1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/CGSCCPassManager.h" 45 #include "llvm/Analysis/CallGraph.h" 46 #include "llvm/Analysis/CallGraphSCCPass.h" 47 #include "llvm/Analysis/LazyCallGraph.h" 48 #include "llvm/Analysis/Loads.h" 49 #include "llvm/Analysis/MemoryLocation.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/FormatVariadic.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <functional> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 #define DEBUG_TYPE "argpromotion" 93 94 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 95 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 96 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 97 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 98 99 /// A vector used to hold the indices of a single GEP instruction 100 using IndicesVector = std::vector<uint64_t>; 101 102 /// DoPromotion - This method actually performs the promotion of the specified 103 /// arguments, and returns the new function. At this point, we know that it's 104 /// safe to do so. 105 static Function * 106 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 107 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 108 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 109 ReplaceCallSite) { 110 // Start by computing a new prototype for the function, which is the same as 111 // the old function, but has modified arguments. 112 FunctionType *FTy = F->getFunctionType(); 113 std::vector<Type *> Params; 114 115 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 116 117 // ScalarizedElements - If we are promoting a pointer that has elements 118 // accessed out of it, keep track of which elements are accessed so that we 119 // can add one argument for each. 120 // 121 // Arguments that are directly loaded will have a zero element value here, to 122 // handle cases where there are both a direct load and GEP accesses. 123 std::map<Argument *, ScalarizeTable> ScalarizedElements; 124 125 // OriginalLoads - Keep track of a representative load instruction from the 126 // original function so that we can tell the alias analysis implementation 127 // what the new GEP/Load instructions we are inserting look like. 128 // We need to keep the original loads for each argument and the elements 129 // of the argument that are accessed. 130 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 131 132 // Attribute - Keep track of the parameter attributes for the arguments 133 // that we are *not* promoting. For the ones that we do promote, the parameter 134 // attributes are lost 135 SmallVector<AttributeSet, 8> ArgAttrVec; 136 AttributeList PAL = F->getAttributes(); 137 138 // First, determine the new argument list 139 unsigned ArgNo = 0; 140 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 141 ++I, ++ArgNo) { 142 if (ByValArgsToTransform.count(&*I)) { 143 // Simple byval argument? Just add all the struct element types. 144 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 145 StructType *STy = cast<StructType>(AgTy); 146 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 147 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 148 AttributeSet()); 149 ++NumByValArgsPromoted; 150 } else if (!ArgsToPromote.count(&*I)) { 151 // Unchanged argument 152 Params.push_back(I->getType()); 153 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 154 } else if (I->use_empty()) { 155 // Dead argument (which are always marked as promotable) 156 ++NumArgumentsDead; 157 } else { 158 // Okay, this is being promoted. This means that the only uses are loads 159 // or GEPs which are only used by loads 160 161 // In this table, we will track which indices are loaded from the argument 162 // (where direct loads are tracked as no indices). 163 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 164 for (User *U : I->users()) { 165 Instruction *UI = cast<Instruction>(U); 166 Type *SrcTy; 167 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 168 SrcTy = L->getType(); 169 else 170 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 171 IndicesVector Indices; 172 Indices.reserve(UI->getNumOperands() - 1); 173 // Since loads will only have a single operand, and GEPs only a single 174 // non-index operand, this will record direct loads without any indices, 175 // and gep+loads with the GEP indices. 176 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 177 II != IE; ++II) 178 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 179 // GEPs with a single 0 index can be merged with direct loads 180 if (Indices.size() == 1 && Indices.front() == 0) 181 Indices.clear(); 182 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 183 LoadInst *OrigLoad; 184 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 185 OrigLoad = L; 186 else 187 // Take any load, we will use it only to update Alias Analysis 188 OrigLoad = cast<LoadInst>(UI->user_back()); 189 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 190 } 191 192 // Add a parameter to the function for each element passed in. 193 for (const auto &ArgIndex : ArgIndices) { 194 // not allowed to dereference ->begin() if size() is 0 195 Params.push_back(GetElementPtrInst::getIndexedType( 196 cast<PointerType>(I->getType())->getElementType(), 197 ArgIndex.second)); 198 ArgAttrVec.push_back(AttributeSet()); 199 assert(Params.back()); 200 } 201 202 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 203 ++NumArgumentsPromoted; 204 else 205 ++NumAggregatesPromoted; 206 } 207 } 208 209 Type *RetTy = FTy->getReturnType(); 210 211 // Construct the new function type using the new arguments. 212 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 213 214 // Create the new function body and insert it into the module. 215 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 216 F->getName()); 217 NF->copyAttributesFrom(F); 218 NF->copyMetadata(F, 0); 219 220 // The new function will have the !dbg metadata copied from the original 221 // function. The original function may not be deleted, and dbg metadata need 222 // to be unique so we need to drop it. 223 F->setSubprogram(nullptr); 224 225 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 226 << "From: " << *F); 227 228 // Recompute the parameter attributes list based on the new arguments for 229 // the function. 230 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 231 PAL.getRetAttributes(), ArgAttrVec)); 232 ArgAttrVec.clear(); 233 234 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 235 NF->takeName(F); 236 237 // Loop over all of the callers of the function, transforming the call sites 238 // to pass in the loaded pointers. 239 // 240 SmallVector<Value *, 16> Args; 241 while (!F->use_empty()) { 242 CallBase &CB = cast<CallBase>(*F->user_back()); 243 assert(CB.getCalledFunction() == F); 244 const AttributeList &CallPAL = CB.getAttributes(); 245 IRBuilder<NoFolder> IRB(&CB); 246 247 // Loop over the operands, inserting GEP and loads in the caller as 248 // appropriate. 249 auto AI = CB.arg_begin(); 250 ArgNo = 0; 251 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 252 ++I, ++AI, ++ArgNo) 253 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 254 Args.push_back(*AI); // Unmodified argument 255 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 256 } else if (ByValArgsToTransform.count(&*I)) { 257 // Emit a GEP and load for each element of the struct. 258 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 259 StructType *STy = cast<StructType>(AgTy); 260 Value *Idxs[2] = { 261 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 262 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 263 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 264 auto *Idx = 265 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 266 // TODO: Tell AA about the new values? 267 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, 268 Idx->getName() + ".val")); 269 ArgAttrVec.push_back(AttributeSet()); 270 } 271 } else if (!I->use_empty()) { 272 // Non-dead argument: insert GEPs and loads as appropriate. 273 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 274 // Store the Value* version of the indices in here, but declare it now 275 // for reuse. 276 std::vector<Value *> Ops; 277 for (const auto &ArgIndex : ArgIndices) { 278 Value *V = *AI; 279 LoadInst *OrigLoad = 280 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 281 if (!ArgIndex.second.empty()) { 282 Ops.reserve(ArgIndex.second.size()); 283 Type *ElTy = V->getType(); 284 for (auto II : ArgIndex.second) { 285 // Use i32 to index structs, and i64 for others (pointers/arrays). 286 // This satisfies GEP constraints. 287 Type *IdxTy = 288 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 289 : Type::getInt64Ty(F->getContext())); 290 Ops.push_back(ConstantInt::get(IdxTy, II)); 291 // Keep track of the type we're currently indexing. 292 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 293 ElTy = ElPTy->getElementType(); 294 else 295 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); 296 } 297 // And create a GEP to extract those indices. 298 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 299 Ops.clear(); 300 } 301 // Since we're replacing a load make sure we take the alignment 302 // of the previous load. 303 LoadInst *newLoad = 304 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 305 newLoad->setAlignment(OrigLoad->getAlign()); 306 // Transfer the AA info too. 307 AAMDNodes AAInfo; 308 OrigLoad->getAAMetadata(AAInfo); 309 newLoad->setAAMetadata(AAInfo); 310 311 Args.push_back(newLoad); 312 ArgAttrVec.push_back(AttributeSet()); 313 } 314 } 315 316 // Push any varargs arguments on the list. 317 for (; AI != CB.arg_end(); ++AI, ++ArgNo) { 318 Args.push_back(*AI); 319 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 320 } 321 322 SmallVector<OperandBundleDef, 1> OpBundles; 323 CB.getOperandBundlesAsDefs(OpBundles); 324 325 CallBase *NewCS = nullptr; 326 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 327 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 328 Args, OpBundles, "", &CB); 329 } else { 330 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); 331 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind()); 332 NewCS = NewCall; 333 } 334 NewCS->setCallingConv(CB.getCallingConv()); 335 NewCS->setAttributes( 336 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 337 CallPAL.getRetAttributes(), ArgAttrVec)); 338 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 339 Args.clear(); 340 ArgAttrVec.clear(); 341 342 // Update the callgraph to know that the callsite has been transformed. 343 if (ReplaceCallSite) 344 (*ReplaceCallSite)(CB, *NewCS); 345 346 if (!CB.use_empty()) { 347 CB.replaceAllUsesWith(NewCS); 348 NewCS->takeName(&CB); 349 } 350 351 // Finally, remove the old call from the program, reducing the use-count of 352 // F. 353 CB.eraseFromParent(); 354 } 355 356 const DataLayout &DL = F->getParent()->getDataLayout(); 357 358 // Since we have now created the new function, splice the body of the old 359 // function right into the new function, leaving the old rotting hulk of the 360 // function empty. 361 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 362 363 // Loop over the argument list, transferring uses of the old arguments over to 364 // the new arguments, also transferring over the names as well. 365 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 366 I2 = NF->arg_begin(); 367 I != E; ++I) { 368 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 369 // If this is an unmodified argument, move the name and users over to the 370 // new version. 371 I->replaceAllUsesWith(&*I2); 372 I2->takeName(&*I); 373 ++I2; 374 continue; 375 } 376 377 if (ByValArgsToTransform.count(&*I)) { 378 // In the callee, we create an alloca, and store each of the new incoming 379 // arguments into the alloca. 380 Instruction *InsertPt = &NF->begin()->front(); 381 382 // Just add all the struct element types. 383 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 384 Value *TheAlloca = new AllocaInst( 385 AgTy, DL.getAllocaAddrSpace(), nullptr, 386 I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "", 387 InsertPt); 388 StructType *STy = cast<StructType>(AgTy); 389 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 390 nullptr}; 391 392 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 393 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 394 Value *Idx = GetElementPtrInst::Create( 395 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 396 InsertPt); 397 I2->setName(I->getName() + "." + Twine(i)); 398 new StoreInst(&*I2++, Idx, InsertPt); 399 } 400 401 // Anything that used the arg should now use the alloca. 402 I->replaceAllUsesWith(TheAlloca); 403 TheAlloca->takeName(&*I); 404 405 // If the alloca is used in a call, we must clear the tail flag since 406 // the callee now uses an alloca from the caller. 407 for (User *U : TheAlloca->users()) { 408 CallInst *Call = dyn_cast<CallInst>(U); 409 if (!Call) 410 continue; 411 Call->setTailCall(false); 412 } 413 continue; 414 } 415 416 // There potentially are metadata uses for things like llvm.dbg.value. 417 // Replace them with undef, after handling the other regular uses. 418 auto RauwUndefMetadata = make_scope_exit( 419 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); }); 420 421 if (I->use_empty()) 422 continue; 423 424 // Otherwise, if we promoted this argument, then all users are load 425 // instructions (or GEPs with only load users), and all loads should be 426 // using the new argument that we added. 427 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 428 429 while (!I->use_empty()) { 430 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 431 assert(ArgIndices.begin()->second.empty() && 432 "Load element should sort to front!"); 433 I2->setName(I->getName() + ".val"); 434 LI->replaceAllUsesWith(&*I2); 435 LI->eraseFromParent(); 436 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 437 << "' in function '" << F->getName() << "'\n"); 438 } else { 439 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 440 IndicesVector Operands; 441 Operands.reserve(GEP->getNumIndices()); 442 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 443 II != IE; ++II) 444 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 445 446 // GEPs with a single 0 index can be merged with direct loads 447 if (Operands.size() == 1 && Operands.front() == 0) 448 Operands.clear(); 449 450 Function::arg_iterator TheArg = I2; 451 for (ScalarizeTable::iterator It = ArgIndices.begin(); 452 It->second != Operands; ++It, ++TheArg) { 453 assert(It != ArgIndices.end() && "GEP not handled??"); 454 } 455 456 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), 457 make_range(Operands.begin(), Operands.end()))); 458 459 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 460 << "' of function '" << NF->getName() << "'\n"); 461 462 // All of the uses must be load instructions. Replace them all with 463 // the argument specified by ArgNo. 464 while (!GEP->use_empty()) { 465 LoadInst *L = cast<LoadInst>(GEP->user_back()); 466 L->replaceAllUsesWith(&*TheArg); 467 L->eraseFromParent(); 468 } 469 GEP->eraseFromParent(); 470 } 471 } 472 // Increment I2 past all of the arguments added for this promoted pointer. 473 std::advance(I2, ArgIndices.size()); 474 } 475 476 return NF; 477 } 478 479 /// Return true if we can prove that all callees pass in a valid pointer for the 480 /// specified function argument. 481 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 482 Function *Callee = Arg->getParent(); 483 const DataLayout &DL = Callee->getParent()->getDataLayout(); 484 485 unsigned ArgNo = Arg->getArgNo(); 486 487 // Look at all call sites of the function. At this point we know we only have 488 // direct callees. 489 for (User *U : Callee->users()) { 490 CallBase &CB = cast<CallBase>(*U); 491 492 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) 493 return false; 494 } 495 return true; 496 } 497 498 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 499 /// that is greater than or equal to the size of prefix, and each of the 500 /// elements in Prefix is the same as the corresponding elements in Longer. 501 /// 502 /// This means it also returns true when Prefix and Longer are equal! 503 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 504 if (Prefix.size() > Longer.size()) 505 return false; 506 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 507 } 508 509 /// Checks if Indices, or a prefix of Indices, is in Set. 510 static bool prefixIn(const IndicesVector &Indices, 511 std::set<IndicesVector> &Set) { 512 std::set<IndicesVector>::iterator Low; 513 Low = Set.upper_bound(Indices); 514 if (Low != Set.begin()) 515 Low--; 516 // Low is now the last element smaller than or equal to Indices. This means 517 // it points to a prefix of Indices (possibly Indices itself), if such 518 // prefix exists. 519 // 520 // This load is safe if any prefix of its operands is safe to load. 521 return Low != Set.end() && isPrefix(*Low, Indices); 522 } 523 524 /// Mark the given indices (ToMark) as safe in the given set of indices 525 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 526 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 527 /// already. Furthermore, any indices that Indices is itself a prefix of, are 528 /// removed from Safe (since they are implicitely safe because of Indices now). 529 static void markIndicesSafe(const IndicesVector &ToMark, 530 std::set<IndicesVector> &Safe) { 531 std::set<IndicesVector>::iterator Low; 532 Low = Safe.upper_bound(ToMark); 533 // Guard against the case where Safe is empty 534 if (Low != Safe.begin()) 535 Low--; 536 // Low is now the last element smaller than or equal to Indices. This 537 // means it points to a prefix of Indices (possibly Indices itself), if 538 // such prefix exists. 539 if (Low != Safe.end()) { 540 if (isPrefix(*Low, ToMark)) 541 // If there is already a prefix of these indices (or exactly these 542 // indices) marked a safe, don't bother adding these indices 543 return; 544 545 // Increment Low, so we can use it as a "insert before" hint 546 ++Low; 547 } 548 // Insert 549 Low = Safe.insert(Low, ToMark); 550 ++Low; 551 // If there we're a prefix of longer index list(s), remove those 552 std::set<IndicesVector>::iterator End = Safe.end(); 553 while (Low != End && isPrefix(ToMark, *Low)) { 554 std::set<IndicesVector>::iterator Remove = Low; 555 ++Low; 556 Safe.erase(Remove); 557 } 558 } 559 560 /// isSafeToPromoteArgument - As you might guess from the name of this method, 561 /// it checks to see if it is both safe and useful to promote the argument. 562 /// This method limits promotion of aggregates to only promote up to three 563 /// elements of the aggregate in order to avoid exploding the number of 564 /// arguments passed in. 565 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 566 unsigned MaxElements) { 567 using GEPIndicesSet = std::set<IndicesVector>; 568 569 // Quick exit for unused arguments 570 if (Arg->use_empty()) 571 return true; 572 573 // We can only promote this argument if all of the uses are loads, or are GEP 574 // instructions (with constant indices) that are subsequently loaded. 575 // 576 // Promoting the argument causes it to be loaded in the caller 577 // unconditionally. This is only safe if we can prove that either the load 578 // would have happened in the callee anyway (ie, there is a load in the entry 579 // block) or the pointer passed in at every call site is guaranteed to be 580 // valid. 581 // In the former case, invalid loads can happen, but would have happened 582 // anyway, in the latter case, invalid loads won't happen. This prevents us 583 // from introducing an invalid load that wouldn't have happened in the 584 // original code. 585 // 586 // This set will contain all sets of indices that are loaded in the entry 587 // block, and thus are safe to unconditionally load in the caller. 588 GEPIndicesSet SafeToUnconditionallyLoad; 589 590 // This set contains all the sets of indices that we are planning to promote. 591 // This makes it possible to limit the number of arguments added. 592 GEPIndicesSet ToPromote; 593 594 // If the pointer is always valid, any load with first index 0 is valid. 595 596 if (ByValTy) 597 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 598 599 // Whenever a new underlying type for the operand is found, make sure it's 600 // consistent with the GEPs and loads we've already seen and, if necessary, 601 // use it to see if all incoming pointers are valid (which implies the 0-index 602 // is safe). 603 Type *BaseTy = ByValTy; 604 auto UpdateBaseTy = [&](Type *NewBaseTy) { 605 if (BaseTy) 606 return BaseTy == NewBaseTy; 607 608 BaseTy = NewBaseTy; 609 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 610 assert(SafeToUnconditionallyLoad.empty()); 611 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 612 } 613 614 return true; 615 }; 616 617 // First, iterate the entry block and mark loads of (geps of) arguments as 618 // safe. 619 BasicBlock &EntryBlock = Arg->getParent()->front(); 620 // Declare this here so we can reuse it 621 IndicesVector Indices; 622 for (Instruction &I : EntryBlock) 623 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 624 Value *V = LI->getPointerOperand(); 625 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 626 V = GEP->getPointerOperand(); 627 if (V == Arg) { 628 // This load actually loads (part of) Arg? Check the indices then. 629 Indices.reserve(GEP->getNumIndices()); 630 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 631 II != IE; ++II) 632 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 633 Indices.push_back(CI->getSExtValue()); 634 else 635 // We found a non-constant GEP index for this argument? Bail out 636 // right away, can't promote this argument at all. 637 return false; 638 639 if (!UpdateBaseTy(GEP->getSourceElementType())) 640 return false; 641 642 // Indices checked out, mark them as safe 643 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 644 Indices.clear(); 645 } 646 } else if (V == Arg) { 647 // Direct loads are equivalent to a GEP with a single 0 index. 648 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 649 650 if (BaseTy && LI->getType() != BaseTy) 651 return false; 652 653 BaseTy = LI->getType(); 654 } 655 } 656 657 // Now, iterate all uses of the argument to see if there are any uses that are 658 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 659 SmallVector<LoadInst *, 16> Loads; 660 IndicesVector Operands; 661 for (Use &U : Arg->uses()) { 662 User *UR = U.getUser(); 663 Operands.clear(); 664 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 665 // Don't hack volatile/atomic loads 666 if (!LI->isSimple()) 667 return false; 668 Loads.push_back(LI); 669 // Direct loads are equivalent to a GEP with a zero index and then a load. 670 Operands.push_back(0); 671 672 if (!UpdateBaseTy(LI->getType())) 673 return false; 674 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 675 if (GEP->use_empty()) { 676 // Dead GEP's cause trouble later. Just remove them if we run into 677 // them. 678 GEP->eraseFromParent(); 679 // TODO: This runs the above loop over and over again for dead GEPs 680 // Couldn't we just do increment the UI iterator earlier and erase the 681 // use? 682 return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements); 683 } 684 685 if (!UpdateBaseTy(GEP->getSourceElementType())) 686 return false; 687 688 // Ensure that all of the indices are constants. 689 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 690 ++i) 691 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 692 Operands.push_back(C->getSExtValue()); 693 else 694 return false; // Not a constant operand GEP! 695 696 // Ensure that the only users of the GEP are load instructions. 697 for (User *GEPU : GEP->users()) 698 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 699 // Don't hack volatile/atomic loads 700 if (!LI->isSimple()) 701 return false; 702 Loads.push_back(LI); 703 } else { 704 // Other uses than load? 705 return false; 706 } 707 } else { 708 return false; // Not a load or a GEP. 709 } 710 711 // Now, see if it is safe to promote this load / loads of this GEP. Loading 712 // is safe if Operands, or a prefix of Operands, is marked as safe. 713 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 714 return false; 715 716 // See if we are already promoting a load with these indices. If not, check 717 // to make sure that we aren't promoting too many elements. If so, nothing 718 // to do. 719 if (ToPromote.find(Operands) == ToPromote.end()) { 720 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 721 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 722 << Arg->getName() 723 << "' because it would require adding more " 724 << "than " << MaxElements 725 << " arguments to the function.\n"); 726 // We limit aggregate promotion to only promoting up to a fixed number 727 // of elements of the aggregate. 728 return false; 729 } 730 ToPromote.insert(std::move(Operands)); 731 } 732 } 733 734 if (Loads.empty()) 735 return true; // No users, this is a dead argument. 736 737 // Okay, now we know that the argument is only used by load instructions and 738 // it is safe to unconditionally perform all of them. Use alias analysis to 739 // check to see if the pointer is guaranteed to not be modified from entry of 740 // the function to each of the load instructions. 741 742 // Because there could be several/many load instructions, remember which 743 // blocks we know to be transparent to the load. 744 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 745 746 for (LoadInst *Load : Loads) { 747 // Check to see if the load is invalidated from the start of the block to 748 // the load itself. 749 BasicBlock *BB = Load->getParent(); 750 751 MemoryLocation Loc = MemoryLocation::get(Load); 752 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 753 return false; // Pointer is invalidated! 754 755 // Now check every path from the entry block to the load for transparency. 756 // To do this, we perform a depth first search on the inverse CFG from the 757 // loading block. 758 for (BasicBlock *P : predecessors(BB)) { 759 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 760 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 761 return false; 762 } 763 } 764 765 // If the path from the entry of the function to each load is free of 766 // instructions that potentially invalidate the load, we can make the 767 // transformation! 768 return true; 769 } 770 771 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { 772 // There is no size information, so be conservative. 773 if (!type->isSized()) 774 return false; 775 776 // If the alloc size is not equal to the storage size, then there are padding 777 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 778 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 779 return false; 780 781 // FIXME: This isn't the right way to check for padding in vectors with 782 // non-byte-size elements. 783 if (VectorType *seqTy = dyn_cast<VectorType>(type)) 784 return isDenselyPacked(seqTy->getElementType(), DL); 785 786 // For array types, check for padding within members. 787 if (ArrayType *seqTy = dyn_cast<ArrayType>(type)) 788 return isDenselyPacked(seqTy->getElementType(), DL); 789 790 if (!isa<StructType>(type)) 791 return true; 792 793 // Check for padding within and between elements of a struct. 794 StructType *StructTy = cast<StructType>(type); 795 const StructLayout *Layout = DL.getStructLayout(StructTy); 796 uint64_t StartPos = 0; 797 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 798 Type *ElTy = StructTy->getElementType(i); 799 if (!isDenselyPacked(ElTy, DL)) 800 return false; 801 if (StartPos != Layout->getElementOffsetInBits(i)) 802 return false; 803 StartPos += DL.getTypeAllocSizeInBits(ElTy); 804 } 805 806 return true; 807 } 808 809 /// Checks if the padding bytes of an argument could be accessed. 810 static bool canPaddingBeAccessed(Argument *arg) { 811 assert(arg->hasByValAttr()); 812 813 // Track all the pointers to the argument to make sure they are not captured. 814 SmallPtrSet<Value *, 16> PtrValues; 815 PtrValues.insert(arg); 816 817 // Track all of the stores. 818 SmallVector<StoreInst *, 16> Stores; 819 820 // Scan through the uses recursively to make sure the pointer is always used 821 // sanely. 822 SmallVector<Value *, 16> WorkList; 823 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 824 while (!WorkList.empty()) { 825 Value *V = WorkList.back(); 826 WorkList.pop_back(); 827 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 828 if (PtrValues.insert(V).second) 829 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 830 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 831 Stores.push_back(Store); 832 } else if (!isa<LoadInst>(V)) { 833 return true; 834 } 835 } 836 837 // Check to make sure the pointers aren't captured 838 for (StoreInst *Store : Stores) 839 if (PtrValues.count(Store->getValueOperand())) 840 return true; 841 842 return false; 843 } 844 845 bool ArgumentPromotionPass::areFunctionArgsABICompatible( 846 const Function &F, const TargetTransformInfo &TTI, 847 SmallPtrSetImpl<Argument *> &ArgsToPromote, 848 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 849 for (const Use &U : F.uses()) { 850 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 851 if (!CB) 852 return false; 853 const Function *Caller = CB->getCaller(); 854 const Function *Callee = CB->getCalledFunction(); 855 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 856 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 857 return false; 858 } 859 return true; 860 } 861 862 /// PromoteArguments - This method checks the specified function to see if there 863 /// are any promotable arguments and if it is safe to promote the function (for 864 /// example, all callers are direct). If safe to promote some arguments, it 865 /// calls the DoPromotion method. 866 static Function * 867 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 868 unsigned MaxElements, 869 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 870 ReplaceCallSite, 871 const TargetTransformInfo &TTI) { 872 // Don't perform argument promotion for naked functions; otherwise we can end 873 // up removing parameters that are seemingly 'not used' as they are referred 874 // to in the assembly. 875 if(F->hasFnAttribute(Attribute::Naked)) 876 return nullptr; 877 878 // Make sure that it is local to this module. 879 if (!F->hasLocalLinkage()) 880 return nullptr; 881 882 // Don't promote arguments for variadic functions. Adding, removing, or 883 // changing non-pack parameters can change the classification of pack 884 // parameters. Frontends encode that classification at the call site in the 885 // IR, while in the callee the classification is determined dynamically based 886 // on the number of registers consumed so far. 887 if (F->isVarArg()) 888 return nullptr; 889 890 // Don't transform functions that receive inallocas, as the transformation may 891 // not be safe depending on calling convention. 892 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 893 return nullptr; 894 895 // First check: see if there are any pointer arguments! If not, quick exit. 896 SmallVector<Argument *, 16> PointerArgs; 897 for (Argument &I : F->args()) 898 if (I.getType()->isPointerTy()) 899 PointerArgs.push_back(&I); 900 if (PointerArgs.empty()) 901 return nullptr; 902 903 // Second check: make sure that all callers are direct callers. We can't 904 // transform functions that have indirect callers. Also see if the function 905 // is self-recursive and check that target features are compatible. 906 bool isSelfRecursive = false; 907 for (Use &U : F->uses()) { 908 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 909 // Must be a direct call. 910 if (CB == nullptr || !CB->isCallee(&U)) 911 return nullptr; 912 913 // Can't change signature of musttail callee 914 if (CB->isMustTailCall()) 915 return nullptr; 916 917 if (CB->getParent()->getParent() == F) 918 isSelfRecursive = true; 919 } 920 921 // Can't change signature of musttail caller 922 // FIXME: Support promoting whole chain of musttail functions 923 for (BasicBlock &BB : *F) 924 if (BB.getTerminatingMustTailCall()) 925 return nullptr; 926 927 const DataLayout &DL = F->getParent()->getDataLayout(); 928 929 AAResults &AAR = AARGetter(*F); 930 931 // Check to see which arguments are promotable. If an argument is promotable, 932 // add it to ArgsToPromote. 933 SmallPtrSet<Argument *, 8> ArgsToPromote; 934 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 935 for (Argument *PtrArg : PointerArgs) { 936 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 937 938 // Replace sret attribute with noalias. This reduces register pressure by 939 // avoiding a register copy. 940 if (PtrArg->hasStructRetAttr()) { 941 unsigned ArgNo = PtrArg->getArgNo(); 942 F->removeParamAttr(ArgNo, Attribute::StructRet); 943 F->addParamAttr(ArgNo, Attribute::NoAlias); 944 for (Use &U : F->uses()) { 945 CallBase &CB = cast<CallBase>(*U.getUser()); 946 CB.removeParamAttr(ArgNo, Attribute::StructRet); 947 CB.addParamAttr(ArgNo, Attribute::NoAlias); 948 } 949 } 950 951 // If this is a byval argument, and if the aggregate type is small, just 952 // pass the elements, which is always safe, if the passed value is densely 953 // packed or if we can prove the padding bytes are never accessed. 954 bool isSafeToPromote = PtrArg->hasByValAttr() && 955 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || 956 !canPaddingBeAccessed(PtrArg)); 957 if (isSafeToPromote) { 958 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 959 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 960 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 961 << PtrArg->getName() 962 << "' because it would require adding more" 963 << " than " << MaxElements 964 << " arguments to the function.\n"); 965 continue; 966 } 967 968 // If all the elements are single-value types, we can promote it. 969 bool AllSimple = true; 970 for (const auto *EltTy : STy->elements()) { 971 if (!EltTy->isSingleValueType()) { 972 AllSimple = false; 973 break; 974 } 975 } 976 977 // Safe to transform, don't even bother trying to "promote" it. 978 // Passing the elements as a scalar will allow sroa to hack on 979 // the new alloca we introduce. 980 if (AllSimple) { 981 ByValArgsToTransform.insert(PtrArg); 982 continue; 983 } 984 } 985 } 986 987 // If the argument is a recursive type and we're in a recursive 988 // function, we could end up infinitely peeling the function argument. 989 if (isSelfRecursive) { 990 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 991 bool RecursiveType = false; 992 for (const auto *EltTy : STy->elements()) { 993 if (EltTy == PtrArg->getType()) { 994 RecursiveType = true; 995 break; 996 } 997 } 998 if (RecursiveType) 999 continue; 1000 } 1001 } 1002 1003 // Otherwise, see if we can promote the pointer to its value. 1004 Type *ByValTy = 1005 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 1006 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 1007 ArgsToPromote.insert(PtrArg); 1008 } 1009 1010 // No promotable pointer arguments. 1011 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1012 return nullptr; 1013 1014 if (!ArgumentPromotionPass::areFunctionArgsABICompatible( 1015 *F, TTI, ArgsToPromote, ByValArgsToTransform)) 1016 return nullptr; 1017 1018 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1019 } 1020 1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1022 CGSCCAnalysisManager &AM, 1023 LazyCallGraph &CG, 1024 CGSCCUpdateResult &UR) { 1025 bool Changed = false, LocalChange; 1026 1027 // Iterate until we stop promoting from this SCC. 1028 do { 1029 LocalChange = false; 1030 1031 for (LazyCallGraph::Node &N : C) { 1032 Function &OldF = N.getFunction(); 1033 1034 FunctionAnalysisManager &FAM = 1035 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1036 // FIXME: This lambda must only be used with this function. We should 1037 // skip the lambda and just get the AA results directly. 1038 auto AARGetter = [&](Function &F) -> AAResults & { 1039 assert(&F == &OldF && "Called with an unexpected function!"); 1040 return FAM.getResult<AAManager>(F); 1041 }; 1042 1043 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1044 Function *NewF = 1045 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1046 if (!NewF) 1047 continue; 1048 LocalChange = true; 1049 1050 // Directly substitute the functions in the call graph. Note that this 1051 // requires the old function to be completely dead and completely 1052 // replaced by the new function. It does no call graph updates, it merely 1053 // swaps out the particular function mapped to a particular node in the 1054 // graph. 1055 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1056 OldF.eraseFromParent(); 1057 } 1058 1059 Changed |= LocalChange; 1060 } while (LocalChange); 1061 1062 if (!Changed) 1063 return PreservedAnalyses::all(); 1064 1065 return PreservedAnalyses::none(); 1066 } 1067 1068 namespace { 1069 1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1071 struct ArgPromotion : public CallGraphSCCPass { 1072 // Pass identification, replacement for typeid 1073 static char ID; 1074 1075 explicit ArgPromotion(unsigned MaxElements = 3) 1076 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1077 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1078 } 1079 1080 void getAnalysisUsage(AnalysisUsage &AU) const override { 1081 AU.addRequired<AssumptionCacheTracker>(); 1082 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1083 AU.addRequired<TargetTransformInfoWrapperPass>(); 1084 getAAResultsAnalysisUsage(AU); 1085 CallGraphSCCPass::getAnalysisUsage(AU); 1086 } 1087 1088 bool runOnSCC(CallGraphSCC &SCC) override; 1089 1090 private: 1091 using llvm::Pass::doInitialization; 1092 1093 bool doInitialization(CallGraph &CG) override; 1094 1095 /// The maximum number of elements to expand, or 0 for unlimited. 1096 unsigned MaxElements; 1097 }; 1098 1099 } // end anonymous namespace 1100 1101 char ArgPromotion::ID = 0; 1102 1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1104 "Promote 'by reference' arguments to scalars", false, 1105 false) 1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1111 "Promote 'by reference' arguments to scalars", false, false) 1112 1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1114 return new ArgPromotion(MaxElements); 1115 } 1116 1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1118 if (skipSCC(SCC)) 1119 return false; 1120 1121 // Get the callgraph information that we need to update to reflect our 1122 // changes. 1123 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1124 1125 LegacyAARGetter AARGetter(*this); 1126 1127 bool Changed = false, LocalChange; 1128 1129 // Iterate until we stop promoting from this SCC. 1130 do { 1131 LocalChange = false; 1132 // Attempt to promote arguments from all functions in this SCC. 1133 for (CallGraphNode *OldNode : SCC) { 1134 Function *OldF = OldNode->getFunction(); 1135 if (!OldF) 1136 continue; 1137 1138 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { 1139 Function *Caller = OldCS.getParent()->getParent(); 1140 CallGraphNode *NewCalleeNode = 1141 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1142 CallGraphNode *CallerNode = CG[Caller]; 1143 CallerNode->replaceCallEdge(cast<CallBase>(OldCS), 1144 cast<CallBase>(NewCS), NewCalleeNode); 1145 }; 1146 1147 const TargetTransformInfo &TTI = 1148 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1149 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1150 {ReplaceCallSite}, TTI)) { 1151 LocalChange = true; 1152 1153 // Update the call graph for the newly promoted function. 1154 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1155 NewNode->stealCalledFunctionsFrom(OldNode); 1156 if (OldNode->getNumReferences() == 0) 1157 delete CG.removeFunctionFromModule(OldNode); 1158 else 1159 OldF->setLinkage(Function::ExternalLinkage); 1160 1161 // And updat ethe SCC we're iterating as well. 1162 SCC.ReplaceNode(OldNode, NewNode); 1163 } 1164 } 1165 // Remember that we changed something. 1166 Changed |= LocalChange; 1167 } while (LocalChange); 1168 1169 return Changed; 1170 } 1171 1172 bool ArgPromotion::doInitialization(CallGraph &CG) { 1173 return CallGraphSCCPass::doInitialization(CG); 1174 } 1175