1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/BasicAliasAnalysis.h" 43 #include "llvm/Analysis/CGSCCPassManager.h" 44 #include "llvm/Analysis/CallGraph.h" 45 #include "llvm/Analysis/CallGraphSCCPass.h" 46 #include "llvm/Analysis/LazyCallGraph.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <functional> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "argpromotion" 91 92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 96 97 /// A vector used to hold the indices of a single GEP instruction 98 using IndicesVector = std::vector<uint64_t>; 99 100 /// DoPromotion - This method actually performs the promotion of the specified 101 /// arguments, and returns the new function. At this point, we know that it's 102 /// safe to do so. 103 static Function * 104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 105 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 106 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 107 ReplaceCallSite) { 108 // Start by computing a new prototype for the function, which is the same as 109 // the old function, but has modified arguments. 110 FunctionType *FTy = F->getFunctionType(); 111 std::vector<Type *> Params; 112 113 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 114 115 // ScalarizedElements - If we are promoting a pointer that has elements 116 // accessed out of it, keep track of which elements are accessed so that we 117 // can add one argument for each. 118 // 119 // Arguments that are directly loaded will have a zero element value here, to 120 // handle cases where there are both a direct load and GEP accesses. 121 std::map<Argument *, ScalarizeTable> ScalarizedElements; 122 123 // OriginalLoads - Keep track of a representative load instruction from the 124 // original function so that we can tell the alias analysis implementation 125 // what the new GEP/Load instructions we are inserting look like. 126 // We need to keep the original loads for each argument and the elements 127 // of the argument that are accessed. 128 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 129 130 // Attribute - Keep track of the parameter attributes for the arguments 131 // that we are *not* promoting. For the ones that we do promote, the parameter 132 // attributes are lost 133 SmallVector<AttributeSet, 8> ArgAttrVec; 134 AttributeList PAL = F->getAttributes(); 135 136 // First, determine the new argument list 137 unsigned ArgNo = 0; 138 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 139 ++I, ++ArgNo) { 140 if (ByValArgsToTransform.count(&*I)) { 141 // Simple byval argument? Just add all the struct element types. 142 Type *AgTy = I->getParamByValType(); 143 StructType *STy = cast<StructType>(AgTy); 144 llvm::append_range(Params, STy->elements()); 145 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 146 AttributeSet()); 147 ++NumByValArgsPromoted; 148 } else if (!ArgsToPromote.count(&*I)) { 149 // Unchanged argument 150 Params.push_back(I->getType()); 151 ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo)); 152 } else if (I->use_empty()) { 153 // Dead argument (which are always marked as promotable) 154 ++NumArgumentsDead; 155 } else { 156 // Okay, this is being promoted. This means that the only uses are loads 157 // or GEPs which are only used by loads 158 159 // In this table, we will track which indices are loaded from the argument 160 // (where direct loads are tracked as no indices). 161 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 162 for (User *U : make_early_inc_range(I->users())) { 163 Instruction *UI = cast<Instruction>(U); 164 Type *SrcTy; 165 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 166 SrcTy = L->getType(); 167 else 168 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 169 // Skip dead GEPs and remove them. 170 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) { 171 UI->eraseFromParent(); 172 continue; 173 } 174 175 IndicesVector Indices; 176 Indices.reserve(UI->getNumOperands() - 1); 177 // Since loads will only have a single operand, and GEPs only a single 178 // non-index operand, this will record direct loads without any indices, 179 // and gep+loads with the GEP indices. 180 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 181 II != IE; ++II) 182 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 183 // GEPs with a single 0 index can be merged with direct loads 184 if (Indices.size() == 1 && Indices.front() == 0) 185 Indices.clear(); 186 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 187 LoadInst *OrigLoad; 188 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 189 OrigLoad = L; 190 else 191 // Take any load, we will use it only to update Alias Analysis 192 OrigLoad = cast<LoadInst>(UI->user_back()); 193 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 194 } 195 196 // Add a parameter to the function for each element passed in. 197 for (const auto &ArgIndex : ArgIndices) { 198 // not allowed to dereference ->begin() if size() is 0 199 Params.push_back(GetElementPtrInst::getIndexedType( 200 cast<PointerType>(I->getType())->getElementType(), 201 ArgIndex.second)); 202 ArgAttrVec.push_back(AttributeSet()); 203 assert(Params.back()); 204 } 205 206 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 207 ++NumArgumentsPromoted; 208 else 209 ++NumAggregatesPromoted; 210 } 211 } 212 213 Type *RetTy = FTy->getReturnType(); 214 215 // Construct the new function type using the new arguments. 216 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 217 218 // Create the new function body and insert it into the module. 219 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 220 F->getName()); 221 NF->copyAttributesFrom(F); 222 NF->copyMetadata(F, 0); 223 224 // The new function will have the !dbg metadata copied from the original 225 // function. The original function may not be deleted, and dbg metadata need 226 // to be unique so we need to drop it. 227 F->setSubprogram(nullptr); 228 229 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 230 << "From: " << *F); 231 232 // Recompute the parameter attributes list based on the new arguments for 233 // the function. 234 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(), 235 PAL.getRetAttrs(), ArgAttrVec)); 236 ArgAttrVec.clear(); 237 238 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 239 NF->takeName(F); 240 241 // Loop over all of the callers of the function, transforming the call sites 242 // to pass in the loaded pointers. 243 // 244 SmallVector<Value *, 16> Args; 245 const DataLayout &DL = F->getParent()->getDataLayout(); 246 while (!F->use_empty()) { 247 CallBase &CB = cast<CallBase>(*F->user_back()); 248 assert(CB.getCalledFunction() == F); 249 const AttributeList &CallPAL = CB.getAttributes(); 250 IRBuilder<NoFolder> IRB(&CB); 251 252 // Loop over the operands, inserting GEP and loads in the caller as 253 // appropriate. 254 auto AI = CB.arg_begin(); 255 ArgNo = 0; 256 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 257 ++I, ++AI, ++ArgNo) 258 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 259 Args.push_back(*AI); // Unmodified argument 260 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); 261 } else if (ByValArgsToTransform.count(&*I)) { 262 // Emit a GEP and load for each element of the struct. 263 Type *AgTy = I->getParamByValType(); 264 StructType *STy = cast<StructType>(AgTy); 265 Value *Idxs[2] = { 266 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 267 const StructLayout *SL = DL.getStructLayout(STy); 268 Align StructAlign = *I->getParamAlign(); 269 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 270 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 271 auto *Idx = 272 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 273 // TODO: Tell AA about the new values? 274 Align Alignment = 275 commonAlignment(StructAlign, SL->getElementOffset(i)); 276 Args.push_back(IRB.CreateAlignedLoad( 277 STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val")); 278 ArgAttrVec.push_back(AttributeSet()); 279 } 280 } else if (!I->use_empty()) { 281 // Non-dead argument: insert GEPs and loads as appropriate. 282 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 283 // Store the Value* version of the indices in here, but declare it now 284 // for reuse. 285 std::vector<Value *> Ops; 286 for (const auto &ArgIndex : ArgIndices) { 287 Value *V = *AI; 288 LoadInst *OrigLoad = 289 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 290 if (!ArgIndex.second.empty()) { 291 Ops.reserve(ArgIndex.second.size()); 292 Type *ElTy = V->getType(); 293 for (auto II : ArgIndex.second) { 294 // Use i32 to index structs, and i64 for others (pointers/arrays). 295 // This satisfies GEP constraints. 296 Type *IdxTy = 297 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 298 : Type::getInt64Ty(F->getContext())); 299 Ops.push_back(ConstantInt::get(IdxTy, II)); 300 // Keep track of the type we're currently indexing. 301 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 302 ElTy = ElPTy->getElementType(); 303 else 304 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); 305 } 306 // And create a GEP to extract those indices. 307 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 308 Ops.clear(); 309 } 310 // Since we're replacing a load make sure we take the alignment 311 // of the previous load. 312 LoadInst *newLoad = 313 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 314 newLoad->setAlignment(OrigLoad->getAlign()); 315 // Transfer the AA info too. 316 newLoad->setAAMetadata(OrigLoad->getAAMetadata()); 317 318 Args.push_back(newLoad); 319 ArgAttrVec.push_back(AttributeSet()); 320 } 321 } 322 323 // Push any varargs arguments on the list. 324 for (; AI != CB.arg_end(); ++AI, ++ArgNo) { 325 Args.push_back(*AI); 326 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); 327 } 328 329 SmallVector<OperandBundleDef, 1> OpBundles; 330 CB.getOperandBundlesAsDefs(OpBundles); 331 332 CallBase *NewCS = nullptr; 333 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 334 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 335 Args, OpBundles, "", &CB); 336 } else { 337 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); 338 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind()); 339 NewCS = NewCall; 340 } 341 NewCS->setCallingConv(CB.getCallingConv()); 342 NewCS->setAttributes(AttributeList::get(F->getContext(), 343 CallPAL.getFnAttrs(), 344 CallPAL.getRetAttrs(), ArgAttrVec)); 345 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 346 Args.clear(); 347 ArgAttrVec.clear(); 348 349 // Update the callgraph to know that the callsite has been transformed. 350 if (ReplaceCallSite) 351 (*ReplaceCallSite)(CB, *NewCS); 352 353 if (!CB.use_empty()) { 354 CB.replaceAllUsesWith(NewCS); 355 NewCS->takeName(&CB); 356 } 357 358 // Finally, remove the old call from the program, reducing the use-count of 359 // F. 360 CB.eraseFromParent(); 361 } 362 363 // Since we have now created the new function, splice the body of the old 364 // function right into the new function, leaving the old rotting hulk of the 365 // function empty. 366 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 367 368 // Loop over the argument list, transferring uses of the old arguments over to 369 // the new arguments, also transferring over the names as well. 370 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 371 I2 = NF->arg_begin(); 372 I != E; ++I) { 373 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 374 // If this is an unmodified argument, move the name and users over to the 375 // new version. 376 I->replaceAllUsesWith(&*I2); 377 I2->takeName(&*I); 378 ++I2; 379 continue; 380 } 381 382 if (ByValArgsToTransform.count(&*I)) { 383 // In the callee, we create an alloca, and store each of the new incoming 384 // arguments into the alloca. 385 Instruction *InsertPt = &NF->begin()->front(); 386 387 // Just add all the struct element types. 388 Type *AgTy = I->getParamByValType(); 389 Align StructAlign = *I->getParamAlign(); 390 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 391 StructAlign, "", InsertPt); 392 StructType *STy = cast<StructType>(AgTy); 393 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 394 nullptr}; 395 const StructLayout *SL = DL.getStructLayout(STy); 396 397 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 398 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 399 Value *Idx = GetElementPtrInst::Create( 400 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 401 InsertPt); 402 I2->setName(I->getName() + "." + Twine(i)); 403 Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i)); 404 new StoreInst(&*I2++, Idx, false, Alignment, InsertPt); 405 } 406 407 // Anything that used the arg should now use the alloca. 408 I->replaceAllUsesWith(TheAlloca); 409 TheAlloca->takeName(&*I); 410 continue; 411 } 412 413 // There potentially are metadata uses for things like llvm.dbg.value. 414 // Replace them with undef, after handling the other regular uses. 415 auto RauwUndefMetadata = make_scope_exit( 416 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); }); 417 418 if (I->use_empty()) 419 continue; 420 421 // Otherwise, if we promoted this argument, then all users are load 422 // instructions (or GEPs with only load users), and all loads should be 423 // using the new argument that we added. 424 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 425 426 while (!I->use_empty()) { 427 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 428 assert(ArgIndices.begin()->second.empty() && 429 "Load element should sort to front!"); 430 I2->setName(I->getName() + ".val"); 431 LI->replaceAllUsesWith(&*I2); 432 LI->eraseFromParent(); 433 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 434 << "' in function '" << F->getName() << "'\n"); 435 } else { 436 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 437 assert(!GEP->use_empty() && 438 "GEPs without uses should be cleaned up already"); 439 IndicesVector Operands; 440 Operands.reserve(GEP->getNumIndices()); 441 for (const Use &Idx : GEP->indices()) 442 Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue()); 443 444 // GEPs with a single 0 index can be merged with direct loads 445 if (Operands.size() == 1 && Operands.front() == 0) 446 Operands.clear(); 447 448 Function::arg_iterator TheArg = I2; 449 for (ScalarizeTable::iterator It = ArgIndices.begin(); 450 It->second != Operands; ++It, ++TheArg) { 451 assert(It != ArgIndices.end() && "GEP not handled??"); 452 } 453 454 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), 455 make_range(Operands.begin(), Operands.end()))); 456 457 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 458 << "' of function '" << NF->getName() << "'\n"); 459 460 // All of the uses must be load instructions. Replace them all with 461 // the argument specified by ArgNo. 462 while (!GEP->use_empty()) { 463 LoadInst *L = cast<LoadInst>(GEP->user_back()); 464 L->replaceAllUsesWith(&*TheArg); 465 L->eraseFromParent(); 466 } 467 GEP->eraseFromParent(); 468 } 469 } 470 // Increment I2 past all of the arguments added for this promoted pointer. 471 std::advance(I2, ArgIndices.size()); 472 } 473 474 return NF; 475 } 476 477 /// Return true if we can prove that all callees pass in a valid pointer for the 478 /// specified function argument. 479 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 480 Function *Callee = Arg->getParent(); 481 const DataLayout &DL = Callee->getParent()->getDataLayout(); 482 483 unsigned ArgNo = Arg->getArgNo(); 484 485 // Look at all call sites of the function. At this point we know we only have 486 // direct callees. 487 for (User *U : Callee->users()) { 488 CallBase &CB = cast<CallBase>(*U); 489 490 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) 491 return false; 492 } 493 return true; 494 } 495 496 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 497 /// that is greater than or equal to the size of prefix, and each of the 498 /// elements in Prefix is the same as the corresponding elements in Longer. 499 /// 500 /// This means it also returns true when Prefix and Longer are equal! 501 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 502 if (Prefix.size() > Longer.size()) 503 return false; 504 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 505 } 506 507 /// Checks if Indices, or a prefix of Indices, is in Set. 508 static bool prefixIn(const IndicesVector &Indices, 509 std::set<IndicesVector> &Set) { 510 std::set<IndicesVector>::iterator Low; 511 Low = Set.upper_bound(Indices); 512 if (Low != Set.begin()) 513 Low--; 514 // Low is now the last element smaller than or equal to Indices. This means 515 // it points to a prefix of Indices (possibly Indices itself), if such 516 // prefix exists. 517 // 518 // This load is safe if any prefix of its operands is safe to load. 519 return Low != Set.end() && isPrefix(*Low, Indices); 520 } 521 522 /// Mark the given indices (ToMark) as safe in the given set of indices 523 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 524 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 525 /// already. Furthermore, any indices that Indices is itself a prefix of, are 526 /// removed from Safe (since they are implicitely safe because of Indices now). 527 static void markIndicesSafe(const IndicesVector &ToMark, 528 std::set<IndicesVector> &Safe) { 529 std::set<IndicesVector>::iterator Low; 530 Low = Safe.upper_bound(ToMark); 531 // Guard against the case where Safe is empty 532 if (Low != Safe.begin()) 533 Low--; 534 // Low is now the last element smaller than or equal to Indices. This 535 // means it points to a prefix of Indices (possibly Indices itself), if 536 // such prefix exists. 537 if (Low != Safe.end()) { 538 if (isPrefix(*Low, ToMark)) 539 // If there is already a prefix of these indices (or exactly these 540 // indices) marked a safe, don't bother adding these indices 541 return; 542 543 // Increment Low, so we can use it as a "insert before" hint 544 ++Low; 545 } 546 // Insert 547 Low = Safe.insert(Low, ToMark); 548 ++Low; 549 // If there we're a prefix of longer index list(s), remove those 550 std::set<IndicesVector>::iterator End = Safe.end(); 551 while (Low != End && isPrefix(ToMark, *Low)) { 552 std::set<IndicesVector>::iterator Remove = Low; 553 ++Low; 554 Safe.erase(Remove); 555 } 556 } 557 558 /// isSafeToPromoteArgument - As you might guess from the name of this method, 559 /// it checks to see if it is both safe and useful to promote the argument. 560 /// This method limits promotion of aggregates to only promote up to three 561 /// elements of the aggregate in order to avoid exploding the number of 562 /// arguments passed in. 563 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 564 unsigned MaxElements) { 565 using GEPIndicesSet = std::set<IndicesVector>; 566 567 // Quick exit for unused arguments 568 if (Arg->use_empty()) 569 return true; 570 571 // We can only promote this argument if all of the uses are loads, or are GEP 572 // instructions (with constant indices) that are subsequently loaded. 573 // 574 // Promoting the argument causes it to be loaded in the caller 575 // unconditionally. This is only safe if we can prove that either the load 576 // would have happened in the callee anyway (ie, there is a load in the entry 577 // block) or the pointer passed in at every call site is guaranteed to be 578 // valid. 579 // In the former case, invalid loads can happen, but would have happened 580 // anyway, in the latter case, invalid loads won't happen. This prevents us 581 // from introducing an invalid load that wouldn't have happened in the 582 // original code. 583 // 584 // This set will contain all sets of indices that are loaded in the entry 585 // block, and thus are safe to unconditionally load in the caller. 586 GEPIndicesSet SafeToUnconditionallyLoad; 587 588 // This set contains all the sets of indices that we are planning to promote. 589 // This makes it possible to limit the number of arguments added. 590 GEPIndicesSet ToPromote; 591 592 // If the pointer is always valid, any load with first index 0 is valid. 593 594 if (ByValTy) 595 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 596 597 // Whenever a new underlying type for the operand is found, make sure it's 598 // consistent with the GEPs and loads we've already seen and, if necessary, 599 // use it to see if all incoming pointers are valid (which implies the 0-index 600 // is safe). 601 Type *BaseTy = ByValTy; 602 auto UpdateBaseTy = [&](Type *NewBaseTy) { 603 if (BaseTy) 604 return BaseTy == NewBaseTy; 605 606 BaseTy = NewBaseTy; 607 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 608 assert(SafeToUnconditionallyLoad.empty()); 609 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 610 } 611 612 return true; 613 }; 614 615 // First, iterate the entry block and mark loads of (geps of) arguments as 616 // safe. 617 BasicBlock &EntryBlock = Arg->getParent()->front(); 618 // Declare this here so we can reuse it 619 IndicesVector Indices; 620 for (Instruction &I : EntryBlock) 621 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 622 Value *V = LI->getPointerOperand(); 623 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 624 V = GEP->getPointerOperand(); 625 if (V == Arg) { 626 // This load actually loads (part of) Arg? Check the indices then. 627 Indices.reserve(GEP->getNumIndices()); 628 for (Use &Idx : GEP->indices()) 629 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 630 Indices.push_back(CI->getSExtValue()); 631 else 632 // We found a non-constant GEP index for this argument? Bail out 633 // right away, can't promote this argument at all. 634 return false; 635 636 if (!UpdateBaseTy(GEP->getSourceElementType())) 637 return false; 638 639 // Indices checked out, mark them as safe 640 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 641 Indices.clear(); 642 } 643 } else if (V == Arg) { 644 // Direct loads are equivalent to a GEP with a single 0 index. 645 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 646 647 if (BaseTy && LI->getType() != BaseTy) 648 return false; 649 650 BaseTy = LI->getType(); 651 } 652 } 653 654 // Now, iterate all uses of the argument to see if there are any uses that are 655 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 656 SmallVector<LoadInst *, 16> Loads; 657 IndicesVector Operands; 658 for (Use &U : Arg->uses()) { 659 User *UR = U.getUser(); 660 Operands.clear(); 661 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 662 // Don't hack volatile/atomic loads 663 if (!LI->isSimple()) 664 return false; 665 Loads.push_back(LI); 666 // Direct loads are equivalent to a GEP with a zero index and then a load. 667 Operands.push_back(0); 668 669 if (!UpdateBaseTy(LI->getType())) 670 return false; 671 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 672 if (GEP->use_empty()) { 673 // Dead GEP's cause trouble later. Just remove them if we run into 674 // them. 675 continue; 676 } 677 678 if (!UpdateBaseTy(GEP->getSourceElementType())) 679 return false; 680 681 // Ensure that all of the indices are constants. 682 for (Use &Idx : GEP->indices()) 683 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx)) 684 Operands.push_back(C->getSExtValue()); 685 else 686 return false; // Not a constant operand GEP! 687 688 // Ensure that the only users of the GEP are load instructions. 689 for (User *GEPU : GEP->users()) 690 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 691 // Don't hack volatile/atomic loads 692 if (!LI->isSimple()) 693 return false; 694 Loads.push_back(LI); 695 } else { 696 // Other uses than load? 697 return false; 698 } 699 } else { 700 return false; // Not a load or a GEP. 701 } 702 703 // Now, see if it is safe to promote this load / loads of this GEP. Loading 704 // is safe if Operands, or a prefix of Operands, is marked as safe. 705 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 706 return false; 707 708 // See if we are already promoting a load with these indices. If not, check 709 // to make sure that we aren't promoting too many elements. If so, nothing 710 // to do. 711 if (ToPromote.find(Operands) == ToPromote.end()) { 712 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 713 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 714 << Arg->getName() 715 << "' because it would require adding more " 716 << "than " << MaxElements 717 << " arguments to the function.\n"); 718 // We limit aggregate promotion to only promoting up to a fixed number 719 // of elements of the aggregate. 720 return false; 721 } 722 ToPromote.insert(std::move(Operands)); 723 } 724 } 725 726 if (Loads.empty()) 727 return true; // No users, this is a dead argument. 728 729 // Okay, now we know that the argument is only used by load instructions and 730 // it is safe to unconditionally perform all of them. Use alias analysis to 731 // check to see if the pointer is guaranteed to not be modified from entry of 732 // the function to each of the load instructions. 733 734 // Because there could be several/many load instructions, remember which 735 // blocks we know to be transparent to the load. 736 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 737 738 for (LoadInst *Load : Loads) { 739 // Check to see if the load is invalidated from the start of the block to 740 // the load itself. 741 BasicBlock *BB = Load->getParent(); 742 743 MemoryLocation Loc = MemoryLocation::get(Load); 744 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 745 return false; // Pointer is invalidated! 746 747 // Now check every path from the entry block to the load for transparency. 748 // To do this, we perform a depth first search on the inverse CFG from the 749 // loading block. 750 for (BasicBlock *P : predecessors(BB)) { 751 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 752 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 753 return false; 754 } 755 } 756 757 // If the path from the entry of the function to each load is free of 758 // instructions that potentially invalidate the load, we can make the 759 // transformation! 760 return true; 761 } 762 763 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { 764 // There is no size information, so be conservative. 765 if (!type->isSized()) 766 return false; 767 768 // If the alloc size is not equal to the storage size, then there are padding 769 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 770 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 771 return false; 772 773 // FIXME: This isn't the right way to check for padding in vectors with 774 // non-byte-size elements. 775 if (VectorType *seqTy = dyn_cast<VectorType>(type)) 776 return isDenselyPacked(seqTy->getElementType(), DL); 777 778 // For array types, check for padding within members. 779 if (ArrayType *seqTy = dyn_cast<ArrayType>(type)) 780 return isDenselyPacked(seqTy->getElementType(), DL); 781 782 if (!isa<StructType>(type)) 783 return true; 784 785 // Check for padding within and between elements of a struct. 786 StructType *StructTy = cast<StructType>(type); 787 const StructLayout *Layout = DL.getStructLayout(StructTy); 788 uint64_t StartPos = 0; 789 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 790 Type *ElTy = StructTy->getElementType(i); 791 if (!isDenselyPacked(ElTy, DL)) 792 return false; 793 if (StartPos != Layout->getElementOffsetInBits(i)) 794 return false; 795 StartPos += DL.getTypeAllocSizeInBits(ElTy); 796 } 797 798 return true; 799 } 800 801 /// Checks if the padding bytes of an argument could be accessed. 802 static bool canPaddingBeAccessed(Argument *arg) { 803 assert(arg->hasByValAttr()); 804 805 // Track all the pointers to the argument to make sure they are not captured. 806 SmallPtrSet<Value *, 16> PtrValues; 807 PtrValues.insert(arg); 808 809 // Track all of the stores. 810 SmallVector<StoreInst *, 16> Stores; 811 812 // Scan through the uses recursively to make sure the pointer is always used 813 // sanely. 814 SmallVector<Value *, 16> WorkList(arg->users()); 815 while (!WorkList.empty()) { 816 Value *V = WorkList.pop_back_val(); 817 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 818 if (PtrValues.insert(V).second) 819 llvm::append_range(WorkList, V->users()); 820 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 821 Stores.push_back(Store); 822 } else if (!isa<LoadInst>(V)) { 823 return true; 824 } 825 } 826 827 // Check to make sure the pointers aren't captured 828 for (StoreInst *Store : Stores) 829 if (PtrValues.count(Store->getValueOperand())) 830 return true; 831 832 return false; 833 } 834 835 bool ArgumentPromotionPass::areFunctionArgsABICompatible( 836 const Function &F, const TargetTransformInfo &TTI, 837 SmallPtrSetImpl<Argument *> &ArgsToPromote, 838 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 839 for (const Use &U : F.uses()) { 840 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 841 if (!CB) 842 return false; 843 const Function *Caller = CB->getCaller(); 844 const Function *Callee = CB->getCalledFunction(); 845 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 846 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 847 return false; 848 } 849 return true; 850 } 851 852 /// PromoteArguments - This method checks the specified function to see if there 853 /// are any promotable arguments and if it is safe to promote the function (for 854 /// example, all callers are direct). If safe to promote some arguments, it 855 /// calls the DoPromotion method. 856 static Function * 857 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 858 unsigned MaxElements, 859 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 860 ReplaceCallSite, 861 const TargetTransformInfo &TTI) { 862 // Don't perform argument promotion for naked functions; otherwise we can end 863 // up removing parameters that are seemingly 'not used' as they are referred 864 // to in the assembly. 865 if(F->hasFnAttribute(Attribute::Naked)) 866 return nullptr; 867 868 // Make sure that it is local to this module. 869 if (!F->hasLocalLinkage()) 870 return nullptr; 871 872 // Don't promote arguments for variadic functions. Adding, removing, or 873 // changing non-pack parameters can change the classification of pack 874 // parameters. Frontends encode that classification at the call site in the 875 // IR, while in the callee the classification is determined dynamically based 876 // on the number of registers consumed so far. 877 if (F->isVarArg()) 878 return nullptr; 879 880 // Don't transform functions that receive inallocas, as the transformation may 881 // not be safe depending on calling convention. 882 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 883 return nullptr; 884 885 // First check: see if there are any pointer arguments! If not, quick exit. 886 SmallVector<Argument *, 16> PointerArgs; 887 for (Argument &I : F->args()) 888 if (I.getType()->isPointerTy()) 889 PointerArgs.push_back(&I); 890 if (PointerArgs.empty()) 891 return nullptr; 892 893 // Second check: make sure that all callers are direct callers. We can't 894 // transform functions that have indirect callers. Also see if the function 895 // is self-recursive and check that target features are compatible. 896 bool isSelfRecursive = false; 897 for (Use &U : F->uses()) { 898 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 899 // Must be a direct call. 900 if (CB == nullptr || !CB->isCallee(&U)) 901 return nullptr; 902 903 // Can't change signature of musttail callee 904 if (CB->isMustTailCall()) 905 return nullptr; 906 907 if (CB->getParent()->getParent() == F) 908 isSelfRecursive = true; 909 } 910 911 // Can't change signature of musttail caller 912 // FIXME: Support promoting whole chain of musttail functions 913 for (BasicBlock &BB : *F) 914 if (BB.getTerminatingMustTailCall()) 915 return nullptr; 916 917 const DataLayout &DL = F->getParent()->getDataLayout(); 918 919 AAResults &AAR = AARGetter(*F); 920 921 // Check to see which arguments are promotable. If an argument is promotable, 922 // add it to ArgsToPromote. 923 SmallPtrSet<Argument *, 8> ArgsToPromote; 924 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 925 for (Argument *PtrArg : PointerArgs) { 926 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 927 928 // Replace sret attribute with noalias. This reduces register pressure by 929 // avoiding a register copy. 930 if (PtrArg->hasStructRetAttr()) { 931 unsigned ArgNo = PtrArg->getArgNo(); 932 F->removeParamAttr(ArgNo, Attribute::StructRet); 933 F->addParamAttr(ArgNo, Attribute::NoAlias); 934 for (Use &U : F->uses()) { 935 CallBase &CB = cast<CallBase>(*U.getUser()); 936 CB.removeParamAttr(ArgNo, Attribute::StructRet); 937 CB.addParamAttr(ArgNo, Attribute::NoAlias); 938 } 939 } 940 941 // If this is a byval argument, and if the aggregate type is small, just 942 // pass the elements, which is always safe, if the passed value is densely 943 // packed or if we can prove the padding bytes are never accessed. 944 // 945 // Only handle arguments with specified alignment; if it's unspecified, the 946 // actual alignment of the argument is target-specific. 947 bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() && 948 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || 949 !canPaddingBeAccessed(PtrArg)); 950 if (isSafeToPromote) { 951 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 952 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 953 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 954 << PtrArg->getName() 955 << "' because it would require adding more" 956 << " than " << MaxElements 957 << " arguments to the function.\n"); 958 continue; 959 } 960 961 // If all the elements are single-value types, we can promote it. 962 bool AllSimple = true; 963 for (const auto *EltTy : STy->elements()) { 964 if (!EltTy->isSingleValueType()) { 965 AllSimple = false; 966 break; 967 } 968 } 969 970 // Safe to transform, don't even bother trying to "promote" it. 971 // Passing the elements as a scalar will allow sroa to hack on 972 // the new alloca we introduce. 973 if (AllSimple) { 974 ByValArgsToTransform.insert(PtrArg); 975 continue; 976 } 977 } 978 } 979 980 // If the argument is a recursive type and we're in a recursive 981 // function, we could end up infinitely peeling the function argument. 982 if (isSelfRecursive) { 983 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 984 bool RecursiveType = 985 llvm::is_contained(STy->elements(), PtrArg->getType()); 986 if (RecursiveType) 987 continue; 988 } 989 } 990 991 // Otherwise, see if we can promote the pointer to its value. 992 Type *ByValTy = 993 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 994 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 995 ArgsToPromote.insert(PtrArg); 996 } 997 998 // No promotable pointer arguments. 999 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1000 return nullptr; 1001 1002 if (!ArgumentPromotionPass::areFunctionArgsABICompatible( 1003 *F, TTI, ArgsToPromote, ByValArgsToTransform)) 1004 return nullptr; 1005 1006 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1007 } 1008 1009 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1010 CGSCCAnalysisManager &AM, 1011 LazyCallGraph &CG, 1012 CGSCCUpdateResult &UR) { 1013 bool Changed = false, LocalChange; 1014 1015 // Iterate until we stop promoting from this SCC. 1016 do { 1017 LocalChange = false; 1018 1019 for (LazyCallGraph::Node &N : C) { 1020 Function &OldF = N.getFunction(); 1021 1022 FunctionAnalysisManager &FAM = 1023 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1024 // FIXME: This lambda must only be used with this function. We should 1025 // skip the lambda and just get the AA results directly. 1026 auto AARGetter = [&](Function &F) -> AAResults & { 1027 assert(&F == &OldF && "Called with an unexpected function!"); 1028 return FAM.getResult<AAManager>(F); 1029 }; 1030 1031 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1032 Function *NewF = 1033 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1034 if (!NewF) 1035 continue; 1036 LocalChange = true; 1037 1038 // Directly substitute the functions in the call graph. Note that this 1039 // requires the old function to be completely dead and completely 1040 // replaced by the new function. It does no call graph updates, it merely 1041 // swaps out the particular function mapped to a particular node in the 1042 // graph. 1043 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1044 FAM.clear(OldF, OldF.getName()); 1045 OldF.eraseFromParent(); 1046 } 1047 1048 Changed |= LocalChange; 1049 } while (LocalChange); 1050 1051 if (!Changed) 1052 return PreservedAnalyses::all(); 1053 1054 PreservedAnalyses PA; 1055 // We've cleared out analyses for deleted functions. 1056 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1057 return PA; 1058 } 1059 1060 namespace { 1061 1062 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1063 struct ArgPromotion : public CallGraphSCCPass { 1064 // Pass identification, replacement for typeid 1065 static char ID; 1066 1067 explicit ArgPromotion(unsigned MaxElements = 3) 1068 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1069 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1070 } 1071 1072 void getAnalysisUsage(AnalysisUsage &AU) const override { 1073 AU.addRequired<AssumptionCacheTracker>(); 1074 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1075 AU.addRequired<TargetTransformInfoWrapperPass>(); 1076 getAAResultsAnalysisUsage(AU); 1077 CallGraphSCCPass::getAnalysisUsage(AU); 1078 } 1079 1080 bool runOnSCC(CallGraphSCC &SCC) override; 1081 1082 private: 1083 using llvm::Pass::doInitialization; 1084 1085 bool doInitialization(CallGraph &CG) override; 1086 1087 /// The maximum number of elements to expand, or 0 for unlimited. 1088 unsigned MaxElements; 1089 }; 1090 1091 } // end anonymous namespace 1092 1093 char ArgPromotion::ID = 0; 1094 1095 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1096 "Promote 'by reference' arguments to scalars", false, 1097 false) 1098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1099 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1101 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1103 "Promote 'by reference' arguments to scalars", false, false) 1104 1105 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1106 return new ArgPromotion(MaxElements); 1107 } 1108 1109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1110 if (skipSCC(SCC)) 1111 return false; 1112 1113 // Get the callgraph information that we need to update to reflect our 1114 // changes. 1115 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1116 1117 LegacyAARGetter AARGetter(*this); 1118 1119 bool Changed = false, LocalChange; 1120 1121 // Iterate until we stop promoting from this SCC. 1122 do { 1123 LocalChange = false; 1124 // Attempt to promote arguments from all functions in this SCC. 1125 for (CallGraphNode *OldNode : SCC) { 1126 Function *OldF = OldNode->getFunction(); 1127 if (!OldF) 1128 continue; 1129 1130 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { 1131 Function *Caller = OldCS.getParent()->getParent(); 1132 CallGraphNode *NewCalleeNode = 1133 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1134 CallGraphNode *CallerNode = CG[Caller]; 1135 CallerNode->replaceCallEdge(cast<CallBase>(OldCS), 1136 cast<CallBase>(NewCS), NewCalleeNode); 1137 }; 1138 1139 const TargetTransformInfo &TTI = 1140 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1141 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1142 {ReplaceCallSite}, TTI)) { 1143 LocalChange = true; 1144 1145 // Update the call graph for the newly promoted function. 1146 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1147 NewNode->stealCalledFunctionsFrom(OldNode); 1148 if (OldNode->getNumReferences() == 0) 1149 delete CG.removeFunctionFromModule(OldNode); 1150 else 1151 OldF->setLinkage(Function::ExternalLinkage); 1152 1153 // And updat ethe SCC we're iterating as well. 1154 SCC.ReplaceNode(OldNode, NewNode); 1155 } 1156 } 1157 // Remember that we changed something. 1158 Changed |= LocalChange; 1159 } while (LocalChange); 1160 1161 return Changed; 1162 } 1163 1164 bool ArgPromotion::doInitialization(CallGraph &CG) { 1165 return CallGraphSCCPass::doInitialization(CG); 1166 } 1167