1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/BasicAliasAnalysis.h" 39 #include "llvm/Analysis/CallGraph.h" 40 #include "llvm/Analysis/CallGraphSCCPass.h" 41 #include "llvm/Analysis/Loads.h" 42 #include "llvm/Analysis/TargetLibraryInfo.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include <set> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "argpromotion" 58 59 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 60 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 61 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 62 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 63 64 namespace { 65 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 66 /// 67 struct ArgPromotion : public CallGraphSCCPass { 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.addRequired<AssumptionCacheTracker>(); 70 AU.addRequired<TargetLibraryInfoWrapperPass>(); 71 getAAResultsAnalysisUsage(AU); 72 CallGraphSCCPass::getAnalysisUsage(AU); 73 } 74 75 bool runOnSCC(CallGraphSCC &SCC) override; 76 static char ID; // Pass identification, replacement for typeid 77 explicit ArgPromotion(unsigned maxElements = 3) 78 : CallGraphSCCPass(ID), maxElements(maxElements) { 79 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 80 } 81 82 private: 83 84 using llvm::Pass::doInitialization; 85 bool doInitialization(CallGraph &CG) override; 86 /// The maximum number of elements to expand, or 0 for unlimited. 87 unsigned maxElements; 88 }; 89 } 90 91 /// A vector used to hold the indices of a single GEP instruction 92 typedef std::vector<uint64_t> IndicesVector; 93 94 static CallGraphNode * 95 PromoteArguments(CallGraphNode *CGN, CallGraph &CG, 96 function_ref<AAResults &(Function &F)> AARGetter, 97 unsigned MaxElements); 98 static bool isDenselyPacked(Type *type, const DataLayout &DL); 99 static bool canPaddingBeAccessed(Argument *Arg); 100 static bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, AAResults &AAR, 101 unsigned MaxElements); 102 static CallGraphNode * 103 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 104 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG); 105 106 char ArgPromotion::ID = 0; 107 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 108 "Promote 'by reference' arguments to scalars", false, false) 109 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 110 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 112 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 113 "Promote 'by reference' arguments to scalars", false, false) 114 115 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 116 return new ArgPromotion(maxElements); 117 } 118 119 static bool runImpl(CallGraphSCC &SCC, CallGraph &CG, 120 function_ref<AAResults &(Function &F)> AARGetter, 121 unsigned MaxElements) { 122 bool Changed = false, LocalChange; 123 124 do { // Iterate until we stop promoting from this SCC. 125 LocalChange = false; 126 // Attempt to promote arguments from all functions in this SCC. 127 for (CallGraphNode *OldNode : SCC) { 128 if (CallGraphNode *NewNode = 129 PromoteArguments(OldNode, CG, AARGetter, MaxElements)) { 130 LocalChange = true; 131 SCC.ReplaceNode(OldNode, NewNode); 132 } 133 } 134 Changed |= LocalChange; // Remember that we changed something. 135 } while (LocalChange); 136 137 return Changed; 138 } 139 140 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 141 if (skipSCC(SCC)) 142 return false; 143 144 // Get the callgraph information that we need to update to reflect our 145 // changes. 146 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 147 148 // We compute dedicated AA results for each function in the SCC as needed. We 149 // use a lambda referencing external objects so that they live long enough to 150 // be queried, but we re-use them each time. 151 Optional<BasicAAResult> BAR; 152 Optional<AAResults> AAR; 153 auto AARGetter = [&](Function &F) -> AAResults & { 154 BAR.emplace(createLegacyPMBasicAAResult(*this, F)); 155 AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); 156 return *AAR; 157 }; 158 159 return runImpl(SCC, CG, AARGetter, maxElements); 160 } 161 162 /// \brief Checks if a type could have padding bytes. 163 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 164 165 // There is no size information, so be conservative. 166 if (!type->isSized()) 167 return false; 168 169 // If the alloc size is not equal to the storage size, then there are padding 170 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 171 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 172 return false; 173 174 if (!isa<CompositeType>(type)) 175 return true; 176 177 // For homogenous sequential types, check for padding within members. 178 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 179 return isDenselyPacked(seqTy->getElementType(), DL); 180 181 // Check for padding within and between elements of a struct. 182 StructType *StructTy = cast<StructType>(type); 183 const StructLayout *Layout = DL.getStructLayout(StructTy); 184 uint64_t StartPos = 0; 185 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 186 Type *ElTy = StructTy->getElementType(i); 187 if (!isDenselyPacked(ElTy, DL)) 188 return false; 189 if (StartPos != Layout->getElementOffsetInBits(i)) 190 return false; 191 StartPos += DL.getTypeAllocSizeInBits(ElTy); 192 } 193 194 return true; 195 } 196 197 /// \brief Checks if the padding bytes of an argument could be accessed. 198 static bool canPaddingBeAccessed(Argument *arg) { 199 200 assert(arg->hasByValAttr()); 201 202 // Track all the pointers to the argument to make sure they are not captured. 203 SmallPtrSet<Value *, 16> PtrValues; 204 PtrValues.insert(arg); 205 206 // Track all of the stores. 207 SmallVector<StoreInst *, 16> Stores; 208 209 // Scan through the uses recursively to make sure the pointer is always used 210 // sanely. 211 SmallVector<Value *, 16> WorkList; 212 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 213 while (!WorkList.empty()) { 214 Value *V = WorkList.back(); 215 WorkList.pop_back(); 216 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 217 if (PtrValues.insert(V).second) 218 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 219 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 220 Stores.push_back(Store); 221 } else if (!isa<LoadInst>(V)) { 222 return true; 223 } 224 } 225 226 // Check to make sure the pointers aren't captured 227 for (StoreInst *Store : Stores) 228 if (PtrValues.count(Store->getValueOperand())) 229 return true; 230 231 return false; 232 } 233 234 /// PromoteArguments - This method checks the specified function to see if there 235 /// are any promotable arguments and if it is safe to promote the function (for 236 /// example, all callers are direct). If safe to promote some arguments, it 237 /// calls the DoPromotion method. 238 /// 239 static CallGraphNode * 240 PromoteArguments(CallGraphNode *CGN, CallGraph &CG, 241 function_ref<AAResults &(Function &F)> AARGetter, 242 unsigned MaxElements) { 243 Function *F = CGN->getFunction(); 244 245 // Make sure that it is local to this module. 246 if (!F || !F->hasLocalLinkage()) return nullptr; 247 248 // Don't promote arguments for variadic functions. Adding, removing, or 249 // changing non-pack parameters can change the classification of pack 250 // parameters. Frontends encode that classification at the call site in the 251 // IR, while in the callee the classification is determined dynamically based 252 // on the number of registers consumed so far. 253 if (F->isVarArg()) return nullptr; 254 255 // First check: see if there are any pointer arguments! If not, quick exit. 256 SmallVector<Argument*, 16> PointerArgs; 257 for (Argument &I : F->args()) 258 if (I.getType()->isPointerTy()) 259 PointerArgs.push_back(&I); 260 if (PointerArgs.empty()) return nullptr; 261 262 // Second check: make sure that all callers are direct callers. We can't 263 // transform functions that have indirect callers. Also see if the function 264 // is self-recursive. 265 bool isSelfRecursive = false; 266 for (Use &U : F->uses()) { 267 CallSite CS(U.getUser()); 268 // Must be a direct call. 269 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; 270 271 if (CS.getInstruction()->getParent()->getParent() == F) 272 isSelfRecursive = true; 273 } 274 275 const DataLayout &DL = F->getParent()->getDataLayout(); 276 277 AAResults &AAR = AARGetter(*F); 278 279 // Check to see which arguments are promotable. If an argument is promotable, 280 // add it to ArgsToPromote. 281 SmallPtrSet<Argument*, 8> ArgsToPromote; 282 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 283 for (Argument *PtrArg : PointerArgs) { 284 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 285 286 // Replace sret attribute with noalias. This reduces register pressure by 287 // avoiding a register copy. 288 if (PtrArg->hasStructRetAttr()) { 289 unsigned ArgNo = PtrArg->getArgNo(); 290 F->setAttributes( 291 F->getAttributes() 292 .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet) 293 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 294 for (Use &U : F->uses()) { 295 CallSite CS(U.getUser()); 296 CS.setAttributes( 297 CS.getAttributes() 298 .removeAttribute(F->getContext(), ArgNo + 1, 299 Attribute::StructRet) 300 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 301 } 302 } 303 304 // If this is a byval argument, and if the aggregate type is small, just 305 // pass the elements, which is always safe, if the passed value is densely 306 // packed or if we can prove the padding bytes are never accessed. This does 307 // not apply to inalloca. 308 bool isSafeToPromote = 309 PtrArg->hasByValAttr() && 310 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 311 if (isSafeToPromote) { 312 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 313 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 314 DEBUG(dbgs() << "argpromotion disable promoting argument '" 315 << PtrArg->getName() << "' because it would require adding more" 316 << " than " << MaxElements << " arguments to the function.\n"); 317 continue; 318 } 319 320 // If all the elements are single-value types, we can promote it. 321 bool AllSimple = true; 322 for (const auto *EltTy : STy->elements()) { 323 if (!EltTy->isSingleValueType()) { 324 AllSimple = false; 325 break; 326 } 327 } 328 329 // Safe to transform, don't even bother trying to "promote" it. 330 // Passing the elements as a scalar will allow sroa to hack on 331 // the new alloca we introduce. 332 if (AllSimple) { 333 ByValArgsToTransform.insert(PtrArg); 334 continue; 335 } 336 } 337 } 338 339 // If the argument is a recursive type and we're in a recursive 340 // function, we could end up infinitely peeling the function argument. 341 if (isSelfRecursive) { 342 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 343 bool RecursiveType = false; 344 for (const auto *EltTy : STy->elements()) { 345 if (EltTy == PtrArg->getType()) { 346 RecursiveType = true; 347 break; 348 } 349 } 350 if (RecursiveType) 351 continue; 352 } 353 } 354 355 // Otherwise, see if we can promote the pointer to its value. 356 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, 357 MaxElements)) 358 ArgsToPromote.insert(PtrArg); 359 } 360 361 // No promotable pointer arguments. 362 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 363 return nullptr; 364 365 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG); 366 } 367 368 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 369 /// all callees pass in a valid pointer for the specified function argument. 370 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { 371 Function *Callee = Arg->getParent(); 372 const DataLayout &DL = Callee->getParent()->getDataLayout(); 373 374 unsigned ArgNo = Arg->getArgNo(); 375 376 // Look at all call sites of the function. At this point we know we only have 377 // direct callees. 378 for (User *U : Callee->users()) { 379 CallSite CS(U); 380 assert(CS && "Should only have direct calls!"); 381 382 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 383 return false; 384 } 385 return true; 386 } 387 388 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 389 /// that is greater than or equal to the size of prefix, and each of the 390 /// elements in Prefix is the same as the corresponding elements in Longer. 391 /// 392 /// This means it also returns true when Prefix and Longer are equal! 393 static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 394 if (Prefix.size() > Longer.size()) 395 return false; 396 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 397 } 398 399 400 /// Checks if Indices, or a prefix of Indices, is in Set. 401 static bool PrefixIn(const IndicesVector &Indices, 402 std::set<IndicesVector> &Set) { 403 std::set<IndicesVector>::iterator Low; 404 Low = Set.upper_bound(Indices); 405 if (Low != Set.begin()) 406 Low--; 407 // Low is now the last element smaller than or equal to Indices. This means 408 // it points to a prefix of Indices (possibly Indices itself), if such 409 // prefix exists. 410 // 411 // This load is safe if any prefix of its operands is safe to load. 412 return Low != Set.end() && IsPrefix(*Low, Indices); 413 } 414 415 /// Mark the given indices (ToMark) as safe in the given set of indices 416 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 417 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 418 /// already. Furthermore, any indices that Indices is itself a prefix of, are 419 /// removed from Safe (since they are implicitely safe because of Indices now). 420 static void MarkIndicesSafe(const IndicesVector &ToMark, 421 std::set<IndicesVector> &Safe) { 422 std::set<IndicesVector>::iterator Low; 423 Low = Safe.upper_bound(ToMark); 424 // Guard against the case where Safe is empty 425 if (Low != Safe.begin()) 426 Low--; 427 // Low is now the last element smaller than or equal to Indices. This 428 // means it points to a prefix of Indices (possibly Indices itself), if 429 // such prefix exists. 430 if (Low != Safe.end()) { 431 if (IsPrefix(*Low, ToMark)) 432 // If there is already a prefix of these indices (or exactly these 433 // indices) marked a safe, don't bother adding these indices 434 return; 435 436 // Increment Low, so we can use it as a "insert before" hint 437 ++Low; 438 } 439 // Insert 440 Low = Safe.insert(Low, ToMark); 441 ++Low; 442 // If there we're a prefix of longer index list(s), remove those 443 std::set<IndicesVector>::iterator End = Safe.end(); 444 while (Low != End && IsPrefix(ToMark, *Low)) { 445 std::set<IndicesVector>::iterator Remove = Low; 446 ++Low; 447 Safe.erase(Remove); 448 } 449 } 450 451 /// isSafeToPromoteArgument - As you might guess from the name of this method, 452 /// it checks to see if it is both safe and useful to promote the argument. 453 /// This method limits promotion of aggregates to only promote up to three 454 /// elements of the aggregate in order to avoid exploding the number of 455 /// arguments passed in. 456 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, 457 AAResults &AAR, unsigned MaxElements) { 458 typedef std::set<IndicesVector> GEPIndicesSet; 459 460 // Quick exit for unused arguments 461 if (Arg->use_empty()) 462 return true; 463 464 // We can only promote this argument if all of the uses are loads, or are GEP 465 // instructions (with constant indices) that are subsequently loaded. 466 // 467 // Promoting the argument causes it to be loaded in the caller 468 // unconditionally. This is only safe if we can prove that either the load 469 // would have happened in the callee anyway (ie, there is a load in the entry 470 // block) or the pointer passed in at every call site is guaranteed to be 471 // valid. 472 // In the former case, invalid loads can happen, but would have happened 473 // anyway, in the latter case, invalid loads won't happen. This prevents us 474 // from introducing an invalid load that wouldn't have happened in the 475 // original code. 476 // 477 // This set will contain all sets of indices that are loaded in the entry 478 // block, and thus are safe to unconditionally load in the caller. 479 // 480 // This optimization is also safe for InAlloca parameters, because it verifies 481 // that the address isn't captured. 482 GEPIndicesSet SafeToUnconditionallyLoad; 483 484 // This set contains all the sets of indices that we are planning to promote. 485 // This makes it possible to limit the number of arguments added. 486 GEPIndicesSet ToPromote; 487 488 // If the pointer is always valid, any load with first index 0 is valid. 489 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) 490 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 491 492 // First, iterate the entry block and mark loads of (geps of) arguments as 493 // safe. 494 BasicBlock &EntryBlock = Arg->getParent()->front(); 495 // Declare this here so we can reuse it 496 IndicesVector Indices; 497 for (Instruction &I : EntryBlock) 498 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 499 Value *V = LI->getPointerOperand(); 500 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 501 V = GEP->getPointerOperand(); 502 if (V == Arg) { 503 // This load actually loads (part of) Arg? Check the indices then. 504 Indices.reserve(GEP->getNumIndices()); 505 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 506 II != IE; ++II) 507 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 508 Indices.push_back(CI->getSExtValue()); 509 else 510 // We found a non-constant GEP index for this argument? Bail out 511 // right away, can't promote this argument at all. 512 return false; 513 514 // Indices checked out, mark them as safe 515 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 516 Indices.clear(); 517 } 518 } else if (V == Arg) { 519 // Direct loads are equivalent to a GEP with a single 0 index. 520 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 521 } 522 } 523 524 // Now, iterate all uses of the argument to see if there are any uses that are 525 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 526 SmallVector<LoadInst*, 16> Loads; 527 IndicesVector Operands; 528 for (Use &U : Arg->uses()) { 529 User *UR = U.getUser(); 530 Operands.clear(); 531 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 532 // Don't hack volatile/atomic loads 533 if (!LI->isSimple()) return false; 534 Loads.push_back(LI); 535 // Direct loads are equivalent to a GEP with a zero index and then a load. 536 Operands.push_back(0); 537 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 538 if (GEP->use_empty()) { 539 // Dead GEP's cause trouble later. Just remove them if we run into 540 // them. 541 GEP->eraseFromParent(); 542 // TODO: This runs the above loop over and over again for dead GEPs 543 // Couldn't we just do increment the UI iterator earlier and erase the 544 // use? 545 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, 546 MaxElements); 547 } 548 549 // Ensure that all of the indices are constants. 550 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 551 i != e; ++i) 552 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 553 Operands.push_back(C->getSExtValue()); 554 else 555 return false; // Not a constant operand GEP! 556 557 // Ensure that the only users of the GEP are load instructions. 558 for (User *GEPU : GEP->users()) 559 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 560 // Don't hack volatile/atomic loads 561 if (!LI->isSimple()) return false; 562 Loads.push_back(LI); 563 } else { 564 // Other uses than load? 565 return false; 566 } 567 } else { 568 return false; // Not a load or a GEP. 569 } 570 571 // Now, see if it is safe to promote this load / loads of this GEP. Loading 572 // is safe if Operands, or a prefix of Operands, is marked as safe. 573 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 574 return false; 575 576 // See if we are already promoting a load with these indices. If not, check 577 // to make sure that we aren't promoting too many elements. If so, nothing 578 // to do. 579 if (ToPromote.find(Operands) == ToPromote.end()) { 580 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 581 DEBUG(dbgs() << "argpromotion not promoting argument '" 582 << Arg->getName() << "' because it would require adding more " 583 << "than " << MaxElements << " arguments to the function.\n"); 584 // We limit aggregate promotion to only promoting up to a fixed number 585 // of elements of the aggregate. 586 return false; 587 } 588 ToPromote.insert(std::move(Operands)); 589 } 590 } 591 592 if (Loads.empty()) return true; // No users, this is a dead argument. 593 594 // Okay, now we know that the argument is only used by load instructions and 595 // it is safe to unconditionally perform all of them. Use alias analysis to 596 // check to see if the pointer is guaranteed to not be modified from entry of 597 // the function to each of the load instructions. 598 599 // Because there could be several/many load instructions, remember which 600 // blocks we know to be transparent to the load. 601 df_iterator_default_set<BasicBlock*, 16> TranspBlocks; 602 603 for (LoadInst *Load : Loads) { 604 // Check to see if the load is invalidated from the start of the block to 605 // the load itself. 606 BasicBlock *BB = Load->getParent(); 607 608 MemoryLocation Loc = MemoryLocation::get(Load); 609 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod)) 610 return false; // Pointer is invalidated! 611 612 // Now check every path from the entry block to the load for transparency. 613 // To do this, we perform a depth first search on the inverse CFG from the 614 // loading block. 615 for (BasicBlock *P : predecessors(BB)) { 616 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 617 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 618 return false; 619 } 620 } 621 622 // If the path from the entry of the function to each load is free of 623 // instructions that potentially invalidate the load, we can make the 624 // transformation! 625 return true; 626 } 627 628 /// DoPromotion - This method actually performs the promotion of the specified 629 /// arguments, and returns the new function. At this point, we know that it's 630 /// safe to do so. 631 static CallGraphNode * 632 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 633 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG) { 634 635 // Start by computing a new prototype for the function, which is the same as 636 // the old function, but has modified arguments. 637 FunctionType *FTy = F->getFunctionType(); 638 std::vector<Type*> Params; 639 640 typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable; 641 642 // ScalarizedElements - If we are promoting a pointer that has elements 643 // accessed out of it, keep track of which elements are accessed so that we 644 // can add one argument for each. 645 // 646 // Arguments that are directly loaded will have a zero element value here, to 647 // handle cases where there are both a direct load and GEP accesses. 648 // 649 std::map<Argument*, ScalarizeTable> ScalarizedElements; 650 651 // OriginalLoads - Keep track of a representative load instruction from the 652 // original function so that we can tell the alias analysis implementation 653 // what the new GEP/Load instructions we are inserting look like. 654 // We need to keep the original loads for each argument and the elements 655 // of the argument that are accessed. 656 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads; 657 658 // Attribute - Keep track of the parameter attributes for the arguments 659 // that we are *not* promoting. For the ones that we do promote, the parameter 660 // attributes are lost 661 SmallVector<AttributeSet, 8> AttributesVec; 662 const AttributeSet &PAL = F->getAttributes(); 663 664 // Add any return attributes. 665 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 666 AttributesVec.push_back(AttributeSet::get(F->getContext(), 667 PAL.getRetAttributes())); 668 669 // First, determine the new argument list 670 unsigned ArgIndex = 1; 671 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 672 ++I, ++ArgIndex) { 673 if (ByValArgsToTransform.count(&*I)) { 674 // Simple byval argument? Just add all the struct element types. 675 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 676 StructType *STy = cast<StructType>(AgTy); 677 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 678 ++NumByValArgsPromoted; 679 } else if (!ArgsToPromote.count(&*I)) { 680 // Unchanged argument 681 Params.push_back(I->getType()); 682 AttributeSet attrs = PAL.getParamAttributes(ArgIndex); 683 if (attrs.hasAttributes(ArgIndex)) { 684 AttrBuilder B(attrs, ArgIndex); 685 AttributesVec. 686 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 687 } 688 } else if (I->use_empty()) { 689 // Dead argument (which are always marked as promotable) 690 ++NumArgumentsDead; 691 } else { 692 // Okay, this is being promoted. This means that the only uses are loads 693 // or GEPs which are only used by loads 694 695 // In this table, we will track which indices are loaded from the argument 696 // (where direct loads are tracked as no indices). 697 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 698 for (User *U : I->users()) { 699 Instruction *UI = cast<Instruction>(U); 700 Type *SrcTy; 701 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 702 SrcTy = L->getType(); 703 else 704 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 705 IndicesVector Indices; 706 Indices.reserve(UI->getNumOperands() - 1); 707 // Since loads will only have a single operand, and GEPs only a single 708 // non-index operand, this will record direct loads without any indices, 709 // and gep+loads with the GEP indices. 710 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 711 II != IE; ++II) 712 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 713 // GEPs with a single 0 index can be merged with direct loads 714 if (Indices.size() == 1 && Indices.front() == 0) 715 Indices.clear(); 716 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 717 LoadInst *OrigLoad; 718 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 719 OrigLoad = L; 720 else 721 // Take any load, we will use it only to update Alias Analysis 722 OrigLoad = cast<LoadInst>(UI->user_back()); 723 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 724 } 725 726 // Add a parameter to the function for each element passed in. 727 for (const auto &ArgIndex : ArgIndices) { 728 // not allowed to dereference ->begin() if size() is 0 729 Params.push_back(GetElementPtrInst::getIndexedType( 730 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 731 ArgIndex.second)); 732 assert(Params.back()); 733 } 734 735 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 736 ++NumArgumentsPromoted; 737 else 738 ++NumAggregatesPromoted; 739 } 740 } 741 742 // Add any function attributes. 743 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 744 AttributesVec.push_back(AttributeSet::get(FTy->getContext(), 745 PAL.getFnAttributes())); 746 747 Type *RetTy = FTy->getReturnType(); 748 749 // Construct the new function type using the new arguments. 750 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 751 752 // Create the new function body and insert it into the module. 753 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 754 NF->copyAttributesFrom(F); 755 756 // Patch the pointer to LLVM function in debug info descriptor. 757 NF->setSubprogram(F->getSubprogram()); 758 F->setSubprogram(nullptr); 759 760 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 761 << "From: " << *F); 762 763 // Recompute the parameter attributes list based on the new arguments for 764 // the function. 765 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec)); 766 AttributesVec.clear(); 767 768 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 769 NF->takeName(F); 770 771 // Get a new callgraph node for NF. 772 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 773 774 // Loop over all of the callers of the function, transforming the call sites 775 // to pass in the loaded pointers. 776 // 777 SmallVector<Value*, 16> Args; 778 while (!F->use_empty()) { 779 CallSite CS(F->user_back()); 780 assert(CS.getCalledFunction() == F); 781 Instruction *Call = CS.getInstruction(); 782 const AttributeSet &CallPAL = CS.getAttributes(); 783 784 // Add any return attributes. 785 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex)) 786 AttributesVec.push_back(AttributeSet::get(F->getContext(), 787 CallPAL.getRetAttributes())); 788 789 // Loop over the operands, inserting GEP and loads in the caller as 790 // appropriate. 791 CallSite::arg_iterator AI = CS.arg_begin(); 792 ArgIndex = 1; 793 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 794 I != E; ++I, ++AI, ++ArgIndex) 795 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 796 Args.push_back(*AI); // Unmodified argument 797 798 if (CallPAL.hasAttributes(ArgIndex)) { 799 AttrBuilder B(CallPAL, ArgIndex); 800 AttributesVec. 801 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 802 } 803 } else if (ByValArgsToTransform.count(&*I)) { 804 // Emit a GEP and load for each element of the struct. 805 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 806 StructType *STy = cast<StructType>(AgTy); 807 Value *Idxs[2] = { 808 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 809 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 810 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 811 Value *Idx = GetElementPtrInst::Create( 812 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 813 // TODO: Tell AA about the new values? 814 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 815 } 816 } else if (!I->use_empty()) { 817 // Non-dead argument: insert GEPs and loads as appropriate. 818 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 819 // Store the Value* version of the indices in here, but declare it now 820 // for reuse. 821 std::vector<Value*> Ops; 822 for (const auto &ArgIndex : ArgIndices) { 823 Value *V = *AI; 824 LoadInst *OrigLoad = 825 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 826 if (!ArgIndex.second.empty()) { 827 Ops.reserve(ArgIndex.second.size()); 828 Type *ElTy = V->getType(); 829 for (unsigned long II : ArgIndex.second) { 830 // Use i32 to index structs, and i64 for others (pointers/arrays). 831 // This satisfies GEP constraints. 832 Type *IdxTy = (ElTy->isStructTy() ? 833 Type::getInt32Ty(F->getContext()) : 834 Type::getInt64Ty(F->getContext())); 835 Ops.push_back(ConstantInt::get(IdxTy, II)); 836 // Keep track of the type we're currently indexing. 837 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 838 ElTy = ElPTy->getElementType(); 839 else 840 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 841 } 842 // And create a GEP to extract those indices. 843 V = GetElementPtrInst::Create(ArgIndex.first, V, Ops, 844 V->getName() + ".idx", Call); 845 Ops.clear(); 846 } 847 // Since we're replacing a load make sure we take the alignment 848 // of the previous load. 849 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 850 newLoad->setAlignment(OrigLoad->getAlignment()); 851 // Transfer the AA info too. 852 AAMDNodes AAInfo; 853 OrigLoad->getAAMetadata(AAInfo); 854 newLoad->setAAMetadata(AAInfo); 855 856 Args.push_back(newLoad); 857 } 858 } 859 860 // Push any varargs arguments on the list. 861 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 862 Args.push_back(*AI); 863 if (CallPAL.hasAttributes(ArgIndex)) { 864 AttrBuilder B(CallPAL, ArgIndex); 865 AttributesVec. 866 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 867 } 868 } 869 870 // Add any function attributes. 871 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 872 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 873 CallPAL.getFnAttributes())); 874 875 SmallVector<OperandBundleDef, 1> OpBundles; 876 CS.getOperandBundlesAsDefs(OpBundles); 877 878 Instruction *New; 879 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 880 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 881 Args, OpBundles, "", Call); 882 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 883 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(), 884 AttributesVec)); 885 } else { 886 New = CallInst::Create(NF, Args, OpBundles, "", Call); 887 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 888 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(), 889 AttributesVec)); 890 cast<CallInst>(New)->setTailCallKind( 891 cast<CallInst>(Call)->getTailCallKind()); 892 } 893 New->setDebugLoc(Call->getDebugLoc()); 894 Args.clear(); 895 AttributesVec.clear(); 896 897 // Update the callgraph to know that the callsite has been transformed. 898 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 899 CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN); 900 901 if (!Call->use_empty()) { 902 Call->replaceAllUsesWith(New); 903 New->takeName(Call); 904 } 905 906 // Finally, remove the old call from the program, reducing the use-count of 907 // F. 908 Call->eraseFromParent(); 909 } 910 911 // Since we have now created the new function, splice the body of the old 912 // function right into the new function, leaving the old rotting hulk of the 913 // function empty. 914 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 915 916 // Loop over the argument list, transferring uses of the old arguments over to 917 // the new arguments, also transferring over the names as well. 918 // 919 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 920 I2 = NF->arg_begin(); I != E; ++I) { 921 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 922 // If this is an unmodified argument, move the name and users over to the 923 // new version. 924 I->replaceAllUsesWith(&*I2); 925 I2->takeName(&*I); 926 ++I2; 927 continue; 928 } 929 930 if (ByValArgsToTransform.count(&*I)) { 931 // In the callee, we create an alloca, and store each of the new incoming 932 // arguments into the alloca. 933 Instruction *InsertPt = &NF->begin()->front(); 934 935 // Just add all the struct element types. 936 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 937 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt); 938 StructType *STy = cast<StructType>(AgTy); 939 Value *Idxs[2] = { 940 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 941 942 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 943 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 944 Value *Idx = GetElementPtrInst::Create( 945 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 946 InsertPt); 947 I2->setName(I->getName()+"."+Twine(i)); 948 new StoreInst(&*I2++, Idx, InsertPt); 949 } 950 951 // Anything that used the arg should now use the alloca. 952 I->replaceAllUsesWith(TheAlloca); 953 TheAlloca->takeName(&*I); 954 955 // If the alloca is used in a call, we must clear the tail flag since 956 // the callee now uses an alloca from the caller. 957 for (User *U : TheAlloca->users()) { 958 CallInst *Call = dyn_cast<CallInst>(U); 959 if (!Call) 960 continue; 961 Call->setTailCall(false); 962 } 963 continue; 964 } 965 966 if (I->use_empty()) 967 continue; 968 969 // Otherwise, if we promoted this argument, then all users are load 970 // instructions (or GEPs with only load users), and all loads should be 971 // using the new argument that we added. 972 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 973 974 while (!I->use_empty()) { 975 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 976 assert(ArgIndices.begin()->second.empty() && 977 "Load element should sort to front!"); 978 I2->setName(I->getName()+".val"); 979 LI->replaceAllUsesWith(&*I2); 980 LI->eraseFromParent(); 981 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 982 << "' in function '" << F->getName() << "'\n"); 983 } else { 984 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 985 IndicesVector Operands; 986 Operands.reserve(GEP->getNumIndices()); 987 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 988 II != IE; ++II) 989 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 990 991 // GEPs with a single 0 index can be merged with direct loads 992 if (Operands.size() == 1 && Operands.front() == 0) 993 Operands.clear(); 994 995 Function::arg_iterator TheArg = I2; 996 for (ScalarizeTable::iterator It = ArgIndices.begin(); 997 It->second != Operands; ++It, ++TheArg) { 998 assert(It != ArgIndices.end() && "GEP not handled??"); 999 } 1000 1001 std::string NewName = I->getName(); 1002 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 1003 NewName += "." + utostr(Operands[i]); 1004 } 1005 NewName += ".val"; 1006 TheArg->setName(NewName); 1007 1008 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 1009 << "' of function '" << NF->getName() << "'\n"); 1010 1011 // All of the uses must be load instructions. Replace them all with 1012 // the argument specified by ArgNo. 1013 while (!GEP->use_empty()) { 1014 LoadInst *L = cast<LoadInst>(GEP->user_back()); 1015 L->replaceAllUsesWith(&*TheArg); 1016 L->eraseFromParent(); 1017 } 1018 GEP->eraseFromParent(); 1019 } 1020 } 1021 1022 // Increment I2 past all of the arguments added for this promoted pointer. 1023 std::advance(I2, ArgIndices.size()); 1024 } 1025 1026 NF_CGN->stealCalledFunctionsFrom(CG[F]); 1027 1028 // Now that the old function is dead, delete it. If there is a dangling 1029 // reference to the CallgraphNode, just leave the dead function around for 1030 // someone else to nuke. 1031 CallGraphNode *CGN = CG[F]; 1032 if (CGN->getNumReferences() == 0) 1033 delete CG.removeFunctionFromModule(CGN); 1034 else 1035 F->setLinkage(Function::ExternalLinkage); 1036 1037 return NF_CGN; 1038 } 1039 1040 bool ArgPromotion::doInitialization(CallGraph &CG) { 1041 return CallGraphSCCPass::doInitialization(CG); 1042 } 1043