1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       llvm::append_range(Params, STy->elements());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156     } else {
157       // Okay, this is being promoted. This means that the only uses are loads
158       // or GEPs which are only used by loads
159 
160       // In this table, we will track which indices are loaded from the argument
161       // (where direct loads are tracked as no indices).
162       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163       for (User *U : make_early_inc_range(I->users())) {
164         Instruction *UI = cast<Instruction>(U);
165         Type *SrcTy;
166         if (LoadInst *L = dyn_cast<LoadInst>(UI))
167           SrcTy = L->getType();
168         else
169           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170         // Skip dead GEPs and remove them.
171         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172           UI->eraseFromParent();
173           continue;
174         }
175 
176         IndicesVector Indices;
177         Indices.reserve(UI->getNumOperands() - 1);
178         // Since loads will only have a single operand, and GEPs only a single
179         // non-index operand, this will record direct loads without any indices,
180         // and gep+loads with the GEP indices.
181         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
182              II != IE; ++II)
183           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
184         // GEPs with a single 0 index can be merged with direct loads
185         if (Indices.size() == 1 && Indices.front() == 0)
186           Indices.clear();
187         ArgIndices.insert(std::make_pair(SrcTy, Indices));
188         LoadInst *OrigLoad;
189         if (LoadInst *L = dyn_cast<LoadInst>(UI))
190           OrigLoad = L;
191         else
192           // Take any load, we will use it only to update Alias Analysis
193           OrigLoad = cast<LoadInst>(UI->user_back());
194         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195       }
196 
197       // Add a parameter to the function for each element passed in.
198       for (const auto &ArgIndex : ArgIndices) {
199         // not allowed to dereference ->begin() if size() is 0
200         Params.push_back(GetElementPtrInst::getIndexedType(
201             cast<PointerType>(I->getType())->getElementType(),
202             ArgIndex.second));
203         ArgAttrVec.push_back(AttributeSet());
204         assert(Params.back());
205       }
206 
207       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
208         ++NumArgumentsPromoted;
209       else
210         ++NumAggregatesPromoted;
211     }
212   }
213 
214   Type *RetTy = FTy->getReturnType();
215 
216   // Construct the new function type using the new arguments.
217   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218 
219   // Create the new function body and insert it into the module.
220   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
221                                   F->getName());
222   NF->copyAttributesFrom(F);
223   NF->copyMetadata(F, 0);
224 
225   // The new function will have the !dbg metadata copied from the original
226   // function. The original function may not be deleted, and dbg metadata need
227   // to be unique so we need to drop it.
228   F->setSubprogram(nullptr);
229 
230   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
231                     << "From: " << *F);
232 
233   // Recompute the parameter attributes list based on the new arguments for
234   // the function.
235   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
236                                        PAL.getRetAttributes(), ArgAttrVec));
237   ArgAttrVec.clear();
238 
239   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
240   NF->takeName(F);
241 
242   // Loop over all of the callers of the function, transforming the call sites
243   // to pass in the loaded pointers.
244   //
245   SmallVector<Value *, 16> Args;
246   while (!F->use_empty()) {
247     CallBase &CB = cast<CallBase>(*F->user_back());
248     assert(CB.getCalledFunction() == F);
249     const AttributeList &CallPAL = CB.getAttributes();
250     IRBuilder<NoFolder> IRB(&CB);
251 
252     // Loop over the operands, inserting GEP and loads in the caller as
253     // appropriate.
254     auto AI = CB.arg_begin();
255     ArgNo = 0;
256     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257          ++I, ++AI, ++ArgNo)
258       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259         Args.push_back(*AI); // Unmodified argument
260         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
261       } else if (ByValArgsToTransform.count(&*I)) {
262         // Emit a GEP and load for each element of the struct.
263         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
264         StructType *STy = cast<StructType>(AgTy);
265         Value *Idxs[2] = {
266             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
268           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
269           auto *Idx =
270               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
271           // TODO: Tell AA about the new values?
272           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
273                                         Idx->getName() + ".val"));
274           ArgAttrVec.push_back(AttributeSet());
275         }
276       } else if (!I->use_empty()) {
277         // Non-dead argument: insert GEPs and loads as appropriate.
278         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
279         // Store the Value* version of the indices in here, but declare it now
280         // for reuse.
281         std::vector<Value *> Ops;
282         for (const auto &ArgIndex : ArgIndices) {
283           Value *V = *AI;
284           LoadInst *OrigLoad =
285               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
286           if (!ArgIndex.second.empty()) {
287             Ops.reserve(ArgIndex.second.size());
288             Type *ElTy = V->getType();
289             for (auto II : ArgIndex.second) {
290               // Use i32 to index structs, and i64 for others (pointers/arrays).
291               // This satisfies GEP constraints.
292               Type *IdxTy =
293                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
294                                       : Type::getInt64Ty(F->getContext()));
295               Ops.push_back(ConstantInt::get(IdxTy, II));
296               // Keep track of the type we're currently indexing.
297               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
298                 ElTy = ElPTy->getElementType();
299               else
300                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
301             }
302             // And create a GEP to extract those indices.
303             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
304             Ops.clear();
305           }
306           // Since we're replacing a load make sure we take the alignment
307           // of the previous load.
308           LoadInst *newLoad =
309               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
310           newLoad->setAlignment(OrigLoad->getAlign());
311           // Transfer the AA info too.
312           AAMDNodes AAInfo;
313           OrigLoad->getAAMetadata(AAInfo);
314           newLoad->setAAMetadata(AAInfo);
315 
316           Args.push_back(newLoad);
317           ArgAttrVec.push_back(AttributeSet());
318         }
319       }
320 
321     // Push any varargs arguments on the list.
322     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
323       Args.push_back(*AI);
324       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
325     }
326 
327     SmallVector<OperandBundleDef, 1> OpBundles;
328     CB.getOperandBundlesAsDefs(OpBundles);
329 
330     CallBase *NewCS = nullptr;
331     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
332       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
333                                  Args, OpBundles, "", &CB);
334     } else {
335       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
336       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
337       NewCS = NewCall;
338     }
339     NewCS->setCallingConv(CB.getCallingConv());
340     NewCS->setAttributes(
341         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
342                            CallPAL.getRetAttributes(), ArgAttrVec));
343     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CB, *NewCS);
350 
351     if (!CB.use_empty()) {
352       CB.replaceAllUsesWith(NewCS);
353       NewCS->takeName(&CB);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     CB.eraseFromParent();
359   }
360 
361   const DataLayout &DL = F->getParent()->getDataLayout();
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389       Value *TheAlloca = new AllocaInst(
390           AgTy, DL.getAllocaAddrSpace(), nullptr,
391           I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
392           InsertPt);
393       StructType *STy = cast<StructType>(AgTy);
394       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
395                         nullptr};
396 
397       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
398         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
399         Value *Idx = GetElementPtrInst::Create(
400             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
401             InsertPt);
402         I2->setName(I->getName() + "." + Twine(i));
403         new StoreInst(&*I2++, Idx, InsertPt);
404       }
405 
406       // Anything that used the arg should now use the alloca.
407       I->replaceAllUsesWith(TheAlloca);
408       TheAlloca->takeName(&*I);
409 
410       // If the alloca is used in a call, we must clear the tail flag since
411       // the callee now uses an alloca from the caller.
412       for (User *U : TheAlloca->users()) {
413         CallInst *Call = dyn_cast<CallInst>(U);
414         if (!Call)
415           continue;
416         Call->setTailCall(false);
417       }
418       continue;
419     }
420 
421     // There potentially are metadata uses for things like llvm.dbg.value.
422     // Replace them with undef, after handling the other regular uses.
423     auto RauwUndefMetadata = make_scope_exit(
424         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
425 
426     if (I->use_empty())
427       continue;
428 
429     // Otherwise, if we promoted this argument, then all users are load
430     // instructions (or GEPs with only load users), and all loads should be
431     // using the new argument that we added.
432     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
433 
434     while (!I->use_empty()) {
435       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
436         assert(ArgIndices.begin()->second.empty() &&
437                "Load element should sort to front!");
438         I2->setName(I->getName() + ".val");
439         LI->replaceAllUsesWith(&*I2);
440         LI->eraseFromParent();
441         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
442                           << "' in function '" << F->getName() << "'\n");
443       } else {
444         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
445         assert(!GEP->use_empty() &&
446                "GEPs without uses should be cleaned up already");
447         IndicesVector Operands;
448         Operands.reserve(GEP->getNumIndices());
449         for (const Use &Idx : GEP->indices())
450           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
451 
452         // GEPs with a single 0 index can be merged with direct loads
453         if (Operands.size() == 1 && Operands.front() == 0)
454           Operands.clear();
455 
456         Function::arg_iterator TheArg = I2;
457         for (ScalarizeTable::iterator It = ArgIndices.begin();
458              It->second != Operands; ++It, ++TheArg) {
459           assert(It != ArgIndices.end() && "GEP not handled??");
460         }
461 
462         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
463                                 make_range(Operands.begin(), Operands.end())));
464 
465         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
466                           << "' of function '" << NF->getName() << "'\n");
467 
468         // All of the uses must be load instructions.  Replace them all with
469         // the argument specified by ArgNo.
470         while (!GEP->use_empty()) {
471           LoadInst *L = cast<LoadInst>(GEP->user_back());
472           L->replaceAllUsesWith(&*TheArg);
473           L->eraseFromParent();
474         }
475         GEP->eraseFromParent();
476       }
477     }
478     // Increment I2 past all of the arguments added for this promoted pointer.
479     std::advance(I2, ArgIndices.size());
480   }
481 
482   return NF;
483 }
484 
485 /// Return true if we can prove that all callees pass in a valid pointer for the
486 /// specified function argument.
487 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
488   Function *Callee = Arg->getParent();
489   const DataLayout &DL = Callee->getParent()->getDataLayout();
490 
491   unsigned ArgNo = Arg->getArgNo();
492 
493   // Look at all call sites of the function.  At this point we know we only have
494   // direct callees.
495   for (User *U : Callee->users()) {
496     CallBase &CB = cast<CallBase>(*U);
497 
498     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
499       return false;
500   }
501   return true;
502 }
503 
504 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
505 /// that is greater than or equal to the size of prefix, and each of the
506 /// elements in Prefix is the same as the corresponding elements in Longer.
507 ///
508 /// This means it also returns true when Prefix and Longer are equal!
509 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
510   if (Prefix.size() > Longer.size())
511     return false;
512   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
513 }
514 
515 /// Checks if Indices, or a prefix of Indices, is in Set.
516 static bool prefixIn(const IndicesVector &Indices,
517                      std::set<IndicesVector> &Set) {
518   std::set<IndicesVector>::iterator Low;
519   Low = Set.upper_bound(Indices);
520   if (Low != Set.begin())
521     Low--;
522   // Low is now the last element smaller than or equal to Indices. This means
523   // it points to a prefix of Indices (possibly Indices itself), if such
524   // prefix exists.
525   //
526   // This load is safe if any prefix of its operands is safe to load.
527   return Low != Set.end() && isPrefix(*Low, Indices);
528 }
529 
530 /// Mark the given indices (ToMark) as safe in the given set of indices
531 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
532 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
533 /// already. Furthermore, any indices that Indices is itself a prefix of, are
534 /// removed from Safe (since they are implicitely safe because of Indices now).
535 static void markIndicesSafe(const IndicesVector &ToMark,
536                             std::set<IndicesVector> &Safe) {
537   std::set<IndicesVector>::iterator Low;
538   Low = Safe.upper_bound(ToMark);
539   // Guard against the case where Safe is empty
540   if (Low != Safe.begin())
541     Low--;
542   // Low is now the last element smaller than or equal to Indices. This
543   // means it points to a prefix of Indices (possibly Indices itself), if
544   // such prefix exists.
545   if (Low != Safe.end()) {
546     if (isPrefix(*Low, ToMark))
547       // If there is already a prefix of these indices (or exactly these
548       // indices) marked a safe, don't bother adding these indices
549       return;
550 
551     // Increment Low, so we can use it as a "insert before" hint
552     ++Low;
553   }
554   // Insert
555   Low = Safe.insert(Low, ToMark);
556   ++Low;
557   // If there we're a prefix of longer index list(s), remove those
558   std::set<IndicesVector>::iterator End = Safe.end();
559   while (Low != End && isPrefix(ToMark, *Low)) {
560     std::set<IndicesVector>::iterator Remove = Low;
561     ++Low;
562     Safe.erase(Remove);
563   }
564 }
565 
566 /// isSafeToPromoteArgument - As you might guess from the name of this method,
567 /// it checks to see if it is both safe and useful to promote the argument.
568 /// This method limits promotion of aggregates to only promote up to three
569 /// elements of the aggregate in order to avoid exploding the number of
570 /// arguments passed in.
571 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
572                                     unsigned MaxElements) {
573   using GEPIndicesSet = std::set<IndicesVector>;
574 
575   // Quick exit for unused arguments
576   if (Arg->use_empty())
577     return true;
578 
579   // We can only promote this argument if all of the uses are loads, or are GEP
580   // instructions (with constant indices) that are subsequently loaded.
581   //
582   // Promoting the argument causes it to be loaded in the caller
583   // unconditionally. This is only safe if we can prove that either the load
584   // would have happened in the callee anyway (ie, there is a load in the entry
585   // block) or the pointer passed in at every call site is guaranteed to be
586   // valid.
587   // In the former case, invalid loads can happen, but would have happened
588   // anyway, in the latter case, invalid loads won't happen. This prevents us
589   // from introducing an invalid load that wouldn't have happened in the
590   // original code.
591   //
592   // This set will contain all sets of indices that are loaded in the entry
593   // block, and thus are safe to unconditionally load in the caller.
594   GEPIndicesSet SafeToUnconditionallyLoad;
595 
596   // This set contains all the sets of indices that we are planning to promote.
597   // This makes it possible to limit the number of arguments added.
598   GEPIndicesSet ToPromote;
599 
600   // If the pointer is always valid, any load with first index 0 is valid.
601 
602   if (ByValTy)
603     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
604 
605   // Whenever a new underlying type for the operand is found, make sure it's
606   // consistent with the GEPs and loads we've already seen and, if necessary,
607   // use it to see if all incoming pointers are valid (which implies the 0-index
608   // is safe).
609   Type *BaseTy = ByValTy;
610   auto UpdateBaseTy = [&](Type *NewBaseTy) {
611     if (BaseTy)
612       return BaseTy == NewBaseTy;
613 
614     BaseTy = NewBaseTy;
615     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
616       assert(SafeToUnconditionallyLoad.empty());
617       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
618     }
619 
620     return true;
621   };
622 
623   // First, iterate the entry block and mark loads of (geps of) arguments as
624   // safe.
625   BasicBlock &EntryBlock = Arg->getParent()->front();
626   // Declare this here so we can reuse it
627   IndicesVector Indices;
628   for (Instruction &I : EntryBlock)
629     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
630       Value *V = LI->getPointerOperand();
631       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
632         V = GEP->getPointerOperand();
633         if (V == Arg) {
634           // This load actually loads (part of) Arg? Check the indices then.
635           Indices.reserve(GEP->getNumIndices());
636           for (Use &Idx : GEP->indices())
637             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
638               Indices.push_back(CI->getSExtValue());
639             else
640               // We found a non-constant GEP index for this argument? Bail out
641               // right away, can't promote this argument at all.
642               return false;
643 
644           if (!UpdateBaseTy(GEP->getSourceElementType()))
645             return false;
646 
647           // Indices checked out, mark them as safe
648           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
649           Indices.clear();
650         }
651       } else if (V == Arg) {
652         // Direct loads are equivalent to a GEP with a single 0 index.
653         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
654 
655         if (BaseTy && LI->getType() != BaseTy)
656           return false;
657 
658         BaseTy = LI->getType();
659       }
660     }
661 
662   // Now, iterate all uses of the argument to see if there are any uses that are
663   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
664   SmallVector<LoadInst *, 16> Loads;
665   IndicesVector Operands;
666   for (Use &U : Arg->uses()) {
667     User *UR = U.getUser();
668     Operands.clear();
669     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
670       // Don't hack volatile/atomic loads
671       if (!LI->isSimple())
672         return false;
673       Loads.push_back(LI);
674       // Direct loads are equivalent to a GEP with a zero index and then a load.
675       Operands.push_back(0);
676 
677       if (!UpdateBaseTy(LI->getType()))
678         return false;
679     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
680       if (GEP->use_empty()) {
681         // Dead GEP's cause trouble later.  Just remove them if we run into
682         // them.
683         continue;
684       }
685 
686       if (!UpdateBaseTy(GEP->getSourceElementType()))
687         return false;
688 
689       // Ensure that all of the indices are constants.
690       for (Use &Idx : GEP->indices())
691         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
692           Operands.push_back(C->getSExtValue());
693         else
694           return false; // Not a constant operand GEP!
695 
696       // Ensure that the only users of the GEP are load instructions.
697       for (User *GEPU : GEP->users())
698         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
699           // Don't hack volatile/atomic loads
700           if (!LI->isSimple())
701             return false;
702           Loads.push_back(LI);
703         } else {
704           // Other uses than load?
705           return false;
706         }
707     } else {
708       return false; // Not a load or a GEP.
709     }
710 
711     // Now, see if it is safe to promote this load / loads of this GEP. Loading
712     // is safe if Operands, or a prefix of Operands, is marked as safe.
713     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
714       return false;
715 
716     // See if we are already promoting a load with these indices. If not, check
717     // to make sure that we aren't promoting too many elements.  If so, nothing
718     // to do.
719     if (ToPromote.find(Operands) == ToPromote.end()) {
720       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
721         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
722                           << Arg->getName()
723                           << "' because it would require adding more "
724                           << "than " << MaxElements
725                           << " arguments to the function.\n");
726         // We limit aggregate promotion to only promoting up to a fixed number
727         // of elements of the aggregate.
728         return false;
729       }
730       ToPromote.insert(std::move(Operands));
731     }
732   }
733 
734   if (Loads.empty())
735     return true; // No users, this is a dead argument.
736 
737   // Okay, now we know that the argument is only used by load instructions and
738   // it is safe to unconditionally perform all of them. Use alias analysis to
739   // check to see if the pointer is guaranteed to not be modified from entry of
740   // the function to each of the load instructions.
741 
742   // Because there could be several/many load instructions, remember which
743   // blocks we know to be transparent to the load.
744   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
745 
746   for (LoadInst *Load : Loads) {
747     // Check to see if the load is invalidated from the start of the block to
748     // the load itself.
749     BasicBlock *BB = Load->getParent();
750 
751     MemoryLocation Loc = MemoryLocation::get(Load);
752     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
753       return false; // Pointer is invalidated!
754 
755     // Now check every path from the entry block to the load for transparency.
756     // To do this, we perform a depth first search on the inverse CFG from the
757     // loading block.
758     for (BasicBlock *P : predecessors(BB)) {
759       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
760         if (AAR.canBasicBlockModify(*TranspBB, Loc))
761           return false;
762     }
763   }
764 
765   // If the path from the entry of the function to each load is free of
766   // instructions that potentially invalidate the load, we can make the
767   // transformation!
768   return true;
769 }
770 
771 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
772   // There is no size information, so be conservative.
773   if (!type->isSized())
774     return false;
775 
776   // If the alloc size is not equal to the storage size, then there are padding
777   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
778   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
779     return false;
780 
781   // FIXME: This isn't the right way to check for padding in vectors with
782   // non-byte-size elements.
783   if (VectorType *seqTy = dyn_cast<VectorType>(type))
784     return isDenselyPacked(seqTy->getElementType(), DL);
785 
786   // For array types, check for padding within members.
787   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
788     return isDenselyPacked(seqTy->getElementType(), DL);
789 
790   if (!isa<StructType>(type))
791     return true;
792 
793   // Check for padding within and between elements of a struct.
794   StructType *StructTy = cast<StructType>(type);
795   const StructLayout *Layout = DL.getStructLayout(StructTy);
796   uint64_t StartPos = 0;
797   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
798     Type *ElTy = StructTy->getElementType(i);
799     if (!isDenselyPacked(ElTy, DL))
800       return false;
801     if (StartPos != Layout->getElementOffsetInBits(i))
802       return false;
803     StartPos += DL.getTypeAllocSizeInBits(ElTy);
804   }
805 
806   return true;
807 }
808 
809 /// Checks if the padding bytes of an argument could be accessed.
810 static bool canPaddingBeAccessed(Argument *arg) {
811   assert(arg->hasByValAttr());
812 
813   // Track all the pointers to the argument to make sure they are not captured.
814   SmallPtrSet<Value *, 16> PtrValues;
815   PtrValues.insert(arg);
816 
817   // Track all of the stores.
818   SmallVector<StoreInst *, 16> Stores;
819 
820   // Scan through the uses recursively to make sure the pointer is always used
821   // sanely.
822   SmallVector<Value *, 16> WorkList(arg->users());
823   while (!WorkList.empty()) {
824     Value *V = WorkList.pop_back_val();
825     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
826       if (PtrValues.insert(V).second)
827         llvm::append_range(WorkList, V->users());
828     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
829       Stores.push_back(Store);
830     } else if (!isa<LoadInst>(V)) {
831       return true;
832     }
833   }
834 
835   // Check to make sure the pointers aren't captured
836   for (StoreInst *Store : Stores)
837     if (PtrValues.count(Store->getValueOperand()))
838       return true;
839 
840   return false;
841 }
842 
843 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
844     const Function &F, const TargetTransformInfo &TTI,
845     SmallPtrSetImpl<Argument *> &ArgsToPromote,
846     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
847   for (const Use &U : F.uses()) {
848     CallBase *CB = dyn_cast<CallBase>(U.getUser());
849     if (!CB)
850       return false;
851     const Function *Caller = CB->getCaller();
852     const Function *Callee = CB->getCalledFunction();
853     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
854         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
855       return false;
856   }
857   return true;
858 }
859 
860 /// PromoteArguments - This method checks the specified function to see if there
861 /// are any promotable arguments and if it is safe to promote the function (for
862 /// example, all callers are direct).  If safe to promote some arguments, it
863 /// calls the DoPromotion method.
864 static Function *
865 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
866                  unsigned MaxElements,
867                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
868                      ReplaceCallSite,
869                  const TargetTransformInfo &TTI) {
870   // Don't perform argument promotion for naked functions; otherwise we can end
871   // up removing parameters that are seemingly 'not used' as they are referred
872   // to in the assembly.
873   if(F->hasFnAttribute(Attribute::Naked))
874     return nullptr;
875 
876   // Make sure that it is local to this module.
877   if (!F->hasLocalLinkage())
878     return nullptr;
879 
880   // Don't promote arguments for variadic functions. Adding, removing, or
881   // changing non-pack parameters can change the classification of pack
882   // parameters. Frontends encode that classification at the call site in the
883   // IR, while in the callee the classification is determined dynamically based
884   // on the number of registers consumed so far.
885   if (F->isVarArg())
886     return nullptr;
887 
888   // Don't transform functions that receive inallocas, as the transformation may
889   // not be safe depending on calling convention.
890   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
891     return nullptr;
892 
893   // First check: see if there are any pointer arguments!  If not, quick exit.
894   SmallVector<Argument *, 16> PointerArgs;
895   for (Argument &I : F->args())
896     if (I.getType()->isPointerTy())
897       PointerArgs.push_back(&I);
898   if (PointerArgs.empty())
899     return nullptr;
900 
901   // Second check: make sure that all callers are direct callers.  We can't
902   // transform functions that have indirect callers.  Also see if the function
903   // is self-recursive and check that target features are compatible.
904   bool isSelfRecursive = false;
905   for (Use &U : F->uses()) {
906     CallBase *CB = dyn_cast<CallBase>(U.getUser());
907     // Must be a direct call.
908     if (CB == nullptr || !CB->isCallee(&U))
909       return nullptr;
910 
911     // Can't change signature of musttail callee
912     if (CB->isMustTailCall())
913       return nullptr;
914 
915     if (CB->getParent()->getParent() == F)
916       isSelfRecursive = true;
917   }
918 
919   // Can't change signature of musttail caller
920   // FIXME: Support promoting whole chain of musttail functions
921   for (BasicBlock &BB : *F)
922     if (BB.getTerminatingMustTailCall())
923       return nullptr;
924 
925   const DataLayout &DL = F->getParent()->getDataLayout();
926 
927   AAResults &AAR = AARGetter(*F);
928 
929   // Check to see which arguments are promotable.  If an argument is promotable,
930   // add it to ArgsToPromote.
931   SmallPtrSet<Argument *, 8> ArgsToPromote;
932   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
933   for (Argument *PtrArg : PointerArgs) {
934     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
935 
936     // Replace sret attribute with noalias. This reduces register pressure by
937     // avoiding a register copy.
938     if (PtrArg->hasStructRetAttr()) {
939       unsigned ArgNo = PtrArg->getArgNo();
940       F->removeParamAttr(ArgNo, Attribute::StructRet);
941       F->addParamAttr(ArgNo, Attribute::NoAlias);
942       for (Use &U : F->uses()) {
943         CallBase &CB = cast<CallBase>(*U.getUser());
944         CB.removeParamAttr(ArgNo, Attribute::StructRet);
945         CB.addParamAttr(ArgNo, Attribute::NoAlias);
946       }
947     }
948 
949     // If this is a byval argument, and if the aggregate type is small, just
950     // pass the elements, which is always safe, if the passed value is densely
951     // packed or if we can prove the padding bytes are never accessed.
952     bool isSafeToPromote = PtrArg->hasByValAttr() &&
953                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
954                             !canPaddingBeAccessed(PtrArg));
955     if (isSafeToPromote) {
956       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
957         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
958           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
959                             << PtrArg->getName()
960                             << "' because it would require adding more"
961                             << " than " << MaxElements
962                             << " arguments to the function.\n");
963           continue;
964         }
965 
966         // If all the elements are single-value types, we can promote it.
967         bool AllSimple = true;
968         for (const auto *EltTy : STy->elements()) {
969           if (!EltTy->isSingleValueType()) {
970             AllSimple = false;
971             break;
972           }
973         }
974 
975         // Safe to transform, don't even bother trying to "promote" it.
976         // Passing the elements as a scalar will allow sroa to hack on
977         // the new alloca we introduce.
978         if (AllSimple) {
979           ByValArgsToTransform.insert(PtrArg);
980           continue;
981         }
982       }
983     }
984 
985     // If the argument is a recursive type and we're in a recursive
986     // function, we could end up infinitely peeling the function argument.
987     if (isSelfRecursive) {
988       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
989         bool RecursiveType =
990             llvm::is_contained(STy->elements(), PtrArg->getType());
991         if (RecursiveType)
992           continue;
993       }
994     }
995 
996     // Otherwise, see if we can promote the pointer to its value.
997     Type *ByValTy =
998         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
999     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1000       ArgsToPromote.insert(PtrArg);
1001   }
1002 
1003   // No promotable pointer arguments.
1004   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1005     return nullptr;
1006 
1007   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1008           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1009     return nullptr;
1010 
1011   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1012 }
1013 
1014 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1015                                              CGSCCAnalysisManager &AM,
1016                                              LazyCallGraph &CG,
1017                                              CGSCCUpdateResult &UR) {
1018   bool Changed = false, LocalChange;
1019 
1020   // Iterate until we stop promoting from this SCC.
1021   do {
1022     LocalChange = false;
1023 
1024     for (LazyCallGraph::Node &N : C) {
1025       Function &OldF = N.getFunction();
1026 
1027       FunctionAnalysisManager &FAM =
1028           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1029       // FIXME: This lambda must only be used with this function. We should
1030       // skip the lambda and just get the AA results directly.
1031       auto AARGetter = [&](Function &F) -> AAResults & {
1032         assert(&F == &OldF && "Called with an unexpected function!");
1033         return FAM.getResult<AAManager>(F);
1034       };
1035 
1036       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1037       Function *NewF =
1038           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1039       if (!NewF)
1040         continue;
1041       LocalChange = true;
1042 
1043       // Directly substitute the functions in the call graph. Note that this
1044       // requires the old function to be completely dead and completely
1045       // replaced by the new function. It does no call graph updates, it merely
1046       // swaps out the particular function mapped to a particular node in the
1047       // graph.
1048       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1049       FAM.clear(OldF, OldF.getName());
1050       OldF.eraseFromParent();
1051     }
1052 
1053     Changed |= LocalChange;
1054   } while (LocalChange);
1055 
1056   if (!Changed)
1057     return PreservedAnalyses::all();
1058 
1059   return PreservedAnalyses::none();
1060 }
1061 
1062 namespace {
1063 
1064 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1065 struct ArgPromotion : public CallGraphSCCPass {
1066   // Pass identification, replacement for typeid
1067   static char ID;
1068 
1069   explicit ArgPromotion(unsigned MaxElements = 3)
1070       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1071     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1072   }
1073 
1074   void getAnalysisUsage(AnalysisUsage &AU) const override {
1075     AU.addRequired<AssumptionCacheTracker>();
1076     AU.addRequired<TargetLibraryInfoWrapperPass>();
1077     AU.addRequired<TargetTransformInfoWrapperPass>();
1078     getAAResultsAnalysisUsage(AU);
1079     CallGraphSCCPass::getAnalysisUsage(AU);
1080   }
1081 
1082   bool runOnSCC(CallGraphSCC &SCC) override;
1083 
1084 private:
1085   using llvm::Pass::doInitialization;
1086 
1087   bool doInitialization(CallGraph &CG) override;
1088 
1089   /// The maximum number of elements to expand, or 0 for unlimited.
1090   unsigned MaxElements;
1091 };
1092 
1093 } // end anonymous namespace
1094 
1095 char ArgPromotion::ID = 0;
1096 
1097 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1098                       "Promote 'by reference' arguments to scalars", false,
1099                       false)
1100 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1101 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1103 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1104 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1105                     "Promote 'by reference' arguments to scalars", false, false)
1106 
1107 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1108   return new ArgPromotion(MaxElements);
1109 }
1110 
1111 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1112   if (skipSCC(SCC))
1113     return false;
1114 
1115   // Get the callgraph information that we need to update to reflect our
1116   // changes.
1117   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1118 
1119   LegacyAARGetter AARGetter(*this);
1120 
1121   bool Changed = false, LocalChange;
1122 
1123   // Iterate until we stop promoting from this SCC.
1124   do {
1125     LocalChange = false;
1126     // Attempt to promote arguments from all functions in this SCC.
1127     for (CallGraphNode *OldNode : SCC) {
1128       Function *OldF = OldNode->getFunction();
1129       if (!OldF)
1130         continue;
1131 
1132       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1133         Function *Caller = OldCS.getParent()->getParent();
1134         CallGraphNode *NewCalleeNode =
1135             CG.getOrInsertFunction(NewCS.getCalledFunction());
1136         CallGraphNode *CallerNode = CG[Caller];
1137         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1138                                     cast<CallBase>(NewCS), NewCalleeNode);
1139       };
1140 
1141       const TargetTransformInfo &TTI =
1142           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1143       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1144                                             {ReplaceCallSite}, TTI)) {
1145         LocalChange = true;
1146 
1147         // Update the call graph for the newly promoted function.
1148         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1149         NewNode->stealCalledFunctionsFrom(OldNode);
1150         if (OldNode->getNumReferences() == 0)
1151           delete CG.removeFunctionFromModule(OldNode);
1152         else
1153           OldF->setLinkage(Function::ExternalLinkage);
1154 
1155         // And updat ethe SCC we're iterating as well.
1156         SCC.ReplaceNode(OldNode, NewNode);
1157       }
1158     }
1159     // Remember that we changed something.
1160     Changed |= LocalChange;
1161   } while (LocalChange);
1162 
1163   return Changed;
1164 }
1165 
1166 bool ArgPromotion::doInitialization(CallGraph &CG) {
1167   return CallGraphSCCPass::doInitialization(CG);
1168 }
1169