1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #define DEBUG_TYPE "argpromotion" 33 #include "llvm/Transforms/IPO.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Support/CFG.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <set> 50 using namespace llvm; 51 52 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 53 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 54 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 55 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 56 57 namespace { 58 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 59 /// 60 struct ArgPromotion : public CallGraphSCCPass { 61 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 62 AU.addRequired<AliasAnalysis>(); 63 CallGraphSCCPass::getAnalysisUsage(AU); 64 } 65 66 virtual bool runOnSCC(CallGraphSCC &SCC); 67 static char ID; // Pass identification, replacement for typeid 68 explicit ArgPromotion(unsigned maxElements = 3) 69 : CallGraphSCCPass(ID), maxElements(maxElements) { 70 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 71 } 72 73 /// A vector used to hold the indices of a single GEP instruction 74 typedef std::vector<uint64_t> IndicesVector; 75 76 private: 77 CallGraphNode *PromoteArguments(CallGraphNode *CGN); 78 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const; 79 CallGraphNode *DoPromotion(Function *F, 80 SmallPtrSet<Argument*, 8> &ArgsToPromote, 81 SmallPtrSet<Argument*, 8> &ByValArgsToTransform); 82 /// The maximum number of elements to expand, or 0 for unlimited. 83 unsigned maxElements; 84 }; 85 } 86 87 char ArgPromotion::ID = 0; 88 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 89 "Promote 'by reference' arguments to scalars", false, false) 90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 91 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 92 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 93 "Promote 'by reference' arguments to scalars", false, false) 94 95 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 96 return new ArgPromotion(maxElements); 97 } 98 99 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 100 bool Changed = false, LocalChange; 101 102 do { // Iterate until we stop promoting from this SCC. 103 LocalChange = false; 104 // Attempt to promote arguments from all functions in this SCC. 105 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 106 if (CallGraphNode *CGN = PromoteArguments(*I)) { 107 LocalChange = true; 108 SCC.ReplaceNode(*I, CGN); 109 } 110 } 111 Changed |= LocalChange; // Remember that we changed something. 112 } while (LocalChange); 113 114 return Changed; 115 } 116 117 /// PromoteArguments - This method checks the specified function to see if there 118 /// are any promotable arguments and if it is safe to promote the function (for 119 /// example, all callers are direct). If safe to promote some arguments, it 120 /// calls the DoPromotion method. 121 /// 122 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { 123 Function *F = CGN->getFunction(); 124 125 // Make sure that it is local to this module. 126 if (!F || !F->hasLocalLinkage()) return 0; 127 128 // First check: see if there are any pointer arguments! If not, quick exit. 129 SmallVector<Argument*, 16> PointerArgs; 130 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 131 if (I->getType()->isPointerTy()) 132 PointerArgs.push_back(I); 133 if (PointerArgs.empty()) return 0; 134 135 // Second check: make sure that all callers are direct callers. We can't 136 // transform functions that have indirect callers. Also see if the function 137 // is self-recursive. 138 bool isSelfRecursive = false; 139 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); 140 UI != E; ++UI) { 141 CallSite CS(*UI); 142 // Must be a direct call. 143 if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0; 144 145 if (CS.getInstruction()->getParent()->getParent() == F) 146 isSelfRecursive = true; 147 } 148 149 // Check to see which arguments are promotable. If an argument is promotable, 150 // add it to ArgsToPromote. 151 SmallPtrSet<Argument*, 8> ArgsToPromote; 152 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 153 for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) { 154 Argument *PtrArg = PointerArgs[i]; 155 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 156 157 // If this is a byval argument, and if the aggregate type is small, just 158 // pass the elements, which is always safe. This does not apply to 159 // inalloca. 160 if (PtrArg->hasByValAttr()) { 161 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 162 if (maxElements > 0 && STy->getNumElements() > maxElements) { 163 DEBUG(dbgs() << "argpromotion disable promoting argument '" 164 << PtrArg->getName() << "' because it would require adding more" 165 << " than " << maxElements << " arguments to the function.\n"); 166 continue; 167 } 168 169 // If all the elements are single-value types, we can promote it. 170 bool AllSimple = true; 171 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 172 if (!STy->getElementType(i)->isSingleValueType()) { 173 AllSimple = false; 174 break; 175 } 176 } 177 178 // Safe to transform, don't even bother trying to "promote" it. 179 // Passing the elements as a scalar will allow scalarrepl to hack on 180 // the new alloca we introduce. 181 if (AllSimple) { 182 ByValArgsToTransform.insert(PtrArg); 183 continue; 184 } 185 } 186 } 187 188 // If the argument is a recursive type and we're in a recursive 189 // function, we could end up infinitely peeling the function argument. 190 if (isSelfRecursive) { 191 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 192 bool RecursiveType = false; 193 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 194 if (STy->getElementType(i) == PtrArg->getType()) { 195 RecursiveType = true; 196 break; 197 } 198 } 199 if (RecursiveType) 200 continue; 201 } 202 } 203 204 // Otherwise, see if we can promote the pointer to its value. 205 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr())) 206 ArgsToPromote.insert(PtrArg); 207 } 208 209 // No promotable pointer arguments. 210 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 211 return 0; 212 213 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform); 214 } 215 216 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 217 /// all callees pass in a valid pointer for the specified function argument. 218 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { 219 Function *Callee = Arg->getParent(); 220 221 unsigned ArgNo = Arg->getArgNo(); 222 223 // Look at all call sites of the function. At this pointer we know we only 224 // have direct callees. 225 for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end(); 226 UI != E; ++UI) { 227 CallSite CS(*UI); 228 assert(CS && "Should only have direct calls!"); 229 230 if (!CS.getArgument(ArgNo)->isDereferenceablePointer()) 231 return false; 232 } 233 return true; 234 } 235 236 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 237 /// that is greater than or equal to the size of prefix, and each of the 238 /// elements in Prefix is the same as the corresponding elements in Longer. 239 /// 240 /// This means it also returns true when Prefix and Longer are equal! 241 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix, 242 const ArgPromotion::IndicesVector &Longer) { 243 if (Prefix.size() > Longer.size()) 244 return false; 245 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 246 } 247 248 249 /// Checks if Indices, or a prefix of Indices, is in Set. 250 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices, 251 std::set<ArgPromotion::IndicesVector> &Set) { 252 std::set<ArgPromotion::IndicesVector>::iterator Low; 253 Low = Set.upper_bound(Indices); 254 if (Low != Set.begin()) 255 Low--; 256 // Low is now the last element smaller than or equal to Indices. This means 257 // it points to a prefix of Indices (possibly Indices itself), if such 258 // prefix exists. 259 // 260 // This load is safe if any prefix of its operands is safe to load. 261 return Low != Set.end() && IsPrefix(*Low, Indices); 262 } 263 264 /// Mark the given indices (ToMark) as safe in the given set of indices 265 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 266 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 267 /// already. Furthermore, any indices that Indices is itself a prefix of, are 268 /// removed from Safe (since they are implicitely safe because of Indices now). 269 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark, 270 std::set<ArgPromotion::IndicesVector> &Safe) { 271 std::set<ArgPromotion::IndicesVector>::iterator Low; 272 Low = Safe.upper_bound(ToMark); 273 // Guard against the case where Safe is empty 274 if (Low != Safe.begin()) 275 Low--; 276 // Low is now the last element smaller than or equal to Indices. This 277 // means it points to a prefix of Indices (possibly Indices itself), if 278 // such prefix exists. 279 if (Low != Safe.end()) { 280 if (IsPrefix(*Low, ToMark)) 281 // If there is already a prefix of these indices (or exactly these 282 // indices) marked a safe, don't bother adding these indices 283 return; 284 285 // Increment Low, so we can use it as a "insert before" hint 286 ++Low; 287 } 288 // Insert 289 Low = Safe.insert(Low, ToMark); 290 ++Low; 291 // If there we're a prefix of longer index list(s), remove those 292 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end(); 293 while (Low != End && IsPrefix(ToMark, *Low)) { 294 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low; 295 ++Low; 296 Safe.erase(Remove); 297 } 298 } 299 300 /// isSafeToPromoteArgument - As you might guess from the name of this method, 301 /// it checks to see if it is both safe and useful to promote the argument. 302 /// This method limits promotion of aggregates to only promote up to three 303 /// elements of the aggregate in order to avoid exploding the number of 304 /// arguments passed in. 305 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, 306 bool isByValOrInAlloca) const { 307 typedef std::set<IndicesVector> GEPIndicesSet; 308 309 // Quick exit for unused arguments 310 if (Arg->use_empty()) 311 return true; 312 313 // We can only promote this argument if all of the uses are loads, or are GEP 314 // instructions (with constant indices) that are subsequently loaded. 315 // 316 // Promoting the argument causes it to be loaded in the caller 317 // unconditionally. This is only safe if we can prove that either the load 318 // would have happened in the callee anyway (ie, there is a load in the entry 319 // block) or the pointer passed in at every call site is guaranteed to be 320 // valid. 321 // In the former case, invalid loads can happen, but would have happened 322 // anyway, in the latter case, invalid loads won't happen. This prevents us 323 // from introducing an invalid load that wouldn't have happened in the 324 // original code. 325 // 326 // This set will contain all sets of indices that are loaded in the entry 327 // block, and thus are safe to unconditionally load in the caller. 328 // 329 // This optimization is also safe for InAlloca parameters, because it verifies 330 // that the address isn't captured. 331 GEPIndicesSet SafeToUnconditionallyLoad; 332 333 // This set contains all the sets of indices that we are planning to promote. 334 // This makes it possible to limit the number of arguments added. 335 GEPIndicesSet ToPromote; 336 337 // If the pointer is always valid, any load with first index 0 is valid. 338 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) 339 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 340 341 // First, iterate the entry block and mark loads of (geps of) arguments as 342 // safe. 343 BasicBlock *EntryBlock = Arg->getParent()->begin(); 344 // Declare this here so we can reuse it 345 IndicesVector Indices; 346 for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end(); 347 I != E; ++I) 348 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 349 Value *V = LI->getPointerOperand(); 350 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 351 V = GEP->getPointerOperand(); 352 if (V == Arg) { 353 // This load actually loads (part of) Arg? Check the indices then. 354 Indices.reserve(GEP->getNumIndices()); 355 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 356 II != IE; ++II) 357 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 358 Indices.push_back(CI->getSExtValue()); 359 else 360 // We found a non-constant GEP index for this argument? Bail out 361 // right away, can't promote this argument at all. 362 return false; 363 364 // Indices checked out, mark them as safe 365 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 366 Indices.clear(); 367 } 368 } else if (V == Arg) { 369 // Direct loads are equivalent to a GEP with a single 0 index. 370 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 371 } 372 } 373 374 // Now, iterate all uses of the argument to see if there are any uses that are 375 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 376 SmallVector<LoadInst*, 16> Loads; 377 IndicesVector Operands; 378 for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end(); 379 UI != E; ++UI) { 380 User *U = *UI; 381 Operands.clear(); 382 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 383 // Don't hack volatile/atomic loads 384 if (!LI->isSimple()) return false; 385 Loads.push_back(LI); 386 // Direct loads are equivalent to a GEP with a zero index and then a load. 387 Operands.push_back(0); 388 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 389 if (GEP->use_empty()) { 390 // Dead GEP's cause trouble later. Just remove them if we run into 391 // them. 392 getAnalysis<AliasAnalysis>().deleteValue(GEP); 393 GEP->eraseFromParent(); 394 // TODO: This runs the above loop over and over again for dead GEPs 395 // Couldn't we just do increment the UI iterator earlier and erase the 396 // use? 397 return isSafeToPromoteArgument(Arg, isByValOrInAlloca); 398 } 399 400 // Ensure that all of the indices are constants. 401 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 402 i != e; ++i) 403 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 404 Operands.push_back(C->getSExtValue()); 405 else 406 return false; // Not a constant operand GEP! 407 408 // Ensure that the only users of the GEP are load instructions. 409 for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end(); 410 UI != E; ++UI) 411 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 412 // Don't hack volatile/atomic loads 413 if (!LI->isSimple()) return false; 414 Loads.push_back(LI); 415 } else { 416 // Other uses than load? 417 return false; 418 } 419 } else { 420 return false; // Not a load or a GEP. 421 } 422 423 // Now, see if it is safe to promote this load / loads of this GEP. Loading 424 // is safe if Operands, or a prefix of Operands, is marked as safe. 425 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 426 return false; 427 428 // See if we are already promoting a load with these indices. If not, check 429 // to make sure that we aren't promoting too many elements. If so, nothing 430 // to do. 431 if (ToPromote.find(Operands) == ToPromote.end()) { 432 if (maxElements > 0 && ToPromote.size() == maxElements) { 433 DEBUG(dbgs() << "argpromotion not promoting argument '" 434 << Arg->getName() << "' because it would require adding more " 435 << "than " << maxElements << " arguments to the function.\n"); 436 // We limit aggregate promotion to only promoting up to a fixed number 437 // of elements of the aggregate. 438 return false; 439 } 440 ToPromote.insert(Operands); 441 } 442 } 443 444 if (Loads.empty()) return true; // No users, this is a dead argument. 445 446 // Okay, now we know that the argument is only used by load instructions and 447 // it is safe to unconditionally perform all of them. Use alias analysis to 448 // check to see if the pointer is guaranteed to not be modified from entry of 449 // the function to each of the load instructions. 450 451 // Because there could be several/many load instructions, remember which 452 // blocks we know to be transparent to the load. 453 SmallPtrSet<BasicBlock*, 16> TranspBlocks; 454 455 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 456 457 for (unsigned i = 0, e = Loads.size(); i != e; ++i) { 458 // Check to see if the load is invalidated from the start of the block to 459 // the load itself. 460 LoadInst *Load = Loads[i]; 461 BasicBlock *BB = Load->getParent(); 462 463 AliasAnalysis::Location Loc = AA.getLocation(Load); 464 if (AA.canInstructionRangeModify(BB->front(), *Load, Loc)) 465 return false; // Pointer is invalidated! 466 467 // Now check every path from the entry block to the load for transparency. 468 // To do this, we perform a depth first search on the inverse CFG from the 469 // loading block. 470 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 471 BasicBlock *P = *PI; 472 for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> > 473 I = idf_ext_begin(P, TranspBlocks), 474 E = idf_ext_end(P, TranspBlocks); I != E; ++I) 475 if (AA.canBasicBlockModify(**I, Loc)) 476 return false; 477 } 478 } 479 480 // If the path from the entry of the function to each load is free of 481 // instructions that potentially invalidate the load, we can make the 482 // transformation! 483 return true; 484 } 485 486 /// DoPromotion - This method actually performs the promotion of the specified 487 /// arguments, and returns the new function. At this point, we know that it's 488 /// safe to do so. 489 CallGraphNode *ArgPromotion::DoPromotion(Function *F, 490 SmallPtrSet<Argument*, 8> &ArgsToPromote, 491 SmallPtrSet<Argument*, 8> &ByValArgsToTransform) { 492 493 // Start by computing a new prototype for the function, which is the same as 494 // the old function, but has modified arguments. 495 FunctionType *FTy = F->getFunctionType(); 496 std::vector<Type*> Params; 497 498 typedef std::set<IndicesVector> ScalarizeTable; 499 500 // ScalarizedElements - If we are promoting a pointer that has elements 501 // accessed out of it, keep track of which elements are accessed so that we 502 // can add one argument for each. 503 // 504 // Arguments that are directly loaded will have a zero element value here, to 505 // handle cases where there are both a direct load and GEP accesses. 506 // 507 std::map<Argument*, ScalarizeTable> ScalarizedElements; 508 509 // OriginalLoads - Keep track of a representative load instruction from the 510 // original function so that we can tell the alias analysis implementation 511 // what the new GEP/Load instructions we are inserting look like. 512 // We need to keep the original loads for each argument and the elements 513 // of the argument that are accessed. 514 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads; 515 516 // Attribute - Keep track of the parameter attributes for the arguments 517 // that we are *not* promoting. For the ones that we do promote, the parameter 518 // attributes are lost 519 SmallVector<AttributeSet, 8> AttributesVec; 520 const AttributeSet &PAL = F->getAttributes(); 521 522 // Add any return attributes. 523 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 524 AttributesVec.push_back(AttributeSet::get(F->getContext(), 525 PAL.getRetAttributes())); 526 527 // First, determine the new argument list 528 unsigned ArgIndex = 1; 529 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 530 ++I, ++ArgIndex) { 531 if (ByValArgsToTransform.count(I)) { 532 // Simple byval argument? Just add all the struct element types. 533 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 534 StructType *STy = cast<StructType>(AgTy); 535 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 536 Params.push_back(STy->getElementType(i)); 537 ++NumByValArgsPromoted; 538 } else if (!ArgsToPromote.count(I)) { 539 // Unchanged argument 540 Params.push_back(I->getType()); 541 AttributeSet attrs = PAL.getParamAttributes(ArgIndex); 542 if (attrs.hasAttributes(ArgIndex)) { 543 AttrBuilder B(attrs, ArgIndex); 544 AttributesVec. 545 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 546 } 547 } else if (I->use_empty()) { 548 // Dead argument (which are always marked as promotable) 549 ++NumArgumentsDead; 550 } else { 551 // Okay, this is being promoted. This means that the only uses are loads 552 // or GEPs which are only used by loads 553 554 // In this table, we will track which indices are loaded from the argument 555 // (where direct loads are tracked as no indices). 556 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 557 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 558 ++UI) { 559 Instruction *User = cast<Instruction>(*UI); 560 assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User)); 561 IndicesVector Indices; 562 Indices.reserve(User->getNumOperands() - 1); 563 // Since loads will only have a single operand, and GEPs only a single 564 // non-index operand, this will record direct loads without any indices, 565 // and gep+loads with the GEP indices. 566 for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end(); 567 II != IE; ++II) 568 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 569 // GEPs with a single 0 index can be merged with direct loads 570 if (Indices.size() == 1 && Indices.front() == 0) 571 Indices.clear(); 572 ArgIndices.insert(Indices); 573 LoadInst *OrigLoad; 574 if (LoadInst *L = dyn_cast<LoadInst>(User)) 575 OrigLoad = L; 576 else 577 // Take any load, we will use it only to update Alias Analysis 578 OrigLoad = cast<LoadInst>(User->use_back()); 579 OriginalLoads[std::make_pair(I, Indices)] = OrigLoad; 580 } 581 582 // Add a parameter to the function for each element passed in. 583 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 584 E = ArgIndices.end(); SI != E; ++SI) { 585 // not allowed to dereference ->begin() if size() is 0 586 Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI)); 587 assert(Params.back()); 588 } 589 590 if (ArgIndices.size() == 1 && ArgIndices.begin()->empty()) 591 ++NumArgumentsPromoted; 592 else 593 ++NumAggregatesPromoted; 594 } 595 } 596 597 // Add any function attributes. 598 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 599 AttributesVec.push_back(AttributeSet::get(FTy->getContext(), 600 PAL.getFnAttributes())); 601 602 Type *RetTy = FTy->getReturnType(); 603 604 // Construct the new function type using the new arguments. 605 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 606 607 // Create the new function body and insert it into the module. 608 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 609 NF->copyAttributesFrom(F); 610 611 612 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 613 << "From: " << *F); 614 615 // Recompute the parameter attributes list based on the new arguments for 616 // the function. 617 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec)); 618 AttributesVec.clear(); 619 620 F->getParent()->getFunctionList().insert(F, NF); 621 NF->takeName(F); 622 623 // Get the alias analysis information that we need to update to reflect our 624 // changes. 625 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 626 627 // Get the callgraph information that we need to update to reflect our 628 // changes. 629 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 630 631 // Get a new callgraph node for NF. 632 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 633 634 // Loop over all of the callers of the function, transforming the call sites 635 // to pass in the loaded pointers. 636 // 637 SmallVector<Value*, 16> Args; 638 while (!F->use_empty()) { 639 CallSite CS(F->use_back()); 640 assert(CS.getCalledFunction() == F); 641 Instruction *Call = CS.getInstruction(); 642 const AttributeSet &CallPAL = CS.getAttributes(); 643 644 // Add any return attributes. 645 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex)) 646 AttributesVec.push_back(AttributeSet::get(F->getContext(), 647 CallPAL.getRetAttributes())); 648 649 // Loop over the operands, inserting GEP and loads in the caller as 650 // appropriate. 651 CallSite::arg_iterator AI = CS.arg_begin(); 652 ArgIndex = 1; 653 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 654 I != E; ++I, ++AI, ++ArgIndex) 655 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 656 Args.push_back(*AI); // Unmodified argument 657 658 if (CallPAL.hasAttributes(ArgIndex)) { 659 AttrBuilder B(CallPAL, ArgIndex); 660 AttributesVec. 661 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 662 } 663 } else if (ByValArgsToTransform.count(I)) { 664 // Emit a GEP and load for each element of the struct. 665 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 666 StructType *STy = cast<StructType>(AgTy); 667 Value *Idxs[2] = { 668 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 }; 669 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 670 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 671 Value *Idx = GetElementPtrInst::Create(*AI, Idxs, 672 (*AI)->getName()+"."+utostr(i), 673 Call); 674 // TODO: Tell AA about the new values? 675 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 676 } 677 } else if (!I->use_empty()) { 678 // Non-dead argument: insert GEPs and loads as appropriate. 679 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 680 // Store the Value* version of the indices in here, but declare it now 681 // for reuse. 682 std::vector<Value*> Ops; 683 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 684 E = ArgIndices.end(); SI != E; ++SI) { 685 Value *V = *AI; 686 LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, *SI)]; 687 if (!SI->empty()) { 688 Ops.reserve(SI->size()); 689 Type *ElTy = V->getType(); 690 for (IndicesVector::const_iterator II = SI->begin(), 691 IE = SI->end(); II != IE; ++II) { 692 // Use i32 to index structs, and i64 for others (pointers/arrays). 693 // This satisfies GEP constraints. 694 Type *IdxTy = (ElTy->isStructTy() ? 695 Type::getInt32Ty(F->getContext()) : 696 Type::getInt64Ty(F->getContext())); 697 Ops.push_back(ConstantInt::get(IdxTy, *II)); 698 // Keep track of the type we're currently indexing. 699 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II); 700 } 701 // And create a GEP to extract those indices. 702 V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call); 703 Ops.clear(); 704 AA.copyValue(OrigLoad->getOperand(0), V); 705 } 706 // Since we're replacing a load make sure we take the alignment 707 // of the previous load. 708 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 709 newLoad->setAlignment(OrigLoad->getAlignment()); 710 // Transfer the TBAA info too. 711 newLoad->setMetadata(LLVMContext::MD_tbaa, 712 OrigLoad->getMetadata(LLVMContext::MD_tbaa)); 713 Args.push_back(newLoad); 714 AA.copyValue(OrigLoad, Args.back()); 715 } 716 } 717 718 // Push any varargs arguments on the list. 719 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 720 Args.push_back(*AI); 721 if (CallPAL.hasAttributes(ArgIndex)) { 722 AttrBuilder B(CallPAL, ArgIndex); 723 AttributesVec. 724 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 725 } 726 } 727 728 // Add any function attributes. 729 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 730 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 731 CallPAL.getFnAttributes())); 732 733 Instruction *New; 734 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 735 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 736 Args, "", Call); 737 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 738 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(), 739 AttributesVec)); 740 } else { 741 New = CallInst::Create(NF, Args, "", Call); 742 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 743 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(), 744 AttributesVec)); 745 if (cast<CallInst>(Call)->isTailCall()) 746 cast<CallInst>(New)->setTailCall(); 747 } 748 Args.clear(); 749 AttributesVec.clear(); 750 751 // Update the alias analysis implementation to know that we are replacing 752 // the old call with a new one. 753 AA.replaceWithNewValue(Call, New); 754 755 // Update the callgraph to know that the callsite has been transformed. 756 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 757 CalleeNode->replaceCallEdge(Call, New, NF_CGN); 758 759 if (!Call->use_empty()) { 760 Call->replaceAllUsesWith(New); 761 New->takeName(Call); 762 } 763 764 // Finally, remove the old call from the program, reducing the use-count of 765 // F. 766 Call->eraseFromParent(); 767 } 768 769 // Since we have now created the new function, splice the body of the old 770 // function right into the new function, leaving the old rotting hulk of the 771 // function empty. 772 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 773 774 // Loop over the argument list, transferring uses of the old arguments over to 775 // the new arguments, also transferring over the names as well. 776 // 777 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 778 I2 = NF->arg_begin(); I != E; ++I) { 779 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 780 // If this is an unmodified argument, move the name and users over to the 781 // new version. 782 I->replaceAllUsesWith(I2); 783 I2->takeName(I); 784 AA.replaceWithNewValue(I, I2); 785 ++I2; 786 continue; 787 } 788 789 if (ByValArgsToTransform.count(I)) { 790 // In the callee, we create an alloca, and store each of the new incoming 791 // arguments into the alloca. 792 Instruction *InsertPt = NF->begin()->begin(); 793 794 // Just add all the struct element types. 795 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 796 Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt); 797 StructType *STy = cast<StructType>(AgTy); 798 Value *Idxs[2] = { 799 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 }; 800 801 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 802 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 803 Value *Idx = 804 GetElementPtrInst::Create(TheAlloca, Idxs, 805 TheAlloca->getName()+"."+Twine(i), 806 InsertPt); 807 I2->setName(I->getName()+"."+Twine(i)); 808 new StoreInst(I2++, Idx, InsertPt); 809 } 810 811 // Anything that used the arg should now use the alloca. 812 I->replaceAllUsesWith(TheAlloca); 813 TheAlloca->takeName(I); 814 AA.replaceWithNewValue(I, TheAlloca); 815 816 // If the alloca is used in a call, we must clear the tail flag since 817 // the callee now uses an alloca from the caller. 818 for (Value::use_iterator UI = TheAlloca->use_begin(), 819 E = TheAlloca->use_end(); UI != E; ++UI) { 820 CallInst *Call = dyn_cast<CallInst>(*UI); 821 if (!Call) 822 continue; 823 Call->setTailCall(false); 824 } 825 continue; 826 } 827 828 if (I->use_empty()) { 829 AA.deleteValue(I); 830 continue; 831 } 832 833 // Otherwise, if we promoted this argument, then all users are load 834 // instructions (or GEPs with only load users), and all loads should be 835 // using the new argument that we added. 836 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 837 838 while (!I->use_empty()) { 839 if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) { 840 assert(ArgIndices.begin()->empty() && 841 "Load element should sort to front!"); 842 I2->setName(I->getName()+".val"); 843 LI->replaceAllUsesWith(I2); 844 AA.replaceWithNewValue(LI, I2); 845 LI->eraseFromParent(); 846 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 847 << "' in function '" << F->getName() << "'\n"); 848 } else { 849 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back()); 850 IndicesVector Operands; 851 Operands.reserve(GEP->getNumIndices()); 852 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 853 II != IE; ++II) 854 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 855 856 // GEPs with a single 0 index can be merged with direct loads 857 if (Operands.size() == 1 && Operands.front() == 0) 858 Operands.clear(); 859 860 Function::arg_iterator TheArg = I2; 861 for (ScalarizeTable::iterator It = ArgIndices.begin(); 862 *It != Operands; ++It, ++TheArg) { 863 assert(It != ArgIndices.end() && "GEP not handled??"); 864 } 865 866 std::string NewName = I->getName(); 867 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 868 NewName += "." + utostr(Operands[i]); 869 } 870 NewName += ".val"; 871 TheArg->setName(NewName); 872 873 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 874 << "' of function '" << NF->getName() << "'\n"); 875 876 // All of the uses must be load instructions. Replace them all with 877 // the argument specified by ArgNo. 878 while (!GEP->use_empty()) { 879 LoadInst *L = cast<LoadInst>(GEP->use_back()); 880 L->replaceAllUsesWith(TheArg); 881 AA.replaceWithNewValue(L, TheArg); 882 L->eraseFromParent(); 883 } 884 AA.deleteValue(GEP); 885 GEP->eraseFromParent(); 886 } 887 } 888 889 // Increment I2 past all of the arguments added for this promoted pointer. 890 std::advance(I2, ArgIndices.size()); 891 } 892 893 // Tell the alias analysis that the old function is about to disappear. 894 AA.replaceWithNewValue(F, NF); 895 896 897 NF_CGN->stealCalledFunctionsFrom(CG[F]); 898 899 // Now that the old function is dead, delete it. If there is a dangling 900 // reference to the CallgraphNode, just leave the dead function around for 901 // someone else to nuke. 902 CallGraphNode *CGN = CG[F]; 903 if (CGN->getNumReferences() == 0) 904 delete CG.removeFunctionFromModule(CGN); 905 else 906 F->setLinkage(Function::ExternalLinkage); 907 908 return NF_CGN; 909 } 910