1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/Analysis/AliasAnalysis.h"
38 #include "llvm/Analysis/AssumptionCache.h"
39 #include "llvm/Analysis/BasicAliasAnalysis.h"
40 #include "llvm/Analysis/CallGraph.h"
41 #include "llvm/Analysis/CallGraphSCCPass.h"
42 #include "llvm/Analysis/LazyCallGraph.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/CFG.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/IPO.h"
57 #include <set>
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "argpromotion"
61 
62 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
63 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
64 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
65 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
66 
67 /// A vector used to hold the indices of a single GEP instruction
68 typedef std::vector<uint64_t> IndicesVector;
69 
70 /// DoPromotion - This method actually performs the promotion of the specified
71 /// arguments, and returns the new function.  At this point, we know that it's
72 /// safe to do so.
73 static Function *
74 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
75             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
76             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
77                 ReplaceCallSite) {
78 
79   // Start by computing a new prototype for the function, which is the same as
80   // the old function, but has modified arguments.
81   FunctionType *FTy = F->getFunctionType();
82   std::vector<Type *> Params;
83 
84   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
85 
86   // ScalarizedElements - If we are promoting a pointer that has elements
87   // accessed out of it, keep track of which elements are accessed so that we
88   // can add one argument for each.
89   //
90   // Arguments that are directly loaded will have a zero element value here, to
91   // handle cases where there are both a direct load and GEP accesses.
92   //
93   std::map<Argument *, ScalarizeTable> ScalarizedElements;
94 
95   // OriginalLoads - Keep track of a representative load instruction from the
96   // original function so that we can tell the alias analysis implementation
97   // what the new GEP/Load instructions we are inserting look like.
98   // We need to keep the original loads for each argument and the elements
99   // of the argument that are accessed.
100   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
101 
102   // Attribute - Keep track of the parameter attributes for the arguments
103   // that we are *not* promoting. For the ones that we do promote, the parameter
104   // attributes are lost
105   SmallVector<AttributeSet, 8> ArgAttrVec;
106   AttributeList PAL = F->getAttributes();
107 
108   // First, determine the new argument list
109   unsigned ArgNo = 0;
110   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
111        ++I, ++ArgNo) {
112     if (ByValArgsToTransform.count(&*I)) {
113       // Simple byval argument? Just add all the struct element types.
114       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
115       StructType *STy = cast<StructType>(AgTy);
116       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
117       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
118                         AttributeSet());
119       ++NumByValArgsPromoted;
120     } else if (!ArgsToPromote.count(&*I)) {
121       // Unchanged argument
122       Params.push_back(I->getType());
123       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
124     } else if (I->use_empty()) {
125       // Dead argument (which are always marked as promotable)
126       ++NumArgumentsDead;
127 
128       // There may be remaining metadata uses of the argument for things like
129       // llvm.dbg.value. Replace them with undef.
130       I->replaceAllUsesWith(UndefValue::get(I->getType()));
131     } else {
132       // Okay, this is being promoted. This means that the only uses are loads
133       // or GEPs which are only used by loads
134 
135       // In this table, we will track which indices are loaded from the argument
136       // (where direct loads are tracked as no indices).
137       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
138       for (User *U : I->users()) {
139         Instruction *UI = cast<Instruction>(U);
140         Type *SrcTy;
141         if (LoadInst *L = dyn_cast<LoadInst>(UI))
142           SrcTy = L->getType();
143         else
144           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
145         IndicesVector Indices;
146         Indices.reserve(UI->getNumOperands() - 1);
147         // Since loads will only have a single operand, and GEPs only a single
148         // non-index operand, this will record direct loads without any indices,
149         // and gep+loads with the GEP indices.
150         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
151              II != IE; ++II)
152           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
153         // GEPs with a single 0 index can be merged with direct loads
154         if (Indices.size() == 1 && Indices.front() == 0)
155           Indices.clear();
156         ArgIndices.insert(std::make_pair(SrcTy, Indices));
157         LoadInst *OrigLoad;
158         if (LoadInst *L = dyn_cast<LoadInst>(UI))
159           OrigLoad = L;
160         else
161           // Take any load, we will use it only to update Alias Analysis
162           OrigLoad = cast<LoadInst>(UI->user_back());
163         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
164       }
165 
166       // Add a parameter to the function for each element passed in.
167       for (const auto &ArgIndex : ArgIndices) {
168         // not allowed to dereference ->begin() if size() is 0
169         Params.push_back(GetElementPtrInst::getIndexedType(
170             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
171             ArgIndex.second));
172         ArgAttrVec.push_back(AttributeSet());
173         assert(Params.back());
174       }
175 
176       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
177         ++NumArgumentsPromoted;
178       else
179         ++NumAggregatesPromoted;
180     }
181   }
182 
183   Type *RetTy = FTy->getReturnType();
184 
185   // Construct the new function type using the new arguments.
186   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
187 
188   // Create the new function body and insert it into the module.
189   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
190   NF->copyAttributesFrom(F);
191 
192   // Patch the pointer to LLVM function in debug info descriptor.
193   NF->setSubprogram(F->getSubprogram());
194   F->setSubprogram(nullptr);
195 
196   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
197                << "From: " << *F);
198 
199   // Recompute the parameter attributes list based on the new arguments for
200   // the function.
201   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
202                                        PAL.getRetAttributes(), ArgAttrVec));
203   ArgAttrVec.clear();
204 
205   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
206   NF->takeName(F);
207 
208   // Loop over all of the callers of the function, transforming the call sites
209   // to pass in the loaded pointers.
210   //
211   SmallVector<Value *, 16> Args;
212   while (!F->use_empty()) {
213     CallSite CS(F->user_back());
214     assert(CS.getCalledFunction() == F);
215     Instruction *Call = CS.getInstruction();
216     const AttributeList &CallPAL = CS.getAttributes();
217 
218     // Loop over the operands, inserting GEP and loads in the caller as
219     // appropriate.
220     CallSite::arg_iterator AI = CS.arg_begin();
221     ArgNo = 0;
222     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
223          ++I, ++AI, ++ArgNo)
224       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
225         Args.push_back(*AI); // Unmodified argument
226         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
227       } else if (ByValArgsToTransform.count(&*I)) {
228         // Emit a GEP and load for each element of the struct.
229         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
230         StructType *STy = cast<StructType>(AgTy);
231         Value *Idxs[2] = {
232             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
233         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
234           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
235           Value *Idx = GetElementPtrInst::Create(
236               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
237           // TODO: Tell AA about the new values?
238           Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
239           ArgAttrVec.push_back(AttributeSet());
240         }
241       } else if (!I->use_empty()) {
242         // Non-dead argument: insert GEPs and loads as appropriate.
243         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
244         // Store the Value* version of the indices in here, but declare it now
245         // for reuse.
246         std::vector<Value *> Ops;
247         for (const auto &ArgIndex : ArgIndices) {
248           Value *V = *AI;
249           LoadInst *OrigLoad =
250               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
251           if (!ArgIndex.second.empty()) {
252             Ops.reserve(ArgIndex.second.size());
253             Type *ElTy = V->getType();
254             for (auto II : ArgIndex.second) {
255               // Use i32 to index structs, and i64 for others (pointers/arrays).
256               // This satisfies GEP constraints.
257               Type *IdxTy =
258                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
259                                       : Type::getInt64Ty(F->getContext()));
260               Ops.push_back(ConstantInt::get(IdxTy, II));
261               // Keep track of the type we're currently indexing.
262               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
263                 ElTy = ElPTy->getElementType();
264               else
265                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
266             }
267             // And create a GEP to extract those indices.
268             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
269                                           V->getName() + ".idx", Call);
270             Ops.clear();
271           }
272           // Since we're replacing a load make sure we take the alignment
273           // of the previous load.
274           LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
275           newLoad->setAlignment(OrigLoad->getAlignment());
276           // Transfer the AA info too.
277           AAMDNodes AAInfo;
278           OrigLoad->getAAMetadata(AAInfo);
279           newLoad->setAAMetadata(AAInfo);
280 
281           Args.push_back(newLoad);
282           ArgAttrVec.push_back(AttributeSet());
283         }
284       }
285 
286     // Push any varargs arguments on the list.
287     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
288       Args.push_back(*AI);
289       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
290     }
291 
292     SmallVector<OperandBundleDef, 1> OpBundles;
293     CS.getOperandBundlesAsDefs(OpBundles);
294 
295     CallSite NewCS;
296     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
297       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
298                                  Args, OpBundles, "", Call);
299     } else {
300       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
301       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
302       NewCS = NewCall;
303     }
304     NewCS.setCallingConv(CS.getCallingConv());
305     NewCS.setAttributes(
306         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
307                            CallPAL.getRetAttributes(), ArgAttrVec));
308     NewCS->setDebugLoc(Call->getDebugLoc());
309     uint64_t W;
310     if (Call->extractProfTotalWeight(W))
311       NewCS->setProfWeight(W);
312     Args.clear();
313     ArgAttrVec.clear();
314 
315     // Update the callgraph to know that the callsite has been transformed.
316     if (ReplaceCallSite)
317       (*ReplaceCallSite)(CS, NewCS);
318 
319     if (!Call->use_empty()) {
320       Call->replaceAllUsesWith(NewCS.getInstruction());
321       NewCS->takeName(Call);
322     }
323 
324     // Finally, remove the old call from the program, reducing the use-count of
325     // F.
326     Call->eraseFromParent();
327   }
328 
329   const DataLayout &DL = F->getParent()->getDataLayout();
330 
331   // Since we have now created the new function, splice the body of the old
332   // function right into the new function, leaving the old rotting hulk of the
333   // function empty.
334   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
335 
336   // Loop over the argument list, transferring uses of the old arguments over to
337   // the new arguments, also transferring over the names as well.
338   //
339   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
340                               I2 = NF->arg_begin();
341        I != E; ++I) {
342     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
343       // If this is an unmodified argument, move the name and users over to the
344       // new version.
345       I->replaceAllUsesWith(&*I2);
346       I2->takeName(&*I);
347       ++I2;
348       continue;
349     }
350 
351     if (ByValArgsToTransform.count(&*I)) {
352       // In the callee, we create an alloca, and store each of the new incoming
353       // arguments into the alloca.
354       Instruction *InsertPt = &NF->begin()->front();
355 
356       // Just add all the struct element types.
357       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
358       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
359                                         I->getParamAlignment(), "", InsertPt);
360       StructType *STy = cast<StructType>(AgTy);
361       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
362                         nullptr};
363 
364       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
365         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
366         Value *Idx = GetElementPtrInst::Create(
367             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
368             InsertPt);
369         I2->setName(I->getName() + "." + Twine(i));
370         new StoreInst(&*I2++, Idx, InsertPt);
371       }
372 
373       // Anything that used the arg should now use the alloca.
374       I->replaceAllUsesWith(TheAlloca);
375       TheAlloca->takeName(&*I);
376 
377       // If the alloca is used in a call, we must clear the tail flag since
378       // the callee now uses an alloca from the caller.
379       for (User *U : TheAlloca->users()) {
380         CallInst *Call = dyn_cast<CallInst>(U);
381         if (!Call)
382           continue;
383         Call->setTailCall(false);
384       }
385       continue;
386     }
387 
388     if (I->use_empty())
389       continue;
390 
391     // Otherwise, if we promoted this argument, then all users are load
392     // instructions (or GEPs with only load users), and all loads should be
393     // using the new argument that we added.
394     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
395 
396     while (!I->use_empty()) {
397       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
398         assert(ArgIndices.begin()->second.empty() &&
399                "Load element should sort to front!");
400         I2->setName(I->getName() + ".val");
401         LI->replaceAllUsesWith(&*I2);
402         LI->eraseFromParent();
403         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
404                      << "' in function '" << F->getName() << "'\n");
405       } else {
406         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
407         IndicesVector Operands;
408         Operands.reserve(GEP->getNumIndices());
409         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
410              II != IE; ++II)
411           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
412 
413         // GEPs with a single 0 index can be merged with direct loads
414         if (Operands.size() == 1 && Operands.front() == 0)
415           Operands.clear();
416 
417         Function::arg_iterator TheArg = I2;
418         for (ScalarizeTable::iterator It = ArgIndices.begin();
419              It->second != Operands; ++It, ++TheArg) {
420           assert(It != ArgIndices.end() && "GEP not handled??");
421         }
422 
423         std::string NewName = I->getName();
424         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
425           NewName += "." + utostr(Operands[i]);
426         }
427         NewName += ".val";
428         TheArg->setName(NewName);
429 
430         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
431                      << "' of function '" << NF->getName() << "'\n");
432 
433         // All of the uses must be load instructions.  Replace them all with
434         // the argument specified by ArgNo.
435         while (!GEP->use_empty()) {
436           LoadInst *L = cast<LoadInst>(GEP->user_back());
437           L->replaceAllUsesWith(&*TheArg);
438           L->eraseFromParent();
439         }
440         GEP->eraseFromParent();
441       }
442     }
443 
444     // Increment I2 past all of the arguments added for this promoted pointer.
445     std::advance(I2, ArgIndices.size());
446   }
447 
448   return NF;
449 }
450 
451 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
452 /// all callees pass in a valid pointer for the specified function argument.
453 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
454   Function *Callee = Arg->getParent();
455   const DataLayout &DL = Callee->getParent()->getDataLayout();
456 
457   unsigned ArgNo = Arg->getArgNo();
458 
459   // Look at all call sites of the function.  At this point we know we only have
460   // direct callees.
461   for (User *U : Callee->users()) {
462     CallSite CS(U);
463     assert(CS && "Should only have direct calls!");
464 
465     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
466       return false;
467   }
468   return true;
469 }
470 
471 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
472 /// that is greater than or equal to the size of prefix, and each of the
473 /// elements in Prefix is the same as the corresponding elements in Longer.
474 ///
475 /// This means it also returns true when Prefix and Longer are equal!
476 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
477   if (Prefix.size() > Longer.size())
478     return false;
479   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
480 }
481 
482 /// Checks if Indices, or a prefix of Indices, is in Set.
483 static bool prefixIn(const IndicesVector &Indices,
484                      std::set<IndicesVector> &Set) {
485   std::set<IndicesVector>::iterator Low;
486   Low = Set.upper_bound(Indices);
487   if (Low != Set.begin())
488     Low--;
489   // Low is now the last element smaller than or equal to Indices. This means
490   // it points to a prefix of Indices (possibly Indices itself), if such
491   // prefix exists.
492   //
493   // This load is safe if any prefix of its operands is safe to load.
494   return Low != Set.end() && isPrefix(*Low, Indices);
495 }
496 
497 /// Mark the given indices (ToMark) as safe in the given set of indices
498 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
499 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
500 /// already. Furthermore, any indices that Indices is itself a prefix of, are
501 /// removed from Safe (since they are implicitely safe because of Indices now).
502 static void markIndicesSafe(const IndicesVector &ToMark,
503                             std::set<IndicesVector> &Safe) {
504   std::set<IndicesVector>::iterator Low;
505   Low = Safe.upper_bound(ToMark);
506   // Guard against the case where Safe is empty
507   if (Low != Safe.begin())
508     Low--;
509   // Low is now the last element smaller than or equal to Indices. This
510   // means it points to a prefix of Indices (possibly Indices itself), if
511   // such prefix exists.
512   if (Low != Safe.end()) {
513     if (isPrefix(*Low, ToMark))
514       // If there is already a prefix of these indices (or exactly these
515       // indices) marked a safe, don't bother adding these indices
516       return;
517 
518     // Increment Low, so we can use it as a "insert before" hint
519     ++Low;
520   }
521   // Insert
522   Low = Safe.insert(Low, ToMark);
523   ++Low;
524   // If there we're a prefix of longer index list(s), remove those
525   std::set<IndicesVector>::iterator End = Safe.end();
526   while (Low != End && isPrefix(ToMark, *Low)) {
527     std::set<IndicesVector>::iterator Remove = Low;
528     ++Low;
529     Safe.erase(Remove);
530   }
531 }
532 
533 /// isSafeToPromoteArgument - As you might guess from the name of this method,
534 /// it checks to see if it is both safe and useful to promote the argument.
535 /// This method limits promotion of aggregates to only promote up to three
536 /// elements of the aggregate in order to avoid exploding the number of
537 /// arguments passed in.
538 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
539                                     AAResults &AAR, unsigned MaxElements) {
540   typedef std::set<IndicesVector> GEPIndicesSet;
541 
542   // Quick exit for unused arguments
543   if (Arg->use_empty())
544     return true;
545 
546   // We can only promote this argument if all of the uses are loads, or are GEP
547   // instructions (with constant indices) that are subsequently loaded.
548   //
549   // Promoting the argument causes it to be loaded in the caller
550   // unconditionally. This is only safe if we can prove that either the load
551   // would have happened in the callee anyway (ie, there is a load in the entry
552   // block) or the pointer passed in at every call site is guaranteed to be
553   // valid.
554   // In the former case, invalid loads can happen, but would have happened
555   // anyway, in the latter case, invalid loads won't happen. This prevents us
556   // from introducing an invalid load that wouldn't have happened in the
557   // original code.
558   //
559   // This set will contain all sets of indices that are loaded in the entry
560   // block, and thus are safe to unconditionally load in the caller.
561   //
562   // This optimization is also safe for InAlloca parameters, because it verifies
563   // that the address isn't captured.
564   GEPIndicesSet SafeToUnconditionallyLoad;
565 
566   // This set contains all the sets of indices that we are planning to promote.
567   // This makes it possible to limit the number of arguments added.
568   GEPIndicesSet ToPromote;
569 
570   // If the pointer is always valid, any load with first index 0 is valid.
571   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
572     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
573 
574   // First, iterate the entry block and mark loads of (geps of) arguments as
575   // safe.
576   BasicBlock &EntryBlock = Arg->getParent()->front();
577   // Declare this here so we can reuse it
578   IndicesVector Indices;
579   for (Instruction &I : EntryBlock)
580     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
581       Value *V = LI->getPointerOperand();
582       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
583         V = GEP->getPointerOperand();
584         if (V == Arg) {
585           // This load actually loads (part of) Arg? Check the indices then.
586           Indices.reserve(GEP->getNumIndices());
587           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
588                II != IE; ++II)
589             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
590               Indices.push_back(CI->getSExtValue());
591             else
592               // We found a non-constant GEP index for this argument? Bail out
593               // right away, can't promote this argument at all.
594               return false;
595 
596           // Indices checked out, mark them as safe
597           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
598           Indices.clear();
599         }
600       } else if (V == Arg) {
601         // Direct loads are equivalent to a GEP with a single 0 index.
602         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
603       }
604     }
605 
606   // Now, iterate all uses of the argument to see if there are any uses that are
607   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
608   SmallVector<LoadInst *, 16> Loads;
609   IndicesVector Operands;
610   for (Use &U : Arg->uses()) {
611     User *UR = U.getUser();
612     Operands.clear();
613     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
614       // Don't hack volatile/atomic loads
615       if (!LI->isSimple())
616         return false;
617       Loads.push_back(LI);
618       // Direct loads are equivalent to a GEP with a zero index and then a load.
619       Operands.push_back(0);
620     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
621       if (GEP->use_empty()) {
622         // Dead GEP's cause trouble later.  Just remove them if we run into
623         // them.
624         GEP->eraseFromParent();
625         // TODO: This runs the above loop over and over again for dead GEPs
626         // Couldn't we just do increment the UI iterator earlier and erase the
627         // use?
628         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
629                                        MaxElements);
630       }
631 
632       // Ensure that all of the indices are constants.
633       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
634            ++i)
635         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
636           Operands.push_back(C->getSExtValue());
637         else
638           return false; // Not a constant operand GEP!
639 
640       // Ensure that the only users of the GEP are load instructions.
641       for (User *GEPU : GEP->users())
642         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
643           // Don't hack volatile/atomic loads
644           if (!LI->isSimple())
645             return false;
646           Loads.push_back(LI);
647         } else {
648           // Other uses than load?
649           return false;
650         }
651     } else {
652       return false; // Not a load or a GEP.
653     }
654 
655     // Now, see if it is safe to promote this load / loads of this GEP. Loading
656     // is safe if Operands, or a prefix of Operands, is marked as safe.
657     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
658       return false;
659 
660     // See if we are already promoting a load with these indices. If not, check
661     // to make sure that we aren't promoting too many elements.  If so, nothing
662     // to do.
663     if (ToPromote.find(Operands) == ToPromote.end()) {
664       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
665         DEBUG(dbgs() << "argpromotion not promoting argument '"
666                      << Arg->getName()
667                      << "' because it would require adding more "
668                      << "than " << MaxElements
669                      << " arguments to the function.\n");
670         // We limit aggregate promotion to only promoting up to a fixed number
671         // of elements of the aggregate.
672         return false;
673       }
674       ToPromote.insert(std::move(Operands));
675     }
676   }
677 
678   if (Loads.empty())
679     return true; // No users, this is a dead argument.
680 
681   // Okay, now we know that the argument is only used by load instructions and
682   // it is safe to unconditionally perform all of them. Use alias analysis to
683   // check to see if the pointer is guaranteed to not be modified from entry of
684   // the function to each of the load instructions.
685 
686   // Because there could be several/many load instructions, remember which
687   // blocks we know to be transparent to the load.
688   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
689 
690   for (LoadInst *Load : Loads) {
691     // Check to see if the load is invalidated from the start of the block to
692     // the load itself.
693     BasicBlock *BB = Load->getParent();
694 
695     MemoryLocation Loc = MemoryLocation::get(Load);
696     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
697       return false; // Pointer is invalidated!
698 
699     // Now check every path from the entry block to the load for transparency.
700     // To do this, we perform a depth first search on the inverse CFG from the
701     // loading block.
702     for (BasicBlock *P : predecessors(BB)) {
703       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
704         if (AAR.canBasicBlockModify(*TranspBB, Loc))
705           return false;
706     }
707   }
708 
709   // If the path from the entry of the function to each load is free of
710   // instructions that potentially invalidate the load, we can make the
711   // transformation!
712   return true;
713 }
714 
715 /// \brief Checks if a type could have padding bytes.
716 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
717 
718   // There is no size information, so be conservative.
719   if (!type->isSized())
720     return false;
721 
722   // If the alloc size is not equal to the storage size, then there are padding
723   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
724   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
725     return false;
726 
727   if (!isa<CompositeType>(type))
728     return true;
729 
730   // For homogenous sequential types, check for padding within members.
731   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
732     return isDenselyPacked(seqTy->getElementType(), DL);
733 
734   // Check for padding within and between elements of a struct.
735   StructType *StructTy = cast<StructType>(type);
736   const StructLayout *Layout = DL.getStructLayout(StructTy);
737   uint64_t StartPos = 0;
738   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
739     Type *ElTy = StructTy->getElementType(i);
740     if (!isDenselyPacked(ElTy, DL))
741       return false;
742     if (StartPos != Layout->getElementOffsetInBits(i))
743       return false;
744     StartPos += DL.getTypeAllocSizeInBits(ElTy);
745   }
746 
747   return true;
748 }
749 
750 /// \brief Checks if the padding bytes of an argument could be accessed.
751 static bool canPaddingBeAccessed(Argument *arg) {
752 
753   assert(arg->hasByValAttr());
754 
755   // Track all the pointers to the argument to make sure they are not captured.
756   SmallPtrSet<Value *, 16> PtrValues;
757   PtrValues.insert(arg);
758 
759   // Track all of the stores.
760   SmallVector<StoreInst *, 16> Stores;
761 
762   // Scan through the uses recursively to make sure the pointer is always used
763   // sanely.
764   SmallVector<Value *, 16> WorkList;
765   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
766   while (!WorkList.empty()) {
767     Value *V = WorkList.back();
768     WorkList.pop_back();
769     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
770       if (PtrValues.insert(V).second)
771         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
772     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
773       Stores.push_back(Store);
774     } else if (!isa<LoadInst>(V)) {
775       return true;
776     }
777   }
778 
779   // Check to make sure the pointers aren't captured
780   for (StoreInst *Store : Stores)
781     if (PtrValues.count(Store->getValueOperand()))
782       return true;
783 
784   return false;
785 }
786 
787 /// PromoteArguments - This method checks the specified function to see if there
788 /// are any promotable arguments and if it is safe to promote the function (for
789 /// example, all callers are direct).  If safe to promote some arguments, it
790 /// calls the DoPromotion method.
791 ///
792 static Function *
793 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
794                  unsigned MaxElements,
795                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
796                      ReplaceCallSite) {
797   // Make sure that it is local to this module.
798   if (!F->hasLocalLinkage())
799     return nullptr;
800 
801   // Don't promote arguments for variadic functions. Adding, removing, or
802   // changing non-pack parameters can change the classification of pack
803   // parameters. Frontends encode that classification at the call site in the
804   // IR, while in the callee the classification is determined dynamically based
805   // on the number of registers consumed so far.
806   if (F->isVarArg())
807     return nullptr;
808 
809   // First check: see if there are any pointer arguments!  If not, quick exit.
810   SmallVector<Argument *, 16> PointerArgs;
811   for (Argument &I : F->args())
812     if (I.getType()->isPointerTy())
813       PointerArgs.push_back(&I);
814   if (PointerArgs.empty())
815     return nullptr;
816 
817   // Second check: make sure that all callers are direct callers.  We can't
818   // transform functions that have indirect callers.  Also see if the function
819   // is self-recursive.
820   bool isSelfRecursive = false;
821   for (Use &U : F->uses()) {
822     CallSite CS(U.getUser());
823     // Must be a direct call.
824     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
825       return nullptr;
826 
827     if (CS.getInstruction()->getParent()->getParent() == F)
828       isSelfRecursive = true;
829   }
830 
831   const DataLayout &DL = F->getParent()->getDataLayout();
832 
833   AAResults &AAR = AARGetter(*F);
834 
835   // Check to see which arguments are promotable.  If an argument is promotable,
836   // add it to ArgsToPromote.
837   SmallPtrSet<Argument *, 8> ArgsToPromote;
838   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
839   for (Argument *PtrArg : PointerArgs) {
840     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
841 
842     // Replace sret attribute with noalias. This reduces register pressure by
843     // avoiding a register copy.
844     if (PtrArg->hasStructRetAttr()) {
845       unsigned ArgNo = PtrArg->getArgNo();
846       F->removeParamAttr(ArgNo, Attribute::StructRet);
847       F->addParamAttr(ArgNo, Attribute::NoAlias);
848       for (Use &U : F->uses()) {
849         CallSite CS(U.getUser());
850         CS.removeParamAttr(ArgNo, Attribute::StructRet);
851         CS.addParamAttr(ArgNo, Attribute::NoAlias);
852       }
853     }
854 
855     // If this is a byval argument, and if the aggregate type is small, just
856     // pass the elements, which is always safe, if the passed value is densely
857     // packed or if we can prove the padding bytes are never accessed. This does
858     // not apply to inalloca.
859     bool isSafeToPromote =
860         PtrArg->hasByValAttr() &&
861         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
862     if (isSafeToPromote) {
863       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
864         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
865           DEBUG(dbgs() << "argpromotion disable promoting argument '"
866                        << PtrArg->getName()
867                        << "' because it would require adding more"
868                        << " than " << MaxElements
869                        << " arguments to the function.\n");
870           continue;
871         }
872 
873         // If all the elements are single-value types, we can promote it.
874         bool AllSimple = true;
875         for (const auto *EltTy : STy->elements()) {
876           if (!EltTy->isSingleValueType()) {
877             AllSimple = false;
878             break;
879           }
880         }
881 
882         // Safe to transform, don't even bother trying to "promote" it.
883         // Passing the elements as a scalar will allow sroa to hack on
884         // the new alloca we introduce.
885         if (AllSimple) {
886           ByValArgsToTransform.insert(PtrArg);
887           continue;
888         }
889       }
890     }
891 
892     // If the argument is a recursive type and we're in a recursive
893     // function, we could end up infinitely peeling the function argument.
894     if (isSelfRecursive) {
895       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
896         bool RecursiveType = false;
897         for (const auto *EltTy : STy->elements()) {
898           if (EltTy == PtrArg->getType()) {
899             RecursiveType = true;
900             break;
901           }
902         }
903         if (RecursiveType)
904           continue;
905       }
906     }
907 
908     // Otherwise, see if we can promote the pointer to its value.
909     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
910                                 MaxElements))
911       ArgsToPromote.insert(PtrArg);
912   }
913 
914   // No promotable pointer arguments.
915   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
916     return nullptr;
917 
918   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
919 }
920 
921 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
922                                              CGSCCAnalysisManager &AM,
923                                              LazyCallGraph &CG,
924                                              CGSCCUpdateResult &UR) {
925   bool Changed = false, LocalChange;
926 
927   // Iterate until we stop promoting from this SCC.
928   do {
929     LocalChange = false;
930 
931     for (LazyCallGraph::Node &N : C) {
932       Function &OldF = N.getFunction();
933 
934       FunctionAnalysisManager &FAM =
935           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
936       // FIXME: This lambda must only be used with this function. We should
937       // skip the lambda and just get the AA results directly.
938       auto AARGetter = [&](Function &F) -> AAResults & {
939         assert(&F == &OldF && "Called with an unexpected function!");
940         return FAM.getResult<AAManager>(F);
941       };
942 
943       Function *NewF = promoteArguments(&OldF, AARGetter, 3u, None);
944       if (!NewF)
945         continue;
946       LocalChange = true;
947 
948       // Directly substitute the functions in the call graph. Note that this
949       // requires the old function to be completely dead and completely
950       // replaced by the new function. It does no call graph updates, it merely
951       // swaps out the particular function mapped to a particular node in the
952       // graph.
953       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
954       OldF.eraseFromParent();
955     }
956 
957     Changed |= LocalChange;
958   } while (LocalChange);
959 
960   if (!Changed)
961     return PreservedAnalyses::all();
962 
963   return PreservedAnalyses::none();
964 }
965 
966 namespace {
967 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
968 ///
969 struct ArgPromotion : public CallGraphSCCPass {
970   void getAnalysisUsage(AnalysisUsage &AU) const override {
971     AU.addRequired<AssumptionCacheTracker>();
972     AU.addRequired<TargetLibraryInfoWrapperPass>();
973     getAAResultsAnalysisUsage(AU);
974     CallGraphSCCPass::getAnalysisUsage(AU);
975   }
976 
977   bool runOnSCC(CallGraphSCC &SCC) override;
978   static char ID; // Pass identification, replacement for typeid
979   explicit ArgPromotion(unsigned MaxElements = 3)
980       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
981     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
982   }
983 
984 private:
985   using llvm::Pass::doInitialization;
986   bool doInitialization(CallGraph &CG) override;
987   /// The maximum number of elements to expand, or 0 for unlimited.
988   unsigned MaxElements;
989 };
990 }
991 
992 char ArgPromotion::ID = 0;
993 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
994                       "Promote 'by reference' arguments to scalars", false,
995                       false)
996 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
997 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
998 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
999 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1000                     "Promote 'by reference' arguments to scalars", false, false)
1001 
1002 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1003   return new ArgPromotion(MaxElements);
1004 }
1005 
1006 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1007   if (skipSCC(SCC))
1008     return false;
1009 
1010   // Get the callgraph information that we need to update to reflect our
1011   // changes.
1012   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1013 
1014   LegacyAARGetter AARGetter(*this);
1015 
1016   bool Changed = false, LocalChange;
1017 
1018   // Iterate until we stop promoting from this SCC.
1019   do {
1020     LocalChange = false;
1021     // Attempt to promote arguments from all functions in this SCC.
1022     for (CallGraphNode *OldNode : SCC) {
1023       Function *OldF = OldNode->getFunction();
1024       if (!OldF)
1025         continue;
1026 
1027       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1028         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1029         CallGraphNode *NewCalleeNode =
1030             CG.getOrInsertFunction(NewCS.getCalledFunction());
1031         CallGraphNode *CallerNode = CG[Caller];
1032         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1033       };
1034 
1035       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1036                                             {ReplaceCallSite})) {
1037         LocalChange = true;
1038 
1039         // Update the call graph for the newly promoted function.
1040         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1041         NewNode->stealCalledFunctionsFrom(OldNode);
1042         if (OldNode->getNumReferences() == 0)
1043           delete CG.removeFunctionFromModule(OldNode);
1044         else
1045           OldF->setLinkage(Function::ExternalLinkage);
1046 
1047         // And updat ethe SCC we're iterating as well.
1048         SCC.ReplaceNode(OldNode, NewNode);
1049       }
1050     }
1051     // Remember that we changed something.
1052     Changed |= LocalChange;
1053   } while (LocalChange);
1054 
1055   return Changed;
1056 }
1057 
1058 bool ArgPromotion::doInitialization(CallGraph &CG) {
1059   return CallGraphSCCPass::doInitialization(CG);
1060 }
1061