1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "argpromotion"
91 
92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
96 
97 /// A vector used to hold the indices of a single GEP instruction
98 using IndicesVector = std::vector<uint64_t>;
99 
100 /// DoPromotion - This method actually performs the promotion of the specified
101 /// arguments, and returns the new function.  At this point, we know that it's
102 /// safe to do so.
103 static Function *
104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
106             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
107                 ReplaceCallSite) {
108   // Start by computing a new prototype for the function, which is the same as
109   // the old function, but has modified arguments.
110   FunctionType *FTy = F->getFunctionType();
111   std::vector<Type *> Params;
112 
113   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
114 
115   // ScalarizedElements - If we are promoting a pointer that has elements
116   // accessed out of it, keep track of which elements are accessed so that we
117   // can add one argument for each.
118   //
119   // Arguments that are directly loaded will have a zero element value here, to
120   // handle cases where there are both a direct load and GEP accesses.
121   std::map<Argument *, ScalarizeTable> ScalarizedElements;
122 
123   // OriginalLoads - Keep track of a representative load instruction from the
124   // original function so that we can tell the alias analysis implementation
125   // what the new GEP/Load instructions we are inserting look like.
126   // We need to keep the original loads for each argument and the elements
127   // of the argument that are accessed.
128   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
129 
130   // Attribute - Keep track of the parameter attributes for the arguments
131   // that we are *not* promoting. For the ones that we do promote, the parameter
132   // attributes are lost
133   SmallVector<AttributeSet, 8> ArgAttrVec;
134   AttributeList PAL = F->getAttributes();
135 
136   // First, determine the new argument list
137   unsigned ArgNo = 0;
138   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
139        ++I, ++ArgNo) {
140     if (ByValArgsToTransform.count(&*I)) {
141       // Simple byval argument? Just add all the struct element types.
142       Type *AgTy = I->getParamByValType();
143       StructType *STy = cast<StructType>(AgTy);
144       llvm::append_range(Params, STy->elements());
145       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
146                         AttributeSet());
147       ++NumByValArgsPromoted;
148     } else if (!ArgsToPromote.count(&*I)) {
149       // Unchanged argument
150       Params.push_back(I->getType());
151       ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
152     } else if (I->use_empty()) {
153       // Dead argument (which are always marked as promotable)
154       ++NumArgumentsDead;
155     } else {
156       // Okay, this is being promoted. This means that the only uses are loads
157       // or GEPs which are only used by loads
158 
159       // In this table, we will track which indices are loaded from the argument
160       // (where direct loads are tracked as no indices).
161       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
162       for (User *U : make_early_inc_range(I->users())) {
163         Instruction *UI = cast<Instruction>(U);
164         Type *SrcTy;
165         if (LoadInst *L = dyn_cast<LoadInst>(UI))
166           SrcTy = L->getType();
167         else
168           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
169         // Skip dead GEPs and remove them.
170         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
171           UI->eraseFromParent();
172           continue;
173         }
174 
175         IndicesVector Indices;
176         Indices.reserve(UI->getNumOperands() - 1);
177         // Since loads will only have a single operand, and GEPs only a single
178         // non-index operand, this will record direct loads without any indices,
179         // and gep+loads with the GEP indices.
180         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
181              II != IE; ++II)
182           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
183         // GEPs with a single 0 index can be merged with direct loads
184         if (Indices.size() == 1 && Indices.front() == 0)
185           Indices.clear();
186         ArgIndices.insert(std::make_pair(SrcTy, Indices));
187         LoadInst *OrigLoad;
188         if (LoadInst *L = dyn_cast<LoadInst>(UI))
189           OrigLoad = L;
190         else
191           // Take any load, we will use it only to update Alias Analysis
192           OrigLoad = cast<LoadInst>(UI->user_back());
193         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
194       }
195 
196       // Add a parameter to the function for each element passed in.
197       for (const auto &ArgIndex : ArgIndices) {
198         // not allowed to dereference ->begin() if size() is 0
199         Params.push_back(GetElementPtrInst::getIndexedType(
200             cast<PointerType>(I->getType())->getElementType(),
201             ArgIndex.second));
202         ArgAttrVec.push_back(AttributeSet());
203         assert(Params.back());
204       }
205 
206       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
207         ++NumArgumentsPromoted;
208       else
209         ++NumAggregatesPromoted;
210     }
211   }
212 
213   Type *RetTy = FTy->getReturnType();
214 
215   // Construct the new function type using the new arguments.
216   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
217 
218   // Create the new function body and insert it into the module.
219   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
220                                   F->getName());
221   NF->copyAttributesFrom(F);
222   NF->copyMetadata(F, 0);
223 
224   // The new function will have the !dbg metadata copied from the original
225   // function. The original function may not be deleted, and dbg metadata need
226   // to be unique so we need to drop it.
227   F->setSubprogram(nullptr);
228 
229   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
230                     << "From: " << *F);
231 
232   // Recompute the parameter attributes list based on the new arguments for
233   // the function.
234   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
235                                        PAL.getRetAttrs(), ArgAttrVec));
236   ArgAttrVec.clear();
237 
238   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
239   NF->takeName(F);
240 
241   // Loop over all of the callers of the function, transforming the call sites
242   // to pass in the loaded pointers.
243   //
244   SmallVector<Value *, 16> Args;
245   const DataLayout &DL = F->getParent()->getDataLayout();
246   while (!F->use_empty()) {
247     CallBase &CB = cast<CallBase>(*F->user_back());
248     assert(CB.getCalledFunction() == F);
249     const AttributeList &CallPAL = CB.getAttributes();
250     IRBuilder<NoFolder> IRB(&CB);
251 
252     // Loop over the operands, inserting GEP and loads in the caller as
253     // appropriate.
254     auto AI = CB.arg_begin();
255     ArgNo = 0;
256     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257          ++I, ++AI, ++ArgNo)
258       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259         Args.push_back(*AI); // Unmodified argument
260         ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
261       } else if (ByValArgsToTransform.count(&*I)) {
262         // Emit a GEP and load for each element of the struct.
263         Type *AgTy = I->getParamByValType();
264         StructType *STy = cast<StructType>(AgTy);
265         Value *Idxs[2] = {
266             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267         const StructLayout *SL = DL.getStructLayout(STy);
268         Align StructAlign = *I->getParamAlign();
269         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
270           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
271           auto *Idx =
272               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
273           // TODO: Tell AA about the new values?
274           Align Alignment =
275               commonAlignment(StructAlign, SL->getElementOffset(i));
276           Args.push_back(IRB.CreateAlignedLoad(
277               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
278           ArgAttrVec.push_back(AttributeSet());
279         }
280       } else if (!I->use_empty()) {
281         // Non-dead argument: insert GEPs and loads as appropriate.
282         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
283         // Store the Value* version of the indices in here, but declare it now
284         // for reuse.
285         std::vector<Value *> Ops;
286         for (const auto &ArgIndex : ArgIndices) {
287           Value *V = *AI;
288           LoadInst *OrigLoad =
289               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
290           if (!ArgIndex.second.empty()) {
291             Ops.reserve(ArgIndex.second.size());
292             Type *ElTy = V->getType();
293             for (auto II : ArgIndex.second) {
294               // Use i32 to index structs, and i64 for others (pointers/arrays).
295               // This satisfies GEP constraints.
296               Type *IdxTy =
297                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
298                                       : Type::getInt64Ty(F->getContext()));
299               Ops.push_back(ConstantInt::get(IdxTy, II));
300               // Keep track of the type we're currently indexing.
301               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
302                 ElTy = ElPTy->getElementType();
303               else
304                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
305             }
306             // And create a GEP to extract those indices.
307             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
308             Ops.clear();
309           }
310           // Since we're replacing a load make sure we take the alignment
311           // of the previous load.
312           LoadInst *newLoad =
313               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
314           newLoad->setAlignment(OrigLoad->getAlign());
315           // Transfer the AA info too.
316           newLoad->setAAMetadata(OrigLoad->getAAMetadata());
317 
318           Args.push_back(newLoad);
319           ArgAttrVec.push_back(AttributeSet());
320         }
321       }
322 
323     // Push any varargs arguments on the list.
324     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
325       Args.push_back(*AI);
326       ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
327     }
328 
329     SmallVector<OperandBundleDef, 1> OpBundles;
330     CB.getOperandBundlesAsDefs(OpBundles);
331 
332     CallBase *NewCS = nullptr;
333     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
334       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
335                                  Args, OpBundles, "", &CB);
336     } else {
337       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
338       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
339       NewCS = NewCall;
340     }
341     NewCS->setCallingConv(CB.getCallingConv());
342     NewCS->setAttributes(AttributeList::get(F->getContext(),
343                                             CallPAL.getFnAttrs(),
344                                             CallPAL.getRetAttrs(), ArgAttrVec));
345     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
346     Args.clear();
347     ArgAttrVec.clear();
348 
349     // Update the callgraph to know that the callsite has been transformed.
350     if (ReplaceCallSite)
351       (*ReplaceCallSite)(CB, *NewCS);
352 
353     if (!CB.use_empty()) {
354       CB.replaceAllUsesWith(NewCS);
355       NewCS->takeName(&CB);
356     }
357 
358     // Finally, remove the old call from the program, reducing the use-count of
359     // F.
360     CB.eraseFromParent();
361   }
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = I->getParamByValType();
389       Align StructAlign = *I->getParamAlign();
390       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
391                                         StructAlign, "", InsertPt);
392       StructType *STy = cast<StructType>(AgTy);
393       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
394                         nullptr};
395       const StructLayout *SL = DL.getStructLayout(STy);
396 
397       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
398         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
399         Value *Idx = GetElementPtrInst::Create(
400             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
401             InsertPt);
402         I2->setName(I->getName() + "." + Twine(i));
403         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
404         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
405       }
406 
407       // Anything that used the arg should now use the alloca.
408       I->replaceAllUsesWith(TheAlloca);
409       TheAlloca->takeName(&*I);
410       continue;
411     }
412 
413     // There potentially are metadata uses for things like llvm.dbg.value.
414     // Replace them with undef, after handling the other regular uses.
415     auto RauwUndefMetadata = make_scope_exit(
416         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
417 
418     if (I->use_empty())
419       continue;
420 
421     // Otherwise, if we promoted this argument, then all users are load
422     // instructions (or GEPs with only load users), and all loads should be
423     // using the new argument that we added.
424     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
425 
426     while (!I->use_empty()) {
427       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
428         assert(ArgIndices.begin()->second.empty() &&
429                "Load element should sort to front!");
430         I2->setName(I->getName() + ".val");
431         LI->replaceAllUsesWith(&*I2);
432         LI->eraseFromParent();
433         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
434                           << "' in function '" << F->getName() << "'\n");
435       } else {
436         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
437         assert(!GEP->use_empty() &&
438                "GEPs without uses should be cleaned up already");
439         IndicesVector Operands;
440         Operands.reserve(GEP->getNumIndices());
441         for (const Use &Idx : GEP->indices())
442           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
443 
444         // GEPs with a single 0 index can be merged with direct loads
445         if (Operands.size() == 1 && Operands.front() == 0)
446           Operands.clear();
447 
448         Function::arg_iterator TheArg = I2;
449         for (ScalarizeTable::iterator It = ArgIndices.begin();
450              It->second != Operands; ++It, ++TheArg) {
451           assert(It != ArgIndices.end() && "GEP not handled??");
452         }
453 
454         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
455                                 make_range(Operands.begin(), Operands.end())));
456 
457         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
458                           << "' of function '" << NF->getName() << "'\n");
459 
460         // All of the uses must be load instructions.  Replace them all with
461         // the argument specified by ArgNo.
462         while (!GEP->use_empty()) {
463           LoadInst *L = cast<LoadInst>(GEP->user_back());
464           L->replaceAllUsesWith(&*TheArg);
465           L->eraseFromParent();
466         }
467         GEP->eraseFromParent();
468       }
469     }
470     // Increment I2 past all of the arguments added for this promoted pointer.
471     std::advance(I2, ArgIndices.size());
472   }
473 
474   return NF;
475 }
476 
477 /// Return true if we can prove that all callees pass in a valid pointer for the
478 /// specified function argument.
479 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
480   Function *Callee = Arg->getParent();
481   const DataLayout &DL = Callee->getParent()->getDataLayout();
482 
483   unsigned ArgNo = Arg->getArgNo();
484 
485   // Look at all call sites of the function.  At this point we know we only have
486   // direct callees.
487   for (User *U : Callee->users()) {
488     CallBase &CB = cast<CallBase>(*U);
489 
490     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
491       return false;
492   }
493   return true;
494 }
495 
496 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
497 /// that is greater than or equal to the size of prefix, and each of the
498 /// elements in Prefix is the same as the corresponding elements in Longer.
499 ///
500 /// This means it also returns true when Prefix and Longer are equal!
501 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
502   if (Prefix.size() > Longer.size())
503     return false;
504   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
505 }
506 
507 /// Checks if Indices, or a prefix of Indices, is in Set.
508 static bool prefixIn(const IndicesVector &Indices,
509                      std::set<IndicesVector> &Set) {
510   std::set<IndicesVector>::iterator Low;
511   Low = Set.upper_bound(Indices);
512   if (Low != Set.begin())
513     Low--;
514   // Low is now the last element smaller than or equal to Indices. This means
515   // it points to a prefix of Indices (possibly Indices itself), if such
516   // prefix exists.
517   //
518   // This load is safe if any prefix of its operands is safe to load.
519   return Low != Set.end() && isPrefix(*Low, Indices);
520 }
521 
522 /// Mark the given indices (ToMark) as safe in the given set of indices
523 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
524 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
525 /// already. Furthermore, any indices that Indices is itself a prefix of, are
526 /// removed from Safe (since they are implicitely safe because of Indices now).
527 static void markIndicesSafe(const IndicesVector &ToMark,
528                             std::set<IndicesVector> &Safe) {
529   std::set<IndicesVector>::iterator Low;
530   Low = Safe.upper_bound(ToMark);
531   // Guard against the case where Safe is empty
532   if (Low != Safe.begin())
533     Low--;
534   // Low is now the last element smaller than or equal to Indices. This
535   // means it points to a prefix of Indices (possibly Indices itself), if
536   // such prefix exists.
537   if (Low != Safe.end()) {
538     if (isPrefix(*Low, ToMark))
539       // If there is already a prefix of these indices (or exactly these
540       // indices) marked a safe, don't bother adding these indices
541       return;
542 
543     // Increment Low, so we can use it as a "insert before" hint
544     ++Low;
545   }
546   // Insert
547   Low = Safe.insert(Low, ToMark);
548   ++Low;
549   // If there we're a prefix of longer index list(s), remove those
550   std::set<IndicesVector>::iterator End = Safe.end();
551   while (Low != End && isPrefix(ToMark, *Low)) {
552     std::set<IndicesVector>::iterator Remove = Low;
553     ++Low;
554     Safe.erase(Remove);
555   }
556 }
557 
558 /// isSafeToPromoteArgument - As you might guess from the name of this method,
559 /// it checks to see if it is both safe and useful to promote the argument.
560 /// This method limits promotion of aggregates to only promote up to three
561 /// elements of the aggregate in order to avoid exploding the number of
562 /// arguments passed in.
563 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
564                                     unsigned MaxElements) {
565   using GEPIndicesSet = std::set<IndicesVector>;
566 
567   // Quick exit for unused arguments
568   if (Arg->use_empty())
569     return true;
570 
571   // We can only promote this argument if all of the uses are loads, or are GEP
572   // instructions (with constant indices) that are subsequently loaded.
573   //
574   // Promoting the argument causes it to be loaded in the caller
575   // unconditionally. This is only safe if we can prove that either the load
576   // would have happened in the callee anyway (ie, there is a load in the entry
577   // block) or the pointer passed in at every call site is guaranteed to be
578   // valid.
579   // In the former case, invalid loads can happen, but would have happened
580   // anyway, in the latter case, invalid loads won't happen. This prevents us
581   // from introducing an invalid load that wouldn't have happened in the
582   // original code.
583   //
584   // This set will contain all sets of indices that are loaded in the entry
585   // block, and thus are safe to unconditionally load in the caller.
586   GEPIndicesSet SafeToUnconditionallyLoad;
587 
588   // This set contains all the sets of indices that we are planning to promote.
589   // This makes it possible to limit the number of arguments added.
590   GEPIndicesSet ToPromote;
591 
592   // If the pointer is always valid, any load with first index 0 is valid.
593 
594   if (ByValTy)
595     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
596 
597   // Whenever a new underlying type for the operand is found, make sure it's
598   // consistent with the GEPs and loads we've already seen and, if necessary,
599   // use it to see if all incoming pointers are valid (which implies the 0-index
600   // is safe).
601   Type *BaseTy = ByValTy;
602   auto UpdateBaseTy = [&](Type *NewBaseTy) {
603     if (BaseTy)
604       return BaseTy == NewBaseTy;
605 
606     BaseTy = NewBaseTy;
607     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
608       assert(SafeToUnconditionallyLoad.empty());
609       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
610     }
611 
612     return true;
613   };
614 
615   // First, iterate the entry block and mark loads of (geps of) arguments as
616   // safe.
617   BasicBlock &EntryBlock = Arg->getParent()->front();
618   // Declare this here so we can reuse it
619   IndicesVector Indices;
620   for (Instruction &I : EntryBlock)
621     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
622       Value *V = LI->getPointerOperand();
623       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
624         V = GEP->getPointerOperand();
625         if (V == Arg) {
626           // This load actually loads (part of) Arg? Check the indices then.
627           Indices.reserve(GEP->getNumIndices());
628           for (Use &Idx : GEP->indices())
629             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
630               Indices.push_back(CI->getSExtValue());
631             else
632               // We found a non-constant GEP index for this argument? Bail out
633               // right away, can't promote this argument at all.
634               return false;
635 
636           if (!UpdateBaseTy(GEP->getSourceElementType()))
637             return false;
638 
639           // Indices checked out, mark them as safe
640           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
641           Indices.clear();
642         }
643       } else if (V == Arg) {
644         // Direct loads are equivalent to a GEP with a single 0 index.
645         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
646 
647         if (BaseTy && LI->getType() != BaseTy)
648           return false;
649 
650         BaseTy = LI->getType();
651       }
652     }
653 
654   // Now, iterate all uses of the argument to see if there are any uses that are
655   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
656   SmallVector<LoadInst *, 16> Loads;
657   IndicesVector Operands;
658   for (Use &U : Arg->uses()) {
659     User *UR = U.getUser();
660     Operands.clear();
661     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
662       // Don't hack volatile/atomic loads
663       if (!LI->isSimple())
664         return false;
665       Loads.push_back(LI);
666       // Direct loads are equivalent to a GEP with a zero index and then a load.
667       Operands.push_back(0);
668 
669       if (!UpdateBaseTy(LI->getType()))
670         return false;
671     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
672       if (GEP->use_empty()) {
673         // Dead GEP's cause trouble later.  Just remove them if we run into
674         // them.
675         continue;
676       }
677 
678       if (!UpdateBaseTy(GEP->getSourceElementType()))
679         return false;
680 
681       // Ensure that all of the indices are constants.
682       for (Use &Idx : GEP->indices())
683         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
684           Operands.push_back(C->getSExtValue());
685         else
686           return false; // Not a constant operand GEP!
687 
688       // Ensure that the only users of the GEP are load instructions.
689       for (User *GEPU : GEP->users())
690         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
691           // Don't hack volatile/atomic loads
692           if (!LI->isSimple())
693             return false;
694           Loads.push_back(LI);
695         } else {
696           // Other uses than load?
697           return false;
698         }
699     } else {
700       return false; // Not a load or a GEP.
701     }
702 
703     // Now, see if it is safe to promote this load / loads of this GEP. Loading
704     // is safe if Operands, or a prefix of Operands, is marked as safe.
705     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
706       return false;
707 
708     // See if we are already promoting a load with these indices. If not, check
709     // to make sure that we aren't promoting too many elements.  If so, nothing
710     // to do.
711     if (ToPromote.find(Operands) == ToPromote.end()) {
712       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
713         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
714                           << Arg->getName()
715                           << "' because it would require adding more "
716                           << "than " << MaxElements
717                           << " arguments to the function.\n");
718         // We limit aggregate promotion to only promoting up to a fixed number
719         // of elements of the aggregate.
720         return false;
721       }
722       ToPromote.insert(std::move(Operands));
723     }
724   }
725 
726   if (Loads.empty())
727     return true; // No users, this is a dead argument.
728 
729   // Okay, now we know that the argument is only used by load instructions and
730   // it is safe to unconditionally perform all of them. Use alias analysis to
731   // check to see if the pointer is guaranteed to not be modified from entry of
732   // the function to each of the load instructions.
733 
734   // Because there could be several/many load instructions, remember which
735   // blocks we know to be transparent to the load.
736   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
737 
738   for (LoadInst *Load : Loads) {
739     // Check to see if the load is invalidated from the start of the block to
740     // the load itself.
741     BasicBlock *BB = Load->getParent();
742 
743     MemoryLocation Loc = MemoryLocation::get(Load);
744     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
745       return false; // Pointer is invalidated!
746 
747     // Now check every path from the entry block to the load for transparency.
748     // To do this, we perform a depth first search on the inverse CFG from the
749     // loading block.
750     for (BasicBlock *P : predecessors(BB)) {
751       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
752         if (AAR.canBasicBlockModify(*TranspBB, Loc))
753           return false;
754     }
755   }
756 
757   // If the path from the entry of the function to each load is free of
758   // instructions that potentially invalidate the load, we can make the
759   // transformation!
760   return true;
761 }
762 
763 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
764   // There is no size information, so be conservative.
765   if (!type->isSized())
766     return false;
767 
768   // If the alloc size is not equal to the storage size, then there are padding
769   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
770   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
771     return false;
772 
773   // FIXME: This isn't the right way to check for padding in vectors with
774   // non-byte-size elements.
775   if (VectorType *seqTy = dyn_cast<VectorType>(type))
776     return isDenselyPacked(seqTy->getElementType(), DL);
777 
778   // For array types, check for padding within members.
779   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
780     return isDenselyPacked(seqTy->getElementType(), DL);
781 
782   if (!isa<StructType>(type))
783     return true;
784 
785   // Check for padding within and between elements of a struct.
786   StructType *StructTy = cast<StructType>(type);
787   const StructLayout *Layout = DL.getStructLayout(StructTy);
788   uint64_t StartPos = 0;
789   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
790     Type *ElTy = StructTy->getElementType(i);
791     if (!isDenselyPacked(ElTy, DL))
792       return false;
793     if (StartPos != Layout->getElementOffsetInBits(i))
794       return false;
795     StartPos += DL.getTypeAllocSizeInBits(ElTy);
796   }
797 
798   return true;
799 }
800 
801 /// Checks if the padding bytes of an argument could be accessed.
802 static bool canPaddingBeAccessed(Argument *arg) {
803   assert(arg->hasByValAttr());
804 
805   // Track all the pointers to the argument to make sure they are not captured.
806   SmallPtrSet<Value *, 16> PtrValues;
807   PtrValues.insert(arg);
808 
809   // Track all of the stores.
810   SmallVector<StoreInst *, 16> Stores;
811 
812   // Scan through the uses recursively to make sure the pointer is always used
813   // sanely.
814   SmallVector<Value *, 16> WorkList(arg->users());
815   while (!WorkList.empty()) {
816     Value *V = WorkList.pop_back_val();
817     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
818       if (PtrValues.insert(V).second)
819         llvm::append_range(WorkList, V->users());
820     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
821       Stores.push_back(Store);
822     } else if (!isa<LoadInst>(V)) {
823       return true;
824     }
825   }
826 
827   // Check to make sure the pointers aren't captured
828   for (StoreInst *Store : Stores)
829     if (PtrValues.count(Store->getValueOperand()))
830       return true;
831 
832   return false;
833 }
834 
835 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
836     const Function &F, const TargetTransformInfo &TTI,
837     SmallPtrSetImpl<Argument *> &ArgsToPromote,
838     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
839   for (const Use &U : F.uses()) {
840     CallBase *CB = dyn_cast<CallBase>(U.getUser());
841     if (!CB)
842       return false;
843     const Function *Caller = CB->getCaller();
844     const Function *Callee = CB->getCalledFunction();
845     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
846         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
847       return false;
848   }
849   return true;
850 }
851 
852 /// PromoteArguments - This method checks the specified function to see if there
853 /// are any promotable arguments and if it is safe to promote the function (for
854 /// example, all callers are direct).  If safe to promote some arguments, it
855 /// calls the DoPromotion method.
856 static Function *
857 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
858                  unsigned MaxElements,
859                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
860                      ReplaceCallSite,
861                  const TargetTransformInfo &TTI) {
862   // Don't perform argument promotion for naked functions; otherwise we can end
863   // up removing parameters that are seemingly 'not used' as they are referred
864   // to in the assembly.
865   if(F->hasFnAttribute(Attribute::Naked))
866     return nullptr;
867 
868   // Make sure that it is local to this module.
869   if (!F->hasLocalLinkage())
870     return nullptr;
871 
872   // Don't promote arguments for variadic functions. Adding, removing, or
873   // changing non-pack parameters can change the classification of pack
874   // parameters. Frontends encode that classification at the call site in the
875   // IR, while in the callee the classification is determined dynamically based
876   // on the number of registers consumed so far.
877   if (F->isVarArg())
878     return nullptr;
879 
880   // Don't transform functions that receive inallocas, as the transformation may
881   // not be safe depending on calling convention.
882   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
883     return nullptr;
884 
885   // First check: see if there are any pointer arguments!  If not, quick exit.
886   SmallVector<Argument *, 16> PointerArgs;
887   for (Argument &I : F->args())
888     if (I.getType()->isPointerTy())
889       PointerArgs.push_back(&I);
890   if (PointerArgs.empty())
891     return nullptr;
892 
893   // Second check: make sure that all callers are direct callers.  We can't
894   // transform functions that have indirect callers.  Also see if the function
895   // is self-recursive and check that target features are compatible.
896   bool isSelfRecursive = false;
897   for (Use &U : F->uses()) {
898     CallBase *CB = dyn_cast<CallBase>(U.getUser());
899     // Must be a direct call.
900     if (CB == nullptr || !CB->isCallee(&U))
901       return nullptr;
902 
903     // Can't change signature of musttail callee
904     if (CB->isMustTailCall())
905       return nullptr;
906 
907     if (CB->getParent()->getParent() == F)
908       isSelfRecursive = true;
909   }
910 
911   // Can't change signature of musttail caller
912   // FIXME: Support promoting whole chain of musttail functions
913   for (BasicBlock &BB : *F)
914     if (BB.getTerminatingMustTailCall())
915       return nullptr;
916 
917   const DataLayout &DL = F->getParent()->getDataLayout();
918 
919   AAResults &AAR = AARGetter(*F);
920 
921   // Check to see which arguments are promotable.  If an argument is promotable,
922   // add it to ArgsToPromote.
923   SmallPtrSet<Argument *, 8> ArgsToPromote;
924   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
925   for (Argument *PtrArg : PointerArgs) {
926     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
927 
928     // Replace sret attribute with noalias. This reduces register pressure by
929     // avoiding a register copy.
930     if (PtrArg->hasStructRetAttr()) {
931       unsigned ArgNo = PtrArg->getArgNo();
932       F->removeParamAttr(ArgNo, Attribute::StructRet);
933       F->addParamAttr(ArgNo, Attribute::NoAlias);
934       for (Use &U : F->uses()) {
935         CallBase &CB = cast<CallBase>(*U.getUser());
936         CB.removeParamAttr(ArgNo, Attribute::StructRet);
937         CB.addParamAttr(ArgNo, Attribute::NoAlias);
938       }
939     }
940 
941     // If this is a byval argument, and if the aggregate type is small, just
942     // pass the elements, which is always safe, if the passed value is densely
943     // packed or if we can prove the padding bytes are never accessed.
944     //
945     // Only handle arguments with specified alignment; if it's unspecified, the
946     // actual alignment of the argument is target-specific.
947     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
948                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
949                             !canPaddingBeAccessed(PtrArg));
950     if (isSafeToPromote) {
951       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
952         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
953           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
954                             << PtrArg->getName()
955                             << "' because it would require adding more"
956                             << " than " << MaxElements
957                             << " arguments to the function.\n");
958           continue;
959         }
960 
961         // If all the elements are single-value types, we can promote it.
962         bool AllSimple = true;
963         for (const auto *EltTy : STy->elements()) {
964           if (!EltTy->isSingleValueType()) {
965             AllSimple = false;
966             break;
967           }
968         }
969 
970         // Safe to transform, don't even bother trying to "promote" it.
971         // Passing the elements as a scalar will allow sroa to hack on
972         // the new alloca we introduce.
973         if (AllSimple) {
974           ByValArgsToTransform.insert(PtrArg);
975           continue;
976         }
977       }
978     }
979 
980     // If the argument is a recursive type and we're in a recursive
981     // function, we could end up infinitely peeling the function argument.
982     if (isSelfRecursive) {
983       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
984         bool RecursiveType =
985             llvm::is_contained(STy->elements(), PtrArg->getType());
986         if (RecursiveType)
987           continue;
988       }
989     }
990 
991     // Otherwise, see if we can promote the pointer to its value.
992     Type *ByValTy =
993         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
994     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
995       ArgsToPromote.insert(PtrArg);
996   }
997 
998   // No promotable pointer arguments.
999   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1000     return nullptr;
1001 
1002   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1003           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1004     return nullptr;
1005 
1006   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1007 }
1008 
1009 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1010                                              CGSCCAnalysisManager &AM,
1011                                              LazyCallGraph &CG,
1012                                              CGSCCUpdateResult &UR) {
1013   bool Changed = false, LocalChange;
1014 
1015   // Iterate until we stop promoting from this SCC.
1016   do {
1017     LocalChange = false;
1018 
1019     for (LazyCallGraph::Node &N : C) {
1020       Function &OldF = N.getFunction();
1021 
1022       FunctionAnalysisManager &FAM =
1023           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1024       // FIXME: This lambda must only be used with this function. We should
1025       // skip the lambda and just get the AA results directly.
1026       auto AARGetter = [&](Function &F) -> AAResults & {
1027         assert(&F == &OldF && "Called with an unexpected function!");
1028         return FAM.getResult<AAManager>(F);
1029       };
1030 
1031       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1032       Function *NewF =
1033           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1034       if (!NewF)
1035         continue;
1036       LocalChange = true;
1037 
1038       // Directly substitute the functions in the call graph. Note that this
1039       // requires the old function to be completely dead and completely
1040       // replaced by the new function. It does no call graph updates, it merely
1041       // swaps out the particular function mapped to a particular node in the
1042       // graph.
1043       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1044       FAM.clear(OldF, OldF.getName());
1045       OldF.eraseFromParent();
1046     }
1047 
1048     Changed |= LocalChange;
1049   } while (LocalChange);
1050 
1051   if (!Changed)
1052     return PreservedAnalyses::all();
1053 
1054   PreservedAnalyses PA;
1055   // We've cleared out analyses for deleted functions.
1056   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1057   return PA;
1058 }
1059 
1060 namespace {
1061 
1062 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1063 struct ArgPromotion : public CallGraphSCCPass {
1064   // Pass identification, replacement for typeid
1065   static char ID;
1066 
1067   explicit ArgPromotion(unsigned MaxElements = 3)
1068       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1069     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1070   }
1071 
1072   void getAnalysisUsage(AnalysisUsage &AU) const override {
1073     AU.addRequired<AssumptionCacheTracker>();
1074     AU.addRequired<TargetLibraryInfoWrapperPass>();
1075     AU.addRequired<TargetTransformInfoWrapperPass>();
1076     getAAResultsAnalysisUsage(AU);
1077     CallGraphSCCPass::getAnalysisUsage(AU);
1078   }
1079 
1080   bool runOnSCC(CallGraphSCC &SCC) override;
1081 
1082 private:
1083   using llvm::Pass::doInitialization;
1084 
1085   bool doInitialization(CallGraph &CG) override;
1086 
1087   /// The maximum number of elements to expand, or 0 for unlimited.
1088   unsigned MaxElements;
1089 };
1090 
1091 } // end anonymous namespace
1092 
1093 char ArgPromotion::ID = 0;
1094 
1095 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1096                       "Promote 'by reference' arguments to scalars", false,
1097                       false)
1098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1099 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1101 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1103                     "Promote 'by reference' arguments to scalars", false, false)
1104 
1105 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1106   return new ArgPromotion(MaxElements);
1107 }
1108 
1109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1110   if (skipSCC(SCC))
1111     return false;
1112 
1113   // Get the callgraph information that we need to update to reflect our
1114   // changes.
1115   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1116 
1117   LegacyAARGetter AARGetter(*this);
1118 
1119   bool Changed = false, LocalChange;
1120 
1121   // Iterate until we stop promoting from this SCC.
1122   do {
1123     LocalChange = false;
1124     // Attempt to promote arguments from all functions in this SCC.
1125     for (CallGraphNode *OldNode : SCC) {
1126       Function *OldF = OldNode->getFunction();
1127       if (!OldF)
1128         continue;
1129 
1130       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1131         Function *Caller = OldCS.getParent()->getParent();
1132         CallGraphNode *NewCalleeNode =
1133             CG.getOrInsertFunction(NewCS.getCalledFunction());
1134         CallGraphNode *CallerNode = CG[Caller];
1135         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1136                                     cast<CallBase>(NewCS), NewCalleeNode);
1137       };
1138 
1139       const TargetTransformInfo &TTI =
1140           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1141       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1142                                             {ReplaceCallSite}, TTI)) {
1143         LocalChange = true;
1144 
1145         // Update the call graph for the newly promoted function.
1146         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1147         NewNode->stealCalledFunctionsFrom(OldNode);
1148         if (OldNode->getNumReferences() == 0)
1149           delete CG.removeFunctionFromModule(OldNode);
1150         else
1151           OldF->setLinkage(Function::ExternalLinkage);
1152 
1153         // And updat ethe SCC we're iterating as well.
1154         SCC.ReplaceNode(OldNode, NewNode);
1155       }
1156     }
1157     // Remember that we changed something.
1158     Changed |= LocalChange;
1159   } while (LocalChange);
1160 
1161   return Changed;
1162 }
1163 
1164 bool ArgPromotion::doInitialization(CallGraph &CG) {
1165   return CallGraphSCCPass::doInitialization(CG);
1166 }
1167