++Low; 390 Safe.erase(Remove); 391 } 392 } 393 394 /// isSafeToPromoteArgument - As you might guess from the name of this method, 395 /// it checks to see if it is both safe and useful to promote the argument. 396 /// This method limits promotion of aggregates to only promote up to three 397 /// elements of the aggregate in order to avoid exploding the number of 398 /// arguments passed in. 399 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, 400 bool isByValOrInAlloca) const { 401 typedef std::set<IndicesVector> GEPIndicesSet; 402 403 // Quick exit for unused arguments 404 if (Arg->use_empty()) 405 return true; 406 407 // We can only promote this argument if all of the uses are loads, or are GEP 408 // instructions (with constant indices) that are subsequently loaded. 409 // 410 // Promoting the argument causes it to be loaded in the caller 411 // unconditionally. This is only safe if we can prove that either the load 412 // would have happened in the callee anyway (ie, there is a load in the entry 413 // block) or the pointer passed in at every call site is guaranteed to be 414 // valid. 415 // In the former case, invalid loads can happen, but would have happened 416 // anyway, in the latter case, invalid loads won't happen. This prevents us 417 // from introducing an invalid load that wouldn't have happened in the 418 // original code. 419 // 420 // This set will contain all sets of indices that are loaded in the entry 421 // block, and thus are safe to unconditionally load in the caller. 422 // 423 // This optimization is also safe for InAlloca parameters, because it verifies 424 // that the address isn't captured. 425 GEPIndicesSet SafeToUnconditionallyLoad; 426 427 // This set contains all the sets of indices that we are planning to promote. 428 // This makes it possible to limit the number of arguments added. 429 GEPIndicesSet ToPromote; 430 431 // If the pointer is always valid, any load with first index 0 is valid. 432 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg, DL)) 433 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 434 435 // First, iterate the entry block and mark loads of (geps of) arguments as 436 // safe. 437 BasicBlock *EntryBlock = Arg->getParent()->begin(); 438 // Declare this here so we can reuse it 439 IndicesVector Indices; 440 for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end(); 441 I != E; ++I) 442 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 443 Value *V = LI->getPointerOperand(); 444 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 445 V = GEP->getPointerOperand(); 446 if (V == Arg) { 447 // This load actually loads (part of) Arg? Check the indices then. 448 Indices.reserve(GEP->getNumIndices()); 449 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 450 II != IE; ++II) 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 452 Indices.push_back(CI->getSExtValue()); 453 else 454 // We found a non-constant GEP index for this argument? Bail out 455 // right away, can't promote this argument at all. 456 return false; 457 458 // Indices checked out, mark them as safe 459 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 460 Indices.clear(); 461 } 462 } else if (V == Arg) { 463 // Direct loads are equivalent to a GEP with a single 0 index. 464 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 465 } 466 } 467 468 // Now, iterate all uses of the argument to see if there are any uses that are 469 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 470 SmallVector<LoadInst*, 16> Loads; 471 IndicesVector Operands; 472 for (Use &U : Arg->uses()) { 473 User *UR = U.getUser(); 474 Operands.clear(); 475 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 476 // Don't hack volatile/atomic loads 477 if (!LI->isSimple()) return false; 478 Loads.push_back(LI); 479 // Direct loads are equivalent to a GEP with a zero index and then a load. 480 Operands.push_back(0); 481 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 482 if (GEP->use_empty()) { 483 // Dead GEP's cause trouble later. Just remove them if we run into 484 // them. 485 getAnalysis<AliasAnalysis>().deleteValue(GEP); 486 GEP->eraseFromParent(); 487 // TODO: This runs the above loop over and over again for dead GEPs 488 // Couldn't we just do increment the UI iterator earlier and erase the 489 // use? 490 return isSafeToPromoteArgument(Arg, isByValOrInAlloca); 491 } 492 493 // Ensure that all of the indices are constants. 494 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 495 i != e; ++i) 496 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 497 Operands.push_back(C->getSExtValue()); 498 else 499 return false; // Not a constant operand GEP! 500 501 // Ensure that the only users of the GEP are load instructions. 502 for (User *GEPU : GEP->users()) 503 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 504 // Don't hack volatile/atomic loads 505 if (!LI->isSimple()) return false; 506 Loads.push_back(LI); 507 } else { 508 // Other uses than load? 509 return false; 510 } 511 } else { 512 return false; // Not a load or a GEP. 513 } 514 515 // Now, see if it is safe to promote this load / loads of this GEP. Loading 516 // is safe if Operands, or a prefix of Operands, is marked as safe. 517 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 518 return false; 519 520 // See if we are already promoting a load with these indices. If not, check 521 // to make sure that we aren't promoting too many elements. If so, nothing 522 // to do. 523 if (ToPromote.find(Operands) == ToPromote.end()) { 524 if (maxElements > 0 && ToPromote.size() == maxElements) { 525 DEBUG(dbgs() << "argpromotion not promoting argument '" 526 << Arg->getName() << "' because it would require adding more " 527 << "than " << maxElements << " arguments to the function.\n"); 528 // We limit aggregate promotion to only promoting up to a fixed number 529 // of elements of the aggregate. 530 return false; 531 } 532 ToPromote.insert(std::move(Operands)); 533 } 534 } 535 536 if (Loads.empty()) return true; // No users, this is a dead argument. 537 538 // Okay, now we know that the argument is only used by load instructions and 539 // it is safe to unconditionally perform all of them. Use alias analysis to 540 // check to see if the pointer is guaranteed to not be modified from entry of 541 // the function to each of the load instructions. 542 543 // Because there could be several/many load instructions, remember which 544 // blocks we know to be transparent to the load. 545 SmallPtrSet<BasicBlock*, 16> TranspBlocks; 546 547 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 548 549 for (unsigned i = 0, e = Loads.size(); i != e; ++i) { 550 // Check to see if the load is invalidated from the start of the block to 551 // the load itself. 552 LoadInst *Load = Loads[i]; 553 BasicBlock *BB = Load->getParent(); 554 555 AliasAnalysis::Location Loc = AA.getLocation(Load); 556 if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc, 557 AliasAnalysis::Mod)) 558 return false; // Pointer is invalidated! 559 560 // Now check every path from the entry block to the load for transparency. 561 // To do this, we perform a depth first search on the inverse CFG from the 562 // loading block. 563 for (BasicBlock *P : predecessors(BB)) { 564 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 565 if (AA.canBasicBlockModify(*TranspBB, Loc)) 566 return false; 567 } 568 } 569 570 // If the path from the entry of the function to each load is free of 571 // instructions that potentially invalidate the load, we can make the 572 // transformation! 573 return true; 574 } 575 576 /// DoPromotion - This method actually performs the promotion of the specified 577 /// arguments, and returns the new function. At this point, we know that it's 578 /// safe to do so. 579 CallGraphNode *ArgPromotion::DoPromotion(Function *F, 580 SmallPtrSetImpl<Argument*> &ArgsToPromote, 581 SmallPtrSetImpl<Argument*> &ByValArgsToTransform) { 582 583 // Start by computing a new prototype for the function, which is the same as 584 // the old function, but has modified arguments. 585 FunctionType *FTy = F->getFunctionType(); 586 std::vector<Type*> Params; 587 588 typedef std::set<IndicesVector> ScalarizeTable; 589 590 // ScalarizedElements - If we are promoting a pointer that has elements 591 // accessed out of it, keep track of which elements are accessed so that we 592 // can add one argument for each. 593 // 594 // Arguments that are directly loaded will have a zero element value here, to 595 // handle cases where there are both a direct load and GEP accesses. 596 // 597 std::map<Argument*, ScalarizeTable> ScalarizedElements; 598 599 // OriginalLoads - Keep track of a representative load instruction from the 600 // original function so that we can tell the alias analysis implementation 601 // what the new GEP/Load instructions we are inserting look like. 602 // We need to keep the original loads for each argument and the elements 603 // of the argument that are accessed. 604 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads; 605 606 // Attribute - Keep track of the parameter attributes for the arguments 607 // that we are *not* promoting. For the ones that we do promote, the parameter 608 // attributes are lost 609 SmallVector<AttributeSet, 8> AttributesVec; 610 const AttributeSet &PAL = F->getAttributes(); 611 612 // Add any return attributes. 613 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 614 AttributesVec.push_back(AttributeSet::get(F->getContext(), 615 PAL.getRetAttributes())); 616 617 // First, determine the new argument list 618 unsigned ArgIndex = 1; 619 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 620 ++I, ++ArgIndex) { 621 if (ByValArgsToTransform.count(I)) { 622 // Simple byval argument? Just add all the struct element types. 623 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 624 StructType *STy = cast<StructType>(AgTy); 625 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 626 ++NumByValArgsPromoted; 627 } else if (!ArgsToPromote.count(I)) { 628 // Unchanged argument 629 Params.push_back(I->getType()); 630 AttributeSet attrs = PAL.getParamAttributes(ArgIndex); 631 if (attrs.hasAttributes(ArgIndex)) { 632 AttrBuilder B(attrs, ArgIndex); 633 AttributesVec. 634 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 635 } 636 } else if (I->use_empty()) { 637 // Dead argument (which are always marked as promotable) 638 ++NumArgumentsDead; 639 } else { 640 // Okay, this is being promoted. This means that the only uses are loads 641 // or GEPs which are only used by loads 642 643 // In this table, we will track which indices are loaded from the argument 644 // (where direct loads are tracked as no indices). 645 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 646 for (User *U : I->users()) { 647 Instruction *UI = cast<Instruction>(U); 648 assert(isa<LoadInst>(UI) || isa<GetElementPtrInst>(UI)); 649 IndicesVector Indices; 650 Indices.reserve(UI->getNumOperands() - 1); 651 // Since loads will only have a single operand, and GEPs only a single 652 // non-index operand, this will record direct loads without any indices, 653 // and gep+loads with the GEP indices. 654 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 655 II != IE; ++II) 656 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 657 // GEPs with a single 0 index can be merged with direct loads 658 if (Indices.size() == 1 && Indices.front() == 0) 659 Indices.clear(); 660 ArgIndices.insert(Indices); 661 LoadInst *OrigLoad; 662 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 663 OrigLoad = L; 664 else 665 // Take any load, we will use it only to update Alias Analysis 666 OrigLoad = cast<LoadInst>(UI->user_back()); 667 OriginalLoads[std::make_pair(I, Indices)] = OrigLoad; 668 } 669 670 // Add a parameter to the function for each element passed in. 671 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 672 E = ArgIndices.end(); SI != E; ++SI) { 673 // not allowed to dereference ->begin() if size() is 0 674 Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI)); 675 assert(Params.back()); 676 } 677 678 if (ArgIndices.size() == 1 && ArgIndices.begin()->empty()) 679 ++NumArgumentsPromoted; 680 else 681 ++NumAggregatesPromoted; 682 } 683 } 684 685 // Add any function attributes. 686 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 687 AttributesVec.push_back(AttributeSet::get(FTy->getContext(), 688 PAL.getFnAttributes())); 689 690 Type *RetTy = FTy->getReturnType(); 691 692 // Construct the new function type using the new arguments. 693 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 694 695 // Create the new function body and insert it into the module. 696 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 697 NF->copyAttributesFrom(F); 698 699 // Patch the pointer to LLVM function in debug info descriptor. 700 auto DI = FunctionDIs.find(F); 701 if (DI != FunctionDIs.end()) { 702 DISubprogram SP = DI->second; 703 SP.replaceFunction(NF); 704 // Ensure the map is updated so it can be reused on subsequent argument 705 // promotions of the same function. 706 FunctionDIs.erase(DI); 707 FunctionDIs[NF] = SP; 708 } 709 710 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 711 << "From: " << *F); 712 713 // Recompute the parameter attributes list based on the new arguments for 714 // the function. 715 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec)); 716 AttributesVec.clear(); 717 718 F->getParent()->getFunctionList().insert(F, NF); 719 NF->takeName(F); 720 721 // Get the alias analysis information that we need to update to reflect our 722 // changes. 723 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 724 725 // Get the callgraph information that we need to update to reflect our 726 // changes. 727 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 728 729 // Get a new callgraph node for NF. 730 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 731 732 // Loop over all of the callers of the function, transforming the call sites 733 // to pass in the loaded pointers. 734 // 735 SmallVector<Value*, 16> Args; 736 while (!F->use_empty()) { 737 CallSite CS(F->user_back()); 738 assert(CS.getCalledFunction() == F); 739 Instruction *Call = CS.getInstruction(); 740 const AttributeSet &CallPAL = CS.getAttributes(); 741 742 // Add any return attributes. 743 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex)) 744 AttributesVec.push_back(AttributeSet::get(F->getContext(), 745 CallPAL.getRetAttributes())); 746 747 // Loop over the operands, inserting GEP and loads in the caller as 748 // appropriate. 749 CallSite::arg_iterator AI = CS.arg_begin(); 750 ArgIndex = 1; 751 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 752 I != E; ++I, ++AI, ++ArgIndex) 753 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 754 Args.push_back(*AI); // Unmodified argument 755 756 if (CallPAL.hasAttributes(ArgIndex)) { 757 AttrBuilder B(CallPAL, ArgIndex); 758 AttributesVec. 759 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 760 } 761 } else if (ByValArgsToTransform.count(I)) { 762 // Emit a GEP and load for each element of the struct. 763 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 764 StructType *STy = cast<StructType>(AgTy); 765 Value *Idxs[2] = { 766 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 767 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 768 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 769 Value *Idx = GetElementPtrInst::Create(*AI, Idxs, 770 (*AI)->getName()+"."+utostr(i), 771 Call); 772 // TODO: Tell AA about the new values? 773 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 774 } 775 } else if (!I->use_empty()) { 776 // Non-dead argument: insert GEPs and loads as appropriate. 777 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 778 // Store the Value* version of the indices in here, but declare it now 779 // for reuse. 780 std::vector<Value*> Ops; 781 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 782 E = ArgIndices.end(); SI != E; ++SI) { 783 Value *V = *AI; 784 LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, *SI)]; 785 if (!SI->empty()) { 786 Ops.reserve(SI->size()); 787 Type *ElTy = V->getType(); 788 for (IndicesVector::const_iterator II = SI->begin(), 789 IE = SI->end(); II != IE; ++II) { 790 // Use i32 to index structs, and i64 for others (pointers/arrays). 791 // This satisfies GEP constraints. 792 Type *IdxTy = (ElTy->isStructTy() ? 793 Type::getInt32Ty(F->getContext()) : 794 Type::getInt64Ty(F->getContext())); 795 Ops.push_back(ConstantInt::get(IdxTy, *II)); 796 // Keep track of the type we're currently indexing. 797 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II); 798 } 799 // And create a GEP to extract those indices. 800 V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call); 801 Ops.clear(); 802 AA.copyValue(OrigLoad->getOperand(0), V); 803 } 804 // Since we're replacing a load make sure we take the alignment 805 // of the previous load. 806 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 807 newLoad->setAlignment(OrigLoad->getAlignment()); 808 // Transfer the AA info too. 809 AAMDNodes AAInfo; 810 OrigLoad->getAAMetadata(AAInfo); 811 newLoad->setAAMetadata(AAInfo); 812 813 Args.push_back(newLoad); 814 AA.copyValue(OrigLoad, Args.back()); 815 } 816 } 817 818 // Push any varargs arguments on the list. 819 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 820 Args.push_back(*AI); 821 if (CallPAL.hasAttributes(ArgIndex)) { 822 AttrBuilder B(CallPAL, ArgIndex); 823 AttributesVec. 824 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 825 } 826 } 827 828 // Add any function attributes. 829 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 830 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 831 CallPAL.getFnAttributes())); 832 833 Instruction *New; 834 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 835 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 836 Args, "", Call); 837 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 838 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(), 839 AttributesVec)); 840 } else { 841 New = CallInst::Create(NF, Args, "", Call); 842 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 843 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(), 844 AttributesVec)); 845 if (cast<CallInst>(Call)->isTailCall()) 846 cast<CallInst>(New)->setTailCall(); 847 } 848 New->setDebugLoc(Call->getDebugLoc()); 849 Args.clear(); 850 AttributesVec.clear(); 851 852 // Update the alias analysis implementation to know that we are replacing 853 // the old call with a new one. 854 AA.replaceWithNewValue(Call, New); 855 856 // Update the callgraph to know that the callsite has been transformed. 857 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 858 CalleeNode->replaceCallEdge(Call, New, NF_CGN); 859 860 if (!Call->use_empty()) { 861 Call->replaceAllUsesWith(New); 862 New->takeName(Call); 863 } 864 865 // Finally, remove the old call from the program, reducing the use-count of 866 // F. 867 Call->eraseFromParent(); 868 } 869 870 // Since we have now created the new function, splice the body of the old 871 // function right into the new function, leaving the old rotting hulk of the 872 // function empty. 873 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 874 875 // Loop over the argument list, transferring uses of the old arguments over to 876 // the new arguments, also transferring over the names as well. 877 // 878 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 879 I2 = NF->arg_begin(); I != E; ++I) { 880 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 881 // If this is an unmodified argument, move the name and users over to the 882 // new version. 883 I->replaceAllUsesWith(I2); 884 I2->takeName(I); 885 AA.replaceWithNewValue(I, I2); 886 ++I2; 887 continue; 888 } 889 890 if (ByValArgsToTransform.count(I)) { 891 // In the callee, we create an alloca, and store each of the new incoming 892 // arguments into the alloca. 893 Instruction *InsertPt = NF->begin()->begin(); 894 895 // Just add all the struct element types. 896 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 897 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt); 898 StructType *STy = cast<StructType>(AgTy); 899 Value *Idxs[2] = { 900 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 901 902 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 903 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 904 Value *Idx = 905 GetElementPtrInst::Create(TheAlloca, Idxs, 906 TheAlloca->getName()+"."+Twine(i), 907 InsertPt); 908 I2->setName(I->getName()+"."+Twine(i)); 909 new StoreInst(I2++, Idx, InsertPt); 910 } 911 912 // Anything that used the arg should now use the alloca. 913 I->replaceAllUsesWith(TheAlloca); 914 TheAlloca->takeName(I); 915 AA.replaceWithNewValue(I, TheAlloca); 916 917 // If the alloca is used in a call, we must clear the tail flag since 918 // the callee now uses an alloca from the caller. 919 for (User *U : TheAlloca->users()) { 920 CallInst *Call = dyn_cast<CallInst>(U); 921 if (!Call) 922 continue; 923 Call->setTailCall(false); 924 } 925 continue; 926 } 927 928 if (I->use_empty()) { 929 AA.deleteValue(I); 930 continue; 931 } 932 933 // Otherwise, if we promoted this argument, then all users are load 934 // instructions (or GEPs with only load users), and all loads should be 935 // using the new argument that we added. 936 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 937 938 while (!I->use_empty()) { 939 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 940 assert(ArgIndices.begin()->empty() && 941 "Load element should sort to front!"); 942 I2->setName(I->getName()+".val"); 943 LI->replaceAllUsesWith(I2); 944 AA.replaceWithNewValue(LI, I2); 945 LI->eraseFromParent(); 946 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 947 << "' in function '" << F->getName() << "'\n"); 948 } else { 949 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 950 IndicesVector Operands; 951 Operands.reserve(GEP->getNumIndices()); 952 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 953 II != IE; ++II) 954 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 955 956 // GEPs with a single 0 index can be merged with direct loads 957 if (Operands.size() == 1 && Operands.front() == 0) 958 Operands.clear(); 959 960 Function::arg_iterator TheArg = I2; 961 for (ScalarizeTable::iterator It = ArgIndices.begin(); 962 *It != Operands; ++It, ++TheArg) { 963 assert(It != ArgIndices.end() && "GEP not handled??"); 964 } 965 966 std::string NewName = I->getName(); 967 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 968 NewName += "." + utostr(Operands[i]); 969 } 970 NewName += ".val"; 971 TheArg->setName(NewName); 972 973 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 974 << "' of function '" << NF->getName() << "'\n"); 975 976 // All of the uses must be load instructions. Replace them all with 977 // the argument specified by ArgNo. 978 while (!GEP->use_empty()) { 979 LoadInst *L = cast<LoadInst>(GEP->user_back()); 980 L->replaceAllUsesWith(TheArg); 981 AA.replaceWithNewValue(L, TheArg); 982 L->eraseFromParent(); 983 } 984 AA.deleteValue(GEP); 985 GEP->eraseFromParent(); 986 } 987 } 988 989 // Increment I2 past all of the arguments added for this promoted pointer. 990 std::advance(I2, ArgIndices.size()); 991 } 992 993 // Tell the alias analysis that the old function is about to disappear. 994 AA.replaceWithNewValue(F, NF); 995 996 997 NF_CGN->stealCalledFunctionsFrom(CG[F]); 998 999 // Now that the old function is dead, delete it. If there is a dangling 1000 // reference to the CallgraphNode, just leave the dead function around for 1001 // someone else to nuke. 1002 CallGraphNode *CGN = CG[F]; 1003 if (CGN->getNumReferences() == 0) 1004 delete CG.removeFunctionFromModule(CGN); 1005 else 1006 F->setLinkage(Function::ExternalLinkage); 1007 1008 return NF_CGN; 1009 } 1010 1011 bool ArgPromotion::doInitialization(CallGraph &CG) { 1012 FunctionDIs = makeSubprogramMap(CG.getModule()); 1013 return CallGraphSCCPass::doInitialization(CG); 1014 } 1015