1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CallGraph.h"
39 #include "llvm/Analysis/CallGraphSCCPass.h"
40 #include "llvm/Analysis/Loads.h"
41 #include "llvm/Analysis/TargetLibraryInfo.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/IPO.h"
54 #include <set>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "argpromotion"
58 
59 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
60 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
61 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
62 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
63 
64 /// A vector used to hold the indices of a single GEP instruction
65 typedef std::vector<uint64_t> IndicesVector;
66 
67 /// DoPromotion - This method actually performs the promotion of the specified
68 /// arguments, and returns the new function.  At this point, we know that it's
69 /// safe to do so.
70 static CallGraphNode *
71 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
72             SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG) {
73 
74   // Start by computing a new prototype for the function, which is the same as
75   // the old function, but has modified arguments.
76   FunctionType *FTy = F->getFunctionType();
77   std::vector<Type *> Params;
78 
79   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
80 
81   // ScalarizedElements - If we are promoting a pointer that has elements
82   // accessed out of it, keep track of which elements are accessed so that we
83   // can add one argument for each.
84   //
85   // Arguments that are directly loaded will have a zero element value here, to
86   // handle cases where there are both a direct load and GEP accesses.
87   //
88   std::map<Argument *, ScalarizeTable> ScalarizedElements;
89 
90   // OriginalLoads - Keep track of a representative load instruction from the
91   // original function so that we can tell the alias analysis implementation
92   // what the new GEP/Load instructions we are inserting look like.
93   // We need to keep the original loads for each argument and the elements
94   // of the argument that are accessed.
95   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
96 
97   // Attribute - Keep track of the parameter attributes for the arguments
98   // that we are *not* promoting. For the ones that we do promote, the parameter
99   // attributes are lost
100   SmallVector<AttributeSet, 8> AttributesVec;
101   const AttributeSet &PAL = F->getAttributes();
102 
103   // Add any return attributes.
104   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
105     AttributesVec.push_back(
106         AttributeSet::get(F->getContext(), PAL.getRetAttributes()));
107 
108   // First, determine the new argument list
109   unsigned ArgIndex = 1;
110   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
111        ++I, ++ArgIndex) {
112     if (ByValArgsToTransform.count(&*I)) {
113       // Simple byval argument? Just add all the struct element types.
114       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
115       StructType *STy = cast<StructType>(AgTy);
116       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
117       ++NumByValArgsPromoted;
118     } else if (!ArgsToPromote.count(&*I)) {
119       // Unchanged argument
120       Params.push_back(I->getType());
121       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
122       if (attrs.hasAttributes(ArgIndex)) {
123         AttrBuilder B(attrs, ArgIndex);
124         AttributesVec.push_back(
125             AttributeSet::get(F->getContext(), Params.size(), B));
126       }
127     } else if (I->use_empty()) {
128       // Dead argument (which are always marked as promotable)
129       ++NumArgumentsDead;
130     } else {
131       // Okay, this is being promoted. This means that the only uses are loads
132       // or GEPs which are only used by loads
133 
134       // In this table, we will track which indices are loaded from the argument
135       // (where direct loads are tracked as no indices).
136       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
137       for (User *U : I->users()) {
138         Instruction *UI = cast<Instruction>(U);
139         Type *SrcTy;
140         if (LoadInst *L = dyn_cast<LoadInst>(UI))
141           SrcTy = L->getType();
142         else
143           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
144         IndicesVector Indices;
145         Indices.reserve(UI->getNumOperands() - 1);
146         // Since loads will only have a single operand, and GEPs only a single
147         // non-index operand, this will record direct loads without any indices,
148         // and gep+loads with the GEP indices.
149         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
150              II != IE; ++II)
151           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
152         // GEPs with a single 0 index can be merged with direct loads
153         if (Indices.size() == 1 && Indices.front() == 0)
154           Indices.clear();
155         ArgIndices.insert(std::make_pair(SrcTy, Indices));
156         LoadInst *OrigLoad;
157         if (LoadInst *L = dyn_cast<LoadInst>(UI))
158           OrigLoad = L;
159         else
160           // Take any load, we will use it only to update Alias Analysis
161           OrigLoad = cast<LoadInst>(UI->user_back());
162         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
163       }
164 
165       // Add a parameter to the function for each element passed in.
166       for (const auto &ArgIndex : ArgIndices) {
167         // not allowed to dereference ->begin() if size() is 0
168         Params.push_back(GetElementPtrInst::getIndexedType(
169             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
170             ArgIndex.second));
171         assert(Params.back());
172       }
173 
174       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
175         ++NumArgumentsPromoted;
176       else
177         ++NumAggregatesPromoted;
178     }
179   }
180 
181   // Add any function attributes.
182   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
183     AttributesVec.push_back(
184         AttributeSet::get(FTy->getContext(), PAL.getFnAttributes()));
185 
186   Type *RetTy = FTy->getReturnType();
187 
188   // Construct the new function type using the new arguments.
189   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
190 
191   // Create the new function body and insert it into the module.
192   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
193   NF->copyAttributesFrom(F);
194 
195   // Patch the pointer to LLVM function in debug info descriptor.
196   NF->setSubprogram(F->getSubprogram());
197   F->setSubprogram(nullptr);
198 
199   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
200                << "From: " << *F);
201 
202   // Recompute the parameter attributes list based on the new arguments for
203   // the function.
204   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
205   AttributesVec.clear();
206 
207   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
208   NF->takeName(F);
209 
210   // Get a new callgraph node for NF.
211   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
212 
213   // Loop over all of the callers of the function, transforming the call sites
214   // to pass in the loaded pointers.
215   //
216   SmallVector<Value *, 16> Args;
217   while (!F->use_empty()) {
218     CallSite CS(F->user_back());
219     assert(CS.getCalledFunction() == F);
220     Instruction *Call = CS.getInstruction();
221     const AttributeSet &CallPAL = CS.getAttributes();
222 
223     // Add any return attributes.
224     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
225       AttributesVec.push_back(
226           AttributeSet::get(F->getContext(), CallPAL.getRetAttributes()));
227 
228     // Loop over the operands, inserting GEP and loads in the caller as
229     // appropriate.
230     CallSite::arg_iterator AI = CS.arg_begin();
231     ArgIndex = 1;
232     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
233          ++I, ++AI, ++ArgIndex)
234       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
235         Args.push_back(*AI); // Unmodified argument
236 
237         if (CallPAL.hasAttributes(ArgIndex)) {
238           AttrBuilder B(CallPAL, ArgIndex);
239           AttributesVec.push_back(
240               AttributeSet::get(F->getContext(), Args.size(), B));
241         }
242       } else if (ByValArgsToTransform.count(&*I)) {
243         // Emit a GEP and load for each element of the struct.
244         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
245         StructType *STy = cast<StructType>(AgTy);
246         Value *Idxs[2] = {
247             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
248         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
249           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
250           Value *Idx = GetElementPtrInst::Create(
251               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
252           // TODO: Tell AA about the new values?
253           Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
254         }
255       } else if (!I->use_empty()) {
256         // Non-dead argument: insert GEPs and loads as appropriate.
257         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
258         // Store the Value* version of the indices in here, but declare it now
259         // for reuse.
260         std::vector<Value *> Ops;
261         for (const auto &ArgIndex : ArgIndices) {
262           Value *V = *AI;
263           LoadInst *OrigLoad =
264               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
265           if (!ArgIndex.second.empty()) {
266             Ops.reserve(ArgIndex.second.size());
267             Type *ElTy = V->getType();
268             for (unsigned long II : ArgIndex.second) {
269               // Use i32 to index structs, and i64 for others (pointers/arrays).
270               // This satisfies GEP constraints.
271               Type *IdxTy =
272                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
273                                       : Type::getInt64Ty(F->getContext()));
274               Ops.push_back(ConstantInt::get(IdxTy, II));
275               // Keep track of the type we're currently indexing.
276               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
277                 ElTy = ElPTy->getElementType();
278               else
279                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
280             }
281             // And create a GEP to extract those indices.
282             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
283                                           V->getName() + ".idx", Call);
284             Ops.clear();
285           }
286           // Since we're replacing a load make sure we take the alignment
287           // of the previous load.
288           LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
289           newLoad->setAlignment(OrigLoad->getAlignment());
290           // Transfer the AA info too.
291           AAMDNodes AAInfo;
292           OrigLoad->getAAMetadata(AAInfo);
293           newLoad->setAAMetadata(AAInfo);
294 
295           Args.push_back(newLoad);
296         }
297       }
298 
299     // Push any varargs arguments on the list.
300     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
301       Args.push_back(*AI);
302       if (CallPAL.hasAttributes(ArgIndex)) {
303         AttrBuilder B(CallPAL, ArgIndex);
304         AttributesVec.push_back(
305             AttributeSet::get(F->getContext(), Args.size(), B));
306       }
307     }
308 
309     // Add any function attributes.
310     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
311       AttributesVec.push_back(
312           AttributeSet::get(Call->getContext(), CallPAL.getFnAttributes()));
313 
314     SmallVector<OperandBundleDef, 1> OpBundles;
315     CS.getOperandBundlesAsDefs(OpBundles);
316 
317     Instruction *New;
318     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
319       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
320                                Args, OpBundles, "", Call);
321       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
322       cast<InvokeInst>(New)->setAttributes(
323           AttributeSet::get(II->getContext(), AttributesVec));
324     } else {
325       New = CallInst::Create(NF, Args, OpBundles, "", Call);
326       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
327       cast<CallInst>(New)->setAttributes(
328           AttributeSet::get(New->getContext(), AttributesVec));
329       cast<CallInst>(New)->setTailCallKind(
330           cast<CallInst>(Call)->getTailCallKind());
331     }
332     New->setDebugLoc(Call->getDebugLoc());
333     Args.clear();
334     AttributesVec.clear();
335 
336     // Update the callgraph to know that the callsite has been transformed.
337     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
338     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
339 
340     if (!Call->use_empty()) {
341       Call->replaceAllUsesWith(New);
342       New->takeName(Call);
343     }
344 
345     // Finally, remove the old call from the program, reducing the use-count of
346     // F.
347     Call->eraseFromParent();
348   }
349 
350   // Since we have now created the new function, splice the body of the old
351   // function right into the new function, leaving the old rotting hulk of the
352   // function empty.
353   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
354 
355   // Loop over the argument list, transferring uses of the old arguments over to
356   // the new arguments, also transferring over the names as well.
357   //
358   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
359                               I2 = NF->arg_begin();
360        I != E; ++I) {
361     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
362       // If this is an unmodified argument, move the name and users over to the
363       // new version.
364       I->replaceAllUsesWith(&*I2);
365       I2->takeName(&*I);
366       ++I2;
367       continue;
368     }
369 
370     if (ByValArgsToTransform.count(&*I)) {
371       // In the callee, we create an alloca, and store each of the new incoming
372       // arguments into the alloca.
373       Instruction *InsertPt = &NF->begin()->front();
374 
375       // Just add all the struct element types.
376       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
377       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
378       StructType *STy = cast<StructType>(AgTy);
379       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
380                         nullptr};
381 
382       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
383         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
384         Value *Idx = GetElementPtrInst::Create(
385             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
386             InsertPt);
387         I2->setName(I->getName() + "." + Twine(i));
388         new StoreInst(&*I2++, Idx, InsertPt);
389       }
390 
391       // Anything that used the arg should now use the alloca.
392       I->replaceAllUsesWith(TheAlloca);
393       TheAlloca->takeName(&*I);
394 
395       // If the alloca is used in a call, we must clear the tail flag since
396       // the callee now uses an alloca from the caller.
397       for (User *U : TheAlloca->users()) {
398         CallInst *Call = dyn_cast<CallInst>(U);
399         if (!Call)
400           continue;
401         Call->setTailCall(false);
402       }
403       continue;
404     }
405 
406     if (I->use_empty())
407       continue;
408 
409     // Otherwise, if we promoted this argument, then all users are load
410     // instructions (or GEPs with only load users), and all loads should be
411     // using the new argument that we added.
412     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
413 
414     while (!I->use_empty()) {
415       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
416         assert(ArgIndices.begin()->second.empty() &&
417                "Load element should sort to front!");
418         I2->setName(I->getName() + ".val");
419         LI->replaceAllUsesWith(&*I2);
420         LI->eraseFromParent();
421         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
422                      << "' in function '" << F->getName() << "'\n");
423       } else {
424         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
425         IndicesVector Operands;
426         Operands.reserve(GEP->getNumIndices());
427         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
428              II != IE; ++II)
429           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
430 
431         // GEPs with a single 0 index can be merged with direct loads
432         if (Operands.size() == 1 && Operands.front() == 0)
433           Operands.clear();
434 
435         Function::arg_iterator TheArg = I2;
436         for (ScalarizeTable::iterator It = ArgIndices.begin();
437              It->second != Operands; ++It, ++TheArg) {
438           assert(It != ArgIndices.end() && "GEP not handled??");
439         }
440 
441         std::string NewName = I->getName();
442         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
443           NewName += "." + utostr(Operands[i]);
444         }
445         NewName += ".val";
446         TheArg->setName(NewName);
447 
448         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
449                      << "' of function '" << NF->getName() << "'\n");
450 
451         // All of the uses must be load instructions.  Replace them all with
452         // the argument specified by ArgNo.
453         while (!GEP->use_empty()) {
454           LoadInst *L = cast<LoadInst>(GEP->user_back());
455           L->replaceAllUsesWith(&*TheArg);
456           L->eraseFromParent();
457         }
458         GEP->eraseFromParent();
459       }
460     }
461 
462     // Increment I2 past all of the arguments added for this promoted pointer.
463     std::advance(I2, ArgIndices.size());
464   }
465 
466   NF_CGN->stealCalledFunctionsFrom(CG[F]);
467 
468   // Now that the old function is dead, delete it.  If there is a dangling
469   // reference to the CallgraphNode, just leave the dead function around for
470   // someone else to nuke.
471   CallGraphNode *CGN = CG[F];
472   if (CGN->getNumReferences() == 0)
473     delete CG.removeFunctionFromModule(CGN);
474   else
475     F->setLinkage(Function::ExternalLinkage);
476 
477   return NF_CGN;
478 }
479 
480 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
481 /// all callees pass in a valid pointer for the specified function argument.
482 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
483   Function *Callee = Arg->getParent();
484   const DataLayout &DL = Callee->getParent()->getDataLayout();
485 
486   unsigned ArgNo = Arg->getArgNo();
487 
488   // Look at all call sites of the function.  At this point we know we only have
489   // direct callees.
490   for (User *U : Callee->users()) {
491     CallSite CS(U);
492     assert(CS && "Should only have direct calls!");
493 
494     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
495       return false;
496   }
497   return true;
498 }
499 
500 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
501 /// that is greater than or equal to the size of prefix, and each of the
502 /// elements in Prefix is the same as the corresponding elements in Longer.
503 ///
504 /// This means it also returns true when Prefix and Longer are equal!
505 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
506   if (Prefix.size() > Longer.size())
507     return false;
508   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
509 }
510 
511 /// Checks if Indices, or a prefix of Indices, is in Set.
512 static bool prefixIn(const IndicesVector &Indices,
513                      std::set<IndicesVector> &Set) {
514   std::set<IndicesVector>::iterator Low;
515   Low = Set.upper_bound(Indices);
516   if (Low != Set.begin())
517     Low--;
518   // Low is now the last element smaller than or equal to Indices. This means
519   // it points to a prefix of Indices (possibly Indices itself), if such
520   // prefix exists.
521   //
522   // This load is safe if any prefix of its operands is safe to load.
523   return Low != Set.end() && isPrefix(*Low, Indices);
524 }
525 
526 /// Mark the given indices (ToMark) as safe in the given set of indices
527 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
528 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
529 /// already. Furthermore, any indices that Indices is itself a prefix of, are
530 /// removed from Safe (since they are implicitely safe because of Indices now).
531 static void markIndicesSafe(const IndicesVector &ToMark,
532                             std::set<IndicesVector> &Safe) {
533   std::set<IndicesVector>::iterator Low;
534   Low = Safe.upper_bound(ToMark);
535   // Guard against the case where Safe is empty
536   if (Low != Safe.begin())
537     Low--;
538   // Low is now the last element smaller than or equal to Indices. This
539   // means it points to a prefix of Indices (possibly Indices itself), if
540   // such prefix exists.
541   if (Low != Safe.end()) {
542     if (isPrefix(*Low, ToMark))
543       // If there is already a prefix of these indices (or exactly these
544       // indices) marked a safe, don't bother adding these indices
545       return;
546 
547     // Increment Low, so we can use it as a "insert before" hint
548     ++Low;
549   }
550   // Insert
551   Low = Safe.insert(Low, ToMark);
552   ++Low;
553   // If there we're a prefix of longer index list(s), remove those
554   std::set<IndicesVector>::iterator End = Safe.end();
555   while (Low != End && isPrefix(ToMark, *Low)) {
556     std::set<IndicesVector>::iterator Remove = Low;
557     ++Low;
558     Safe.erase(Remove);
559   }
560 }
561 
562 /// isSafeToPromoteArgument - As you might guess from the name of this method,
563 /// it checks to see if it is both safe and useful to promote the argument.
564 /// This method limits promotion of aggregates to only promote up to three
565 /// elements of the aggregate in order to avoid exploding the number of
566 /// arguments passed in.
567 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
568                                     AAResults &AAR, unsigned MaxElements) {
569   typedef std::set<IndicesVector> GEPIndicesSet;
570 
571   // Quick exit for unused arguments
572   if (Arg->use_empty())
573     return true;
574 
575   // We can only promote this argument if all of the uses are loads, or are GEP
576   // instructions (with constant indices) that are subsequently loaded.
577   //
578   // Promoting the argument causes it to be loaded in the caller
579   // unconditionally. This is only safe if we can prove that either the load
580   // would have happened in the callee anyway (ie, there is a load in the entry
581   // block) or the pointer passed in at every call site is guaranteed to be
582   // valid.
583   // In the former case, invalid loads can happen, but would have happened
584   // anyway, in the latter case, invalid loads won't happen. This prevents us
585   // from introducing an invalid load that wouldn't have happened in the
586   // original code.
587   //
588   // This set will contain all sets of indices that are loaded in the entry
589   // block, and thus are safe to unconditionally load in the caller.
590   //
591   // This optimization is also safe for InAlloca parameters, because it verifies
592   // that the address isn't captured.
593   GEPIndicesSet SafeToUnconditionallyLoad;
594 
595   // This set contains all the sets of indices that we are planning to promote.
596   // This makes it possible to limit the number of arguments added.
597   GEPIndicesSet ToPromote;
598 
599   // If the pointer is always valid, any load with first index 0 is valid.
600   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
601     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
602 
603   // First, iterate the entry block and mark loads of (geps of) arguments as
604   // safe.
605   BasicBlock &EntryBlock = Arg->getParent()->front();
606   // Declare this here so we can reuse it
607   IndicesVector Indices;
608   for (Instruction &I : EntryBlock)
609     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
610       Value *V = LI->getPointerOperand();
611       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
612         V = GEP->getPointerOperand();
613         if (V == Arg) {
614           // This load actually loads (part of) Arg? Check the indices then.
615           Indices.reserve(GEP->getNumIndices());
616           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
617                II != IE; ++II)
618             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
619               Indices.push_back(CI->getSExtValue());
620             else
621               // We found a non-constant GEP index for this argument? Bail out
622               // right away, can't promote this argument at all.
623               return false;
624 
625           // Indices checked out, mark them as safe
626           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
627           Indices.clear();
628         }
629       } else if (V == Arg) {
630         // Direct loads are equivalent to a GEP with a single 0 index.
631         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
632       }
633     }
634 
635   // Now, iterate all uses of the argument to see if there are any uses that are
636   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
637   SmallVector<LoadInst *, 16> Loads;
638   IndicesVector Operands;
639   for (Use &U : Arg->uses()) {
640     User *UR = U.getUser();
641     Operands.clear();
642     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
643       // Don't hack volatile/atomic loads
644       if (!LI->isSimple())
645         return false;
646       Loads.push_back(LI);
647       // Direct loads are equivalent to a GEP with a zero index and then a load.
648       Operands.push_back(0);
649     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
650       if (GEP->use_empty()) {
651         // Dead GEP's cause trouble later.  Just remove them if we run into
652         // them.
653         GEP->eraseFromParent();
654         // TODO: This runs the above loop over and over again for dead GEPs
655         // Couldn't we just do increment the UI iterator earlier and erase the
656         // use?
657         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
658                                        MaxElements);
659       }
660 
661       // Ensure that all of the indices are constants.
662       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
663            ++i)
664         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
665           Operands.push_back(C->getSExtValue());
666         else
667           return false; // Not a constant operand GEP!
668 
669       // Ensure that the only users of the GEP are load instructions.
670       for (User *GEPU : GEP->users())
671         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
672           // Don't hack volatile/atomic loads
673           if (!LI->isSimple())
674             return false;
675           Loads.push_back(LI);
676         } else {
677           // Other uses than load?
678           return false;
679         }
680     } else {
681       return false; // Not a load or a GEP.
682     }
683 
684     // Now, see if it is safe to promote this load / loads of this GEP. Loading
685     // is safe if Operands, or a prefix of Operands, is marked as safe.
686     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
687       return false;
688 
689     // See if we are already promoting a load with these indices. If not, check
690     // to make sure that we aren't promoting too many elements.  If so, nothing
691     // to do.
692     if (ToPromote.find(Operands) == ToPromote.end()) {
693       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
694         DEBUG(dbgs() << "argpromotion not promoting argument '"
695                      << Arg->getName()
696                      << "' because it would require adding more "
697                      << "than " << MaxElements
698                      << " arguments to the function.\n");
699         // We limit aggregate promotion to only promoting up to a fixed number
700         // of elements of the aggregate.
701         return false;
702       }
703       ToPromote.insert(std::move(Operands));
704     }
705   }
706 
707   if (Loads.empty())
708     return true; // No users, this is a dead argument.
709 
710   // Okay, now we know that the argument is only used by load instructions and
711   // it is safe to unconditionally perform all of them. Use alias analysis to
712   // check to see if the pointer is guaranteed to not be modified from entry of
713   // the function to each of the load instructions.
714 
715   // Because there could be several/many load instructions, remember which
716   // blocks we know to be transparent to the load.
717   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
718 
719   for (LoadInst *Load : Loads) {
720     // Check to see if the load is invalidated from the start of the block to
721     // the load itself.
722     BasicBlock *BB = Load->getParent();
723 
724     MemoryLocation Loc = MemoryLocation::get(Load);
725     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
726       return false; // Pointer is invalidated!
727 
728     // Now check every path from the entry block to the load for transparency.
729     // To do this, we perform a depth first search on the inverse CFG from the
730     // loading block.
731     for (BasicBlock *P : predecessors(BB)) {
732       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
733         if (AAR.canBasicBlockModify(*TranspBB, Loc))
734           return false;
735     }
736   }
737 
738   // If the path from the entry of the function to each load is free of
739   // instructions that potentially invalidate the load, we can make the
740   // transformation!
741   return true;
742 }
743 
744 /// \brief Checks if a type could have padding bytes.
745 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
746 
747   // There is no size information, so be conservative.
748   if (!type->isSized())
749     return false;
750 
751   // If the alloc size is not equal to the storage size, then there are padding
752   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
753   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
754     return false;
755 
756   if (!isa<CompositeType>(type))
757     return true;
758 
759   // For homogenous sequential types, check for padding within members.
760   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
761     return isDenselyPacked(seqTy->getElementType(), DL);
762 
763   // Check for padding within and between elements of a struct.
764   StructType *StructTy = cast<StructType>(type);
765   const StructLayout *Layout = DL.getStructLayout(StructTy);
766   uint64_t StartPos = 0;
767   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
768     Type *ElTy = StructTy->getElementType(i);
769     if (!isDenselyPacked(ElTy, DL))
770       return false;
771     if (StartPos != Layout->getElementOffsetInBits(i))
772       return false;
773     StartPos += DL.getTypeAllocSizeInBits(ElTy);
774   }
775 
776   return true;
777 }
778 
779 /// \brief Checks if the padding bytes of an argument could be accessed.
780 static bool canPaddingBeAccessed(Argument *arg) {
781 
782   assert(arg->hasByValAttr());
783 
784   // Track all the pointers to the argument to make sure they are not captured.
785   SmallPtrSet<Value *, 16> PtrValues;
786   PtrValues.insert(arg);
787 
788   // Track all of the stores.
789   SmallVector<StoreInst *, 16> Stores;
790 
791   // Scan through the uses recursively to make sure the pointer is always used
792   // sanely.
793   SmallVector<Value *, 16> WorkList;
794   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
795   while (!WorkList.empty()) {
796     Value *V = WorkList.back();
797     WorkList.pop_back();
798     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
799       if (PtrValues.insert(V).second)
800         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
801     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
802       Stores.push_back(Store);
803     } else if (!isa<LoadInst>(V)) {
804       return true;
805     }
806   }
807 
808   // Check to make sure the pointers aren't captured
809   for (StoreInst *Store : Stores)
810     if (PtrValues.count(Store->getValueOperand()))
811       return true;
812 
813   return false;
814 }
815 
816 /// PromoteArguments - This method checks the specified function to see if there
817 /// are any promotable arguments and if it is safe to promote the function (for
818 /// example, all callers are direct).  If safe to promote some arguments, it
819 /// calls the DoPromotion method.
820 ///
821 static CallGraphNode *
822 promoteArguments(CallGraphNode *CGN, CallGraph &CG,
823                  function_ref<AAResults &(Function &F)> AARGetter,
824                  unsigned MaxElements) {
825   Function *F = CGN->getFunction();
826 
827   // Make sure that it is local to this module.
828   if (!F || !F->hasLocalLinkage())
829     return nullptr;
830 
831   // Don't promote arguments for variadic functions. Adding, removing, or
832   // changing non-pack parameters can change the classification of pack
833   // parameters. Frontends encode that classification at the call site in the
834   // IR, while in the callee the classification is determined dynamically based
835   // on the number of registers consumed so far.
836   if (F->isVarArg())
837     return nullptr;
838 
839   // First check: see if there are any pointer arguments!  If not, quick exit.
840   SmallVector<Argument *, 16> PointerArgs;
841   for (Argument &I : F->args())
842     if (I.getType()->isPointerTy())
843       PointerArgs.push_back(&I);
844   if (PointerArgs.empty())
845     return nullptr;
846 
847   // Second check: make sure that all callers are direct callers.  We can't
848   // transform functions that have indirect callers.  Also see if the function
849   // is self-recursive.
850   bool isSelfRecursive = false;
851   for (Use &U : F->uses()) {
852     CallSite CS(U.getUser());
853     // Must be a direct call.
854     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
855       return nullptr;
856 
857     if (CS.getInstruction()->getParent()->getParent() == F)
858       isSelfRecursive = true;
859   }
860 
861   const DataLayout &DL = F->getParent()->getDataLayout();
862 
863   AAResults &AAR = AARGetter(*F);
864 
865   // Check to see which arguments are promotable.  If an argument is promotable,
866   // add it to ArgsToPromote.
867   SmallPtrSet<Argument *, 8> ArgsToPromote;
868   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
869   for (Argument *PtrArg : PointerArgs) {
870     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
871 
872     // Replace sret attribute with noalias. This reduces register pressure by
873     // avoiding a register copy.
874     if (PtrArg->hasStructRetAttr()) {
875       unsigned ArgNo = PtrArg->getArgNo();
876       F->setAttributes(
877           F->getAttributes()
878               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
879               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
880       for (Use &U : F->uses()) {
881         CallSite CS(U.getUser());
882         CS.setAttributes(
883             CS.getAttributes()
884                 .removeAttribute(F->getContext(), ArgNo + 1,
885                                  Attribute::StructRet)
886                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
887       }
888     }
889 
890     // If this is a byval argument, and if the aggregate type is small, just
891     // pass the elements, which is always safe, if the passed value is densely
892     // packed or if we can prove the padding bytes are never accessed. This does
893     // not apply to inalloca.
894     bool isSafeToPromote =
895         PtrArg->hasByValAttr() &&
896         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
897     if (isSafeToPromote) {
898       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
899         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
900           DEBUG(dbgs() << "argpromotion disable promoting argument '"
901                        << PtrArg->getName()
902                        << "' because it would require adding more"
903                        << " than " << MaxElements
904                        << " arguments to the function.\n");
905           continue;
906         }
907 
908         // If all the elements are single-value types, we can promote it.
909         bool AllSimple = true;
910         for (const auto *EltTy : STy->elements()) {
911           if (!EltTy->isSingleValueType()) {
912             AllSimple = false;
913             break;
914           }
915         }
916 
917         // Safe to transform, don't even bother trying to "promote" it.
918         // Passing the elements as a scalar will allow sroa to hack on
919         // the new alloca we introduce.
920         if (AllSimple) {
921           ByValArgsToTransform.insert(PtrArg);
922           continue;
923         }
924       }
925     }
926 
927     // If the argument is a recursive type and we're in a recursive
928     // function, we could end up infinitely peeling the function argument.
929     if (isSelfRecursive) {
930       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
931         bool RecursiveType = false;
932         for (const auto *EltTy : STy->elements()) {
933           if (EltTy == PtrArg->getType()) {
934             RecursiveType = true;
935             break;
936           }
937         }
938         if (RecursiveType)
939           continue;
940       }
941     }
942 
943     // Otherwise, see if we can promote the pointer to its value.
944     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
945                                 MaxElements))
946       ArgsToPromote.insert(PtrArg);
947   }
948 
949   // No promotable pointer arguments.
950   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
951     return nullptr;
952 
953   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, CG);
954 }
955 
956 namespace {
957 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
958 ///
959 struct ArgPromotion : public CallGraphSCCPass {
960   void getAnalysisUsage(AnalysisUsage &AU) const override {
961     AU.addRequired<AssumptionCacheTracker>();
962     AU.addRequired<TargetLibraryInfoWrapperPass>();
963     getAAResultsAnalysisUsage(AU);
964     CallGraphSCCPass::getAnalysisUsage(AU);
965   }
966 
967   bool runOnSCC(CallGraphSCC &SCC) override;
968   static char ID; // Pass identification, replacement for typeid
969   explicit ArgPromotion(unsigned MaxElements = 3)
970       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
971     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
972   }
973 
974 private:
975   using llvm::Pass::doInitialization;
976   bool doInitialization(CallGraph &CG) override;
977   /// The maximum number of elements to expand, or 0 for unlimited.
978   unsigned MaxElements;
979 };
980 }
981 
982 char ArgPromotion::ID = 0;
983 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
984                       "Promote 'by reference' arguments to scalars", false,
985                       false)
986 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
987 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
988 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
989 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
990                     "Promote 'by reference' arguments to scalars", false, false)
991 
992 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
993   return new ArgPromotion(MaxElements);
994 }
995 
996 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
997   if (skipSCC(SCC))
998     return false;
999 
1000   // Get the callgraph information that we need to update to reflect our
1001   // changes.
1002   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1003 
1004   // We compute dedicated AA results for each function in the SCC as needed. We
1005   // use a lambda referencing external objects so that they live long enough to
1006   // be queried, but we re-use them each time.
1007   Optional<BasicAAResult> BAR;
1008   Optional<AAResults> AAR;
1009   auto AARGetter = [&](Function &F) -> AAResults & {
1010     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1011     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1012     return *AAR;
1013   };
1014 
1015   bool Changed = false, LocalChange;
1016 
1017   // Iterate until we stop promoting from this SCC.
1018   do {
1019     LocalChange = false;
1020     // Attempt to promote arguments from all functions in this SCC.
1021     for (CallGraphNode *OldNode : SCC) {
1022       if (CallGraphNode *NewNode =
1023               promoteArguments(OldNode, CG, AARGetter, MaxElements)) {
1024         LocalChange = true;
1025         SCC.ReplaceNode(OldNode, NewNode);
1026       }
1027     }
1028     // Remember that we changed something.
1029     Changed |= LocalChange;
1030   } while (LocalChange);
1031 
1032   return Changed;
1033 }
1034 
1035 bool ArgPromotion::doInitialization(CallGraph &CG) {
1036   return CallGraphSCCPass::doInitialization(CG);
1037 }
1038