1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/FormatVariadic.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/IPO.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <functional>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <string>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 #define DEBUG_TYPE "argpromotion"
93 
94 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
95 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
96 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
97 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
98 
99 /// A vector used to hold the indices of a single GEP instruction
100 using IndicesVector = std::vector<uint64_t>;
101 
102 /// DoPromotion - This method actually performs the promotion of the specified
103 /// arguments, and returns the new function.  At this point, we know that it's
104 /// safe to do so.
105 static Function *
106 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
107             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
108             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
109                 ReplaceCallSite) {
110   // Start by computing a new prototype for the function, which is the same as
111   // the old function, but has modified arguments.
112   FunctionType *FTy = F->getFunctionType();
113   std::vector<Type *> Params;
114 
115   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
116 
117   // ScalarizedElements - If we are promoting a pointer that has elements
118   // accessed out of it, keep track of which elements are accessed so that we
119   // can add one argument for each.
120   //
121   // Arguments that are directly loaded will have a zero element value here, to
122   // handle cases where there are both a direct load and GEP accesses.
123   std::map<Argument *, ScalarizeTable> ScalarizedElements;
124 
125   // OriginalLoads - Keep track of a representative load instruction from the
126   // original function so that we can tell the alias analysis implementation
127   // what the new GEP/Load instructions we are inserting look like.
128   // We need to keep the original loads for each argument and the elements
129   // of the argument that are accessed.
130   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
131 
132   // Attribute - Keep track of the parameter attributes for the arguments
133   // that we are *not* promoting. For the ones that we do promote, the parameter
134   // attributes are lost
135   SmallVector<AttributeSet, 8> ArgAttrVec;
136   AttributeList PAL = F->getAttributes();
137 
138   // First, determine the new argument list
139   unsigned ArgNo = 0;
140   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
141        ++I, ++ArgNo) {
142     if (ByValArgsToTransform.count(&*I)) {
143       // Simple byval argument? Just add all the struct element types.
144       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
145       StructType *STy = cast<StructType>(AgTy);
146       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
147       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
148                         AttributeSet());
149       ++NumByValArgsPromoted;
150     } else if (!ArgsToPromote.count(&*I)) {
151       // Unchanged argument
152       Params.push_back(I->getType());
153       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
154     } else if (I->use_empty()) {
155       // Dead argument (which are always marked as promotable)
156       ++NumArgumentsDead;
157     } else {
158       // Okay, this is being promoted. This means that the only uses are loads
159       // or GEPs which are only used by loads
160 
161       // In this table, we will track which indices are loaded from the argument
162       // (where direct loads are tracked as no indices).
163       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
164       for (User *U : I->users()) {
165         Instruction *UI = cast<Instruction>(U);
166         Type *SrcTy;
167         if (LoadInst *L = dyn_cast<LoadInst>(UI))
168           SrcTy = L->getType();
169         else
170           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
171         IndicesVector Indices;
172         Indices.reserve(UI->getNumOperands() - 1);
173         // Since loads will only have a single operand, and GEPs only a single
174         // non-index operand, this will record direct loads without any indices,
175         // and gep+loads with the GEP indices.
176         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
177              II != IE; ++II)
178           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
179         // GEPs with a single 0 index can be merged with direct loads
180         if (Indices.size() == 1 && Indices.front() == 0)
181           Indices.clear();
182         ArgIndices.insert(std::make_pair(SrcTy, Indices));
183         LoadInst *OrigLoad;
184         if (LoadInst *L = dyn_cast<LoadInst>(UI))
185           OrigLoad = L;
186         else
187           // Take any load, we will use it only to update Alias Analysis
188           OrigLoad = cast<LoadInst>(UI->user_back());
189         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
190       }
191 
192       // Add a parameter to the function for each element passed in.
193       for (const auto &ArgIndex : ArgIndices) {
194         // not allowed to dereference ->begin() if size() is 0
195         Params.push_back(GetElementPtrInst::getIndexedType(
196             cast<PointerType>(I->getType())->getElementType(),
197             ArgIndex.second));
198         ArgAttrVec.push_back(AttributeSet());
199         assert(Params.back());
200       }
201 
202       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
203         ++NumArgumentsPromoted;
204       else
205         ++NumAggregatesPromoted;
206     }
207   }
208 
209   Type *RetTy = FTy->getReturnType();
210 
211   // Construct the new function type using the new arguments.
212   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
213 
214   // Create the new function body and insert it into the module.
215   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
216                                   F->getName());
217   NF->copyAttributesFrom(F);
218   NF->copyMetadata(F, 0);
219 
220   // The new function will have the !dbg metadata copied from the original
221   // function. The original function may not be deleted, and dbg metadata need
222   // to be unique so we need to drop it.
223   F->setSubprogram(nullptr);
224 
225   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
226                     << "From: " << *F);
227 
228   // Recompute the parameter attributes list based on the new arguments for
229   // the function.
230   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
231                                        PAL.getRetAttributes(), ArgAttrVec));
232   ArgAttrVec.clear();
233 
234   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
235   NF->takeName(F);
236 
237   // Loop over all of the callers of the function, transforming the call sites
238   // to pass in the loaded pointers.
239   //
240   SmallVector<Value *, 16> Args;
241   while (!F->use_empty()) {
242     CallBase &CB = cast<CallBase>(*F->user_back());
243     assert(CB.getCalledFunction() == F);
244     const AttributeList &CallPAL = CB.getAttributes();
245     IRBuilder<NoFolder> IRB(&CB);
246 
247     // Loop over the operands, inserting GEP and loads in the caller as
248     // appropriate.
249     auto AI = CB.arg_begin();
250     ArgNo = 0;
251     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
252          ++I, ++AI, ++ArgNo)
253       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
254         Args.push_back(*AI); // Unmodified argument
255         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
256       } else if (ByValArgsToTransform.count(&*I)) {
257         // Emit a GEP and load for each element of the struct.
258         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
259         StructType *STy = cast<StructType>(AgTy);
260         Value *Idxs[2] = {
261             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
262         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
263           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
264           auto *Idx =
265               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
266           // TODO: Tell AA about the new values?
267           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
268                                         Idx->getName() + ".val"));
269           ArgAttrVec.push_back(AttributeSet());
270         }
271       } else if (!I->use_empty()) {
272         // Non-dead argument: insert GEPs and loads as appropriate.
273         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
274         // Store the Value* version of the indices in here, but declare it now
275         // for reuse.
276         std::vector<Value *> Ops;
277         for (const auto &ArgIndex : ArgIndices) {
278           Value *V = *AI;
279           LoadInst *OrigLoad =
280               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
281           if (!ArgIndex.second.empty()) {
282             Ops.reserve(ArgIndex.second.size());
283             Type *ElTy = V->getType();
284             for (auto II : ArgIndex.second) {
285               // Use i32 to index structs, and i64 for others (pointers/arrays).
286               // This satisfies GEP constraints.
287               Type *IdxTy =
288                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
289                                       : Type::getInt64Ty(F->getContext()));
290               Ops.push_back(ConstantInt::get(IdxTy, II));
291               // Keep track of the type we're currently indexing.
292               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
293                 ElTy = ElPTy->getElementType();
294               else
295                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
296             }
297             // And create a GEP to extract those indices.
298             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
299             Ops.clear();
300           }
301           // Since we're replacing a load make sure we take the alignment
302           // of the previous load.
303           LoadInst *newLoad =
304               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
305           newLoad->setAlignment(OrigLoad->getAlign());
306           // Transfer the AA info too.
307           AAMDNodes AAInfo;
308           OrigLoad->getAAMetadata(AAInfo);
309           newLoad->setAAMetadata(AAInfo);
310 
311           Args.push_back(newLoad);
312           ArgAttrVec.push_back(AttributeSet());
313         }
314       }
315 
316     // Push any varargs arguments on the list.
317     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
318       Args.push_back(*AI);
319       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
320     }
321 
322     SmallVector<OperandBundleDef, 1> OpBundles;
323     CB.getOperandBundlesAsDefs(OpBundles);
324 
325     CallBase *NewCS = nullptr;
326     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
327       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
328                                  Args, OpBundles, "", &CB);
329     } else {
330       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
331       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
332       NewCS = NewCall;
333     }
334     NewCS->setCallingConv(CB.getCallingConv());
335     NewCS->setAttributes(
336         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
337                            CallPAL.getRetAttributes(), ArgAttrVec));
338     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
339     Args.clear();
340     ArgAttrVec.clear();
341 
342     // Update the callgraph to know that the callsite has been transformed.
343     if (ReplaceCallSite)
344       (*ReplaceCallSite)(CB, *NewCS);
345 
346     if (!CB.use_empty()) {
347       CB.replaceAllUsesWith(NewCS);
348       NewCS->takeName(&CB);
349     }
350 
351     // Finally, remove the old call from the program, reducing the use-count of
352     // F.
353     CB.eraseFromParent();
354   }
355 
356   const DataLayout &DL = F->getParent()->getDataLayout();
357 
358   // Since we have now created the new function, splice the body of the old
359   // function right into the new function, leaving the old rotting hulk of the
360   // function empty.
361   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
362 
363   // Loop over the argument list, transferring uses of the old arguments over to
364   // the new arguments, also transferring over the names as well.
365   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
366                               I2 = NF->arg_begin();
367        I != E; ++I) {
368     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
369       // If this is an unmodified argument, move the name and users over to the
370       // new version.
371       I->replaceAllUsesWith(&*I2);
372       I2->takeName(&*I);
373       ++I2;
374       continue;
375     }
376 
377     if (ByValArgsToTransform.count(&*I)) {
378       // In the callee, we create an alloca, and store each of the new incoming
379       // arguments into the alloca.
380       Instruction *InsertPt = &NF->begin()->front();
381 
382       // Just add all the struct element types.
383       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
384       Value *TheAlloca = new AllocaInst(
385           AgTy, DL.getAllocaAddrSpace(), nullptr,
386           I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
387           InsertPt);
388       StructType *STy = cast<StructType>(AgTy);
389       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
390                         nullptr};
391 
392       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
393         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
394         Value *Idx = GetElementPtrInst::Create(
395             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
396             InsertPt);
397         I2->setName(I->getName() + "." + Twine(i));
398         new StoreInst(&*I2++, Idx, InsertPt);
399       }
400 
401       // Anything that used the arg should now use the alloca.
402       I->replaceAllUsesWith(TheAlloca);
403       TheAlloca->takeName(&*I);
404 
405       // If the alloca is used in a call, we must clear the tail flag since
406       // the callee now uses an alloca from the caller.
407       for (User *U : TheAlloca->users()) {
408         CallInst *Call = dyn_cast<CallInst>(U);
409         if (!Call)
410           continue;
411         Call->setTailCall(false);
412       }
413       continue;
414     }
415 
416     // There potentially are metadata uses for things like llvm.dbg.value.
417     // Replace them with undef, after handling the other regular uses.
418     auto RauwUndefMetadata = make_scope_exit(
419         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
420 
421     if (I->use_empty())
422       continue;
423 
424     // Otherwise, if we promoted this argument, then all users are load
425     // instructions (or GEPs with only load users), and all loads should be
426     // using the new argument that we added.
427     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428 
429     while (!I->use_empty()) {
430       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
431         assert(ArgIndices.begin()->second.empty() &&
432                "Load element should sort to front!");
433         I2->setName(I->getName() + ".val");
434         LI->replaceAllUsesWith(&*I2);
435         LI->eraseFromParent();
436         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
437                           << "' in function '" << F->getName() << "'\n");
438       } else {
439         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
440         IndicesVector Operands;
441         Operands.reserve(GEP->getNumIndices());
442         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
443              II != IE; ++II)
444           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
445 
446         // GEPs with a single 0 index can be merged with direct loads
447         if (Operands.size() == 1 && Operands.front() == 0)
448           Operands.clear();
449 
450         Function::arg_iterator TheArg = I2;
451         for (ScalarizeTable::iterator It = ArgIndices.begin();
452              It->second != Operands; ++It, ++TheArg) {
453           assert(It != ArgIndices.end() && "GEP not handled??");
454         }
455 
456         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
457                                 make_range(Operands.begin(), Operands.end())));
458 
459         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
460                           << "' of function '" << NF->getName() << "'\n");
461 
462         // All of the uses must be load instructions.  Replace them all with
463         // the argument specified by ArgNo.
464         while (!GEP->use_empty()) {
465           LoadInst *L = cast<LoadInst>(GEP->user_back());
466           L->replaceAllUsesWith(&*TheArg);
467           L->eraseFromParent();
468         }
469         GEP->eraseFromParent();
470       }
471     }
472     // Increment I2 past all of the arguments added for this promoted pointer.
473     std::advance(I2, ArgIndices.size());
474   }
475 
476   return NF;
477 }
478 
479 /// Return true if we can prove that all callees pass in a valid pointer for the
480 /// specified function argument.
481 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
482   Function *Callee = Arg->getParent();
483   const DataLayout &DL = Callee->getParent()->getDataLayout();
484 
485   unsigned ArgNo = Arg->getArgNo();
486 
487   // Look at all call sites of the function.  At this point we know we only have
488   // direct callees.
489   for (User *U : Callee->users()) {
490     CallBase &CB = cast<CallBase>(*U);
491 
492     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
493       return false;
494   }
495   return true;
496 }
497 
498 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
499 /// that is greater than or equal to the size of prefix, and each of the
500 /// elements in Prefix is the same as the corresponding elements in Longer.
501 ///
502 /// This means it also returns true when Prefix and Longer are equal!
503 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
504   if (Prefix.size() > Longer.size())
505     return false;
506   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
507 }
508 
509 /// Checks if Indices, or a prefix of Indices, is in Set.
510 static bool prefixIn(const IndicesVector &Indices,
511                      std::set<IndicesVector> &Set) {
512   std::set<IndicesVector>::iterator Low;
513   Low = Set.upper_bound(Indices);
514   if (Low != Set.begin())
515     Low--;
516   // Low is now the last element smaller than or equal to Indices. This means
517   // it points to a prefix of Indices (possibly Indices itself), if such
518   // prefix exists.
519   //
520   // This load is safe if any prefix of its operands is safe to load.
521   return Low != Set.end() && isPrefix(*Low, Indices);
522 }
523 
524 /// Mark the given indices (ToMark) as safe in the given set of indices
525 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
526 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
527 /// already. Furthermore, any indices that Indices is itself a prefix of, are
528 /// removed from Safe (since they are implicitely safe because of Indices now).
529 static void markIndicesSafe(const IndicesVector &ToMark,
530                             std::set<IndicesVector> &Safe) {
531   std::set<IndicesVector>::iterator Low;
532   Low = Safe.upper_bound(ToMark);
533   // Guard against the case where Safe is empty
534   if (Low != Safe.begin())
535     Low--;
536   // Low is now the last element smaller than or equal to Indices. This
537   // means it points to a prefix of Indices (possibly Indices itself), if
538   // such prefix exists.
539   if (Low != Safe.end()) {
540     if (isPrefix(*Low, ToMark))
541       // If there is already a prefix of these indices (or exactly these
542       // indices) marked a safe, don't bother adding these indices
543       return;
544 
545     // Increment Low, so we can use it as a "insert before" hint
546     ++Low;
547   }
548   // Insert
549   Low = Safe.insert(Low, ToMark);
550   ++Low;
551   // If there we're a prefix of longer index list(s), remove those
552   std::set<IndicesVector>::iterator End = Safe.end();
553   while (Low != End && isPrefix(ToMark, *Low)) {
554     std::set<IndicesVector>::iterator Remove = Low;
555     ++Low;
556     Safe.erase(Remove);
557   }
558 }
559 
560 /// isSafeToPromoteArgument - As you might guess from the name of this method,
561 /// it checks to see if it is both safe and useful to promote the argument.
562 /// This method limits promotion of aggregates to only promote up to three
563 /// elements of the aggregate in order to avoid exploding the number of
564 /// arguments passed in.
565 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
566                                     unsigned MaxElements) {
567   using GEPIndicesSet = std::set<IndicesVector>;
568 
569   // Quick exit for unused arguments
570   if (Arg->use_empty())
571     return true;
572 
573   // We can only promote this argument if all of the uses are loads, or are GEP
574   // instructions (with constant indices) that are subsequently loaded.
575   //
576   // Promoting the argument causes it to be loaded in the caller
577   // unconditionally. This is only safe if we can prove that either the load
578   // would have happened in the callee anyway (ie, there is a load in the entry
579   // block) or the pointer passed in at every call site is guaranteed to be
580   // valid.
581   // In the former case, invalid loads can happen, but would have happened
582   // anyway, in the latter case, invalid loads won't happen. This prevents us
583   // from introducing an invalid load that wouldn't have happened in the
584   // original code.
585   //
586   // This set will contain all sets of indices that are loaded in the entry
587   // block, and thus are safe to unconditionally load in the caller.
588   GEPIndicesSet SafeToUnconditionallyLoad;
589 
590   // This set contains all the sets of indices that we are planning to promote.
591   // This makes it possible to limit the number of arguments added.
592   GEPIndicesSet ToPromote;
593 
594   // If the pointer is always valid, any load with first index 0 is valid.
595 
596   if (ByValTy)
597     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
598 
599   // Whenever a new underlying type for the operand is found, make sure it's
600   // consistent with the GEPs and loads we've already seen and, if necessary,
601   // use it to see if all incoming pointers are valid (which implies the 0-index
602   // is safe).
603   Type *BaseTy = ByValTy;
604   auto UpdateBaseTy = [&](Type *NewBaseTy) {
605     if (BaseTy)
606       return BaseTy == NewBaseTy;
607 
608     BaseTy = NewBaseTy;
609     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
610       assert(SafeToUnconditionallyLoad.empty());
611       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
612     }
613 
614     return true;
615   };
616 
617   // First, iterate the entry block and mark loads of (geps of) arguments as
618   // safe.
619   BasicBlock &EntryBlock = Arg->getParent()->front();
620   // Declare this here so we can reuse it
621   IndicesVector Indices;
622   for (Instruction &I : EntryBlock)
623     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
624       Value *V = LI->getPointerOperand();
625       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
626         V = GEP->getPointerOperand();
627         if (V == Arg) {
628           // This load actually loads (part of) Arg? Check the indices then.
629           Indices.reserve(GEP->getNumIndices());
630           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
631                II != IE; ++II)
632             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
633               Indices.push_back(CI->getSExtValue());
634             else
635               // We found a non-constant GEP index for this argument? Bail out
636               // right away, can't promote this argument at all.
637               return false;
638 
639           if (!UpdateBaseTy(GEP->getSourceElementType()))
640             return false;
641 
642           // Indices checked out, mark them as safe
643           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
644           Indices.clear();
645         }
646       } else if (V == Arg) {
647         // Direct loads are equivalent to a GEP with a single 0 index.
648         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
649 
650         if (BaseTy && LI->getType() != BaseTy)
651           return false;
652 
653         BaseTy = LI->getType();
654       }
655     }
656 
657   // Now, iterate all uses of the argument to see if there are any uses that are
658   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
659   SmallVector<LoadInst *, 16> Loads;
660   IndicesVector Operands;
661   for (Use &U : Arg->uses()) {
662     User *UR = U.getUser();
663     Operands.clear();
664     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
665       // Don't hack volatile/atomic loads
666       if (!LI->isSimple())
667         return false;
668       Loads.push_back(LI);
669       // Direct loads are equivalent to a GEP with a zero index and then a load.
670       Operands.push_back(0);
671 
672       if (!UpdateBaseTy(LI->getType()))
673         return false;
674     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
675       if (GEP->use_empty()) {
676         // Dead GEP's cause trouble later.  Just remove them if we run into
677         // them.
678         GEP->eraseFromParent();
679         // TODO: This runs the above loop over and over again for dead GEPs
680         // Couldn't we just do increment the UI iterator earlier and erase the
681         // use?
682         return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
683       }
684 
685       if (!UpdateBaseTy(GEP->getSourceElementType()))
686         return false;
687 
688       // Ensure that all of the indices are constants.
689       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
690            ++i)
691         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
692           Operands.push_back(C->getSExtValue());
693         else
694           return false; // Not a constant operand GEP!
695 
696       // Ensure that the only users of the GEP are load instructions.
697       for (User *GEPU : GEP->users())
698         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
699           // Don't hack volatile/atomic loads
700           if (!LI->isSimple())
701             return false;
702           Loads.push_back(LI);
703         } else {
704           // Other uses than load?
705           return false;
706         }
707     } else {
708       return false; // Not a load or a GEP.
709     }
710 
711     // Now, see if it is safe to promote this load / loads of this GEP. Loading
712     // is safe if Operands, or a prefix of Operands, is marked as safe.
713     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
714       return false;
715 
716     // See if we are already promoting a load with these indices. If not, check
717     // to make sure that we aren't promoting too many elements.  If so, nothing
718     // to do.
719     if (ToPromote.find(Operands) == ToPromote.end()) {
720       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
721         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
722                           << Arg->getName()
723                           << "' because it would require adding more "
724                           << "than " << MaxElements
725                           << " arguments to the function.\n");
726         // We limit aggregate promotion to only promoting up to a fixed number
727         // of elements of the aggregate.
728         return false;
729       }
730       ToPromote.insert(std::move(Operands));
731     }
732   }
733 
734   if (Loads.empty())
735     return true; // No users, this is a dead argument.
736 
737   // Okay, now we know that the argument is only used by load instructions and
738   // it is safe to unconditionally perform all of them. Use alias analysis to
739   // check to see if the pointer is guaranteed to not be modified from entry of
740   // the function to each of the load instructions.
741 
742   // Because there could be several/many load instructions, remember which
743   // blocks we know to be transparent to the load.
744   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
745 
746   for (LoadInst *Load : Loads) {
747     // Check to see if the load is invalidated from the start of the block to
748     // the load itself.
749     BasicBlock *BB = Load->getParent();
750 
751     MemoryLocation Loc = MemoryLocation::get(Load);
752     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
753       return false; // Pointer is invalidated!
754 
755     // Now check every path from the entry block to the load for transparency.
756     // To do this, we perform a depth first search on the inverse CFG from the
757     // loading block.
758     for (BasicBlock *P : predecessors(BB)) {
759       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
760         if (AAR.canBasicBlockModify(*TranspBB, Loc))
761           return false;
762     }
763   }
764 
765   // If the path from the entry of the function to each load is free of
766   // instructions that potentially invalidate the load, we can make the
767   // transformation!
768   return true;
769 }
770 
771 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
772   // There is no size information, so be conservative.
773   if (!type->isSized())
774     return false;
775 
776   // If the alloc size is not equal to the storage size, then there are padding
777   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
778   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
779     return false;
780 
781   // FIXME: This isn't the right way to check for padding in vectors with
782   // non-byte-size elements.
783   if (VectorType *seqTy = dyn_cast<VectorType>(type))
784     return isDenselyPacked(seqTy->getElementType(), DL);
785 
786   // For array types, check for padding within members.
787   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
788     return isDenselyPacked(seqTy->getElementType(), DL);
789 
790   if (!isa<StructType>(type))
791     return true;
792 
793   // Check for padding within and between elements of a struct.
794   StructType *StructTy = cast<StructType>(type);
795   const StructLayout *Layout = DL.getStructLayout(StructTy);
796   uint64_t StartPos = 0;
797   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
798     Type *ElTy = StructTy->getElementType(i);
799     if (!isDenselyPacked(ElTy, DL))
800       return false;
801     if (StartPos != Layout->getElementOffsetInBits(i))
802       return false;
803     StartPos += DL.getTypeAllocSizeInBits(ElTy);
804   }
805 
806   return true;
807 }
808 
809 /// Checks if the padding bytes of an argument could be accessed.
810 static bool canPaddingBeAccessed(Argument *arg) {
811   assert(arg->hasByValAttr());
812 
813   // Track all the pointers to the argument to make sure they are not captured.
814   SmallPtrSet<Value *, 16> PtrValues;
815   PtrValues.insert(arg);
816 
817   // Track all of the stores.
818   SmallVector<StoreInst *, 16> Stores;
819 
820   // Scan through the uses recursively to make sure the pointer is always used
821   // sanely.
822   SmallVector<Value *, 16> WorkList;
823   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
824   while (!WorkList.empty()) {
825     Value *V = WorkList.back();
826     WorkList.pop_back();
827     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
828       if (PtrValues.insert(V).second)
829         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
830     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
831       Stores.push_back(Store);
832     } else if (!isa<LoadInst>(V)) {
833       return true;
834     }
835   }
836 
837   // Check to make sure the pointers aren't captured
838   for (StoreInst *Store : Stores)
839     if (PtrValues.count(Store->getValueOperand()))
840       return true;
841 
842   return false;
843 }
844 
845 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
846     const Function &F, const TargetTransformInfo &TTI,
847     SmallPtrSetImpl<Argument *> &ArgsToPromote,
848     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
849   for (const Use &U : F.uses()) {
850     CallBase *CB = dyn_cast<CallBase>(U.getUser());
851     if (!CB)
852       return false;
853     const Function *Caller = CB->getCaller();
854     const Function *Callee = CB->getCalledFunction();
855     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
856         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
857       return false;
858   }
859   return true;
860 }
861 
862 /// PromoteArguments - This method checks the specified function to see if there
863 /// are any promotable arguments and if it is safe to promote the function (for
864 /// example, all callers are direct).  If safe to promote some arguments, it
865 /// calls the DoPromotion method.
866 static Function *
867 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
868                  unsigned MaxElements,
869                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
870                      ReplaceCallSite,
871                  const TargetTransformInfo &TTI) {
872   // Don't perform argument promotion for naked functions; otherwise we can end
873   // up removing parameters that are seemingly 'not used' as they are referred
874   // to in the assembly.
875   if(F->hasFnAttribute(Attribute::Naked))
876     return nullptr;
877 
878   // Make sure that it is local to this module.
879   if (!F->hasLocalLinkage())
880     return nullptr;
881 
882   // Don't promote arguments for variadic functions. Adding, removing, or
883   // changing non-pack parameters can change the classification of pack
884   // parameters. Frontends encode that classification at the call site in the
885   // IR, while in the callee the classification is determined dynamically based
886   // on the number of registers consumed so far.
887   if (F->isVarArg())
888     return nullptr;
889 
890   // Don't transform functions that receive inallocas, as the transformation may
891   // not be safe depending on calling convention.
892   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
893     return nullptr;
894 
895   // First check: see if there are any pointer arguments!  If not, quick exit.
896   SmallVector<Argument *, 16> PointerArgs;
897   for (Argument &I : F->args())
898     if (I.getType()->isPointerTy())
899       PointerArgs.push_back(&I);
900   if (PointerArgs.empty())
901     return nullptr;
902 
903   // Second check: make sure that all callers are direct callers.  We can't
904   // transform functions that have indirect callers.  Also see if the function
905   // is self-recursive and check that target features are compatible.
906   bool isSelfRecursive = false;
907   for (Use &U : F->uses()) {
908     CallBase *CB = dyn_cast<CallBase>(U.getUser());
909     // Must be a direct call.
910     if (CB == nullptr || !CB->isCallee(&U))
911       return nullptr;
912 
913     // Can't change signature of musttail callee
914     if (CB->isMustTailCall())
915       return nullptr;
916 
917     if (CB->getParent()->getParent() == F)
918       isSelfRecursive = true;
919   }
920 
921   // Can't change signature of musttail caller
922   // FIXME: Support promoting whole chain of musttail functions
923   for (BasicBlock &BB : *F)
924     if (BB.getTerminatingMustTailCall())
925       return nullptr;
926 
927   const DataLayout &DL = F->getParent()->getDataLayout();
928 
929   AAResults &AAR = AARGetter(*F);
930 
931   // Check to see which arguments are promotable.  If an argument is promotable,
932   // add it to ArgsToPromote.
933   SmallPtrSet<Argument *, 8> ArgsToPromote;
934   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
935   for (Argument *PtrArg : PointerArgs) {
936     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
937 
938     // Replace sret attribute with noalias. This reduces register pressure by
939     // avoiding a register copy.
940     if (PtrArg->hasStructRetAttr()) {
941       unsigned ArgNo = PtrArg->getArgNo();
942       F->removeParamAttr(ArgNo, Attribute::StructRet);
943       F->addParamAttr(ArgNo, Attribute::NoAlias);
944       for (Use &U : F->uses()) {
945         CallBase &CB = cast<CallBase>(*U.getUser());
946         CB.removeParamAttr(ArgNo, Attribute::StructRet);
947         CB.addParamAttr(ArgNo, Attribute::NoAlias);
948       }
949     }
950 
951     // If this is a byval argument, and if the aggregate type is small, just
952     // pass the elements, which is always safe, if the passed value is densely
953     // packed or if we can prove the padding bytes are never accessed.
954     bool isSafeToPromote = PtrArg->hasByValAttr() &&
955                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
956                             !canPaddingBeAccessed(PtrArg));
957     if (isSafeToPromote) {
958       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
959         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
960           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
961                             << PtrArg->getName()
962                             << "' because it would require adding more"
963                             << " than " << MaxElements
964                             << " arguments to the function.\n");
965           continue;
966         }
967 
968         // If all the elements are single-value types, we can promote it.
969         bool AllSimple = true;
970         for (const auto *EltTy : STy->elements()) {
971           if (!EltTy->isSingleValueType()) {
972             AllSimple = false;
973             break;
974           }
975         }
976 
977         // Safe to transform, don't even bother trying to "promote" it.
978         // Passing the elements as a scalar will allow sroa to hack on
979         // the new alloca we introduce.
980         if (AllSimple) {
981           ByValArgsToTransform.insert(PtrArg);
982           continue;
983         }
984       }
985     }
986 
987     // If the argument is a recursive type and we're in a recursive
988     // function, we could end up infinitely peeling the function argument.
989     if (isSelfRecursive) {
990       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
991         bool RecursiveType = false;
992         for (const auto *EltTy : STy->elements()) {
993           if (EltTy == PtrArg->getType()) {
994             RecursiveType = true;
995             break;
996           }
997         }
998         if (RecursiveType)
999           continue;
1000       }
1001     }
1002 
1003     // Otherwise, see if we can promote the pointer to its value.
1004     Type *ByValTy =
1005         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1006     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1007       ArgsToPromote.insert(PtrArg);
1008   }
1009 
1010   // No promotable pointer arguments.
1011   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1012     return nullptr;
1013 
1014   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1015           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1016     return nullptr;
1017 
1018   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1019 }
1020 
1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1022                                              CGSCCAnalysisManager &AM,
1023                                              LazyCallGraph &CG,
1024                                              CGSCCUpdateResult &UR) {
1025   bool Changed = false, LocalChange;
1026 
1027   // Iterate until we stop promoting from this SCC.
1028   do {
1029     LocalChange = false;
1030 
1031     for (LazyCallGraph::Node &N : C) {
1032       Function &OldF = N.getFunction();
1033 
1034       FunctionAnalysisManager &FAM =
1035           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1036       // FIXME: This lambda must only be used with this function. We should
1037       // skip the lambda and just get the AA results directly.
1038       auto AARGetter = [&](Function &F) -> AAResults & {
1039         assert(&F == &OldF && "Called with an unexpected function!");
1040         return FAM.getResult<AAManager>(F);
1041       };
1042 
1043       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1044       Function *NewF =
1045           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1046       if (!NewF)
1047         continue;
1048       LocalChange = true;
1049 
1050       // Directly substitute the functions in the call graph. Note that this
1051       // requires the old function to be completely dead and completely
1052       // replaced by the new function. It does no call graph updates, it merely
1053       // swaps out the particular function mapped to a particular node in the
1054       // graph.
1055       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1056       OldF.eraseFromParent();
1057     }
1058 
1059     Changed |= LocalChange;
1060   } while (LocalChange);
1061 
1062   if (!Changed)
1063     return PreservedAnalyses::all();
1064 
1065   return PreservedAnalyses::none();
1066 }
1067 
1068 namespace {
1069 
1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1071 struct ArgPromotion : public CallGraphSCCPass {
1072   // Pass identification, replacement for typeid
1073   static char ID;
1074 
1075   explicit ArgPromotion(unsigned MaxElements = 3)
1076       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1077     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1078   }
1079 
1080   void getAnalysisUsage(AnalysisUsage &AU) const override {
1081     AU.addRequired<AssumptionCacheTracker>();
1082     AU.addRequired<TargetLibraryInfoWrapperPass>();
1083     AU.addRequired<TargetTransformInfoWrapperPass>();
1084     getAAResultsAnalysisUsage(AU);
1085     CallGraphSCCPass::getAnalysisUsage(AU);
1086   }
1087 
1088   bool runOnSCC(CallGraphSCC &SCC) override;
1089 
1090 private:
1091   using llvm::Pass::doInitialization;
1092 
1093   bool doInitialization(CallGraph &CG) override;
1094 
1095   /// The maximum number of elements to expand, or 0 for unlimited.
1096   unsigned MaxElements;
1097 };
1098 
1099 } // end anonymous namespace
1100 
1101 char ArgPromotion::ID = 0;
1102 
1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1104                       "Promote 'by reference' arguments to scalars", false,
1105                       false)
1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1111                     "Promote 'by reference' arguments to scalars", false, false)
1112 
1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1114   return new ArgPromotion(MaxElements);
1115 }
1116 
1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1118   if (skipSCC(SCC))
1119     return false;
1120 
1121   // Get the callgraph information that we need to update to reflect our
1122   // changes.
1123   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1124 
1125   LegacyAARGetter AARGetter(*this);
1126 
1127   bool Changed = false, LocalChange;
1128 
1129   // Iterate until we stop promoting from this SCC.
1130   do {
1131     LocalChange = false;
1132     // Attempt to promote arguments from all functions in this SCC.
1133     for (CallGraphNode *OldNode : SCC) {
1134       Function *OldF = OldNode->getFunction();
1135       if (!OldF)
1136         continue;
1137 
1138       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1139         Function *Caller = OldCS.getParent()->getParent();
1140         CallGraphNode *NewCalleeNode =
1141             CG.getOrInsertFunction(NewCS.getCalledFunction());
1142         CallGraphNode *CallerNode = CG[Caller];
1143         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1144                                     cast<CallBase>(NewCS), NewCalleeNode);
1145       };
1146 
1147       const TargetTransformInfo &TTI =
1148           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1149       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1150                                             {ReplaceCallSite}, TTI)) {
1151         LocalChange = true;
1152 
1153         // Update the call graph for the newly promoted function.
1154         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1155         NewNode->stealCalledFunctionsFrom(OldNode);
1156         if (OldNode->getNumReferences() == 0)
1157           delete CG.removeFunctionFromModule(OldNode);
1158         else
1159           OldF->setLinkage(Function::ExternalLinkage);
1160 
1161         // And updat ethe SCC we're iterating as well.
1162         SCC.ReplaceNode(OldNode, NewNode);
1163       }
1164     }
1165     // Remember that we changed something.
1166     Changed |= LocalChange;
1167   } while (LocalChange);
1168 
1169   return Changed;
1170 }
1171 
1172 bool ArgPromotion::doInitialization(CallGraph &CG) {
1173   return CallGraphSCCPass::doInitialization(CG);
1174 }
1175