1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/BasicAliasAnalysis.h"
39 #include "llvm/Analysis/CallGraph.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/Analysis/Loads.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/ValueTracking.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <set>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "argpromotion"
59 
60 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
61 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
62 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
63 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
64 
65 namespace {
66   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
67   ///
68   struct ArgPromotion : public CallGraphSCCPass {
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.addRequired<AssumptionCacheTracker>();
71       AU.addRequired<TargetLibraryInfoWrapperPass>();
72       getAAResultsAnalysisUsage(AU);
73       CallGraphSCCPass::getAnalysisUsage(AU);
74     }
75 
76     bool runOnSCC(CallGraphSCC &SCC) override;
77     static char ID; // Pass identification, replacement for typeid
78     explicit ArgPromotion(unsigned maxElements = 3)
79         : CallGraphSCCPass(ID), maxElements(maxElements) {
80       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
81     }
82 
83     /// A vector used to hold the indices of a single GEP instruction
84     typedef std::vector<uint64_t> IndicesVector;
85 
86   private:
87     bool isDenselyPacked(Type *type, const DataLayout &DL);
88     bool canPaddingBeAccessed(Argument *Arg);
89     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
90     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal,
91                                  AAResults &AAR) const;
92     CallGraphNode *DoPromotion(Function *F,
93                               SmallPtrSetImpl<Argument*> &ArgsToPromote,
94                               SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
95 
96     using llvm::Pass::doInitialization;
97     bool doInitialization(CallGraph &CG) override;
98     /// The maximum number of elements to expand, or 0 for unlimited.
99     unsigned maxElements;
100   };
101 }
102 
103 char ArgPromotion::ID = 0;
104 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
105                 "Promote 'by reference' arguments to scalars", false, false)
106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
109 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
110                 "Promote 'by reference' arguments to scalars", false, false)
111 
112 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
113   return new ArgPromotion(maxElements);
114 }
115 
116 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
117   bool Changed = false, LocalChange;
118 
119   do {  // Iterate until we stop promoting from this SCC.
120     LocalChange = false;
121     // Attempt to promote arguments from all functions in this SCC.
122     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
123       if (CallGraphNode *CGN = PromoteArguments(*I)) {
124         LocalChange = true;
125         SCC.ReplaceNode(*I, CGN);
126       }
127     }
128     Changed |= LocalChange;               // Remember that we changed something.
129   } while (LocalChange);
130 
131   return Changed;
132 }
133 
134 /// \brief Checks if a type could have padding bytes.
135 bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) {
136 
137   // There is no size information, so be conservative.
138   if (!type->isSized())
139     return false;
140 
141   // If the alloc size is not equal to the storage size, then there are padding
142   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
143   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
144     return false;
145 
146   if (!isa<CompositeType>(type))
147     return true;
148 
149   // For homogenous sequential types, check for padding within members.
150   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
151     return isa<PointerType>(seqTy) ||
152            isDenselyPacked(seqTy->getElementType(), DL);
153 
154   // Check for padding within and between elements of a struct.
155   StructType *StructTy = cast<StructType>(type);
156   const StructLayout *Layout = DL.getStructLayout(StructTy);
157   uint64_t StartPos = 0;
158   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
159     Type *ElTy = StructTy->getElementType(i);
160     if (!isDenselyPacked(ElTy, DL))
161       return false;
162     if (StartPos != Layout->getElementOffsetInBits(i))
163       return false;
164     StartPos += DL.getTypeAllocSizeInBits(ElTy);
165   }
166 
167   return true;
168 }
169 
170 /// \brief Checks if the padding bytes of an argument could be accessed.
171 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
172 
173   assert(arg->hasByValAttr());
174 
175   // Track all the pointers to the argument to make sure they are not captured.
176   SmallPtrSet<Value *, 16> PtrValues;
177   PtrValues.insert(arg);
178 
179   // Track all of the stores.
180   SmallVector<StoreInst *, 16> Stores;
181 
182   // Scan through the uses recursively to make sure the pointer is always used
183   // sanely.
184   SmallVector<Value *, 16> WorkList;
185   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
186   while (!WorkList.empty()) {
187     Value *V = WorkList.back();
188     WorkList.pop_back();
189     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
190       if (PtrValues.insert(V).second)
191         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
192     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
193       Stores.push_back(Store);
194     } else if (!isa<LoadInst>(V)) {
195       return true;
196     }
197   }
198 
199 // Check to make sure the pointers aren't captured
200   for (StoreInst *Store : Stores)
201     if (PtrValues.count(Store->getValueOperand()))
202       return true;
203 
204   return false;
205 }
206 
207 /// PromoteArguments - This method checks the specified function to see if there
208 /// are any promotable arguments and if it is safe to promote the function (for
209 /// example, all callers are direct).  If safe to promote some arguments, it
210 /// calls the DoPromotion method.
211 ///
212 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
213   Function *F = CGN->getFunction();
214 
215   // Make sure that it is local to this module.
216   if (!F || !F->hasLocalLinkage()) return nullptr;
217 
218   // Don't promote arguments for variadic functions. Adding, removing, or
219   // changing non-pack parameters can change the classification of pack
220   // parameters. Frontends encode that classification at the call site in the
221   // IR, while in the callee the classification is determined dynamically based
222   // on the number of registers consumed so far.
223   if (F->isVarArg()) return nullptr;
224 
225   // First check: see if there are any pointer arguments!  If not, quick exit.
226   SmallVector<Argument*, 16> PointerArgs;
227   for (Argument &I : F->args())
228     if (I.getType()->isPointerTy())
229       PointerArgs.push_back(&I);
230   if (PointerArgs.empty()) return nullptr;
231 
232   // Second check: make sure that all callers are direct callers.  We can't
233   // transform functions that have indirect callers.  Also see if the function
234   // is self-recursive.
235   bool isSelfRecursive = false;
236   for (Use &U : F->uses()) {
237     CallSite CS(U.getUser());
238     // Must be a direct call.
239     if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
240 
241     if (CS.getInstruction()->getParent()->getParent() == F)
242       isSelfRecursive = true;
243   }
244 
245   const DataLayout &DL = F->getParent()->getDataLayout();
246 
247   // We need to manually construct BasicAA directly in order to disable its use
248   // of other function analyses.
249   BasicAAResult BAR(createLegacyPMBasicAAResult(*this, *F));
250 
251   // Construct our own AA results for this function. We do this manually to
252   // work around the limitations of the legacy pass manager.
253   AAResults AAR(createLegacyPMAAResults(*this, *F, BAR));
254 
255   // Check to see which arguments are promotable.  If an argument is promotable,
256   // add it to ArgsToPromote.
257   SmallPtrSet<Argument*, 8> ArgsToPromote;
258   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
259   for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
260     Argument *PtrArg = PointerArgs[i];
261     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
262 
263     // Replace sret attribute with noalias. This reduces register pressure by
264     // avoiding a register copy.
265     if (PtrArg->hasStructRetAttr()) {
266       unsigned ArgNo = PtrArg->getArgNo();
267       F->setAttributes(
268           F->getAttributes()
269               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
270               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
271       for (Use &U : F->uses()) {
272         CallSite CS(U.getUser());
273         CS.setAttributes(
274             CS.getAttributes()
275                 .removeAttribute(F->getContext(), ArgNo + 1,
276                                  Attribute::StructRet)
277                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
278       }
279     }
280 
281     // If this is a byval argument, and if the aggregate type is small, just
282     // pass the elements, which is always safe, if the passed value is densely
283     // packed or if we can prove the padding bytes are never accessed. This does
284     // not apply to inalloca.
285     bool isSafeToPromote =
286         PtrArg->hasByValAttr() &&
287         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
288     if (isSafeToPromote) {
289       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
290         if (maxElements > 0 && STy->getNumElements() > maxElements) {
291           DEBUG(dbgs() << "argpromotion disable promoting argument '"
292                 << PtrArg->getName() << "' because it would require adding more"
293                 << " than " << maxElements << " arguments to the function.\n");
294           continue;
295         }
296 
297         // If all the elements are single-value types, we can promote it.
298         bool AllSimple = true;
299         for (const auto *EltTy : STy->elements()) {
300           if (!EltTy->isSingleValueType()) {
301             AllSimple = false;
302             break;
303           }
304         }
305 
306         // Safe to transform, don't even bother trying to "promote" it.
307         // Passing the elements as a scalar will allow scalarrepl to hack on
308         // the new alloca we introduce.
309         if (AllSimple) {
310           ByValArgsToTransform.insert(PtrArg);
311           continue;
312         }
313       }
314     }
315 
316     // If the argument is a recursive type and we're in a recursive
317     // function, we could end up infinitely peeling the function argument.
318     if (isSelfRecursive) {
319       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
320         bool RecursiveType = false;
321         for (const auto *EltTy : STy->elements()) {
322           if (EltTy == PtrArg->getType()) {
323             RecursiveType = true;
324             break;
325           }
326         }
327         if (RecursiveType)
328           continue;
329       }
330     }
331 
332     // Otherwise, see if we can promote the pointer to its value.
333     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR))
334       ArgsToPromote.insert(PtrArg);
335   }
336 
337   // No promotable pointer arguments.
338   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
339     return nullptr;
340 
341   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
342 }
343 
344 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
345 /// all callees pass in a valid pointer for the specified function argument.
346 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
347   Function *Callee = Arg->getParent();
348   const DataLayout &DL = Callee->getParent()->getDataLayout();
349 
350   unsigned ArgNo = Arg->getArgNo();
351 
352   // Look at all call sites of the function.  At this pointer we know we only
353   // have direct callees.
354   for (User *U : Callee->users()) {
355     CallSite CS(U);
356     assert(CS && "Should only have direct calls!");
357 
358     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
359       return false;
360   }
361   return true;
362 }
363 
364 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
365 /// that is greater than or equal to the size of prefix, and each of the
366 /// elements in Prefix is the same as the corresponding elements in Longer.
367 ///
368 /// This means it also returns true when Prefix and Longer are equal!
369 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
370                      const ArgPromotion::IndicesVector &Longer) {
371   if (Prefix.size() > Longer.size())
372     return false;
373   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
374 }
375 
376 
377 /// Checks if Indices, or a prefix of Indices, is in Set.
378 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
379                      std::set<ArgPromotion::IndicesVector> &Set) {
380     std::set<ArgPromotion::IndicesVector>::iterator Low;
381     Low = Set.upper_bound(Indices);
382     if (Low != Set.begin())
383       Low--;
384     // Low is now the last element smaller than or equal to Indices. This means
385     // it points to a prefix of Indices (possibly Indices itself), if such
386     // prefix exists.
387     //
388     // This load is safe if any prefix of its operands is safe to load.
389     return Low != Set.end() && IsPrefix(*Low, Indices);
390 }
391 
392 /// Mark the given indices (ToMark) as safe in the given set of indices
393 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
394 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
395 /// already. Furthermore, any indices that Indices is itself a prefix of, are
396 /// removed from Safe (since they are implicitely safe because of Indices now).
397 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
398                             std::set<ArgPromotion::IndicesVector> &Safe) {
399   std::set<ArgPromotion::IndicesVector>::iterator Low;
400   Low = Safe.upper_bound(ToMark);
401   // Guard against the case where Safe is empty
402   if (Low != Safe.begin())
403     Low--;
404   // Low is now the last element smaller than or equal to Indices. This
405   // means it points to a prefix of Indices (possibly Indices itself), if
406   // such prefix exists.
407   if (Low != Safe.end()) {
408     if (IsPrefix(*Low, ToMark))
409       // If there is already a prefix of these indices (or exactly these
410       // indices) marked a safe, don't bother adding these indices
411       return;
412 
413     // Increment Low, so we can use it as a "insert before" hint
414     ++Low;
415   }
416   // Insert
417   Low = Safe.insert(Low, ToMark);
418   ++Low;
419   // If there we're a prefix of longer index list(s), remove those
420   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
421   while (Low != End && IsPrefix(ToMark, *Low)) {
422     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
423     ++Low;
424     Safe.erase(Remove);
425   }
426 }
427 
428 /// isSafeToPromoteArgument - As you might guess from the name of this method,
429 /// it checks to see if it is both safe and useful to promote the argument.
430 /// This method limits promotion of aggregates to only promote up to three
431 /// elements of the aggregate in order to avoid exploding the number of
432 /// arguments passed in.
433 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
434                                            bool isByValOrInAlloca,
435                                            AAResults &AAR) const {
436   typedef std::set<IndicesVector> GEPIndicesSet;
437 
438   // Quick exit for unused arguments
439   if (Arg->use_empty())
440     return true;
441 
442   // We can only promote this argument if all of the uses are loads, or are GEP
443   // instructions (with constant indices) that are subsequently loaded.
444   //
445   // Promoting the argument causes it to be loaded in the caller
446   // unconditionally. This is only safe if we can prove that either the load
447   // would have happened in the callee anyway (ie, there is a load in the entry
448   // block) or the pointer passed in at every call site is guaranteed to be
449   // valid.
450   // In the former case, invalid loads can happen, but would have happened
451   // anyway, in the latter case, invalid loads won't happen. This prevents us
452   // from introducing an invalid load that wouldn't have happened in the
453   // original code.
454   //
455   // This set will contain all sets of indices that are loaded in the entry
456   // block, and thus are safe to unconditionally load in the caller.
457   //
458   // This optimization is also safe for InAlloca parameters, because it verifies
459   // that the address isn't captured.
460   GEPIndicesSet SafeToUnconditionallyLoad;
461 
462   // This set contains all the sets of indices that we are planning to promote.
463   // This makes it possible to limit the number of arguments added.
464   GEPIndicesSet ToPromote;
465 
466   // If the pointer is always valid, any load with first index 0 is valid.
467   if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
468     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
469 
470   // First, iterate the entry block and mark loads of (geps of) arguments as
471   // safe.
472   BasicBlock &EntryBlock = Arg->getParent()->front();
473   // Declare this here so we can reuse it
474   IndicesVector Indices;
475   for (Instruction &I : EntryBlock)
476     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
477       Value *V = LI->getPointerOperand();
478       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
479         V = GEP->getPointerOperand();
480         if (V == Arg) {
481           // This load actually loads (part of) Arg? Check the indices then.
482           Indices.reserve(GEP->getNumIndices());
483           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
484                II != IE; ++II)
485             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
486               Indices.push_back(CI->getSExtValue());
487             else
488               // We found a non-constant GEP index for this argument? Bail out
489               // right away, can't promote this argument at all.
490               return false;
491 
492           // Indices checked out, mark them as safe
493           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
494           Indices.clear();
495         }
496       } else if (V == Arg) {
497         // Direct loads are equivalent to a GEP with a single 0 index.
498         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
499       }
500     }
501 
502   // Now, iterate all uses of the argument to see if there are any uses that are
503   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
504   SmallVector<LoadInst*, 16> Loads;
505   IndicesVector Operands;
506   for (Use &U : Arg->uses()) {
507     User *UR = U.getUser();
508     Operands.clear();
509     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
510       // Don't hack volatile/atomic loads
511       if (!LI->isSimple()) return false;
512       Loads.push_back(LI);
513       // Direct loads are equivalent to a GEP with a zero index and then a load.
514       Operands.push_back(0);
515     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
516       if (GEP->use_empty()) {
517         // Dead GEP's cause trouble later.  Just remove them if we run into
518         // them.
519         GEP->eraseFromParent();
520         // TODO: This runs the above loop over and over again for dead GEPs
521         // Couldn't we just do increment the UI iterator earlier and erase the
522         // use?
523         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR);
524       }
525 
526       // Ensure that all of the indices are constants.
527       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
528         i != e; ++i)
529         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
530           Operands.push_back(C->getSExtValue());
531         else
532           return false;  // Not a constant operand GEP!
533 
534       // Ensure that the only users of the GEP are load instructions.
535       for (User *GEPU : GEP->users())
536         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
537           // Don't hack volatile/atomic loads
538           if (!LI->isSimple()) return false;
539           Loads.push_back(LI);
540         } else {
541           // Other uses than load?
542           return false;
543         }
544     } else {
545       return false;  // Not a load or a GEP.
546     }
547 
548     // Now, see if it is safe to promote this load / loads of this GEP. Loading
549     // is safe if Operands, or a prefix of Operands, is marked as safe.
550     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
551       return false;
552 
553     // See if we are already promoting a load with these indices. If not, check
554     // to make sure that we aren't promoting too many elements.  If so, nothing
555     // to do.
556     if (ToPromote.find(Operands) == ToPromote.end()) {
557       if (maxElements > 0 && ToPromote.size() == maxElements) {
558         DEBUG(dbgs() << "argpromotion not promoting argument '"
559               << Arg->getName() << "' because it would require adding more "
560               << "than " << maxElements << " arguments to the function.\n");
561         // We limit aggregate promotion to only promoting up to a fixed number
562         // of elements of the aggregate.
563         return false;
564       }
565       ToPromote.insert(std::move(Operands));
566     }
567   }
568 
569   if (Loads.empty()) return true;  // No users, this is a dead argument.
570 
571   // Okay, now we know that the argument is only used by load instructions and
572   // it is safe to unconditionally perform all of them. Use alias analysis to
573   // check to see if the pointer is guaranteed to not be modified from entry of
574   // the function to each of the load instructions.
575 
576   // Because there could be several/many load instructions, remember which
577   // blocks we know to be transparent to the load.
578   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
579 
580   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
581     // Check to see if the load is invalidated from the start of the block to
582     // the load itself.
583     LoadInst *Load = Loads[i];
584     BasicBlock *BB = Load->getParent();
585 
586     MemoryLocation Loc = MemoryLocation::get(Load);
587     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
588       return false;  // Pointer is invalidated!
589 
590     // Now check every path from the entry block to the load for transparency.
591     // To do this, we perform a depth first search on the inverse CFG from the
592     // loading block.
593     for (BasicBlock *P : predecessors(BB)) {
594       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
595         if (AAR.canBasicBlockModify(*TranspBB, Loc))
596           return false;
597     }
598   }
599 
600   // If the path from the entry of the function to each load is free of
601   // instructions that potentially invalidate the load, we can make the
602   // transformation!
603   return true;
604 }
605 
606 /// DoPromotion - This method actually performs the promotion of the specified
607 /// arguments, and returns the new function.  At this point, we know that it's
608 /// safe to do so.
609 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
610                              SmallPtrSetImpl<Argument*> &ArgsToPromote,
611                              SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {
612 
613   // Start by computing a new prototype for the function, which is the same as
614   // the old function, but has modified arguments.
615   FunctionType *FTy = F->getFunctionType();
616   std::vector<Type*> Params;
617 
618   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
619 
620   // ScalarizedElements - If we are promoting a pointer that has elements
621   // accessed out of it, keep track of which elements are accessed so that we
622   // can add one argument for each.
623   //
624   // Arguments that are directly loaded will have a zero element value here, to
625   // handle cases where there are both a direct load and GEP accesses.
626   //
627   std::map<Argument*, ScalarizeTable> ScalarizedElements;
628 
629   // OriginalLoads - Keep track of a representative load instruction from the
630   // original function so that we can tell the alias analysis implementation
631   // what the new GEP/Load instructions we are inserting look like.
632   // We need to keep the original loads for each argument and the elements
633   // of the argument that are accessed.
634   std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
635 
636   // Attribute - Keep track of the parameter attributes for the arguments
637   // that we are *not* promoting. For the ones that we do promote, the parameter
638   // attributes are lost
639   SmallVector<AttributeSet, 8> AttributesVec;
640   const AttributeSet &PAL = F->getAttributes();
641 
642   // Add any return attributes.
643   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
644     AttributesVec.push_back(AttributeSet::get(F->getContext(),
645                                               PAL.getRetAttributes()));
646 
647   // First, determine the new argument list
648   unsigned ArgIndex = 1;
649   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
650        ++I, ++ArgIndex) {
651     if (ByValArgsToTransform.count(&*I)) {
652       // Simple byval argument? Just add all the struct element types.
653       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
654       StructType *STy = cast<StructType>(AgTy);
655       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
656       ++NumByValArgsPromoted;
657     } else if (!ArgsToPromote.count(&*I)) {
658       // Unchanged argument
659       Params.push_back(I->getType());
660       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
661       if (attrs.hasAttributes(ArgIndex)) {
662         AttrBuilder B(attrs, ArgIndex);
663         AttributesVec.
664           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
665       }
666     } else if (I->use_empty()) {
667       // Dead argument (which are always marked as promotable)
668       ++NumArgumentsDead;
669     } else {
670       // Okay, this is being promoted. This means that the only uses are loads
671       // or GEPs which are only used by loads
672 
673       // In this table, we will track which indices are loaded from the argument
674       // (where direct loads are tracked as no indices).
675       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
676       for (User *U : I->users()) {
677         Instruction *UI = cast<Instruction>(U);
678         Type *SrcTy;
679         if (LoadInst *L = dyn_cast<LoadInst>(UI))
680           SrcTy = L->getType();
681         else
682           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
683         IndicesVector Indices;
684         Indices.reserve(UI->getNumOperands() - 1);
685         // Since loads will only have a single operand, and GEPs only a single
686         // non-index operand, this will record direct loads without any indices,
687         // and gep+loads with the GEP indices.
688         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
689              II != IE; ++II)
690           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
691         // GEPs with a single 0 index can be merged with direct loads
692         if (Indices.size() == 1 && Indices.front() == 0)
693           Indices.clear();
694         ArgIndices.insert(std::make_pair(SrcTy, Indices));
695         LoadInst *OrigLoad;
696         if (LoadInst *L = dyn_cast<LoadInst>(UI))
697           OrigLoad = L;
698         else
699           // Take any load, we will use it only to update Alias Analysis
700           OrigLoad = cast<LoadInst>(UI->user_back());
701         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
702       }
703 
704       // Add a parameter to the function for each element passed in.
705       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
706              E = ArgIndices.end(); SI != E; ++SI) {
707         // not allowed to dereference ->begin() if size() is 0
708         Params.push_back(GetElementPtrInst::getIndexedType(
709             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
710             SI->second));
711         assert(Params.back());
712       }
713 
714       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
715         ++NumArgumentsPromoted;
716       else
717         ++NumAggregatesPromoted;
718     }
719   }
720 
721   // Add any function attributes.
722   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
723     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
724                                               PAL.getFnAttributes()));
725 
726   Type *RetTy = FTy->getReturnType();
727 
728   // Construct the new function type using the new arguments.
729   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
730 
731   // Create the new function body and insert it into the module.
732   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
733   NF->copyAttributesFrom(F);
734 
735   // Patch the pointer to LLVM function in debug info descriptor.
736   NF->setSubprogram(F->getSubprogram());
737   F->setSubprogram(nullptr);
738 
739   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
740         << "From: " << *F);
741 
742   // Recompute the parameter attributes list based on the new arguments for
743   // the function.
744   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
745   AttributesVec.clear();
746 
747   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
748   NF->takeName(F);
749 
750   // Get the callgraph information that we need to update to reflect our
751   // changes.
752   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
753 
754   // Get a new callgraph node for NF.
755   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
756 
757   // Loop over all of the callers of the function, transforming the call sites
758   // to pass in the loaded pointers.
759   //
760   SmallVector<Value*, 16> Args;
761   while (!F->use_empty()) {
762     CallSite CS(F->user_back());
763     assert(CS.getCalledFunction() == F);
764     Instruction *Call = CS.getInstruction();
765     const AttributeSet &CallPAL = CS.getAttributes();
766 
767     // Add any return attributes.
768     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
769       AttributesVec.push_back(AttributeSet::get(F->getContext(),
770                                                 CallPAL.getRetAttributes()));
771 
772     // Loop over the operands, inserting GEP and loads in the caller as
773     // appropriate.
774     CallSite::arg_iterator AI = CS.arg_begin();
775     ArgIndex = 1;
776     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
777          I != E; ++I, ++AI, ++ArgIndex)
778       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
779         Args.push_back(*AI);          // Unmodified argument
780 
781         if (CallPAL.hasAttributes(ArgIndex)) {
782           AttrBuilder B(CallPAL, ArgIndex);
783           AttributesVec.
784             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
785         }
786       } else if (ByValArgsToTransform.count(&*I)) {
787         // Emit a GEP and load for each element of the struct.
788         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
789         StructType *STy = cast<StructType>(AgTy);
790         Value *Idxs[2] = {
791               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
792         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
793           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
794           Value *Idx = GetElementPtrInst::Create(
795               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
796           // TODO: Tell AA about the new values?
797           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
798         }
799       } else if (!I->use_empty()) {
800         // Non-dead argument: insert GEPs and loads as appropriate.
801         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
802         // Store the Value* version of the indices in here, but declare it now
803         // for reuse.
804         std::vector<Value*> Ops;
805         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
806                E = ArgIndices.end(); SI != E; ++SI) {
807           Value *V = *AI;
808           LoadInst *OrigLoad = OriginalLoads[std::make_pair(&*I, SI->second)];
809           if (!SI->second.empty()) {
810             Ops.reserve(SI->second.size());
811             Type *ElTy = V->getType();
812             for (IndicesVector::const_iterator II = SI->second.begin(),
813                                                IE = SI->second.end();
814                  II != IE; ++II) {
815               // Use i32 to index structs, and i64 for others (pointers/arrays).
816               // This satisfies GEP constraints.
817               Type *IdxTy = (ElTy->isStructTy() ?
818                     Type::getInt32Ty(F->getContext()) :
819                     Type::getInt64Ty(F->getContext()));
820               Ops.push_back(ConstantInt::get(IdxTy, *II));
821               // Keep track of the type we're currently indexing.
822               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
823             }
824             // And create a GEP to extract those indices.
825             V = GetElementPtrInst::Create(SI->first, V, Ops,
826                                           V->getName() + ".idx", Call);
827             Ops.clear();
828           }
829           // Since we're replacing a load make sure we take the alignment
830           // of the previous load.
831           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
832           newLoad->setAlignment(OrigLoad->getAlignment());
833           // Transfer the AA info too.
834           AAMDNodes AAInfo;
835           OrigLoad->getAAMetadata(AAInfo);
836           newLoad->setAAMetadata(AAInfo);
837 
838           Args.push_back(newLoad);
839         }
840       }
841 
842     // Push any varargs arguments on the list.
843     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
844       Args.push_back(*AI);
845       if (CallPAL.hasAttributes(ArgIndex)) {
846         AttrBuilder B(CallPAL, ArgIndex);
847         AttributesVec.
848           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
849       }
850     }
851 
852     // Add any function attributes.
853     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
854       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
855                                                 CallPAL.getFnAttributes()));
856 
857     Instruction *New;
858     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
859       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
860                                Args, "", Call);
861       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
862       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
863                                                             AttributesVec));
864     } else {
865       New = CallInst::Create(NF, Args, "", Call);
866       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
867       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
868                                                           AttributesVec));
869       if (cast<CallInst>(Call)->isTailCall())
870         cast<CallInst>(New)->setTailCall();
871     }
872     New->setDebugLoc(Call->getDebugLoc());
873     Args.clear();
874     AttributesVec.clear();
875 
876     // Update the callgraph to know that the callsite has been transformed.
877     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
878     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
879 
880     if (!Call->use_empty()) {
881       Call->replaceAllUsesWith(New);
882       New->takeName(Call);
883     }
884 
885     // Finally, remove the old call from the program, reducing the use-count of
886     // F.
887     Call->eraseFromParent();
888   }
889 
890   // Since we have now created the new function, splice the body of the old
891   // function right into the new function, leaving the old rotting hulk of the
892   // function empty.
893   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
894 
895   // Loop over the argument list, transferring uses of the old arguments over to
896   // the new arguments, also transferring over the names as well.
897   //
898   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
899        I2 = NF->arg_begin(); I != E; ++I) {
900     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
901       // If this is an unmodified argument, move the name and users over to the
902       // new version.
903       I->replaceAllUsesWith(&*I2);
904       I2->takeName(&*I);
905       ++I2;
906       continue;
907     }
908 
909     if (ByValArgsToTransform.count(&*I)) {
910       // In the callee, we create an alloca, and store each of the new incoming
911       // arguments into the alloca.
912       Instruction *InsertPt = &NF->begin()->front();
913 
914       // Just add all the struct element types.
915       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
916       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
917       StructType *STy = cast<StructType>(AgTy);
918       Value *Idxs[2] = {
919             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
920 
921       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
922         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
923         Value *Idx = GetElementPtrInst::Create(
924             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
925             InsertPt);
926         I2->setName(I->getName()+"."+Twine(i));
927         new StoreInst(&*I2++, Idx, InsertPt);
928       }
929 
930       // Anything that used the arg should now use the alloca.
931       I->replaceAllUsesWith(TheAlloca);
932       TheAlloca->takeName(&*I);
933 
934       // If the alloca is used in a call, we must clear the tail flag since
935       // the callee now uses an alloca from the caller.
936       for (User *U : TheAlloca->users()) {
937         CallInst *Call = dyn_cast<CallInst>(U);
938         if (!Call)
939           continue;
940         Call->setTailCall(false);
941       }
942       continue;
943     }
944 
945     if (I->use_empty())
946       continue;
947 
948     // Otherwise, if we promoted this argument, then all users are load
949     // instructions (or GEPs with only load users), and all loads should be
950     // using the new argument that we added.
951     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
952 
953     while (!I->use_empty()) {
954       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
955         assert(ArgIndices.begin()->second.empty() &&
956                "Load element should sort to front!");
957         I2->setName(I->getName()+".val");
958         LI->replaceAllUsesWith(&*I2);
959         LI->eraseFromParent();
960         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
961               << "' in function '" << F->getName() << "'\n");
962       } else {
963         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
964         IndicesVector Operands;
965         Operands.reserve(GEP->getNumIndices());
966         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
967              II != IE; ++II)
968           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
969 
970         // GEPs with a single 0 index can be merged with direct loads
971         if (Operands.size() == 1 && Operands.front() == 0)
972           Operands.clear();
973 
974         Function::arg_iterator TheArg = I2;
975         for (ScalarizeTable::iterator It = ArgIndices.begin();
976              It->second != Operands; ++It, ++TheArg) {
977           assert(It != ArgIndices.end() && "GEP not handled??");
978         }
979 
980         std::string NewName = I->getName();
981         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
982             NewName += "." + utostr(Operands[i]);
983         }
984         NewName += ".val";
985         TheArg->setName(NewName);
986 
987         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
988               << "' of function '" << NF->getName() << "'\n");
989 
990         // All of the uses must be load instructions.  Replace them all with
991         // the argument specified by ArgNo.
992         while (!GEP->use_empty()) {
993           LoadInst *L = cast<LoadInst>(GEP->user_back());
994           L->replaceAllUsesWith(&*TheArg);
995           L->eraseFromParent();
996         }
997         GEP->eraseFromParent();
998       }
999     }
1000 
1001     // Increment I2 past all of the arguments added for this promoted pointer.
1002     std::advance(I2, ArgIndices.size());
1003   }
1004 
1005   NF_CGN->stealCalledFunctionsFrom(CG[F]);
1006 
1007   // Now that the old function is dead, delete it.  If there is a dangling
1008   // reference to the CallgraphNode, just leave the dead function around for
1009   // someone else to nuke.
1010   CallGraphNode *CGN = CG[F];
1011   if (CGN->getNumReferences() == 0)
1012     delete CG.removeFunctionFromModule(CGN);
1013   else
1014     F->setLinkage(Function::ExternalLinkage);
1015 
1016   return NF_CGN;
1017 }
1018 
1019 bool ArgPromotion::doInitialization(CallGraph &CG) {
1020   return CallGraphSCCPass::doInitialization(CG);
1021 }
1022